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Abstract—Time-Sensitive Networking (TSN) and Deterministic
Networking (DetNet) are emerging standards to enable deter-
ministic, delay-critical communication in such networks. This
naturally (re-)calls attention to the network calculus theory (NC),
since a rich set of results for delay guarantee analysis have
already been developed there. One could anticipate an immediate
adoption of those existing network calculus results to TSN and
DetNet. However, the fundamental difference between the traffic
specification adopted in TSN and DetNet and those traffic models
in NC makes this difficult, let alone that there is a long-standing
open challenge in NC. To address them, this paper considers
an arrival time function based max-plus NC traffic model. In
particular, the mapping between the TSN / DetNet and the NC
traffic model is proved. In addition, the superposition property
of the arrival time function based NC traffic model is found and
proved. Appealingly, the proved superposition property shows
a clear analogy with that of a well-known counterpart traffic
model in NC. These results help make an important step forward
towards the development of a system theory for delay guarantee
analysis of TSN / DetNet networks.

Index Terms—Time-Sensitive Networking (TSN); Deterministic
Networking (DetNet); Network Calculus; Max-Plus Network
Calculus; Superposition Property; Max-Plus Arrival Curve

I. INTRODUCTION

Time-sensitive applications can be broadly found in in-
dustrial process control, machine control and live stream-
ing of audio and video. To support such applications and
to enable deterministic delay-critical communication, Time-
Sensitive Networking (TSN) and Deterministic Networking
(DetNet) are emerging standards respectively introduced by
the IEEE TSN Task Group [1] for Layer 2 Ethernet switches,
and by the IETF DetNet Working Group [2] for more general
network settings. In both TSN and DetNet, the traffic speci-
fication (TSpec) uses two parameters to model a flow or an
arrival process: a time interval and the maximum number of
packets in the interval [1][2].

Since a rich set of results for delay guarantee analysis have
already been developed in the network calculus theory (NC),
e.g., [3][4][5][6][7][8][9][10][11][12], one could anticipate an
immediate adoption of those existing NC results to TSN and
DetNet. However, the traffic specification adopted in TSN and
DetNet is fundamentally different from those traffic models in
NC, which makes the adoption difficult, let alone that there
is a long-standing open challenge in the related part of NC.
To address this difficulty and the open challenge forms the
motivation and objective of the present paper.

Specifically, in this paper, a packet arrival time function
based traffic model related to the max-plus branch of NC

[5][9][10][11][12] is introduced. We prove that there is a
mapping between the TSN / DetNet traffic specification and
the max-plus traffic model, which establishes an important link
for making use of NC results to TSN / DetNet analysis.

However, for this max-plus traffic model, there is a long-
standing problem, which is its superposition property, i.e., the
aggregate arrival process resulted from the superposition of
multiple arrival processes can be characterized using the same
model as for the individual arrival processes. Specifically, the
superposition property has not been found or proved directly
on the model itself for long time due to an inherent challenge
[10][12]. Since the superposition property is one of the most
basic properties needed for network performance analysis
[7][8], this calls for an urgent need of investigation.

The inherent challenge [10][12] is due to the complex
formulation of the arrival time function of the aggregate
process in terms of the arrival time functions of the individual
arrival processes, making it difficult (if not impossible) to
characterize the aggregate process directly on this aggregate
arrival time function. To bypass this challenge, an indirect
approach has been considered in the literature [5][10]. How-
ever, this indirect approach requires packet length information
[5][10][12], which is not available or needed in the arrival
time function description of the arrival process as is the case
in TSN and DetNet.

In this paper, a novel approach is used which works directly
on the arrival time functions, fundamentally different from
the indirect approach. Based on this direct approach, the
superposition property of the arrival time function based max-
plus traffic model is found and proved. Appealingly, the
proved superposition property has a clear analogy with the
aggregation property of the well-known (σ, ρ) traffic model
[3] in the min-plus branch of NC [3][6], and is (much)
better than that from the indirect approach. The superposition
property and its proof using the direct approach form another
contribution that is crucial to both NC and the future use of
NC results to TSN and DetNet.

The rest is organized as follows. In Sec. II, the max-
plus traffic model is introduced, together with the proof of
the mapping between it and the TSN / DetNet TSpec. In
Sec. III, the inherent challenge is first discussed, followed by
the superposition property with detailed proof. In Sec. IV, a
comparison study of results using the indirect approach and
the direct approach is provided. This comparison implies the
importance of the superposition property proved in this paper.
Finally, concluding remarks are made in Sec. V.



II. THE MAX-PLUS TRAFFIC MODEL AND THE MAPPING

A. Notation
An arrival process is characterized by the arrival time

function Ā(n), for n = 1, 2, . . . , where Ā(n) denotes the
arrival time of packet n. For notational convenience, we define
Ā(0) = 0. In addition, we define Ā(m,n) = Ā(n) − Ā(m)
to be the inter-arrival time between the arrivals of packet m
and packet n, for n ≥ m ≥ 1. For instance, Ā(n, n+1) is the
inter-arrival time between packets n and n+ 1 for n ≥ 1.

As an analogy, we also characterize the arrival process using
another function A(t), t ≥ 0, which counts the cumulative
amount of traffic (in bits) carried by the arrival process up
to time t. Similarly, we define A(s, t) ≡ A(t) − A(s) as the
cumulative amount of traffic carried by the arrival process in
[s, t], and for notational convenience, we let A(0) = 0.

When studying the superposition of I(≥ 2) multiple arrival
processes, we use Āi(n), (i = 1, . . . , I), to denote the arrival
time function of each individual arrival process, and Ā(n)
that of the aggregate process. In addition, we use Ai(t),
(i = 1, . . . , I), to denote the cumulative traffic amount time
function of each individual arrival process, and A(t) that of
the aggregate process.

B. The TSN / DetNet Traffic Specification
The TSN / DetNet traffic specification is defined as [1][2]:

Definition 1. An arrival process is said to conform to the TSN
/ DetNet traffic specification with interval parameter τ(> 0)
and maximum packet number parameter K(≥ 1), if during a
specified duration of length τ , the number of packets generated
by this arrival process is limited by K.

For Definition 1, we have the following remarks. First,
this specification aims to characterize flows at the packet
level. We believe, there is an underlying reason for this. In
particular, the delay of a packet at a network node is comprised
of two types of delays, namely processing related delays,
and transmission related delays. Typically, delays in the first
category are affected only at the packet level, little by the
packet length, unlike the delays in the second category. With
the link speed enters Gbps range, the nodal packet delay
becomes more and more dominated by the first category, for
which packet level characterization is crucial.

Second, in [1][2], there is a maximum packet length param-
eter that could also be included in the TSpec. However, by
convention, the maximum packet length of a flow or arrival
process typically does not change in the network. For this
reason as well as the discussion above, the maximum packet
length parameter is not included in Definition 1.

Third, for flows characterized by this TSpec, few results are
available for their delay guarantee analysis. On the contrary,
a rich set of such results have already been developed in NC,
e.g. [3][4][5][6][7][8][9][10][11][12]. So, an idea is to find a
way to link TSN / DetNet TSpec to traffic models in NC,
though this traffic specification is fundamentally different.

In the following, we introduce a traffic model that is related
to NC, and prove its mapping with the TSN / DetNet TSpec.

C. The Max-Plus Traffic Model and the Mapping

In this paper, we introduce the following traffic model.

Definition 2. An arrival process is said to be (λ, ν)-
constrained, if, for all n ≥ m ≥ 0, there holds

Ā(m,n) ≥ 1

λ
(n−m− ν)+

where (x)+ ≡ max{x, 0} and λ(> 0) and ν(≥ 0) are two
constant parameters.

As the definition shows, the (λ, ν) model is defined on the
arrival time function. Indeed, it is a special case of the max-
plus arrival curve model defined for the max-plus network
calculus [5] [9] [10], where a more general function, called
max-plus arrival curve, is used as the constraint function.

The following lemma shows that, the definition of the (λ, ν)
model is equivalent to an expression in the max-plus algebra,
and is hence referred to as a max-plus traffic model. The proof
is similar to that for the general max-plus arrival curve model
in Lemma 5.2 in [10] and omitted.

Lemma 1. An arrival process is (λ, ν)-constrained, if and
only if, there holds

Ā(n) ≥ Ā⊗̄ᾱ(n)

where ᾱ(n) = 1
λ (n − ν)+, and the operation ⊗̄ of two

functions F (n) and G(n) is the max-plus convolution, defined
as F ⊗̄G(n) ≡ sup0≤m≤n{F (m) +G(n−m)}.

The following theorem establishes the mapping between the
TSN/DetNet TSpec and the (λ, ν) model.

Theorem 1. (i) If an arrival process is (λ, ν)-constrained,
it conforms to the TSN / DetNet traffic specification with
interval parameter τ = (2/λ)− and maximum packet number
parameter K = ν+ 2, where x− denotes x− ε for ε→ 0. (ii)
If an arrival process conforms to the TSN / DetNet traffic
specification with parameters τ and K(≥ 1), it is (λ, ν)-
constrained with λ = K/τ and ν = K − 1.

Proof. For the first part, the condition implies, for any m ≥ 1

Ā(m,m+ ν + 2) ≥ 2

λ
> τ.

which says the time distance between any two packets that are
ν+2 apart is greater than τ . In other words, such two packets
cannot be in an interval of length τ . Equivalently, this is to
say that in an interval of length τ , the maximum number of
packets cannot exceed ν + 2, which proves the first part.

For the second part, under the given condition, we have

Ā(m,n) ≥
⌊
n−m
K

⌋
τ =

⌈
n−m−K + 1

K

⌉
Kλ−1

≥
(
n−m−K + 1

K

)+

Kλ−1

= λ−1(n−m−K + 1)+

which concludes the second part.



D. The Analogy Min-Plus (σ, ρ) Traffic Model

The well-known (σ, ρ) traffic model is as the following [3]:

Definition 3. An arrival process is said to be (σ, ρ)-
constrained, if, for all t ≥ s ≥ 0, there holds

A(s, t) ≤ ρt+ σ

where parameters ρ(> 0) and σ(≥ 0) are often called the rate
and burst parameters respectively.

It is also known (see e.g. [6]) that the definition of the (σ, ρ)
model is equivalent to the following, and hence referred to as
a min-plus traffic model:

Lemma 2. An arrival process is (σ, ρ)-constrained, if and
only if, there holds

A(t) ≤ A⊗ α(t)

where α(t) = ρt + σ, and the operation ⊗ of two func-
tions F (n) and G(n) is the min-plus convolution, defined as
F⊗G(t) ≡ inf0≤s≤t{F (s) +G(t− s)}.

Note that for any period [s, t], we always have A(s, t) =∑I
i Ai(s, t), based on which, the superposition property of the

(σ, ρ) model is easily verified (see e.g. [6]):

Lemma 3. Consider the superposition of I(≥ 2) arrival
processes Ai(t), i = 1, . . . , I . If each arrival process Ai(t)
is (σi, ρi)-constrained, the aggregate process A(t) is (σ, ρ)-
constrained with

ρ =

I∑
i=1

ρi; σ =

I∑
i=1

σi.

In contrast to the min-plus (σ, ρ) model, for the max-plus
(λ, ν) model, its superposition property has not been found /
proved. In fact, the superposition property of the more general
max-plus arrival curve model is a long-standing open problem
[5][10][12]. This motivates and is focused in the next section.

III. THE SUPERPOSITION PROPERTY OF THE MAX-PLUS
TRAFFIC MODEL

A. The Difficulty

For the superposition of arrival processes, the following
relationship was initially derived in [10] and has also been
verified in [12]:

Lemma 4. Given the arrival time function Āi(n) of each
individual process, the arrival time function Ā(n) of the
aggregate process can be related to Āi(n) as,

Ā(n) = inf
m1+···+mI=n

max
i=1,...,I

Āi(mi). (1)

The expression (1) is neat, based on which, we can write

Ā(m,n) = inf
m1+···+mI=n

max
i=1,...,I

Āi(mi)−

inf
m1+···+mI=m

max
i=1,...,I

Āi(mi) (2)

Unfortunately, it is unknown how to further relate the right
hand side of (2) directly to Āi(mi, ni), i.e. to write the

right hand side as a function of and only of Āi(mi, ni),
i = 1, . . . , I . This makes it difficult to find the superposition
property of the (λ, ν) model from the above relationship.

To bypass this difficulty, when packet length information
is known, an indirect approach (see e.g., [5] [10]) has been
proposed. While this indirect approach is mathematically
sound, its application is limited, some compromise may have
to be made and the result can be loose. More discussion on
these will be provided in Sec. IV.

B. The Superposition Property of the (λ, ν) Model

This subsection is devoted to finding and proving the
superposition property of the arrival time function based (λ, ν)
max-plus traffic model, summarized in the following theorem.

Theorem 2. Consider the superposition of I(≥ 2) arrival
processes Āi, i = 1, . . . , I . If all arrival processes Āi are
(λi, νi)-constrained, the aggregate process Ā is (λdir., νdir.)-
constrained with

λdir. =

I∑
i=1

λi; νdir. =

I∑
i=1

νi + (I − 1).

Theorem 2 can be proved by induction. We first present the
base case with I = 2 in Lemma 5 and its proof.

Lemma 5. Consider the superposition of two processes Āi,
i = 1, 2. If both processes Āi are (λi, νi)-constrained, the
aggregate process Ā is (λ, ν)-constrained with

λ = λ1 + λ2; ν = ν1 + ν2 + 1.

Proof. Though lengthy, the complete proof is provided below,
as we believe, the techniques used in the proof also provide
insights when dealing with similar problems. In addition, the
proof itself also serves as an indication of the difficulty as
discussed in the previous subsection.

To help the presentation, we let

ᾱ(n) =
1

λ
(n− ν)+ =

1

λ1 + λ2
(n− ν1 − ν2 − 1)+.

Then, with the definition of the (λ, ν) model, to prove the
lemma is to prove that, for all n ≥ m ≥ 0, there holds:

Ā(m,n) ≥ ᾱ(n−m). (3)

We start with two trivial cases. One is, for any n = m(≥ 0),
Ā(m,n) = 0 by definition, with which, (3) holds because
ᾱ(0) = (−ν)+ = 0. Another is, for any n > m(≥ 0) with
n−m = 1, Ā(m,n) ≥ 0 because of non-negative inter-arrival
time between m and m + 1, with which, (3) holds because
ᾱ(1) = (−ν1 − ν2)+ = 0.

Next, we consider any n > m(≥ 0) with n −m > 1. The
corresponding time period is [Ā(m), Ā(n)]. We denote the set
of packets between m and n in Ā as {m+1, . . . , n−1}Ā. This
set has been intentionally used in the proof to avoid ambiguity
that would arise if the time period [Ā(m), Ā(n)] had been
used, because concurrent arrivals may exist or happen both in
the individual arrival processes and in the aggregate process



even at Ā(m) and/or Ā(n), which cannot be distinguished by
using [Ā(m), Ā(n)].

Without loss of generality, we suppose packet n is from Ā1

and is the n1-th packet in Ā1. In other words, we have

Ā(n) = Ā1(n1). (4)

Under this setting, there are three possibilities about packet
A(m): It either (Case 1) is from Ā1, or (Case 2) is from Ā2,
or (Case 3) is the virtual packet at time 0 for which we have
A(0) = 0. For the first two cases, we must have m ≥ 1, and
for the third case, m = 0. Accordingly, we prove for the three
cases:

Case 1: Packet m in the aggregate process is from Ā1.
Let m1 denote its number in Ā1, which implies:

Ā(m) = Ā1(m1) (5)
Ā(m,n) = Ā1(m1, n1) (6)

Now, given m and n are both from Ā1, there are (and only)
three sub-cases, Case 1.1 - Case 1.3, which we consider below.

Case 1.1: In {m+ 1, . . . , n− 1}Ā, there is no packet from
Ā2. In this sub-case, we have:

n−m = n1 −m1. (7)

In addition, since Ā1 is constrained by (λ1, ν1), we have

(λ1 + λ2) · Ā(m,n) ≥ λ1 · Ā(m,n) = λ1 · Ā1(m1, n1)

≥ (n1 −m1 − ν1)+

= (n−m− ν1)+

which gives

Ā(m,n) ≥ 1

λ1 + λ2
(n−m− ν1)+ ≥ ᾱ(n−m).

Case 1.2: In {m+ 1, . . . , n−1}Ā, there is one packet from
Ā2. In this sub-case, we have:

n−m = (n1 −m1) + 1 (8)

where, on the right hand side, the first term represents the
number of intervals in Ā1 and the second term represents that
an additional interval is introduced because of the one packet
from Ā2, in {m, . . . , n}Ā.

Similarly, we have

(λ1 + λ2) · Ā(m,n) ≥ λ1 · Ā1(m1, n1) ≥ (n1 −m1)− ν1

= (n−m− 1− ν1)+

which gives

Ā(m,n) ≥ 1

λ1 + λ2
· (n−m− ν1 − 1)+ ≥ ᾱ(n−m).

Case 1.3: In {m+1, . . . , n−1}Ā, there are multiple packets
from Ā2. Without loss of generality, let m2 be the first and
n2 be the last of these packets from Ā2. In this sub-case, the
following facts hold:

Ā(n) ≥ Ā2(n2) (9)
Ā(m) ≤ Ā2(m2) (10)

which gives Ā(m,n) ≥ Ā2(m2, n2). In addition, we have

n−m = (n1 −m1) + (n2 −m2) + 1 (11)

where the left hand side represents the number intervals
between packets m and n in Ā. For the right hand side, in
{m, . . . , n}Ā, we now have (n1 −m1 + 1) packets from Ā1,
and (n2 − m2 + 1) packets from Ā2, which in total gives
(n1−m1) + (n2−m2) + 2 ≡ N number of packets that have
N − 1 intervals, which is (n1 −m1) + (n2 −m2) + 1.

We then have

(λ1 + λ2) · Ā(m,n)

= λ1 · Ā1(m1, n1) + λ2 · Ā(m,n)

≥ λ1 · Ā1(m1, n1) + λ2 · Ā2(m2, n2)

≥ (n1 −m1 − ν1)+ + (n2 −m2 − ν2)+

≥ ((n1 −m1 − ν1) + (n2 −m2 − ν2))+

= ((n−m− 1)− (ν1 + ν2))+ (12)

and hence

Ā(m,n) ≥ 1

λ1 + λ2
(n−m− ν1 − ν2 − 1)+ = ᾱ(n−m).

Combing Case 1.1 - Case 1.3, (3) is proved for the first
case. In the following, we consider the second case.

Case 2: Packet m in the aggregate process is from Ā2.
Without of generality, suppose it is the m2-th packet in Ā2,
which also implies

Ā2(m2) = Ā(m) (13)

In this case, there are also (and only) three sub-cases, Case
2.1 - Case 2.3, which we consider below.

Case 2.1: In {m+ 1, . . . , n− 1}Ā, there is no packet from
Ā1 but there is at least one packet from Ā2. Let n2 denote
the last such packet from Ā2. Based on the definition of n2,
we must have

Ā2(n2) ≤ Ā(n) = Ā1(n1) (14)
n−m = (n2 −m2) + 1 (15)

where, on the right hand side of (15), the first term (n2−m2)
represents the number of intervals of packets from Ā2 and the
second term represents the additional interval introduced by
the one packet, i.e. n1, from Ā1 in {m, . . . , n}Ā.

With (13) and (14), we now have,

(λ1 + λ2) · Ā(m,n)

≥ λ2 · (Ā(n)− Ā(m)) ≥ λ2 · (Ā2(n2)− Ā2(m2))

≥ (n2 −m2 − ν2)+ = (n−m− 1− ν2)+

and hence

Ā(m,n) ≥ 1

λ1 + λ2
(n−m− ν2 − 1)+ ≥ ᾱ(n−m).

Case 2.2: In {m+ 1, . . . , n− 1}Ā, there is no packet from
Ā2 but there is at least one packet from Ā1. Let m1 denote



the first such packet from Ā1. Based on the definition of m1,
we must have

Ā1(m1) ≥ Ā(m) = Ā2(m2) (16)
n−m = (n1 −m1) + 1 (17)

where, on the right hand side of (17), the first term (n1−m1)
represents the number of intervals of packets from Ā1 and the
second term represents that an additional interval is introduced
by the one packet, i.e. m2, from Ā2 in {m, . . . , n}Ā.

With (4), (16) and (17), we now have,

(λ1 + λ2) · Ā(m,n)

≥ λ1 · (Ā(n)− Ā(m)) ≥ λ1 · (Ā1(n1)− Ā1(m1))

≥ (n1 −m1 − ν1)+ = (n−m− 1− ν1)+

and hence

Ā(m,n) ≥ 1

λ1 + λ2
(n−m− ν1 − 1)+ ≥ ᾱ(n−m).

Case 2.3: In {m + 1, . . . , n − 1}Ā, there is at least one
packet from Ā1 and there is at least one packet from Ā2. Let
m1 denote the first such packet from Ā1, and n2 the last such
packet from Ā2. Based on the definitions of m1 and n2, we
must have

Ā1(m1) ≥ Ā(m) = Ā2(m2) (18)
Ā2(n2) ≤ Ā(n) = Ā1(n1) (19)
n−m = (n1 −m1) + (n2 −m2) + 1 (20)

where (18) is the same as (16), (19) the same as (14), and on
the right hand side of (20), the first term (n1−m1) represents
the number of intervals of packets from Ā1, the second term
(n2−m2) represents the number of intervals of packest from
Ā2, and the third term represents that an additional interval
needs to be added due to the superposition, all in {m, . . . , n}Ā.
(See also the discussion for (11).)

With (18) and (19), we now have,

(λ1 + λ2) · Ā(m,n)

= λ1 · (Ā(n)− Ā(m)) + λ2 · (Ā(n)− Ā(m))

≥ λ1 · (Ā1(n1)− Ā1(m1)) + λ2 · (Ā(n2)− Ā(m2))

≥ (n1 −m1 − ν1)+ + (n2 −m2 − ν2)+

≥ ((n1 −m1)− ν1 + (n2 −m2)− ν2)+

= (n−m− 1− ν1 − ν2)+ (21)

and hence

Ā(m,n) ≥ 1

λ1 + λ2
(n−m− ν1 − ν2 − 1)+ = ᾱ(n−m).

Combing Case 2.1 - Case 2.3, (3) is proved for the second
case. With this, we have proved (3) holds for all n > m ≥ 1.

Case 3: Customer m is the virtual packet at the origin,
i.e. m = 0 and A(0) = 0. In this case, in addition to the n1

customers from Ā1, there are n − n1 customers from Ā2 in
the period, and we must also have

Ā2(n− n1) ≤ Ā1(n1) = Ā(n)

with which, we further obtain

(λ1 + λ2) · Ā(0, n)

= λ1 · Ā(n) + λ2 · Ā(n)

≥ λ1Ā1(n1) + λ2 · Ā2(n− n1)

≥ (n1 − ν1)+ + ((n− n1)− ν2)+

≥ ((n1 − ν1) + ((n− n1)− ν2))+ = (n− ν1 − ν2)+

and hence

Ā(0, n) ≥ 1

λ1 + λ2
((n− 0)− ν1 − ν2)+ ≥ ᾱ(n− 0).

This, together with the proof for Case 1 and Case 2, as well
as the two trivial cases in the beginning, ends the proof.

Next for the induction, we prove Theorem 2 also holds
for I + 1 arrival processes, given the condition that it holds
for I arrival processes. Note that, under the given condition,
the aggregate process of I arrival processes is (λ(I), ν(I))-
constrained with λ(I) =

∑I
i=1 λi; ν(I) =

∑I
i=1 νi + (I − 1).

The aggregate process of I+1 arrival processes, denoted as
Ā(I+1), can be treated as the superposition of two processes
Ā(I) and ĀI+1, where Ā(I) denotes the aggregate of the first
I processes and ĀI+1 the last process. Then, with Lemma 5,
Ā(I+1) is (λ(I+1), ν(I+1))-constrained with

λ(I+1) = λ(I) + λI+1 =

I+1∑
i=1

λi

ν(I+1) = ν(I) + νI+1 + 1 =

I+1∑
i=1

νi + ((I + 1)− 1)

which is Theorem 2 for the superposition of I + 1 processes.
This completes the proof of Theorem 2 .

C. Remarks

It is worth highlighting that the superposition property of
the (λ, ν) model presented in Theorem 2 resembles that of the
(σ, ρ) model shown in Lemma 3. In addition, the superposition
property of the (λ, ν) model can be extended to the more
general max-plus arrival curve model shown below.

Corollary 1. Consider the superposition of I(≥ 2) arrival
processes Āi, i = 1, . . . , I . If each of them has a max-
plus arrival curve ᾱi(·)(≥ 0), (i = 1, . . . , I), then the
superposition process Ā has a max-plus arrival curve ᾱ as
ᾱ(n) = 1

λ · (n − ν(n))+ where λ =
∑I
i=1 λi; ν(n) =∑I

i=1 νi(n) + (I − 1) with

λi = sup{r : r · αi(n) ≤ n} (22)
νi(n) = n− λiαi(n). (23)

Furthermore, it is worth highlighting that, with the help of
Theorem 1 and Theorem 2, the existing NC results can be
made use of for delay guarantee analysis of TSN / DetNet.
Also, following the approaches used in the proof of Theorem
2, a similar superposition property can be found for the TSN
/ DetNet traffic specification [13].



IV. COMPARISON

In this section, we compare the superposition results ob-
tained using the direct approach and those using the indirect
approach proposed in the literature (see e.g., [5] [10]).

Specifically, the indirect approach first transforms the (λ, ν)
characterization from the arrival time function to the (σ, ρ)
traffic characterization, then applies the superposition property
of the (σ, ρ) model to find the (σ, ρ) characterization for the
aggregate process, and finally transforms the obtained (σ, ρ)
characterization back to the the (λ, ν) characterization.

The following lemma summarizes the result from the indi-
rect approach. Its proof is omitted, since a general but much
more complex form can be found from Corollary 6.2.9 in [5].

Lemma 6. Consider the superposition of I(≥ 2) arrival
processes Āi, i = 1, . . . , I . If each Āi is (λi, νi)-constrained
with maximum packet length li and the minimum packet length
of all processes is known, denoted as l, then the aggregate
process Ā is (λind., νind.)-constrained with

λind. =

I∑
i=1

li
l
λi; νind. =

I∑
i=1

(νi + 1)
li
l
.

Comparing Lemma 6 with Theorem 2, in addition to how
their results are derived, there are two fundamental differences:

(1) For Lemma 6 to be applicable, we at least need to know
the maximum packet length of each process and the minimum
packet length of all processes. In contrast, no specific packet
length information is required for Theorem 2. This difference
has an immediate consequence, which is, if the packet length
information is not known or provided, the superposition result
presented in Lemma 6 can no more be used.

(2) Even when the needed packet length information con-
dition for Lemma 6 to be applicable is available, its resultant
(λ, ν) representation is worse than what is from Theorem 2.
This is because λind. ≥ λdir. and νind. > νdir. leading to a
smaller or worse bounding function λ−1(n − m − ν) in the
(λ, ν) characterization.

In the rest, we present results for four extremely simple
cases to exemplify the comparison. For simplicity in the ex-
pression, we assume every flow i produces packets periodically
and the period length is τi. In addition, for ease of expression,
we consider the superposition of only two flows, i.e. I = 2.

The other settings of the four cases are:
• Case 1: All flows have the same period τi = τ .
• Case 2: All flows have the same period τi = τ and the

same packet length li = l.
• Case 3: All flows still have the same packet length li = l,

but while one flow has period τ1 = τ , the other flow has
period τ2 = 2τ .

• Case 4: All other settings are the same as for the third
case, except that the second flow has packet length l2 =
2l. As a remark, in this case, the average traffic rate (in
bps) of the second flow is the same as that of the first
flow, i.e. ρ1 = ρ2 = l/τ .

Table I summarizes and compares the superposition results
from both approaches for the four cases. Though simple, the

TABLE I
COMPARISON OF SUPERPOSITION PROPERTY RESULTS

Cases: Indirect Appr. (Lemma 6) Direct Appr. (Theorem 2)
Case 1 Not Available τ

2
(n− 1)+

Case 2 τ
2
(n− 2)+ τ

2
(n− 1)+

Case 3 2τ
3
(n− 2)+ 2τ

3
(n− 1)+

Case 4 τ
2
(n− 3)+ 2τ

3
(n− 1)+

comparison validates the discussion about the fundamental
differences between the indirect and direct approaches. In
particular, the direct approach provides tighter bounds.

V. CONCLUSION

The emerging time-sensitive networking (TSN) and deter-
ministic networking (DetNet) standards (re-)call attention to
the network calculus, in order to make use of the rich set of
results available in NC. In this paper, we introduced an arrival
time function based max-plus NC traffic model. We proved
that it is closely related to the TSN TSpec and there is a direct
mapping between them. In addition, another focus has been on
finding and proving the superposition property of the max-plus
traffic model, providing answer to a long-standing question in
the max-plus network calculus. The proof adopted a novel
direct approach that requires no packet length information,
in contrast to a literature indirect approach. Appealingly,
the proved superposition property shows clear analogy with
that of the well-known counterpart (σ, ρ) model in NC. The
comparison of the superposition results from the indirect and
direct approaches not only shows wider applicability of the
superposition property obtained in this paper, but also offers
better traffic characterization for the aggregate process. These
results can help make use of the NC results for delay guarantee
analysis of TSN / DetNet networks.
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