
June 2007
Nikolai Ushakov, MATH

Master of Science in Physics and Mathematics
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Mathematical Sciences

Bandwith selection based on a special
choice of the kernel

Thomas Oksavik





Problem Description

In the frames of the project it is supposed to study influence of the choice of the kernel in kernel
density estimation on deviation of the asymptotic bandwith from the optimal bandwith. On the
basis on this investigation, it is supposed to develop methods of the kernel choice.

Assignment given: 15. January 2007
Supervisor: Nikolai Ushakov, MATH





Preface

This report is the result of my work in the course TMA4905 Statistics. It
is written in my 10th and final semester of my Master of Science degree at
the Department of Mathematical Sciences, NTNU. This course corresponds
to a work load of 30 points, or one semester.

I would like to thank my supervisor Professor Nikolai Ushakov for help and
guidance through the semester.

i





Abstract

The bandwidth in kernel density estimation can be selected in different ways.
This paper focus on investigation of the bandwidth selected on basis of the
mean integrated squared error, and its asymptotic case, for different choices
of the kernel. Also this paper look at properties of the sinc-kernel, and
investigates if this non-conventional kernel is better than standard kernels
in some cases. Use of empirical data for bandwidth selection is also an
important topic which this paper deals with.
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Chapter 1

Introduction

The main goal of this report is to analyze and investigate the bandwidth
selection in kernel density estimation. We have studied already existing the-
ories, and we have developed some results based on these theories. We have
done this for a wide range of the kernel choice to get more substance behind
our investigation.
In chapter 2 we give a short introduction to the theory used in this work.
Some basics about kernel density estimation, an introduction to characteris-
tic functions and some calculations of important expressions are given here.
In chapter 3 we pick out a large number of kernels, and use these kernels to
investigate a conjecture given in Marron and Wand about bandwidth selec-
tion. In chapter 4 we use derivatives to investigate the same problem. We
also try to construct our own method of bandwidth selection.
In chapter 5 we try to prove the same conjecture for some special, simple
case and in the last chapter we consider a non-conventional kernel and in-
vestigate if its properties are different from conventional kernels. We also
compare the bandwidth selected from a simulated sample with the theoret-
ical bandwidth, and comment on the result.

In our work we have used the mathematical software MAPLE 9.5 to make
the difficult calculations and to draw the graphs. The programming code
and some comments are given in the appendix.
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Chapter 2

Theory

2.1 Kernel Density Estimate

A lot of the theory in this chapter is obtained from Wand and Jones [4, chap-
ter 2]. Kernel estimation is a non-parametric estimation method, and a very
effective tool to structure data before analysis. It is very useful when para-
metric methods are inappropriate. We consider a sample X1, ..., Xn, which
are independent and identically distributed. We will deal with univariate
kernel density estimator on the form

f̂(x;h) = (nh)−1
n∑

i=1

K(
x−Xi

h
) (2.1)

In this formula K(x) satisfies
∫
K(x)dx = 1, and h is the bandwidth, which

is a positive number. K(x) is usually chosen to be a density function, but it
is also possible to use kernels that are not a density. There are several types
of kernels. The most common is the Gaussian kernel or the Epanechnikov
(quadratic) kernel. Figure 2.1 shows four different kernels.

The choice of kernel type is however not that important, when we work with
conventional kernels. Conventional kernels are kernels which are probability
density functions. The most important choice, is the choice of the bandwidth
h. If h is too small, the kernel estimate will be undersmoothed. This
means that there will be many local maxima, and the estimator is very
dependent on the data. If h is too big, the graph will be very smooth, and
all structure will be gone. This is called oversmoothing. So it is important
to choose h correct. Figure 2.2 shows how the choice of h affects the kernel
density estimate, when the kernel is chosen to be the skewed bimodal density
f(x) = 3

4N(0, 1) + 1
4N(3

2 , (
1
3)

2), and the sample size is n = 5000.
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Figure 2.1: Four different kernels

(a) h=0.03 (b) h=0.18 (c) h=0.5

Figure 2.2: Kernel density estimate with different bandwidth.
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2.2 MSE/MISE/AMISE

The mean squared error (MSE) is a useful tool for measuring the error in
the density estimate. It is defined as

MSE(f̂(x;h)) = E(f̂(x;h)− f(x))2 = V arf̂(x;h) + (Bias(f̂(x;h)))2

(2.2)

where f̂(x;h) is the density estimate of the density function f(x). MSE
computes the error in a single point on the density estimate. To compute
the error over the entire real line, we use another error criterion, that is the
mean integrated squared error (MISE). This is simply the integral over the
whole real line of MSE

MISE(f̂(x;h)) = E

∫
(f̂(x;h)− f(x))2dx =

∫
MSE(f̂(x;h))dx (2.3)

As the formula says, MISE measures the distance between an estimate of f ,
and f itself. A problem with MSE/MISE is that it depends on the band-
width in a rather complicated way. One way to deal with this problem, is to
make asymptotic approximations of MSE/MISE. We will use the following
assumptions:
1) f ′′ is continuous, square integrable and ultimately monotone (A function
f is ultimately monotone if there exists y such that for x > y, f(x) is mono-
tone).
2) h = hn is a non-random sequence of positive numbers, satisfying
limn→∞ h = 0 and limn→∞ nh = ∞
3) K is a bounded probability density function having finite fourth moment
and symmetry about the origin.
The asymptotic MISE (AMISE) is a large sample approximation for the
variance and bias. These approximations have easier expressions, and de-
pends on the bandwidth in a much simpler way.

AMISE(f̂(·;h)) = (nh)−1R(K) +
1

4
h4µ2(K)2R(f ′′) (2.4)

HereR(K) =
∫

(K(x))2dx, µ2(K) =
∫
x2K(x)dx andR(f ′′) =

∫
(f ′′(x))2dx.

The h that minimizes MISE, is called hMISE and the h that minimizes
AMISE, is called hAMISE
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2.3 Characteristic functions

The characteristic function φX of a random variable X is a complex function
that uniquely determines the distribution function. It is defined as

φX(t) = E[eitX ] =

∫ ∞

−∞
eitxf(x)dx (2.5)

When f(x) is symmetric about the origin, we can write the characteristic
function like

φX(t) = E[eitX ] =

∫ ∞

−∞
cos(tx)f(x)dx (2.6)

The characteristic function has many advantages. It makes it easier to
find moments of a random variable, since the moments are derivatives at
zero of its characteristic functions. There are two important theorems for
characteristic functions. They are the inversion theorem and the uniqueness
theorem. For proofs look in [2].

The inversion theorem

P (a < X < b) = lim
T→∞

1

2π

∫ T

−T

e−ita − e−itb

it
φX(t)dt (2.7)

The uniqueness theorem
If φX(t) = φY (t) for all t, then X = Y in distribution.

Another important formula, which have been used later in this report is the
Parseval identity.
If φ(t) is the characteristic function of f(x), and ψ(t) is the characteristic
function of g(x), then∫

(f(x)− g(x))2dx =
1

2π

∫
|φ(t)− ψ(t)|2dt (2.8)

Proof of Parseval identity:
If X and Y are iid from a distribution f(x) = 1

2π

∫
e−itxφ(t)dt, where φ(t)

is the corresponding characteristic function φ(t) =
∫
eitxf(x)dx, we have
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fX−Y (x) =

∫
f(x+ t)f(t)dt

φX−Y (t) = Eeit(X−Y ) = EeitXEe−itY = φ(t)φ(−t) = |φ(t)|2

fX−Y (x) =
1

2π

∫
e−itx |φ(t)|2 dt∫

(f(x))2dx = fX−Y (0) =
1

2π

∫
|φ(t)|2 dt

It is easy to derive that this also holds for the sum of two densities f(x) and
g(x) with characteristic functions φ(t) and ψ(t).
Let X and Y be two independent random variables from distribution f(x)
and g(x) respectively, and let φ(t) and ψ(t) be the characteristic functions
to f(x) and g(x) respectively. Then

fX−Y =

∫
f(x+ t)g(t)dt

φX−Y (t) = Eeit(X−Y ) = EeitXEe−itY

= φ(t)ψ(−t) = φ(t)ψ(t)∫
f(x)g(x)dx = fX−Y (0) =

1

2π

∫
φ(t)ψ(t)dt

Parseval identity for two densities becomes∫
(f(x)− g(x))2dx =

∫
(f(x))2dx− 2

∫
f(x)g(x)dx+

∫
(g(x))2dx

=
1

2π

∫
|φ(t)|2 dt− 2

1

2π

∫
φ(t)ψ(t)dt+

1

2π

∫
|ψ(t)|2 dt

=
1

2π

∫
|φ(t)|2 dt− 1

2π

∫
φ(t)ψ(t)dt−

1

2π

∫
φ(t)ψ(t)dt+

1

2π

∫
|ψ(t)|2 dt

=
1

2π

∫
|φ(t)− ψ(t)|2 dt

(2.9)

Parseval identity for derivatives becomes∫
(fn(x))2dx =

1

2π

∫
t2n |φ(t)|2 dt (2.10)
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2.4 MISE in terms of characteristic functions

To be able to work more easily, we had to find an expression for MISE in
terms of characteristic functions.
Let

φ(t) = EeitXj =

∫
eitxf(x)dx

be the c.f of a random variable Xj,
and let

φn(t) =
1

n

n∑
j=1

eitXj

be the empirical c.f associated with sample X1, ... , Xn.
Let also

ψ(t) =

∫
eitxK(x)dx

be the c.f of the kernel K(x).
From this it follows that the c.f of Kh(x) = 1

hK(x
h) is ψ(ht).

The kernel density estimate can be written as

1

nh

n∑
i=1

K(
x−Xi

h
) =

1

n

n∑
i=1

Kh(x−Xi) =

∫
Kh(x− y)dFn(y)

where

Fn(x) =
1

n

n∑
k=1

I(−∞,x](Xk) =


0 if x < X(1)
k
h if X(k) ≤ x < X(k+1)

1 if x ≥ X(k)

is the empirical distribution function.
This is the convolution between two functions, the first one with c.f ψ(ht)
and the other one with c.f φn(t). So the characteristic function of the kernel
density estimate is

χ(t) = φn(t)ψ(ht). (2.11)

Then we can express MISE the following way
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MISE(fn(x;h)) = E

∫
(fn(x;h)− f(x))2dx

=
1

2π
E

∫
|φn(t)ψ(ht)− φ(t)|2 dt

=
1

2π

∫
E(φn(t)ψ(ht)− φ(t))(φn(t)ψ(ht)− φ(t))dt

=
1

2π

∫
|ψ(ht)|2E |φn(t)|2 − φ(t)ψ(ht)Eφn(t)−

φ(t)ψ(ht)Eφn(t) + |φ(t)|2 dt

=
1

2π

∫
|ψ(ht)|2E |φn(t)|2 − ψ(ht) |φ(t)|2−

ψ(ht) |φ(t)|2 + |φ(t)|2 dt

=
1

2π

∫
|ψ(ht)|2E |φn(t)− φ(t)|2 + |ψ(ht)|2 |φ(t)|2−

ψ(ht) |φ(t)|2 − ψ(ht) |φ(t)|2 + |φ(t)|2 dt

=
1

2π

∫
|ψ(ht)|2 1

n
(1− |φ(t)|2)+

|φ(t)|2 (|ψ(ht)|2 − ψ(ht)− ψ(ht) + 1)dt

=
1

2nπ

∫
(1− |φ(t)|2) |ψ(ht)|2 dt+

1

2π

∫
|1− ψ(ht)|2 |φ(t)|2 dt

(2.12)

In this proof we have used Parsevals identity (2.8),
E |φn(t)− φ(t)|2 = 1

n(1− |φ(t)|2), and that Eφn(t) = φ(t).

We know from (2.2) that MSE can be written as V ar + (bias)2. In the
same way MISE can be written as

MISE =

∫
V ar +

∫
(bias)2 (2.13)

We calculate explicit formulas for the integrated variance (IV) and the in-
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tegrated squared bias (ISB), to show that this corresponds to (2.12).

fn(x;h) =
1

2π

∫
e−itxψ(ht)φn(t)dt

Efn(x;h) =
1

2π

∫
e−itxψ(ht)φ(t)dt

Efn(x;h)− f(x) =
1

2π

∫
e−itxφ(t)(ψ(ht)− 1)dt∫

(Efn(x;h)− f(x))2 =
1

2π

∫
|φ(t)|2 |1− ψ(ht)|2 dt = ISB

∫
Efn(x;h)

2 −
∫

(Efn(x;h))
2 =

1

2π

∫
|ψ(ht)|2E |φn(t)|2 dt−

1

2π

∫
|ψ(ht)|2 |φ(t)|2 dt

=
1

2πn

∫
|ψ(ht)|2 (1− |φ(t)|2)dt+

1

2π

∫
|ψ(ht)|2 |φ(t)|2 dt−

1

2π

∫
|ψ(ht)|2 |φ(t)|2 dt

=
1

2πn

∫
|ψ(ht)|2 (1− |φ(t)|2)dt = IV

ISB + IV = MISE

(2.14)
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Chapter 3

Exact MISE and AMISE for a number
of kernels

In the article by Marron and Wand [5], the writers compare MISE and
AMISE for several different kernels. These kernels were all combinations of
normal densities. Even though all of them have different form, they also
have some common properties, like existence of all moments.
The conjecture they made based on their results was that hAMISE < hMISE,
at least for nonnegative kernels. In this chapter we want to investigate this
conjecture to see if it holds for a wider range of kernels. Instead of using
combinations of normal densities, we will use a different set of kernels. All
the kernels we use have finite second moment and their corresponding char-
acteristic function symmetric about zero. These kernels are selected from a
book written by Nikolai Ushakov [6], and the numbers used are the same
numbers as in the book. The kernels we used in this investigation are shown
in table 3.1.

A note to table 3.1 is that for all kernels except the uniform (B27), x op-
erates on the entire real line. For the uniform kernel the range of x is
−
√

3 ≤ x ≤
√

3.
We see that all the expressions both for the kernels and their corresponding
characteristic function are quite nice, and easy to interpret on the computer.
This makes it possible to get exact results. To check the conjecture that
hAMISE < hMISE we used the standard normal distribution as the density,
and n = 150.
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Table 3.1: Kernels used in this project

kernel number formula characteristic function

B5 1
2e
−|x| 1

1+t2

B13 1
πcosh(x)

1
cosh(πt

2 )

B19 1√
2π
e−

x2

2 e−
t2

2

B27 1
2
√

3
sin(

√
3t)√

3t

B31 x2
√

2π
e−

x2

2 (1− t2)e−
t2

2

B33 2
π(1+x2)2 (1 + |t|)e−|t|

B35 1
4e
−|x|(1 + |x|) 1

(1+t2)2

B38 π
4cosh2(πx

2 )
t

sinh(t)

B39 x
2sinh(πx

2 )
1

cosh2(t)

We calculated MISE and AMISE using the formulas we obtained in chapter
2.

MISE(fn(x;h)) =
1

2nπ

∫
(1− |φ(t)|2) |ψ(ht)|2 dt+

1

2π

∫
|1− ψ(ht)|2 |φ(t)|2 dt

(3.1)

AMISE(f̂(·;h)) = (nh)−1R(K) +
1

4
h4µ2(K)2R(f ′′) (3.2)

We plotted these functions against each other for all nine kernels, to see if
the conjecture was correct for these examples. The result is shown in figure
3.1. Here the dashed line is AMISE, and the solid line is MISE.
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(a) kernel B5

(b) kernel B13

(c) kernel B19

Figure 3.1: hAMISE and hMISE
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(d) kernel B27

(e) kernel B31

(f) kernel B33

Figure 3.1: hAMISE and hMISE
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(g) kernel B35

(h) kernel B38

(i) kernel B39

Figure 3.1: hAMISE and hMISE
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As we can see from figure 3.1 the conjecture from Marron and Wand holds
in all cases. The difference between hAMISE and hMISE varies a lot from
kernel to kernel, and when using kernels B27, B31 and B35 they are almost
equal. This means that for these kernels hAMISE is a very good choice of
the bandwidth. On the other hand we have kernels B33 and B38, where
there is a larger difference between hAMISE and hMISE, and for these ker-
nels hAMISE may not be the best choice.
We also tried to change the sample size n. When n got smaller, both hAMISE

and hMISE got bigger, and also the difference between them got bigger.
When n got bigger than 150, hAMISE and hMISE got smaller, and the dif-
ference got smaller, but always hAMISE < hMISE. When we let n go to
infinity, AMISE was almost equal to MISE as expected, and hAMISE and
hMISE both approached zero.
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Chapter 4

Comparison of derivatives of MISE and
AMISE

The main idea for this chapter is to use derivatives of MISE and AMISE
to investigate the conjecture of Marron and Wand. We want to compare
these two derivatives, and try to find situations where hAMISE > hMISE.
We also want to construct a method to select the bandwidth, by using these
derivatives. We want to compare our method to the already existing method

hAMISE =

[
R(K)

µ2(K)2R(f ′′)n

]1/5

(4.1)

and see if our method can be better, at least in some cases.
We will also in this chapter use the kernels listed in table 3.1, the density
will be the standard normal distribution and the sample size is n = 150.

4.1 Comparison of derivatives of MISE and AMISE

The expressions for MISE and AMISE are as before

MISE = ISB + IV =
1

2π

∫
|φ(t)|2 |1− ψ(ht)|2 dt+

1

2πn

∫
|ψ(ht)|2 (1− |φ(t)|2)dt

(4.2)

AMISE = AIV + AISB = (nh)−1R(K) +
1

4
h4µ2(K)2R(f ′′) (4.3)
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We can rewrite (4.2) like

MISE =
1

2π

∫
|φ(t)|2 |1− ψ(ht)|2 dt+

1

2πn

∫
|ψ(ht)|2−

1

2πn

∫
|ψ(ht)|2 |φ(t)|2 dt

= (nh)−1R(K) +
1

2π

∫
|1− ψ(ht)|2 |φ(t)|2 dt−

1

2πn

∫
|φ(t)|2 |ψ(ht)|2 dt

= AIV + g(h)

(4.4)

where

g(h) =
1

2π

∫
|1− ψ(ht)|2 |φ(t)|2 dt−

1

2nπ

∫
|φ(t)|2 |ψ(ht)|2 dt

(4.5)

Here we use Parsevals identity (2.8). The advantage by writing MISE as
(4.4) is that MISE and AMISE now has a common term. Comparing MISE
and AMISE is therefore the same as comparing AISB and g(h).
Since hMISE is the minimum of MISE, it is a root of the derivative of
MISE. The same thing holds for hAMISE. Therefore the conjecture that
hMISE > hAMISE is correct if (MISE)′ < (AMISE)′. This is equivalent
to g′(h) < (AISB)′. We will try to check this second theory for our set of
kernels.
We calculate the derivative for g(h) and (AISB).
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g′(h) =
1

2π

∫
2t |1− ψ(ht)|2 (−ψ′(ht) |φ(t)|2 dt−

1

2nπ

∫
2t |φ(t)|2 ψ′(ht) |ψ(ht)|2 dt

=
1

π

∫
t|φ(t)|2(−ψ′(ht))dt−

1

π

∫
t|φ(t)|2ψ(ht)(−ψ′(ht))dt−

1

nπ

∫
t|φ(t)|2ψ(ht)(ψ′(ht))dt

=
1

π

[
−
∫
t|φ(t)|2ψ′(ht)dt+

(1− 1

n
)

∫
t|φ(t)|2ψ(ht)ψ′(ht)dt

]

(4.6)

(AISB)′ = h3µ2(K)2R(f ′′) (4.7)

From here on we will call (AISB)′ for g′0(h).
We plotted g′(h) and g′0(h) for all kernels (see figure 4.1). For all graphs
the solid line is the graph of g′(h) , and the dashed line is the graph of g′0(h).
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(a) kernel B5

(b) kernel B13

(c) kernel B19

Figure 4.1: g′(h)(solid line) and g′0(h)(dashed line)
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(d) kernel B27

(e) kernel B31

(f) kernel B33

Figure 4.1: g′(h)(solid line) and g′0(h)(dashed line)
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(g) kernel B35

(h) kernel B38

(i) kernel B39

Figure 4.1: g′(h)(solid line) and g′0(h)(dashed line)
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All figures show the same pattern. For small h, g′(h) is greater than
g′0(h), but from a certain h, which depends on the kernel, g′0(h) is big-
ger. This h that intersects the two graphs is always smaller than the re-
spective hAMISE (see figure 3.1 for values of hAMISE). This means that
(MISE)′ < (AMISE)′ holds, which again means that the conjecture of
Marron and Wand is true in these examples.
We have already shown that hAMISE and hMISE tends to zero as n tends
to infinity. If we could show that the intersection between g′(h) and g′0(h)
did not tend to zero as n tends to infinity, this would mean that for some
big n, hAMISE and hMISE will be smaller than this intersection, and hMISE

would be smaller than hAMISE, which would have proved the conjecture
wrong. We calculated this intersection and checked what happened when
we increased n very much. The kernel and the density is both the standard
normal distribution. Figure 4.2 draws g′(h) − g′0(h), so the intersection is
were the graph is zero.

As we can see from figure 4.2 it seems like the intersection tends to zero, as n
tends to infinity, and therefore this is not a contradiction to the conjecture.
This is also the case when using the other kernels. When n got very big,
the computer got some problems with the calculation, and the graphs were
not smooth.

Based on our investigation it seems like the conjecture that hAMISE <

hMISE might be correct. Even though it is not proved, we have made
many examples using different kernels and different methods, and always
the conjecture is true.

22



(a) n=10E1 (b) n=10E2

(c) n=10E3 (d) n=10E4

(e) n=10E5 (f) n=10E6

(g) n=10E7 (h) n=10E8

Figure 4.2: g′(h)− g′0(h)
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4.2 A new method of bandwidth selection?

The idea of this chapter is to try to find a new method of bandwidth selec-
tion by using the derivatives of MISE and AMISE. By computing an upper
bound for g′(h), and finding the root of this upper bound, which we call
hUB, we have another way of selecting the bandwidth. Then we compare
hUB with the already existing method hAMISE and we check if our method
is better.
To develop such a method of bandwidth selection, we first find an upper
bound for g′(h) and compare this upper bound with g′0(h). Then we will
find if hUB is closer to hMISE than hAMISE. If hUB is closer, it will surely
be a better choice of the bandwidth.
To find this upper bound we need to prove the following two inequalities.

ψ(t) ≥ 1− µ2(K)t2

2
,∀t (4.8)

−ψ′(t) ≤ tµ2(K),∀t ≥ 0 (4.9)

To prove these two inequalities we need to prove some properties of cosx
and sin x first.

cosx ≥ 1− (x2/2),∀x
sin x ≤ x, ∀x ≥ 0

Proof:
We start with the second one. If g(x) = x − sin(x) we see that g′(x) =
1− cos(x) ≥ 0.
We also see that g(0) = 0.
This means that g(x) is always increasing and for x ≥ 0 g(x) ≥ 0, which
implies that

sin x ≤ x, ∀x ≥ 0

Let us then prove the first inequality. Let f(x) = cos(x)− 1− x2

2 .
We get that f ′(x) = x− sin(x) ≥ 0 ∀x ≥ 0 and
f ′(x) = x− sin(x) ≤ 0 ∀x ≤ 0.
We also see that f(0) = 0.
This means that f(x) is increasing for x ≥ 0 and decreasing for x ≤ 0 and
therefore is always positive. This again implies that

cosx ≥ 1− (x2/2),∀x
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Now we can prove (4.8) and (4.9).

ψ(t) =

∫ ∞

−∞
cos(tx)K(X)dx

≥
∫ ∞

−∞
(1− t2x2

2
K(x))dx

=

∫ ∞

−∞
K(x)dx− t2

2

∫ ∞

−∞
x2K(x)dx

= 1− t2

2
µ2(K)

−ψ′(t) =

∫ ∞

−∞
sin(tx)xK(x)dx

≤ t

∫ ∞

−∞
x2 ∗K(x))dx

= tµ2(K)

Now we can use (4.8) and (4.9) to find an upper bound for g′(h), by inserting
these two bounds into the expression for g′(h).
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g′(h) =
1

π

[
−
∫
t |φ(t)|2 ψ′(ht)dt+(

1− 1

n

)∫
t |φ(t)|2 ψ(ht)ψ′(ht)dt

]
≤ 1

π

[ ∫
ht2 |φ(t)|2 µ2(K)dt+(

1− 1

n

)∫
t |φ(t)|2 ψ(ht)ψ′(ht)dt

]
≤ 1

π

[ ∫
ht2 |φ(t)|2 µ2(K)dt+(

1− 1

n

)∫
ht2 |φ(t)|2 (−ψ(ht))µ2(K)dt

]
≤ 1

π

[ ∫
ht2 |φ(t)|2 µ2(K)dt+(

1− 1

n

)∫
ht2 |φ(t)|2

(
−
(

1− µ2(K)h2t2

2

))
µ2(K)dt

]
=

1

π

[
1

n

∫
ht2 |φ(t)|2 µ2(K)dt+

1

2

(
1− 1

n

)∫
h3t4µ2(K)2 |φ(t)|2 dt

]
=

1

π

[
1

n
hµ2(K)

∫
t2 |φ(t)|2 dt+(

1− 1

n

)
h3µ2(K)2

∫
t4 |φ(t)|2 dt

]
=

1

n
2hµ2(K)R(f ′) +

(
1− 1

n

)
h3µ2(K)2R(f ′′)

=
1

n
2hµ2(K)R(f ′) +

(
1− 1

n

)
g′0(h)

(4.10)

We have used Parsevals identity for derivatives (2.10).
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We compared this upper bound with the g′0(h) which is

g′0(h) = h3µ2(K)2R(f ′′)

The result is that these two functions are very similar, and the graph of the
two functions looks like figure 3.3.

Figure 4.3: g′(h) and g′0(h)

As we can see it is impossible to separate the graphs by looking at the
figure. A more detailed analysis of the function shows that the upper bound
of g′(h) is bigger than g′0(h) when h is small, and vice versa when h is big.
The number where the intersection is, depends only on the second moment
of the kernel, since g′(h) is independent on n. The bigger second moment,
the smaller h at the intersection. Table 4.1 shows the value of h at the
intersection.
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Table 4.1: Values of intersection at different second moments

kernel second moment intersection

B5 2 0.816497
B13 2.46 0,73621017
B19 1 1.1547005
B27 1 1.1547005
B31 3 0.6666667
B33 1 1.1547005
B35 4 0.5773503
B38 0.3333 1.99999997
B39 2 0.816497

Now we know that the derivative of the upper bound of g′(h) is greater
than g′0(h) when h is less than some value (see table 4.1). Unfortunately
this value is greater than hAMISE for all n, so the bandwidth selected from
this derivative hUB, is not a better choice than hAMISE. If we could make
hAMISE greater than this intersection, it would mean that the intersection
is below the zero line, and the bandwidth selected by this derivative, would
have been better. The situation is explained in figure 4.4

Figure 4.4: Our situation
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Figure 4.4 is just an explanation of the situation, and not a real graph.
We have found that in the case when both the kernel and the density is
standard normal, the intersection lies at 1.15. hAMISE is 1.05 when n = 1,
and 0.42 at n = 100.
The same situation exists for the kernel B5. The intersection is at 0.816,
and hAMISE is 0.784 when n = 1, and 0.312 when n = 100. The same
situation also holds for the rest of the kernels. The intersection is higher
than hAMISE for all n. This means that our new method of choosing the
bandwidth is not as good as hAMISE, and also it has a more complicated
form.
The conclusion is therefore that selecting the bandwidth by using this method
gives a result which is close, but not as good as hAMISE. To use this method
it is necessary to have access to a computer, since the equations for (MISE)′

and (AMISE)′ are quite difficult.
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Chapter 5

A special case: n = 1

We have considered the conjecture of Marron and Wand [5], that hMISE >

hAMISE in several different ways, but we have not managed to find examples
when it is not true. Therefore we will in this chapter try to prove the
conjecture, instead of finding counter examples. We will try to prove this
conjecture in the simplest case when n = 1. This has no practical interest
since the sample size always is greater than 1, but it has some theoretical
interest.
We assume that ∫

|φ(t)|2 dt = 1 (5.1)

We can make this assumption without loss of generality, since this is only a
change of a scaling factor.
When n = 1 we have the following expressions for g′0(h) and g′(h)

g′0(h) = h3µ2(K)2R(f ′′) (5.2)

g′(h) =
1

π

∫
t |φ(t)|2 (−ψ′(ht))dt (5.3)

Let h1 be the solution of the equation g′(h) = g′0(h).
Let h2 be the solution of the equation g′0(h) = R(K)

h2 .
This means that h2 = hAMISE. Now we see from figure 5.1 that the conjec-
ture is correct if we can prove that h1 < h2.

We have to find expressions for h1 and h2. This is easy for h2. It becomes

h2 =

(
R(K)

µ2(K)2R(f ′′)

) 1
5

(5.4)
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Figure 5.1: Our situation

To find an explicit form of h1 is not possible, so we need to find a simple
g′1(h) such that

g′(h) ≤ g′1(h)

and
g′1(h) ≥ g′0(h)∀h ≤ h3

g′1(h) ≤ g′0(h)∀h ≥ h3

Here, h3 is the solution of g′1(h) = g′0(h). Evidently we have that h1 ≤ h3.
Therefore if

h3 ≤ h2 (5.5)

holds, than the conjecture is correct.
To find this g′1(h) we need a special form of Jensen’s inequality. It states
that if f(x) is a non-negative function such that∫ ∞

−∞
f(x)dx = 1 (5.6)

g is any real-valued measurable function and τ is convex over the range of
g, then

τ

(∫ ∞

−∞
g(x)f(x)dx

)
≤
∫ ∞

−∞
τ(g(x))f(x)dx (5.7)
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For proof of the general form of this inequality look in Casella and Berger
[1]
We have

g′(h) =
1

π

∫
t |φ(t)|2 (−ψ′(ht)) dt

≤ 1

π
hµ2(K)

∫
t2 |φ(t)|2 dt

=
1

π
hµ2(K)

((∫
t2 |φ(t)|2 dt

)2
) 1

2

≤ 1

π
hµ2(K)

(∫
t4 |φ(t)|2

) 1
2

=
1

π
hµ2(K) (2πR(f ′′))

1
2

=

√
2

π
hµ2(K)

√
R(f ′′) = g′1(h)

(5.8)

Here we have used (4.9), Jensen’s inequality (5.6) and Parseval identity
(2.10).
Now we can derive a nice expression for h3, since h3 is the solution of
g′1(h) = g′0(h). It is

h3 =

(
2

πR(f ′′)µ2(K)2

) 1
4

(5.9)

Now we have expressions for both h2 and h3, and to prove the conjecture,
we must prove (5.5)

h3 ≤ h2(
2

πR(f ′′)µ2(K)2

) 1
4

≤
(

R(K)

µ2(K)2R(f ′′)

) 1
5

(
2

π

) 1
4

≤
(
R(K)2µ2(K)

) 1
10 R(f ′′)

1
20

(5.10)

We need lower bounds for
(
R(K)2µ2(K)

) 1
10 and R(f ′′)

1
20 .

According to [4], chapter 2.7, the Epanechnikov kernel is the solution that
minimizes

(
R(K)4µ2(K)2

) 1
5 and therefore also it is the solution that mini-

mizes
(
R(K)2µ2(K)

) 1
10 , so the lower bound we will use for this expression
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is
(
R(K∗)2µ2(K

∗)
) 1

10 , where K∗ = 3
4(1 − x2) which is the Epanechnikov

kernel.
To obtain a lower bound of R(f ′′) we use Parseval identity (2.10) to obtain

R(f ′′) =
1

2π

∫
t4 |φ(t)|2 dt (5.11)

To find a lower bound for this integral we use the following function for φ(t)

φ(t) =

{
1 if |t| ≤ 1

2
0 if |t| ≥ 1

2

This function is not a characteristic function, but the bound we get from
this function is even lower than any characteristic function can give us, so
the function will be good to use in our example.
Proof that φ(t) gives the lower bound for R(f ′′):
Let f(t) ≥ 0 and f0(t) ≥ 0. Let also

f(t) ≤ f0(t)∀|t| ≤
1

2

f(t) ≥ f0(t)∀|t| >
1

2

(5.12)

Finally let
∫
f(t)dt =

∫
f0(t)dt = 1.

We want to prove that

∫
t4f(t)dt ≥

∫
t4f0(t)dt (5.13)

Let us look at the difference between the to integrals

∫
t4f(t)dt−

∫
t4f0(t)dt =

∫
t4(f(t)− f0(t))dt

=

∫
|t|≤ 1

2

t4(f(t)− f0(t))dt+

∫
|t|> 1

2

t4(f(t)− f0(t))dt

The first part of this sum is always negative because of (5.12), and the sec-
ond part is always positive, also because of (5.12). This means that our
proof is correct if
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∣∣∣∣∣
∫
|t|≤1

2

t4(f(t)− f0(t))dt

∣∣∣∣∣ ≤
∫
|t|> 1

2

t4(f(t)− f0(t))dt∫
|t|≤1

2

t4(f0(t)− f(t))dt ≤
∫
|t|> 1

2

t4(f(t)− f0(t))dt

Now we use the following two obvious inequalities∫
|t|≤ 1

2

t4(f0(t)− f(t))dt ≤
(

1

2

)4 ∫
|t|≤ 1

2

(f0(t)− f(t))dt∫
|t|> 1

2

t4(f(t)− f0(t))dt ≥
(

1

2

)4 ∫
|t|> 1

2

(f(t)− f0(t))dt

The proof will now be correct if(
1

2

)4 ∫
|t|≤ 1

2

(f0(t)− f(t))dt =

(
1

2

)4 ∫
|t|> 1

2

(f(t)− f0(t))dt

We use the fact that
∫
f(t)dt =

∫
f0(t)dt = 1, and see that∫

|t|≤1
2

(f0(t)− f(t))dt+

∫
|t|> 1

2

(f0(t)− f(t))dt = 0∫
|t|≤ 1

2

(f0(t)− f(t))dt−
∫
|t|> 1

2

(f(t)− f0(t))dt = 0

So the proof is correct. The only function f0(t) that fulfills this property for
any other function f(t) is φ(t).
This gives the following lower bound for R(f ′′)

1
20

R(f ′′)
1
20 ≥

(
1

2π

∫ 1
2

− 1
2

t4

) 1
20

(5.14)

When we insert numbers we get the following result

h3 ≤ h2(
2

π

) 1
4

≤
(
R(K∗)2µ2(K

∗)
) 1

10

(
1

2π

∫ 1
2

− 1
2

t4

) 1
20

0.8932438417 ≤ 0.7686581736 · 0.7327174038

0.8932438417 ≤ 0.5632092214

(5.15)
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We see that the inequality is incorrect, and the proof is wrong.

We will try the same procedure to establish this proof once more, but now
we will use a different inequality for ψ′(ht). We will use that

ψ′(ht) ≤ µ1(K) (5.16)

Proof:

ψ(ht) =

∫
cos(htx)K(x)dx

ψ′(ht) = −
∫
|x|sin(htx)K(x)dx

−ψ′(ht) ≤
∫
|x|K(x)

= µ1(K)

(5.17)

We find a new expression for g′1(h) using this inequality and the fact that
µ1(K) ≤ (µ2(K))

1
2 .

g′(h) =
1

π

∫
t |φ(t)|2 (−ψ′(ht)) dt

≤ 1

π
µ1(K)

∫
t |φ(t)|2 dt

=
1

π
µ1(K)

((∫
t |φ(t)|2 dt

)4
) 1

4

≤ 1

π
µ2(K)

1
2

(∫
t4 |φ(t)|2

) 1
4

=
1

π
µ2(K)

1
2 (2πR(f ′′))

1
4

=
1

π
µ2(K)

1
2 (2πR(f ′′))

1
4 = g′1(h)

(5.18)

Here we have used (5.17), Jensen’s inequality (5.6) and Parseval identity
(2.10).
The expression for h2 is still

h2 =

(
R(K)

µ2(K)R(f ′′)

) 1
5
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Now we can derive a new expression for h3 from the equation g′1(h) = g′0(h).
It is

h3 =

[(
2

π3

) 1
12

(µ2(K)2R(f ′′))−
1
4

]
(5.19)

Now we again insert the expressions for h2 and h3 in (5.5)

h3 ≤ h2[(
2

π3

) 1
12 (

µ2(K)2R(f ′′)
)− 1

4

]
≤
(

R(K)

µ2(K)2R(f ′′)

) 1
5

(
2

π3

) 1
12

≤
(
R(K)2µ2(K)

) 1
10 R(f ′′)

1
20

(5.20)

We need lower bounds for the expression on the right side, and we use, as
we did earlier in this chapter, the Epanechnikov kernel to find a lower bound
for
(
R(K)2µ2(K)

) 1
10 , and the fact that R(f ′′)

1
20 ≥ 0.7327174038. When we

insert numbers we get

0.7957897933 ≤ 0.5632092213 (5.21)

As we can see, the inequality is again incorrect, and the proof is wrong.
The conclusion to this chapter is that despite a good effort, we were not
able to prove this conjecture, even in the case when n = 1. This does not
mean that the conjecture is wrong, but since we have used quite sensitive
inequalities, this means that, even if the conjecture is correct, there is no
simple proof of it. Our results also mean that if the conjecture is not correct,
it is not correct only for very special, irregular kernels and densities.
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Chapter 6

Sinc kernel

6.1 Bandwidth Selection

So far in this report we have dealt with standard choices of the kernel. Ker-
nels that are symmetric, and have finite second moment. In this chapter
we shall use another kernel, which is not standard because it takes negative
values. This kernel is the sinc kernel.

K(x) =
sin x

πx
(6.1)

The characteristic function of the sinc kernel is

ψ(t) =

{
1 for |t| ≤ 1
0 for |t| > 1

According to [3] the expressions for the sinc estimator and its characteristic
function are

fn(x;h) =
1

πn

n∑
j=1

sin [(x−Xj)/h]

x−Xj
(6.2)

cf = φn(t)ψ(ht) = φn(t)I[−1/h,1/h](t) (6.3)

where φn(t) is the empirical characteristic function associated with the sam-
ple X1, ..., Xn, and IA(t) is the indicator function of the set A.

Also according to [3] we have the following expression for MISE of the sinc
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estimator.

MISE(fn(x;h)) =
1

πnh
+R(f)−

(
1 +

1

n

)
1

π

∫ 1/h

0
|φ(t)|2dt (6.4)

where R(f) =
∫
f(x)2dx.

We want to investigate the bandwidth selection based on this estimator. We
want to compare the result we get from the expression of MISE, with the re-
sult we get when we select the bandwidth using the empirical characteristic
function. We know from [5] that the difference between hMISE and hAMISE

when the kernel is gaussian can be quite big for some densities. Sometimes
hMISE is 5 times as big as hAMISE. This makes hAMISE a poor estimator
for the bandwidth. We want to investigate if the empirical characteristic
function based on the sinc estimator gives a better estimation for the band-
width.
The optimal bandwidth based on the sinc estimator is given as (for proof
see [3])

|φ(1/h)| = 1√
n+ 1

(6.5)

The method based on the empirical characteristic function is (for proof see
[3])

|φn(1/h)| =
1√
n+ 1

(6.6)

We have calculated these two equalities for large, medium and small sample
sizes and using six of the densities from Marron and Wand [5].

The last density, number 11, is difficult to simulate with small sample sizes,
since its expression contains very small fractions which requires big sample
sizes to simulate. Therefore this is only considered in the case when n is
large. Table 6.2 - 6.4 shows the first solution of these two equations, and the
sample size. Figure 6.1 shows the graphs for the characteristic function and
the empirical characteristic function. The horizontal line shows the value of

1√
n+1 .
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Table 6.1: Densities from Marron & Wand

Density Formula

#1 N(0,1)

#2 1
5N(0, 1) + 1

5N( 1
2 , 2

3 ) + 3
5N( 13

12 , 5
9 )

#4 2
3N(0, 1) + 1

3N(0, 1
10 )

#6 1
2N(−1, 2

3 ) + 1
2N(1, 2

3 )

#10 1
2N(0, 1) +

∑4
l=0

1
10N( l

2 − 1, 1
10 )

#11 49
100N(−1, 2

3 ) + 49
100N(1, 2

3 ) +
∑6

l=0
1

350N( l−3
2 , 1

100 )

Table 6.2: Solutions based on the c.f and the e.c.f for different densities with large n

Density
∣∣φ ( 1

h

)∣∣ = 1√
(n+1)

∣∣φn

(
1
h

)∣∣ = 1√
(n+1)

n

#1 0.4202 0.4545 300
#2 0.6173 0.6250 300
#4 0.0532 0.0518 300
#6 0.6757 0.6993 300
#10 0.4202 0.4545 300
#11 0.6623 0.6410 700

Table 6.3: Solutions based on the c.f and the e.c.f for different densities with n = 100

Density
∣∣φ ( 1

h

)∣∣ = 1√
(n+1)

∣∣φn

(
1
h

)∣∣ = 1√
(n+1)

n

#1 0.4651 0.4878 100
#2 0.6410 0.6757 100
#4 0.0641 0.0617 100
#6 0.7042 0.7299 100
#10 0.4444 0.4651 100

Table 6.4: Solutions based on the c.f and the e.c.f for different densities with n = 50

Density
∣∣φ ( 1

h

)∣∣ = 1√
(n+1)

∣∣φn

(
1
h

)∣∣ = 1√
(n+1)

n

#1 0.5051 0.6410 50
#2 0.6667 0.5988 50
#4 0.0758 0.0917 50
#6 0.7246 0.7042 50
#10 0.4695 0.4545 50
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(a) ch.function of density 1

(b) emp.ch.function of density 1, n=50

Figure 6.1: ch.function and emp.ch.function for density nr.1
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(c) emp.ch.function of density 1, n=100

(d) emp.ch.function of density 1, n=300

Figure 6.1: ch.function and emp.ch.function for density nr.1
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(e) ch.function of density 2

(f) emp.ch.function of density 2, n=50

Figure 6.1: ch.function and emp.ch.function for density nr.2
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(g) emp.ch.function of density 2, n=100

(h) emp.ch.function of density 2, n=300

Figure 6.1: ch.function and emp.ch.function for density nr.2
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(i) ch.function of density 4

(j) emp.ch.function of density 4, n=50

Figure 6.1: ch.function and emp.ch.function for density nr.4
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(k) emp.ch.function of density 4, n=100

(l) emp.ch.function of density 4, n=300

Figure 6.1: ch.function and emp.ch.function for density nr.4
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(m) ch.function of density 6

(n) emp.ch.function of density 6, n=50

Figure 6.1: ch.function and emp.ch.function for density nr.6
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(o) emp.ch.function of density 6, n=100

(p) emp.ch.function of density 6, n=300

Figure 6.1: ch.function and emp.ch.function for density nr.6
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(q) ch.function of density 10

(r) emp.ch.function of density 10, n=50

Figure 6.1: ch.function and emp.ch.function for density nr.10
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(s) emp.ch.function of density 10, n=100

(t) emp.ch.function of density 10, n=300

Figure 6.1: ch.function and emp.ch.function for density nr.10
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(u) ch.function of density 11

(v) emp.ch.function of density 11, n=700

Figure 6.1: ch.function and emp.ch.function for density nr.11
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To calculate the bandwidth from these graphs we use φ(1/h) instead of φ(t).
This means that the intersection between the two functions in the figures
is the value for 1/h. To find the value for h we had to calculate h = 1/value.

As we can see from the tables and figures, the result we get using the empir-
ical characteristic function is a very good approximation for the bandwidth
even for small sample sizes. Compared with the result Marron and Wand
[5] got from using the gaussian kernel, our results are much better. The dif-
ference between the value we get from calculating the optimal bandwidth,
and the value we get from the method based on the empirical characteristic
function have a very small difference. We can see that when n is small, the
difference is a little bigger, but compared to Marron and Wand, it is still
very small.
This makes the sinc kernel a very good choice of the kernel, when it comes
to estimating the bandwidth.
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6.2 Performance

Asymptotically, the sinc estimator beats any finite-order kernel estimator,
in particular any conventional estimator, provided that the density to be
estimated is smooth enough. But in the finite sample case, a conventional
estimator can have smaller error, the situation is very similar to that for
higher-order estimators studied by Jones and Signorini (1997). In this sec-
tion we compare the sinc estimator with a conventional estimator for sev-
eral different densities. We use a method, developed by Marron and Wand
(1992), which is based on the exact MISE calculation for normal mixture
densities. The following densities (normal mixtures) are used.

#1. Normal
N(0, 1).

#2. Bimodal
1

2
(N(−1.4, 1) +N(1.4, 1)).

#3. Bimodal
1

2
(N(−1.8, 1) +N(1.8, 1)).

#4. Plateau
1

2
(N(−1, 1) +N(1, 1)).

#5. Separated bimodal
1

2
(N(−2.5, 1) +N(2.5, 1)).

#6. Kurtotic
1

2
(N(0, 1/16) +N(0, 3)).

#7. Trimodal

0.3N(−2.7, 1/2) + 0.4N(0, 1/2) + 0.3N(2.7, 1/2).

These seven densities are presented in Figure 1.
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(a) Normal Density (b) Bimodal Density

(c) Bimodal Density (d) Plateau Density

(e) Separated Bilmodal Density (f) Kurtotic Density

(g) Trimodal Density

Figure 6.2: Densities
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The comparison is made between the sinc estimator and conventional esti-
mator with normal kernel

K(x) =
1√
2π
e−x2/2.

Results of the comparison are presented in Table 6.5 and in Figures 6.3 and
6.3. Table 6.5 contains the minimized MISE of the sinc estimator and normal
based estimator ("norm") for two sample sizes, n = 100 and n = 1000. For
n = 100, the Fourier integral estimator is better than the normal based
estimator for densities #1, #3, #4, #5, #7 and is worse for densities #2,
#6. For n = 1000, the sinc estimator is better for all seven densities, usually
essentially (more than 50%).

Table 6.5: Minimal MISE of the sinc estimator and the normal based estimator

n = 100 n = 1000

sinc norm sinc norm

#1 0.00470 0.00541 0.00061 0.00103

#2 0.00586 0.00467 0.00070 0.00089

#3 0.00551 0.00553 0.00063 0.00100

#4 0.00323 0.00374 0.00069 0.00073

#5 0.00481 0.00570 0.00073 0.00101

#6 0.02166 0.01941 0.00283 0.00344

#7 0.00771 0.00777 0.00085 0.00137

More detailed information is presented in Figures 2 and 3. Here, the MISE
of the estimators are presented as a function of h, for n = 100 in Figure
6.3 and for n = 1000 in Figure 6.4. The dashed line is MISE of the normal
based estimator and the solid line is MISE of the sinc estimator.

54



(a) Normal Density (b) Bimodal Density

(c) Bimodal Density (d) Plateau Density

Figure 6.3: MISE, n=100
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(e) Separated Bilmodal Density (f) Kurtotic Density

(g) Trimodal Density

Figure 6.3: MISE, n=100
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(a) Normal Density (b) Bimodal Density

(c) Bimodal Density (d) Plateau Density

Figure 6.4: MISE, n=1000
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(e) Separated Bilmodal Density (f) Kurtotic Density

(g) Trimodal Density

Figure 6.4: MISE, n=1000
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Appendix A

Appendix

Programming-code used in MAPLE to achieve the results in this paper.

#The kernels I have used

B5: 0.5*exp(-abs(x));
B13: 1/(Pi*(cosh(x)));
B19: N;
B27: 1/(2*sqrt(3));
B31: (x^2/(sqrt(2*Pi)))*exp(-(x^2/2));
B33: 2/(Pi*(1+x^2)^2);
B35: 0.25*(1+abs(x))*exp(-abs(x));
B38: Pi/(4*(cosh((Pi*x)/2))^2);
B39: x/(2*sinh((Pi*x)/2));

#Setting the density and kernel functions
N := (1/(sqrt(2*Pi)))*exp(-(x^2)/2); #normal density
K := 1/(Pi*(cosh(x))); #kernel

#Calculating the characteristic functions
nt := int((cos(t*x))*N,x=-infinity..infinity);
kht := int((cos(h*t*x))*K,x=-infinity..infinity);

#Plotting the characteristic functions
plot(nt,t=-3..3);
plot(kht,t=-1..1);
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#Setting parameters
n:=1;
mom:=2.46;
phi := nt;
psi := kht;

#Calculating R(K), R(F) and R(f’’)
RK := int(K^2,x=-infinity..infinity);
RF := int((diff(N,x))^2,x=-infinity..infinity);
RFF := int((diff(diff(N,x),x))^2,x=-infinity..infinity);

#Evaluating values for different expressions
hhh := evalf((2/(mom^2*RFF*Pi))^0.25);
hh := evalf((RK/((mom^2)*RFF))^0.2);

#Calculating IV, ISB and MISE
IV := ((1/(2*n*Pi))*int((1-abs(phi)^2)*(abs(psi))^2,
t=-infinity..infinity));
ISB := ((1/(2*Pi))*int((abs(1-psi))^2*(abs(phi))^2,
t=-infinity..infinity));
MISE := IV + ISB;

#Plots of IV, ISB and MISE
plot(evalf(ISB),h=0..1);
plot(evalf(IV),h=0..1);
plot(evalf(MISE),h=0..1);

#Calculating asymptotic expressions
AIV := (1/(n*h))*int((K)^2,x=-infinity..infinity);
AISB := (1/4)*h^4*mom^2*int((diff(diff(N,x),x))^2,x=-infinity..infinity);
AMISE := AIV + AISB;

#Calculating h_AMISE
hamise := solve(diff(AMISE,h));

#Plots MISE and AMISE in the same picture
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plot([evalf(MISE),AMISE],h=0..1, y=0..0.4,color=[black,black]);

#Finding values for h_MISE and h_AMISE
for h from 0.2 by 0.01 to 0.32 do
tot[h] := simplify(AMISE) end do;
for h from 0.24 by 0.01 to 0.36 do
tot[h] := simplify(evalf(MISE)) end do;

#Calculating derivatives
AISBderiv := h^3*mom^2*int((diff(diff(N,x),x))^2,
x=-infinity..infinity);
AIVderiv := -(1/(n*h^2))*int((K)^2,x=-infinity..infinity);
gderiv := (-(2/Pi)*int((abs(phi))^2*diff(psi,h),t=0..infinity))
+((2/Pi)*(1-(1/n))*int((abs(phi))^2*psi*diff(psi,h),t=0..infinity));
aaa := gderiv - AISBderiv;

#Plotting derivatives
plot([AISBderiv,gderiv],h=0..0.2,y=0..0.01,color=[black,black]);
plot(aaa,h=0..0.3);

#Calculating derivatives for MISE and AMISE, and plotting them
AMISEderiv := AIVderiv + AISBderiv;
MISEderiv := AIVderiv + gderiv;
plot([AMISEderiv,MISEderiv],h=0.2..0.4,y=-0.1..0.1,
color=[blue,black]);

#Finding the function g(h), and its derivative
g := ((1/(2*Pi))*int((abs(1-psi))^2*(abs(phi))^2,t=0..infinity))
-((1/(2*n*Pi))*int((abs(phi)^2)*(abs(psi))^2,t=0..infinity));
gder := diff(g,h);

#Finding an upper bound and compare with the derivative of AISB
ub := ((1/n)*2*h*mom*int((diff(N,x))^2,x=-infinity..infinity))
+((1-(1/n))*AISBderiv);
plot([ub,AISBderiv],h=0..1,color=[black,blue]);
a := ub - AISBderiv;
solve(a=0,h);
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#Calculating the normal mixture densities fromMarron and Wand

n01 := (1/sqrt(2*Pi))*exp((-1/2)*x^2);
n1b22b3 := (1/sqrt(2*Pi))*(1/(2/3))*
exp(((-1)*(x-0.5)^2)/(2*(2/3)^2));
n13b125b9 := (1/sqrt(2*Pi))*(1/(5/9))*
exp(((-1)*(x-(13/12))^2)/(2*(5/9)^2));
n01b10 := (1/sqrt(2*Pi))*(1/(1/10))*
exp(((-1)*(x-0)^2)/(2*(1/10)^2));
nm12b3 := (1/sqrt(2*Pi))*(1/(2/3))*
exp(((-1)*(x-(-1))^2)/(2*(2/3)^2));
n12b3 := (1/sqrt(2*Pi))*(1/(2/3))*
exp(((-1)*(x-(1))^2)/(2*(2/3)^2));
nm11b10 := (1/sqrt(2*Pi))*(1/(1/10))*
exp(((-1)*(x-(-1))^2)/(2*(1/10)^2));
nm1b21b10 := (1/sqrt(2*Pi))*(1/(1/10))*
exp(((-1)*(x-(-1*(1/2)))^2)/(2*(1/10)^2));
n1b21b10 := (1/sqrt(2*Pi))*(1/(1/10))*
exp(((-1)*(x-(1/2))^2)/(2*(1/10)^2));
n11b10 := (1/sqrt(2*Pi))*(1/(1/10))*
exp(((-1)*(x-1)^2)/(2*(1/10)^2));
nm3b21b100 :=(1/sqrt(2*Pi))*(1/(1/100))*
exp(((-1)*(x-(-1*(3/2)))^2)/(2*(1/100)^2));
nm11b100 :=(1/sqrt(2*Pi))*(1/(1/100))*
exp(((-1)*(x-(-1*(2/2)))^2)/(2*(1/100)^2));
nm1b21b100 :=(1/sqrt(2*Pi))*(1/(1/100))*
exp(((-1)*(x-(-1*(1/2)))^2)/(2*(1/100)^2));
n01b100 :=(1/sqrt(2*Pi))*(1/(1/100))*
exp(((-1)*(x-(-1*(0/2)))^2)/(2*(1/100)^2));
n1b21b100 :=(1/sqrt(2*Pi))*(1/(1/100))*
exp(((-1)*(x-(1*(1/2)))^2)/(2*(1/100)^2));
n11b100 :=(1/sqrt(2*Pi))*(1/(1/100))*
exp(((-1)*(x-(1*(2/2)))^2)/(2*(1/100)^2));
n3b21b100 :=(1/sqrt(2*Pi))*(1/(1/100))*
exp(((-1)*(x-(1*(3/2)))^2)/(2*(1/100)^2));
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n1 := n01;
n2 := (0.2*n01) + (0.2*n1b22b3) + (0.6*n13b125b9);
n4 := ((2/3)*n01) + ((1/3)*n01b10);
n6 := (0.5*nm12b3) + (0.5*n12b3);
n10:= (0.5*n01)+((1/10)*nm11b10)+((1/10)*nm1b21b10)+
((1/10)*n01b10)+((1/10)*n1b21b10)+((1/10)*n11b10);
n11:= ((49/100)*nm12b3)+((49/100)*n12b3)+((1/350)*nm3b21b100)+
((1/350)*nm11b100)+((1/350)*nm1b21b100)+
((1/350)*n01b100)+((1/350)*n1b21b100)+
((1/350)*n11b100)+((1/350)*n3b21b100);

#Calculating the ch.function and the empirical ch.function
and makes plots for all the six densities

cf1 := int((cos(t*x))*n1,x=-infinity..infinity);
plot([cf1,(1/sqrt(301))],t=0..40,y=-0.5..1);
plot(cf1-(1/sqrt(301)),t=1.0..2.5);
with(stats);
sample1 := array(1..300,[stats[random, normald[0,1]](300)] );
emp1 := (1/300)*sum(cos(t*sample1[k]),k=1..300);
plot([emp1,(1/sqrt(301))],t=0..40,y=-0.5..1);
plot(emp1-(1/sqrt(301)),t=1.0..2.5);

cf2 := int((cos(t*x))*n2,x=-infinity..infinity);
plot([cf2,(1/sqrt(301))],t=0..40,y=-0.5..1);
plot(cf2-(1/sqrt(301)),t=1.0..2.5);
with(stats);
sample2 := array(1..300,[stats[random, normald[0,1]](60),
stats[random, normald[0.5,(2/3)]](60),
stats[random, normald[(13/12),(5/9)]](180)] );
emp2 := (1/300)*sum(cos(t*sample2[k]),k=1..300);
plot([emp2,(1/sqrt(301))],t=0..40,y=-0.5..1);
plot(emp2-(1/sqrt(301)),t=1.0..2.5);

cf4 := int((cos(t*x))*n4,x=-infinity..infinity);
plot([cf4,(1/sqrt(301))],t=0..40,y=-0.5..1);
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plot(cf4-(1/sqrt(301)),t=15..20);
with(stats);
sample4 := array(1..300,[stats[random, normald[0,1]](200),
stats[random, normald[0,(1/10)]](100)]);
emp4 := (1/300)*sum(cos(t*sample4[k]),k=1..300);
plot([emp4,(1/sqrt(301))],t=0..40,y=-0.5..1);
plot(emp4-(1/sqrt(301)),t=15..20);

cf6 := int((cos(t*x))*n6,x=-infinity..infinity);
plot([cf6,(1/sqrt(301))],t=0..40,y=-0.5..1);
plot(cf6-(1/sqrt(301)),t=1.0..2.5);
with(stats);
sample6 := array(1..300,[stats[random, normald[-1,(2/3)]](150),
stats[random, normald[1,(2/3)]](150)]);
emp6 := (1/300)*sum(cos(t*sample6[k]),k=1..300);
plot([emp6,(1/sqrt(301))],t=0..40,y=-0.5..1);
plot(emp6-(1/sqrt(301)),t=1.0..2.5);

cf10 := int((cos(t*x))*n10,x=-infinity..infinity);
plot([cf10,(1/sqrt(301))],t=0..40,y=-0.5..1);
plot(cf10-(1/sqrt(301)),t=1.5..2.5);
with(stats);
sample10 := array(1..300,[stats[random, normald[0,1]](150),
stats[random, normald[-1,(1/10)]](30) ,
stats[random, normald[-0.5,(1/10)]](30) ,
stats[random, normald[0,(1/10)]](30) ,
stats[random, normald[0.5,(1/10)]](30) ,
stats[random, normald[1,(1/10)]](30)]);
emp10 := (1/300)*sum(cos(t*sample10[k]),k=1..300);
plot([emp10,(1/sqrt(301))],t=0..40,y=-0.5..1);
plot(emp10-(1/sqrt(301)),t=1.5..2.5);

cf11 := int((cos(t*x))*n11,x=-infinity..infinity);
plot([cf11,(1/sqrt(701))],t=0..40,y=-0.5..1);
plot(cf11-(1/sqrt(701)),t=1.5..2.5);
with(stats);
sample11 := array(1..700,[stats[random, normald[-1,(2/3)]](343) ,
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stats[random, normald[1,(2/3)]](343) ,
stats[random, normald[-1.5,(1/100)]](2) ,
stats[random, normald[-1,(1/100)]](2) ,
stats[random, normald[-0.5,(1/100)]](2) ,
stats[random, normald[0,(1/100)]](2) ,
stats[random, normald[0.5,(1/100)]](2) ,
stats[random, normald[1,(1/100)]](2) ,
stats[random, normald[1.5,(1/100)]](2)]);
emp11 := (1/700)*sum(cos(t*sample11[k]),k=1..700);
plot([emp11,(1/sqrt(701))],t=0..40,y=-0.5..1);
plot(emp11-(1/sqrt(701)),t=1.5..2.5);

#Setting the density and calculates its ch.function
F := (1/(sqrt(2*Pi)))*exp(-(x^2)/2);
f := int((cos(h*t*x))*F,x=-infinity..infinity);

#Setting new parameters
n:=100;
phi := cf1;
psi := f;

#Calculating MISE, using the gaussian kernel and the sinc-kernel
and compares these
IV := ((1/(2*n*Pi))*int((1-abs(phi)^2)*(abs(psi))^2,t=-100..100));
ISB := ((1/(2*Pi))*int((abs(1-psi))^2*(abs(phi))^2,t=-100..100));
MISE := IV + ISB;
sincMISE := (1/(Pi*n*h))+int(n01^2,x=-infinity..infinity)-
((1+(1/n))*(1/Pi)*int(phi^2,t=0..(1/h)));
plot([MISE,sincMISE],h=0..1,t=0..0.1,color=[red,blue]);

#Comparing MISE, using the gaussian kernel and the sinc-kernel
for a special density DE
a := 1;
F := (1/(sqrt(2*Pi)))*exp(-(x^2)/2);
f := int((cos(h*t*x))*F,x=-infinity..infinity);
DE := 0.5*((1/(sqrt(2*Pi)))*exp(-((x-a)^2)/2) +
(1/(sqrt(2*Pi)))*exp(-((x+a)^2)/2));
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d := int((cos(h*t*x))*DE,x=-infinity..infinity);
dd := (cos(a*t))*exp(-(t^2/2));
n:=100;
phi := dd;
psi := f;
IV := ((1/(2*n*Pi))*int((1-abs(phi)^2)*(abs(psi))^2,t=-100..100));
ISB := ((1/(2*Pi))*int((abs(1-psi))^2*(abs(phi))^2,t=-100..100));
MISE := IV + ISB;
sincMISE := (1/(Pi*n*h))+int(DE^2,x=-infinity..infinity)-
((1+(1/n))*(1/Pi)*int(phi^2,t=0..(1/h)));
plot([MISE,sincMISE],h=0..1,t=0..0.1,color=[red,blue]);
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