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Abstract

We have compared the recently developed Multi-level binary replacement (MBR)
design method for use in computer experiments, to the Latin hypercube design
(LHD) and the Orthogonal array (OA) design. For means of comparison, we
have suggested an algorithm for drawing permutations of the MBR design, so
as to obtain what we have called a MBR based Latin hypercube design. In our
comparison study, the main focus have been the design scores with respect to the
root mean squared error (RMSE), Max and alias sum of squares criteria. We
found that the MBR design generally performed good with respect to all criteria.
It scored similarly to the OA design method and better than conventional Latin
hypercube sampling. The score however varied with the number of samples and the
set of design generators chosen for constructing the MBR design. The MBR design
performed better for designs with a relatively high number of samples compared
to the number of factors.
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Chapter 1

Introduction

Computer-based simulations are extensively used as an alternative to traditional,
physical experiments. In contrast to physical experiments, an experiment based
on the output of a deterministic computer code will have no random error. The
main focus is to reduce the bias of an estimated metamodel. Design of experiments
(DoE) methods specifically constructed for use in computer experiments, hereby
referred to as modern DoE methods, therefore generally seek to be space-filling.
This stands in opposition to classical DoE methods for physical experiments, which
tend to place the design samples at the extremes of the experimental region, so as
to reduce the effect of the random error terms.

Popular modern DoE methods include random sampling, Latin hypercube sam-
pling (LHS) and orthogonal array (OA) sampling. The objective of this report is to
conduct a comparison study of these methods and the multi-level binary replace-
ment (MBR) design recently developed by Martens et al. [8]. The MBR design
method uses a binary representation of the design factors and applies fractional
factorial designs to generate designs which probe the design space at many differ-
ent levels for each factor, while keeping the number of design samples needed low.
For comparison of the DoE methods, we will use different criteria which reflect the
designs space filling properties and ability to fit metamodels.

The report is organised as follows. In chapter 2 we will discuss some of the
fundamental differences between the classical and modern experimental setting.
In chapter 3 we will present some classical DoE methods. Our main focus is the
fractional factorial designs, as these are used for generating the MBR designs.
Chapter 4 introduces random sampling, LHS and OA sampling, along with a dis-
cussion of the advantages and disadvantages of each design method. In chapter
5 we present the MBR design method. We will also propose our own method
for drawing permutations based on the MBR design, which will be used when

1



CHAPTER 1. INTRODUCTION 2

comparing the MBR design against other design methods. In chapter 6 we will
first present some classical design criteria, and argue shortly why these might be
bad measures when comparing modern DoE methods. We will then introduce al-
ternative criteria better suited when evaluating a designs space-filling properties
and ability to fit metamodels. In chapter 7 we will shortly present two different
approaches for fitting metamodels, namely response surface models and kriging
models. In chapter 8 we conduct a comparison study of modern design methods,
where the main focus is the score of the MBR design. In the evaluation we have
considered two-factor and five-factor designs.



Chapter 2

Classical vs Modern DoE

The use of computer-based simulations and analysis is becoming an increasingly
popular alternative to the traditional, physical experiments. Design of experiments
(DoE) methods designed for use in computer experiments differ significantly from
the classical DoE-methods in their approach.

The most important difference is the lack of random error in the output when
running a computer code. In physical experiments it is assumed that some ran-
dom error will always exist. Classical DoE methods seek to minimize the variance
of the parameters and generally place the design points at the extremes of the
experimental region. Other important aspects of classical modelling is the use of
blocking and replicated points. The output of computer simulations is determin-
istic, so running the same code several times or on different computers will return
identical answers. The concepts of blocking and replication is therefore irrelevant
in the modern DoE setting.

Modern DoE techniques are mainly concerned with reducing the bias in the esti-
mated model or metamodel. They tend to favor designs where the sample points
are placed in the interior of the experimental region.

An illustrative example of the fundamental differences between the classial and
the modern setting with regard to the choice of experimental design approach can
be seen in figure 2.1. The two plots to the left represents the classical setting where
measurement error is present. By plotting the sample points in the interior, as seen
for the lower left plot, the estimated trend is of opposite effect compared to the
true trend of the process. In the upper left plot the sample points are placed at the
far ends of the design region, and although the true trend is underestimated, it is
a far better approximation. The plots to the right represents the modern setting.
The true trend is polynomial, but the researcher can only afford two experimental
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CHAPTER 2. CLASSICAL VS MODERN DOE 4

samples, so the estimated trend will be linear. There is no random error in the
measurements. Placing the sample points in the interior may in this situation give
a better approximation than placing them at the extremes of the region.
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Figure 2.1: Classical versus modern modelling: The black line shows the true
trend, while the red line is the estimated trend function. Classical approach: (a)
and (b) places the samples at the extremes of the design space. Modern approach:
(c) and (d) places the samples in the interior. Classical setting: In (a) and (c)
random error occurs. Modern setting: In (b) and (d) there is no random error,
only bias error.



Chapter 3

Classical Design of Experiments
Methods

In the classical design of experiments setting one is considering a process where
the measured outcome ym(x) is assumed to be a function of the true response yt(x)
and a random error term ε, i. e.

ym(x) = yt(x) + ε.

Here x represents a sample site within the experimental region.

A typical objective of the experimental study is to fit a response surface model in
order to analyse the effect of the of the experimental factors on the response. This
model can for example be a regression model on the form

ym = Xβ + ε,

where ym is a vector of responses, X is the design matrix and β a vector of regres-
sion coefficients which needs to be estimated. The vector ε is assumed to consist of
independent, identically distributed random variables, which are often considered
normal with mean zero and variance σ2.

The key challenge in such an experimental study lies in choosing a DoE which
minimizes the effect of the error term on the measured response, i. e. reducing
the variance error. To achieve this a typical classical experimental design method
will tend to place the samples near the boundaries of the design space.

In this chapter we will present the two level factorial design and the central com-
posite design (CCD), which are among the most popular of the classical DoE
methods. The multilevel binary replacement (MBR) design method later to be
studied, uses fractional factorials in order to generate designs.

6



CHAPTER 3. CLASSICAL DESIGN OF EXPERIMENTS METHODS 7

3.1 The 2k Factorial Design
The 2k factorial designs are a special class of designs where each factor k is stud-
ied at exactly two levels, usually referred to as high and low. These designs are
often used to fit first-order response surface models. An advantage of the factorial
designs is the low computational cost and the ease in estimating the regression
parameters. We will not go into the details of estimation in 2k experiments in this
report, but refer to Montgomery et al.[10] for further reading.

In the full factorial 2k design all combinations of high/low between all experi-
mental factors are being studied. The experiment would require a total of n = 2k

runs.

3.1.1 Fractional Factorial Designs

If the number of factors is large, or it is expected that some of the factors will
not have a significant influence on the response, running a fractional factorial ex-
periment might suffice. Fractional factorial designs are often used in screening
experiments.

We use the notation 2k−p for a two-level fractional design, where p describes the
reduction factor for the experiment, i. e. the 1

2p
-fraction of the full factorial design.

A key feature lies in choosing the design generator so that as little information
as possible is lost. The choice of design generator yields an alias structure, which
defines how the effects are confounded with each other. That effects or interaction
of effects are confounded with each other means that they can not be estimated
independently.

An important property regarding the alias structure is the resolution of the frac-
tional design. Montgomery et al.[10] gives the following definition of resolution
III-V designs:

Definition 1 (Design Resolution). •

• Resolution III Designs. A design is called a resolution III design if no
main effects are confounded with any other main effects, but main effects are
confounded with two-factor interactions and two-factor interactions may be
confounded with each other.
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• Resolution IV Designs. A design is called a resolution IV design if no
main effect are confounded with any other main effect or two-factor interac-
tion, but two-factor interactions are confounded with each other.

• Resolution V Designs. A design is called a resolution V design if no main
effect or two-factor interaction are confounded with any other main effect
or two-factor interaction, but two-factor interactions are confounded with
three-factor interactions.

Generally one would always seek a design with the highest resolution possible.
A resolution II design would imply that main effects are confounded with each
other, and are not useful for experiments. Designs of higher resolutions than V are
also possible to construct, but not so commonly used since their run size normally
will be large.

The consepts of design generators and alias matrices are easiest understood by
an example. Consider an experiment with k = 5 factors, denoted by letters A to
E. If one is interested in constructing a half fraction of the full 25 design, one would
choose as design generator I = ABCDE. As we can see from the alias structure
in table 3.1, no first order or interaction effects are confounded with each other.
This would give us a resolution V design. We denote the design by 25−1V .

A = BCDE AB = CDE BD = ACE
B = ACDE AC = BDE BE = ACD
C = ABDE AD = BCE CD = ABE
D = ABCE AE = BCD CE = ABD
E = ABCD BC = ADE DE = ABC

Table 3.1: Alias Structure for the 25−1V design, with I = ABCDE.

Consider now an experiment with k = 6 factors, denoted by A to F . Assume
we want to construct only a quarter fraction of the full design. We can now at
best achieve a resolution IV design, by for example choosing the design generators
I = ABCE and I = BCDF . This yields the alias structure given in table 3.2. We
see that no main effect are confounded with any other main effect or two-factor
interaction, but two-factor interactions are confounded with each other.
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A = BCE = DEF = ABCDF AB = CE = ACDF = BDEF
B = ACE = CDF = ABDEF AC = BE = ABDF = CDEF
C = ABE = BDF = ACDEF AD = EF = ABCF = BCDE
D = AEF = BCF = ABCDE AE = BC = DF = ABCDEF
E = ABC = ADF = BCDEF AF = DE = ABCD = BCEF
F = ADE = BCD = ABCEF BD = CF = ABEF = ACDE

BF = CD = ABDE = ACEF
ABD = ACF = BEF = CDE
ABF = ACD = BDE = CEF

Table 3.2: Alias Structure for the 26−2V design, with I = ABCE and I = BCDF .

3.2 Central Composite Design
The central composite design (CCD) can be seen as a full factorial design aug-
mented with axial points and center points. The axial points allows estimation of
squared effects, so the design is especially useful in fitting second order response
surface models. It requires a total of n = 2k+2k+nc samples, where nc represents
the number of center points.

Figure 3.1 shows the central composite design for three factors, along with a full
factorial and fractional factorial design.

b

b

bb

Figure 3.1: Left: 23−1 fractional design. Middle: 23 full factorial design. Right:
Central composite design with 3 factors.



Chapter 4

Modern Design of Experiments
Methods

There are numerous problems to which modern DoE methods can be applied. The
goal of the first computer experiments was to approximate numerical integration.
A similar problem might consist of estimating some statistic, for example the mean
or second order moments of a complicated function. In these cases exact values of
the statistics might be impossible to obtain and traditional numerical integrations
methods might be very expensive.

Another goal of a computer experiment can be to find a suitable metamodel. The
true response trend is then assumed to be unknown. Also, if the underlying func-
tion requires a lot of computation time, it might be desirable to fit a metamodel so
that the value at an arbitrary point within the design space can be easily computed.

We distinguish between two main types of modern DoE methods. Optimal de-
signs seek a design which is optimal with respect to some criterion. The main
focus in this report will be the so-called space-filling designs, as these have a wider
variety of applications. In many situations it can be hard or impossible to choose
one criterion which will be most important for a design, as this often depends on
the goal of the computer simulation or the form of the underlying computer code.

In this chapter we will first introduce the Monte-Carlo (MC) sampling alghorithms,
originally proposed as an alternative to numerical integration. We will then present
the Latin hypercube design (LHD), which was the first design proposed specifically
for applications in computer experiments. Several extensions of Latin hypercube
sampling (LHS) exist, and among these maximin-LHS and orthogonal array (OA)
based LHS will be further discussed.

10
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4.1 Monte Carlo Sampling
Monte Carlo (MC) sampling in computer experiments was originally developed as
an alternative to numerical integration of complex functions [13].

4.1.1 Pseudo-Monte Carlo Sampling

Pseudo-Monte Carlo sampling might also be referred to as pseudo-random sam-
pling, stochastic sampling or just random sampling. The MC sampling algorithm
draws, for each sample point, a random number within the interval [xj,L, xj,U ] of
each factor j. A design of n sample points will simply be a collection of n points
drawn randomly from the experimental region [xj,L, xj,U ]

k, which will usually be
scaled to the hypercube [0, 1]k.

The clearest advantage of MC-sampling is that it can be easily implemented, one
only needs a reliable pseudo-random number generator, which is readily available
in most computer languages. The algorithm may also be extended to non rectan-
gular design spaces and non-uniform distributions. A drawback is that the user
has no control as to where the sample sites are placed within the experimental
region, which can leave large areas unexplored. If the number of samples is large
the MC-sampling algorithm can be expected to cover the design space well. But
if the user can only afford a small number of samples, which is often the case in
computer experiments, one might end up with unsatisfactory designs.

4.1.2 Stratified Monte Carlo Sampling

Stratified Monte Carlo sampling was developed as an alternative to the simpler
pseudo-MC sampling to ensure better coverage of the design space. The algorithm
divides each factor k into pk subintervals, or bins, of equal probability. The sam-
ple sites are then drawn randomly within each bin. This provides a better overall
coverage by ensuring that no region of the experimental region is left totally un-
explored.

The user is free to decide the numbers of bins within each factor, so that the
sample size can be chosen according to need or budget. However, stratified MC
sampling requires at least a number of 2k samples (two bins for each factor), which
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might not be affordable if the numbers of factors is large.

In figure 4.1 we can see a pseudo-MC sample at the left, and a stratified MC-
sample at the right. The stratified sample clearly has a better coverage than the
random sample.

Figure 4.1: Plots of the MC sampling algorithms. Left: Pseudo-MC sample. Right:
Stratified-MC sample

4.2 Latin Hypercube Sampling
Latin hypercube sampling (LHS) was originally developed by McKay et al.[9], as
an alternative to the random sampling algorithms for computer experiments. They
showed that under certain assumptions, LHS gave more accurate estimations of
the mean, the variance and the distribution function based on output from a com-
puter code, than the simple Monte-Carlo sampling and the stratified Monte-Carlo
sampling algorithms. The basic idea was to construct a design that ensured a more
uniform distribution of the samples throughout the design space. It was the first
method proposed specifically for applications in computer experiments.

The idea behind the LHS algorithm is based on the definition of the Latin square:

Definition 2 (Latin Square). A n×n square grid containing sample points taking
n different values is a Latin square if and only if every value appears exactly one
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time for each row and each column.

●

●

●

●

●

1 2 3 4 5
1

2
3

4
5

Figure 4.2: Left: Example of a latin square. Right: A latin square sample based
on the character E from the latin square to the left.

An example of a 5 × 5 latin square with character coding can be seen to the
left in figure 4.2. The plot at the right shows a latin square sample obtained by
taking the sample points from the E-values in the latin square. We could obtain
another sample by choosing any of the characters A, B, C or D, or by constructing
a different latin square. The definition of the Latin square can be generalized to
apply for an arbitrary number of dimensions, and is then called a Latin hypercube.
A sample taken from such cube is called a latin hypercube sample.

For constructing a Latin hypercube sample of size n in k dimensions, we par-
tition the range of each variable k into n equally spaced subintervals. The design
space will then be divided into a total of nk bins with equal probability. We then
do a random permutation of the values 1, 2, ..., n for each variable k, and combine
the columns to achieve a n × k matrix representing a Latin hypercube sample.
When applying the LHS algorithm to computer experiments, the design space is
usually scaled to the hypercube [0, 1]k and the samples are placed randomly within
each bin.

There are several advantages to LHS that makes it a popular design among many
scientists. The LHS algorithm yields design points that are evenly spread out
when looking at each dimension separately. Furthermore there are no restrictions
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with regard to the number of samples, so the sample size can be chosen exactly
according to the researchers need or budget. Many other methods, for example
the central composite design and the stratified Monte-Carlo sampling, requires at
least 2k runs, while other designs are only applicable for certain sample sizes n
given the number of variables k. LHS scales as O(k), so for experiments where
the simulations are too expensive or time consuming to allow a high number of
samples, LHS will be a good option.

There are also some drawbacks with LHS that the user should be aware of. When
projecting the sample points into one dimension, the samples will have a balanced
distribution. When considering multiple dimensions simultaneously however, the
randomness in choosing the permutations can lead to designs with good coverage
of the design space, but also to designs that leave large areas of the design space
unexplored. In figure 4.3 we can see plots of four notably different two-dimensional
Latin hypercubes with n = 8 sample points. In the upper left plot the samples
cover the design space well. For the upper right plot, only a half fraction of the
design space is explored. The bottom plots show high spatial correlation, the sam-
ples are nearly co-linear. This can lead to ill-conditioned systems, for example
when fitting a response surface model by linear regression.

4.2.1 The LHS algorithm

For generating a Latin hypercube sample with n sample points in k dimensions,
denoted LHS(n, k), the samples can be found as:

xij =
πij − Uij

n
, for 1 ≤ i ≤ n, 1 ≤ j ≤ k,

where each π·j is a random permutation of the integers 1, 2, . . . , n, and each Uij
is a random value drawn from the uniform distribution U[0, 1]. The subscript j
denotes the dimension index while i represents the number of the experimental
sample point.

Example 1 (LHS(n=6,k=2)). We draw two vectors π·1 and π·2 being random
permutations of the sequence [1,2,3,4,5,6] and 12 random numbers from U[0, 1]:

π·1 =


5
2
4
6
3
1

 , π·2 =


2
1
6
4
5
3

 ,U =


0.576 0.175
0.240 0.374
0.620 0.147
0.294 0.837
0.877 0.616
0.865 0.018
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This gives us the LHS design:

1

n
(π −U) =

1

n




5 2
2 1
4 4
6 4
3 5
1 3

−


0.576 0.175
0.240 0.374
0.620 0.147
0.294 0.837
0.877 0.616
0.865 0.018



 =


0.737 0.284
0.304 0.027
0.626 0.853
0.937 0.563
0.396 0.689
0.142 0.496


A plot of the design can be seen in figure 4.4

Instead of drawing random values for each Uij, one might simply set the value
of each Uij to the fixed value 0.5. The sample points will then be placed in the
center of each bin, in what is called a midpoint Latin hypercube design.

The LHS algorithm can easily be adopted to variables having non-uniform dis-
tributions. If sampling variables from for example the normal-, loguniform- or
Weibull-distribution, instead of assigning bins of the same size, one simply assigns
bins having the same probability of being drawn out.

4.2.2 Modifications of the LHS algorithm

Several modifications of the LHS algorithm exist that seek to optimize the designs
with respect to certain criteria, or avoid designs with high spatial correlation or
inadequate coverage of the design space. As the standard LHS algorithm only en-
sures uniformity for one-dimensional projections, it is desirable to find extensions
of the algorithm that will be balanced also in higher dimensions. For each variable
in the LHS algorithm there exists n! different permutations. This gives a total of
(n!)k possible LHS designs for given values of n and k, so creating and comparing
all designs will be computationally very expensive.

The maximin Latin hypercube design is a space-filling design that seeks to find a
Latin hypercube that is optimal with respect to the maximin criterion. A maximin
distance design, originally proposed by Johnson et al.[7], is defined as:

Definition 3 (Maximin distance design). Let S ⊂ Rk be the design space, and
d(x1, x2) a distance measure on S, for example the Euclidian distance. Let Sn =
{x1, . . . , xn} denote a possible design. The design S0

n is called a maximin distance
design if

max
Sn

min
x,x′∈Sn

d(x, x′) = min
x,x′∈S0n

d(x, x′).
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A drawback to the maximin criteria is that if the number of sample points is
smaller than 2k, the optimal design with respect to the criterion will be one that
places all the sample points at the extremes of the design space, i.e. a factorial
design. If the number of samples is large, however, a maximin distance design will
try to maximize the minimum distance between all design points, thereby seeking
a design where the design points are as evenly spread out as possible.

Several other modifications to the LHS algorithm exist, which optimizes LHS with
respect to some criteria. Latin hypercube samples can also be constructed based
on orthogonal arrays, and this will be furthered discussed in the next section.

4.3 Orthogonal Array Sampling
Tang [13] introduced the idea of using orthogonal arrays (OA’s) to construct Latin
hypercube samples. He proved that the bias variance, when used for numerical
integration, was substantially lower when using LHS based on OA’s than for ran-
dom sampling or the standard LHS algorithm. An important feature of OA based
LHD’s is that with the strength r associated with the OA, any r-dimensional pro-
jection of the design will yield a balanced design. This is an improvement from
LHS which is only ensured to be balanced in one dimension.

Tang [13] defines an orthogonal array as follows:

Definition 4 (Orthogonal Array). An n×m matrix A, with entries from a set of
p ≥ 2 symbols, is called an OA of strength r, size n, with k constraints (factors)
and p levels if each n × r submatrix of A contains all possible 1 × r row vectors
with the same frequency λ.

We refer to λ as the index of the array, and the relationship n = λpr applies
for all OA’s. We denote such an OA by OA(n, k, p, r;λ).

As mentioned, we associate an OA with the strength r, which reflects the number
of dimensions for which the OA is balanced. LHS has strength r = 1, and can
therfore be seen as an OA(n, k, p, 1).

From a given OA, a OA based LHS can easily be constructed in a similiar fashion
to the LHS algorithm. For each column, instead of drawing a random permutation
of all numbers 1, 2, .., n, we draw for each entry s = 1, 2, ..., p a permutation of the
numbers (s− 1)λpr−1 + 1, (s− 1)λpr−1 + 2, ..., sλpr−1. We then draw the samples
randomly from each of the design bins. Tang refers to the resulting LHD’s based
on OA’s as U-designs.
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The largest challenge in constructing a U-design consist of finding an appropriate
OA for the experiment. The user is not free in choosing whatever combinations
of the variables n, k, p, r he would like, and finding a satisfying OA can be very
hard. The construction of OA’s is a far from trivial process, which constitutes an
entirely own field of study, but this will not be further discussed in this report.
Fortunately, several OA’s for different combinations of n, k exist in tabular form
and can be found in books or on the web. Some software programs have algorithms
for constructing OA’s implemented.

4.3.1 The Orthogonal Array Sampling Algorithm

An OA based LHS, or a U-design, can be contstructed as follows:

• Choose an OA(n, k, p, r;λ), denoted by A with the desired strength r and
number of samples n, factors k and levels p. The p levels are taken as
p =1,2,...p, where p≥ 2

• For each column in A, replace each of the λkr−1 numbers with entry s by a
random permutation of (s− 1)λpr−1 + 1, (s− 1)λpr−1 + 2, ..., sλpr−1, where
s = 1, ..., p.

• The elements of an OA based LHD, denoted by U and scaled to the hyper-
cube [0, 1]k, are found as

uij =
aij − U∗ij

n
, for 1 ≤ i ≤ n, 1 ≤ j ≤ k,

where each U∗ij is a random value drawn from the uniform distribution
U∗[0, 1].

Example 2 (U(8,2,2,2;2)). We have an OA(8,2,2,2;2) given as:

A =



1 1
1 2
2 1
2 2
1 1
1 2
2 1
2 2
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For each of the four 1’s in each column we draw a permutation of {1, 2, 3, 4}, and
for the four 2’s a permutation of {5, 6, 7, 8}. This might give the following array:

A =



2 1
3 7
5 2
8 6
1 4
4 8
6 3
7 5


We randomize within each bin and scale to [0, 1]2 to obtain the U-design:

U =
1

n
(A−U∗) =

1

8





2 1
3 7
5 2
8 6
1 4
4 8
6 3
7 5


−



0.156 0.860
0.927 0.596
0.629 0.405
0.655 0.452
0.377 0.652
0.714 0.491
0.204 0.391
0.400 0.887




=



0.230 0.017
0.259 0.800
0.546 0.199
0.918 0.693
0.077 0.418
0.410 0.938
0.724 0.326
0.824 0.514


A plot of the design can be seen in figure 4.5. We started off with an OA with p = 2
levels for each factor, so the resulting design can be seen as divided into 22 = 4
larger bins. As the index λ = 2 we will therefore find exactly two samples within
each of these bins. We also see that the design clearly satifyes the LHD criterion
in that there is only one sample in each row and each column.

As with the LHS algorithm, also the OA sampling algorithm can be adopted
to variables having non-uniform distributions. The OA used as the basis for the
algorithm need not not have the same number of levels p for each factor. If
some factors are expected to have a larger influence on the response, it might be
reasonable to divide these into more levels than the other factors.
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Figure 4.3: LHS plots. Upper left: Good coverage of the design space. Upper
right: Only a half-fraction of the design space is covered. Bottom left and right:
Samples are co-linear/High spatial correlation.
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Figure 4.5: Plot of the OA design found in example 2.



Chapter 5

Multi-level Binary Replacement
Design

The multi-level binary replacement (MBR) design was developed by Martens et
al.[8] for high-dimensional problems in nonlinear systems. Applications include
initial range finding, i.e. screening of the experimantal factors, final optimization
finding and metamodelling.

When studying a complicated model, for example a system of coupled nonlin-
ear differential equations, it can be hard for the scientist to predict how variations
in the input will effect the output. Martens et al.[8] states the following properties
for a good experimental design, which they have considered when constructing the
MBR design:

• Each factor should be studied at many levels so as to be prepared for non-
linearities in the model behaviour.

• The design should allow testing of many different combinations of the input
factors.

• To avoid combinatorial explosion or too high computational cost, it is impor-
tant to reduce the number of runs as much as possibly, but without missing
out on important aspects of the model behaviour. That is, we want to find a
design which extracts as much information as possible from as few samples
as possible.

Ideally, one would like to test all combinations of all factors at all levels. This will
quickly lead to combinatorial explosion; already for an experiment with 5 factors
at 8 levels, a total of 85 = 32768 runs are required.

21
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The goal of the MBR design method is as for the LHD and OA design method that
they want the experimental samples to be spread evenly over the design space. In
a follow-up article, Tøndel et al. [11] compared the MBR design to the CCD and
random sampling (MC-sampling). In this report we would like to compare the
MBR design with LHD’s and OA designs, as the nature of these designs lie closer
to the MBR design than does classical designs like the CCD.

In this chapter we will first describe the MBR design contruction approach pro-
posed by Martens et al.[8]. We will then discuss some of the sampling properties
of the MBR design in relation to LHD’s and OA designs. Finally, we will propose
a method do draw permutations of a generated MBR design, so as to construct a
LHD based on a MBR design.

5.1 The MBR Design Method
The MBR design method combines binary recording of the factor levels with a
fractional factorial design in its binary variables. The approach for constructing
the MBR design can be described as follows. Consider an experiment with k fac-
tors. Each factor κ ∈ {1, 2, . . . , k} can be assessed at a number of L(κ) levels,
where L(κ) is a multiple of 2. The levels are taken to be dκ = (0, 1, . . . , L(κ)− 1).

Let M(κ) represents the number of binary bits necessary to represent the L(κ)
levels as binary numbers. We then have the relation M(κ) = log2 L(κ). Let row
i in the matrix Fκ represent the binary coding of the corresponding element i in
the vector dκ. The elements of Fκ takes the values 0 or 1. When constructing
a factorial design, the levels are usually taken to be -1 or +1, so let Gκ be the
corresponding matrix to Fκ where all 0-values are shifted to -1. We now have three
equivalent representations of the levels of factor κ.

Example 3 (Representation of the factor levels for the MBR design). Assume
that the factor κ takes on L(κ) = 4 different levels, which can be represented by
M(κ) = 2 factor bits. We then have the equivalent representation of the factor
levels:

dκ =


0
1
2
3

 ⇔ Fκ =


0 0
0 1
1 0
1 1

 ⇔ Gκ =


−1
−1
1
1

−1
1
−1
1


The total number of binary factors necessary to represent the original k factors in
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a factorial experiment is given by

Mtot =
k∑

κ=1

M(κ).

A full factorial experiment in G would then require a total of 2Mtot runs. We
want to reduce the number of runs to n = 2Mtot−Mconf in a fractional factorial
design, where Mconf represents the number of design generators necessary for the
desired reduction in sample size. For a chosen confoundation pattern, we can now
construct a 2Mtot−Mconf fractional factorial design in G. The design G is then trans-
formed back to the corresponding representation of F. The MBR design is found
by transforming F back to the original level coding for each factor.

5.1.1 Choosing a Confounding Pattern for the MBR Design

The crucial step in generating the MBR design lies in choosing the confounding
pattern. Each factor κ in the original design is represented byM(κ) binary factors
in G. For a fractional factorial design one would normally choose the design gen-
erators that results in a design of the highest possible resolution, but Martens et
al.[8] argues that this will not necessarily give the best MBR-design. They suggest
that a simple way to choose a confounding pattern is to generate several patterns,
and then choose the design which by graphical inspection seems to give the best
spatial coverage.

For a given set of design generators, the alias structure of the design should be
checked. Tøndel et al.[11] considered a simple example with two design factors,
denoted A and B, investigated at 8 and 4 levels respectively. They chose two dif-
ferent confounding patterns, which gave a optimized and a non-optimized MBR
design. The two designs can be seen in figure 5.1. For the non-optimized design,
they found that the binary factors for B where confounded only with binary factors
from A. They also suggest an optimized MBR design method. Shortly described,
an optimal MBR design is found by generating a number of different confounding
patterns, and then choose the design which gives the best score with respect to
some space-spanning criterion.
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5.1.2 The MBR Design Algorithm

A short stepwise summary of the MBR design algorithm can be described as
follows.

• Consider an experiment with k factors, each measured on L(κ) levels with

decimal coding dκ = (1, 2, . . . , L(κ) − 1), and let Mtot =
k∑

κ=1

M(κ) be the

number of binary factors necessary to represent all factor levels.

• Choose a confounding pattern which gives the desired reduction in design
size.

• Construct a fractional factorial design G according to the chosen confounding
pattern.

• Transform G to binary representation F, i.e. shift all -1 values to 0.

• Transform the binary factors in F to the corresponding decimal coding to
obtain the MBR design, denoted D.

Example 4 (Two factor MBR design). We would like to reconstruct the example
given by Tøndel et al. [11]. Two factors, A and B, are measured on L(A) = 8
and L(B) = 4 levels. This gives M(A) = log2 8 = 3 and M(B) = log2 4 = 2. We
denote the binary factors for A by a1, a2 and a3, and for B by b1 and b2. This
gives the relationship between decimal coding and binary coding:

A = a1 + 2a2 + 4a3, B = b1 + 2b2

For the optimal design we have the design generators a3 = a1b2 and b1 = a2b2.
The 25−2 fractional design G, the corresponding binary representation F and the
MBR-design Dopt are then found as:

a1 a2 a3 b1 b2 a1 a2 a3 b1 b2

G =



−1
−1
−1
−1
1
1
1
1

−1
−1
1
1
−1
−1
1
1

−1
1
−1
1
−1
1
−1
1

−1
1
1
−1
1
−1
−1
1

1
−1
1
−1
−1
1
−1
1


⇒ F =



0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
1
1
0
1
0
0
1

1
0
1
0
0
1
0
1


⇒ Dopt =



0 2
4 1
2 3
6 0
1 1
5 2
3 0
7 3
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For the non-optimal design we have the design generators b1 = a1a2 and a3 =
a2b2. We find Dnonopt as:

a1 a2 a3 b1 b2 a1 a2 a3 b1 b2

G =



−1
−1
−1
−1
1
1
1
1

−1
−1
1
1
−1
−1
1
1

−1
1
−1
1
−1
1
−1
1

1
1
−1
−1
−1
−1
1
1

1
−1
−1
1
1
−1
−1
1


⇒ F =



0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

1
1
0
0
0
0
1
1

1
0
0
1
1
0
0
1


⇒ Dnonopt =



0 3
4 1
2 0
6 2
1 2
5 0
3 1
7 3


A plot of the optimal and the non-optimal MBR design can be seen in figure 5.1.
The optimal design seems to have better spatial coverage.
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Figure 5.1: Two-factor MBR designs based on different confounding patterns. Left:
Optimal MBR design. Right: Non-optimal MBR design.
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5.2 Sampling Properties of the MBR Design
There are both advantages and disadvantages to the MBR design compared to
LHS and OA sampling. The MBR method offer good possibilities to generate
designs with few samples, but many factors, while maintaining control over the
factor interactions. However, the number of samples we can choose are restricted
to be multiples of 2. For the LHD, no such restrictions apply. OA designs require
that an OA exists and can be found for the given number of samples, factors and
levels.

Compared to the OA and MBR design methods, the LHD algorithm is easier
to implement. The MBR design algorithm requires that we choose a confounding
pattern, which can strongly affect the designs space-filling properties. Optimized
MBR designs can be generated, but require that some criteria is chosen as basis
for comparison.

An advantage of the MBR design method is that known or anticipated informa-
tion about the factor correlations can be taken into consideration when choosing
the design generators. If some factors are believed to be more influential than
the others, we can choose to assess these at a higher number of levels. The LHD
algorithm offers no possibilities to incorporate parameter correlation when con-
structing a design, nor to assess the factors at a different number of levels. For the
OA-sampling algorithm one might choose an OA which has more levels for some
of the factors.

An important aspect of the MBR design is that the design levels need not repre-
sent experimental levels which are equally spanned, or even continuous. If a factor
can only be assessed at certain predetermined levels, randomization within bins
will not be possible. The LHS and OA algorithms considers the design space to be
continuous, and are therfore not directly applicable if the factor levels are discrete.

5.3 MBR based Latin Hypercube Designs
For comparisons between the LHD, OA design and MBR design, the first two de-
sign methods will have a clear advantage as they are not restricted to only certain
levels when assessing the factors. We will therfore suggest an extension to the
current MBR design algorithm, such that also the MBR designs are free to assess
the factors at all levels.

The LHS algorithm divides the span of each factor into a number of bins equal to
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the number of design samples, and then randomize within each bin. For the MBR
design, the number of samples will usually be higher or equal to the number of
levels for which each factor is investigated.

If one or more of the factors in the MBR design are assessed at a number of
levels lower than the number of samples, we may draw permutations within these
factors in a similar fashion to the OA sampling algorithm.

Consider for example a MBR design generated with n sample points and k fac-
tors, where each factor κ ∈ {1, 2, . . . , k} is measured at L(κ) levels. Assume that
n > L(κ) ∀ κ. As both n and L(κ) are multiples of 2, the value λ(κ) = n

L(κ)
will

be an integer value representing the number of samples measured at each level for
factor κ. By replacing the λ(κ) samples with entry s = 0, 1, 2, ..., L(κ)− 1 with a
random permutation of the numbers sλ(κ) + 1, sλ(κ) + 2, ..., (s + 1)λ(κ), we will
obtain a design which is a LHD, but is based on a MBR design. By randomizing
within in each bin and scaling the design to the hypercube [0, 1]k, we have a MBR
based LHD which can be compared to convential LHD’s and OA designs.

5.3.1 Algorithm for Constructing a MBR based LHD

An algorithm for generating a LHD based on a MBR design can be described as
follows.

• Generate a MBR design, denoted D, with n samples and k factors, according
to the algorithm described in section 5.1.2. Each factor κ is measured at L(κ)
levels.

• For each column in D with λ(κ) = n
L(κ)

> 1, replace each of the L(κ) numbers
with entry s = 0, 1, 2, ..., L(κ) − 1 by a random permutation of sλ(κ) +
1, sλ(κ) + 2, ..., (s+ 1)λ(κ).

• The elements of a MBR based LHD, denoted by D* and scaled to the hy-
percube [0, 1]k, can be found as

d∗ij =
dij − Uij

n
, for 1 ≤ i ≤ n, 1 ≤ j ≤ k,

where each Uij is a random value drawn from the uniform distribution
U∗[0, 1].

Example 5 (MBR based LHD). For n = 16 samples and k = 2 factors, with
each factor measured at L(κ) = 8 levels we have generated a MBR design using
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the design generators b2 = a1 a2 a3 and b3 = a1 a2 b1. The design is given as

D =

[
0 0 4 4 2 2 6 6 1 1 5 5 3 3 7 7
0 5 6 3 6 3 0 5 2 7 4 1 4 1 2 7

]T
.

A plot of the design can be seen to the left in figure 5.2. We draw permutations
according to the algorithm described, and obtain:

D =

[
1 2 9 10 5 6 13 14 4 3 12 11 7 8 15 16
2 11 14 8 13 7 1 12 5 16 9 3 10 4 6 15

]T
.

We randomize within each bin and scale to [0, 1]k, and get the MBR based LHD:

D∗ =
1

n
(D − U) = 1

16





1 2
2 11
9 14
10 8
5 13
6 7
13 1
14 12
4 5
3 16
12 9
11 3
7 10
8 4
15 6
16 15



−



0.139 0.501
0.916 0.191
0.162 0.333
0.322 0.628
0.567 0.776
0.102 0.134
0.113 0.372
0.846 0.738
0.747 0.318
0.634 0.721
0.664 0.833
0.106 0.054
0.342 0.954
0.156 0.686
0.095 0.809
0.818 0.393





=



0.054 0.094
0.068 0.676
0.552 0.854
0.605 0.461
0.277 0.764
0.369 0.429
0.805 0.039
0.822 0.704
0.203 0.293
0.148 0.955
0.708 0.510
0.681 0.184
0.416 0.565
0.490 0.207
0.932 0.324
0.949 0.913


A plot of the design can be seen to the right in figure 5.2. The MBR based

LHD, D*, are marked by the solid dots, while the original MBR design D scaled
to [0, 1]k is represented by the crosses.
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Figure 5.2: Left: The MBR design D from example 5. Right: An MBR based
LHD, D*, originating from the design to the left. D* is marked by the filled dots,
the original design D is marked by the crosses.



Chapter 6

Comparison Criteria for Evaluation
of Designs

There are several intuitive goals that are important when evaluating experimental
designs. Classical physical experiments are mainly concerned about reducing the
variance error. In modern computer experiments there is no random error and the
main focus is to reduce the bias error. One tend to favour designs which are space
filling, and natural requirements for an efficient design include good coverage of
the design space, ability to fit complex models, many levels for each factor and
good projection properties.

For low factor experiments the coverage and projection properties can be checked
manually by graphical representation, but this might not be so easy when the num-
ber of factors is large. One is interested in finding mathematical criteria which
reflect a designs space-filling properties and ability to fit metamodels, and whom
can be used to compare different DoE methods.

In this chapter we will first present some of the most popular classical design
criteria, namely the D-optimality and A-optimality criterion. We will give a short
explanation as to why these, and other classical criteria, are less applicable for use
in computer experiments. We will then present some criteria that are more suitable
when evaluating modern design methods: The maximin distance criteria, which is
often used when constructing optimal designs. The integrated mean squared error
(IMSE), and the closely related root mean squared error (RMSE) and maximum
absolute error (Max). Finally the alias sum of squares criterion will be presented.

30
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6.1 Classical Comparison Criteria
The goal of classical DoE is to reduce the variance error, and classical criteria
are typically related to properties of the variance-covariance matrix or the Fisher
information matrix.

6.1.1 D-criterion

Given a design D with an associated design matrix X, a D-optimal design seeks
to maximize the determinant of the information matrix M = (X ′X). The infor-
mation matrix is proportional to the inverse of the covariance matrix for the least
squares estimator, so by maximizing M we seek to minimize the variance.

The D-criterion, denoted Dcrit, is defined by Montgomery et al. [10] as:

Dcrit =
1

|M−1|
=

1

|(X ′X)−1|
where one would prefer the design with the highest value of Dcrit.

6.1.2 A-criterion

The A-optimality criterion is also based on the information matrix M , and is
defined by Montgomery et al. [10] as:

Acrit = tr(M−1) = tr[(X ′X)−1]

where tr is the trace of the matrix, i. e. the sum of the diagonal elements. An
optimal design would seek the lowest value possible of Acrit.

Whereas the D-optmality criterion is based on the whole covariance matrix, the
A-optimality criterion is only the sum of the variances of the estimated parameters.

6.1.3 Other Classical Criteria

Other popular classical design criteria include V-optimality [1], the average pre-
diction variance, G-optimality [10], the maximum prediction variance, and the
condition number [3], which evaluates the sphericity and symmetry of a design.

6.1.4 Classical Criteria for Evaluating Modern DoE Meth-
ods

An important aspect of modern design methods is to reduce the bias error by
seeking space-filling designs. But placing several points in the interior of the
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design space will naturally increase the correlation between the samples. Design
criteria which are concerned about minimizing the variance may therefore be bad
measures when comparing modern design methods, as the criteria generally will
prefer designs that are non space-filling.

6.2 Maximin Criterion
The maximin criterion for a design D, in a slightly modified form presented by
Bursztyn et al.[2], is given as:

dmaximin = min
xi,xj∈D

d(xi, xj) = min
xi,xj∈D

‖ xi − xj ‖ (6.1)

i. e. dmaximin is the minimum distance between two design points found for all
design points in D. As mentioned in section 4.2.2, LHD’s can be constructed which
are optimal with respect to the maximin criterion.

A large value of the maximin criterion will indicate that the points are spread
out as far apart as possible, therby indicating good space filling properties. Cau-
tion however has to be taken if the number of samples n is less than 2k, as an
optimal design in this case will be a full or fractional design. But a high max-
imin criterion value paired with another requirement, for example that the design
satisfies the LHS-criterion, indicates a design with good coverage of the design
space.

6.3 The IMSE, RMSE and Max Criteria
The integrated mean squared error (IMSE), root mean squared error (RMSE) and
maximum absolute error (Max) criteria are measures as to how well an estimated
metamodel ŷ(x) based on a design D fits the true underlying model y(x). More
information on finding these metamodels are presented in chapter 7.

After fitting a metamodel we want to measure the deviance from the true model.
The IMSE criterion is defined by Bursztyn et al. [2] as follows:

IMSE =

∫
E{y(x)− ŷ(x)}2dx.

For complex functions y(x) the exact value of the IMSE criterion can be hard to
calulate, and numerical approximations might be necessary.
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The RMSE criteriom is defined by Simpson et al.[12] as:

RMSE =

√∑nerror

i=1 (yi − ŷi)2
nerror

.

Here nerror represents the number of validation points. These can be placed along
a uniformly spaced grid or chosen randomly within the design space. The RMSE
value therfore represents an approximative value of the IMSE, but it is compu-
tationally much cheaper and will therfore be preferred when evaluating different
design methods in chapter 8.

The maximum absolute error (Max) criterion is defined by Simpson et al.[12] as:

Max = max
i=1,..,nerror

(|yi − ŷi|).

The maximum is taken over a set of nerror validation points. If using the same
set of validation points for the RMSE and Max criterion, the two criteria values
can be calculated simultaneously. The RMSE represents an average value of the
deviance between the true model and the metamodel, whilst the Max criterion
represents the maximum deviance.

In addition to the application of comparing different design methods, the RMSE
and Max values are often used as measures as to how good different metamodels
perform.

6.4 Alias Sum of Squares Criterion
The alias sum of squares criterion (ASSC) was originally proposed by Bursztyn
et al. [2]. They found that the criteria had an overall good agreement with the
IMSE criteria, but with the advantage of beeing computationally much cheaper.
The basic idea was to find a criteria that reflects both a designs efficiency in factor
screening and its flexibility to fit more complex models in those factors that are
active. We will here give a short presentation of how the criterion value is derived.
For further details, see the original article by Bursztyn et al. [2].

Suppose we start by using the ordinary least squares estimator to fit an approxi-
mative first-order regression model:

yi = β0 +
k∑
j=1

βjxij = f(xi)β.
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This will be a natural first step in factor screening. The assumption now is that
the first order model will not give a sufficiently good description of the output
data. We fit a new model with added higher order terms:

yi = β0 +
k∑
j=1

βjxij +
∑
j=k+1

βjfj(xi) = f ′(xi)β + f ′2(xi)β2.

The full model can be written in matrix form as:

y =

 f ′(x1)
...

f ′(xn)

β +

 f ′2(x1)
...

f ′2(xn)

β2 = Xβ +X2β2.

The expression of the least square estimator is thereby found as:

β̂ = (X ′X)−1X ′y = β + (X ′X)−1X ′X2β2 = β + Aβ2,

where A is called the alias matrix. From the alias matrix we can get an idea as
to how much the estimates of the first order model are biased by the extra terms
added.

By assuming that β2 is random with normal distribution N(0, σ2
β), the variance of

β̂ is given as:

Var(β̂) = Var(β + Aβ2) = A Var(β2) A
′ = σ2

β AA
′ ∝ AA′.

We can now apply a classical variance-based criteria, like A-optimality or D-
optimality, to measure the extent of how higher-order bias affects the simple ap-
proximation. (ref Bursztyn) suggests using the A-optimality criterion for Var(β̂).
This gives us the the A-optimality criterion for the alias matrix, denoted ASSC(a),
as:

ASSC(a) = tr(Var(β̂)) ∝ tr(AA′) =
∑
i,j

a2ij,

where aij represents the ij’th element of the alias matrix. As the criterion is used
to compare different design methods, we need not include the proportionality con-
stant σ2

β in the calculations.



Chapter 7

Metamodelling

An important objective in experiments is to estimate how the process is affected
by the experimental factors. An approximation model predicting how the output
variables depend on the input variables is called a metamodel. It provides a link
between the function parameters and the response over the entire experimental
domain.

In computer experiments, the true underlying function might be complex, and
it is desirable to fit a simpler surrogate model so as to better understand which
variables or factors have a significant effect on the response, and how the variables
are correlated. A variety of different metamodelling techniques exist for construct-
ing such models.

In this chapter, response surface models and kriging models will be shortly pre-
sented. Other popular approximation models for computer experiments include
multivariate adaptive regression splines [6] and radial basis function approxima-
tions [4], but these will not be discussed in this report.

7.1 Responce Surface Models
Response surface models have a wide variety of applications, and are popular in
both classical and computer experiments. A first order response surface model has
the form:

ŷ = β0 + β1x1 + β2x2 + ...+ βkxk, (7.1)

where ŷ represents the estimated response for the input parameters x1, x2, ..., xk.
The parameters β are a set of unknown parameters which needs to be estimated.

35
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A second order polynomial response surface model is given by:

ŷ = β0 +
k∑
i=1

βixi +
k∑
i=1

βiix
2
i +

∑
i

∑
j

βijxixj. (7.2)

The parameters β are found by least squares regression, and are given as:

β̂ = (X ′X)−1X ′y.

Here X is the design matrix of the experimental sample points, and y the vector
of responses at each sample point.

First order models are useful for screening experiments or if only a small num-
ber of samples can be afforded. If nonlinear behaviour is expected one should try
to fit a higher order response surface model, e.g. a second or third order model,
according to budget, need and number of experimental factors. Response surface
models can easily be constructed, but for functions with highly nonlinear or irreg-
ular behaviour, the models might be to simple. For more information on response
surface methodology, we refer to Montgomery and Myers [10].

7.2 Kriging Models
The kriging model is defined as:

y(x) =
k∑
j=1

βjfj(x) + z(x),

where fj(x) is a chosen basis over the design space, often taken as a constant term.
z(x) is assumed to be a stochastic process with mean zero and covariance function

Cov(z(xi), z(xj)) = σ2R(xi,xj),

where σ2 is the process variance and R is the correlation function. A typical choice
of R is the Gaussian correlation function:

R(θ;xi,xj) = exp{−
k∑
l=1

θj(xi,l − xj,l)2}.

The parameters β, σ2 and θ needs to be estimated. The estimation of these
parameters can be computationally very demanding. The kriging approximation
model ŷ is found by the best linear unbiased predictor (BLUP) of y(x). For further
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information on Kriging models and details on the BLUP and the estimation of β,
σ2 and θ, we refer to Fang et al.[5]

Although kriging models are computationally much more demanding than response
surface models, they are much better adapted to provide accurate predictions of
highly nonlinear behaviour.



Chapter 8

Comparison of Modern DoE
Methods

We have performed a comparison study of the LHD, the OA design and the MBR
design. We have considered different design criteria and evaluated the score of the
design methods. MC-sampling or random sampling designs, hereby referred to as
random designs, have also been included for comparison. We have first conducted
an initial experiment with only two factors and 8 or 16 samples. We have then
considered a higher-order experiment with five design factors and 16, 32, 64 and
128 design samples. All computations and implementation of designs have been
done using the statistical software R.

Our main focus in the comparison have been the RMSE, Max and alias criteria, as
these criteria reflect important characteristics of modern DoE methods. The max-
imin criterion have also been computed for the high-factor experiments. Whereas
the maximin criterion can be computed directly from a design, the RMSE, Max
and alias criteria demand that some assumptions are made.

The alias criterion measures the skewness of a design if a simple first- or second-
order response surface model is to be fitted, but the true model is that of one or
two degrees higher. The order of the true and estimated model needs to be decided
before the alias criterion value can be computed.

The RMSE criterion measures a designs ability to fit metamodels directly, in the
sense that it computes the average deviation between the true model and the es-
timated metamodel over a set of validation points. The Max-criterion returns the
maximal deviation found over the set of validation points. To obtain the RMSE
and Max criteria values we need a computer model that generates responses based
on the design samples. We need also decide what type of metamodel is to be

38
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fitted. In this report we have only considered response surface models, where the
polynomial order of the fitted models are adjusted according to the number of
factors and experimental samples. The underlying computer models are chosen as
polynomials with interactions of one or two degrees higher than the fitted model.

8.1 Two Factor Designs

8.1.1 Designs with n=8 Experimental Points

We have first considered experimental designs with two factors and 8 sample points.
For the MBR designs, we have considered the two factors on 8 and 4 levels respec-
tively. The design generators were chosen on the form given in example 4, giving
designs of resolution III. In total we found 12 different sets of design generators
that yielded acceptable MBR designs. For some choices of design generators, the
resulting MBR designs were only measured on 4 levels for the 8-level factor, and
these designs were therfore rejected.

For comparison we constructed 12 different LHD’s, OA designs and random de-
signs. Whereas the MBR design is restricted to 8 and 4 levels in the experimental
region, the other designs have no such restrictions, and consider the design space
to be continuous. All designs were scaled down to the design space [0, 1]2.

The results for the RMSE and Max criteria can be seen in table 8.1 and table
8.2 respectively. The criteria were computed using a set of 100 validation points
spread evenly over a grid in the design space. The exact representation of the
true underlying function and the metamodels used are given in section A.1 of the
appendix. The tables contains the minimum, maximum, median and mean value
of the criteria found for the 12 designs generated for each method. We have also
included the criteria values found for the optimal and non-optimal MBR designs
given in example 4.

For the RMSE criterion the MBR method gave better mean values than both
the random designs and the LHD’s, whilst the OA designs gave the lowest scores
for the mean value. The best random design actually obtained a lower RMSE
score than the best MBR design, but the worst random design gave a very high
score compared to all the other design methods. Also for the LHD the worst design
with respect to the RMSE criterion gave a substantially higher value than both the
OA designs and MBR designs, which had the lowest variance in the criterion score.

The same general trend can be seen for the Max criterion. The OA designs ob-
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tained the best mean criterion score. The minimum score was actually obtained
for a random design, but the random designs still gave the highest mean and max-
imum score. The MBR designs performed worse than the OA-design, but slightly
better than the LHD’s.

Compared to all the 12 MBR designs evaluated, the MBR design found as op-
timal by Tøndel et al.[11] obtained about average scores with respect to both
criteria, whilst the non-optimal MBR design gave the worst score for the RMSE
criterion, but an average score for the Max criterion.

Figure 8.1 shows plots of three experimental designs for each of the design meth-
ods. For the MBR designs at the top, we see that the space-filling properties vary
quite a lot for the different choices of design generators. The MBR design to the
left looks good, the MBR design in the middle leaves some regions unexplored
while the MBR design to the right shows clear linear trends. The LHD’s and OA
designs have quite good space filling properties, but some of the designs leave un-
explored areas. For the random designs, both the design in the middle and to the
left are clearly non space-filling, while the design to the right seems to cover the
design space well.

LHS OA Random MBRD MBRD(opt) MBRD(non-opt)
min 0.13070 0.11540 0.13587 0.14607
max 0.63739 0.23717 1.13069 0.27496

median 0.15760 0.17393 0.22638 0.17129
mean 0.20798 0.17067 0.29700 0.18563 0.17270 0.27496

Table 8.1: Two factor designs with n = 8 samples: Results for the RMSE criterion.

LHS OA Random MBRD MBRD(opt) MBRD(non-opt)
min 0.53970 0.53567 0.42657 0.46980
max 1.40151 1.02316 2.68916 0.99741

median 0.80243 0.64808 0.75250 0.77877
mean 0.81244 0.70061 0.95642 0.79002 0.92245 0.77877

Table 8.2: Two factor designs with n = 8 samples: Results for the Max criterion.
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8.1.2 Designs with n=16 Experimental Points

In the previous section the MBR designs were restricted to certain levels, which
gave it a disadvantage when compared to the other designs methods. We would
like to conduct a comparison where all the design methods have the same con-
straints with respect to available levels. We have therfore considered experimental
designs with two factors and 16 runs, where each of the factors can be assessed at
8 levels. The design generators for construction of the MBR design are given in
section A.2 in the appendix. A total of 45 sets of design generators which yielded
unique designs were found and used in the comparison.

For the LHD and OA algorithms, the designs were first constructed regularly,
but without randomization within bins. The designs were than collapsed from the
original 16 levels to only 8 levels. This might result in replicated experimental
points, which is of no use in computer experiments without random error. If a de-
sign had replicated points, it was therefore rejected and a new sample was drawn.
OA designs were constructed based on OA’s with both p = 2 and p = 4 levels. For
the random designs, each of the samples was randomly chosen from one of the 8
levels.

The results for the RMSE, Max and alias criteria are given in table 8.3, table
8.4 and table 8.5 respectively. 45 different designs for each design method was
generated. For both the RMSE and Max criteria the MBR designs gave lower
scores than all the other designs for the minimum, maximum, mean and median
values. The LHD’s and OA(p=2) designs gave very similar scores. As expected,
the OA(p=4) designs scored better than the OA(p=2) designs, and the random
designs gave the worst scores. The maximum and minimum scores for the MBR
design varied very little, which indicates that the choice of the design generators
was less important for this experiment, as all the designs performed almost equally
good.

For the alias criterion, all 45 MBR designs actually obtained the same criterion
value. On the average, the LHD’s, OA designs and MBR designs obtained very
similar scores. The random designs had both the lowest minimum and the highest
maximum score, but performed worse than the other designs with respect to the
mean criterion value.
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LHS OA(p=2) OA(p=4) Random MBRD
min 0.11002 0.11114 0.10862 0.11088 0.10655
max 0.17977 0.17766 0.13923 0.36790 0.11215

median 0.12912 0.13100 0.12060 0.13829 0.10783
mean 0.13750 0.13567 0.12112 0.15519 0.10910

Table 8.3: Two factor designs with n = 16 samples: Results for the RMSE crite-
rion.

LHS OA(p=2) OA(p=4) Random MBRD
min 0.35856 0.36877 0.47589 0.36504 0.32385
max 0.98439 0.93095 0.81323 1.10884 0.38932

median 0.62294 0.62242 0.60178 0.65074 0.37295
mean 0.63095 0.62857 0.59816 0.68151 0.36551

Table 8.4: Two factor designs with n = 16 samples: Results for the Max criterion.

8.2 Five Factor Designs
We have conducted two comparison studies of five factor designs. In the first
comparison, all DoE methods are restricted to 8 levels for each factor. These lev-
els might represent factor levels which are unevenly spaced. In the second study,
the factor levels are assumed to be continuous and assessible over the entire de-
sign space [0, 1]5. We will hereafter refer to the two studies as non-randomized
and randomized respectively. For both studies we have considered designs with
n = 16, 32, 64 and 128 experimental samples. For the randomized comparison
study, also the maximin LHD is included.

The different designs have been constructed in the following manner.

• Random design. Non-randomized: All samples points were drawn randomly
from the set {1, 2, ..., 8}, and scaled to [0, 1]5.
Randomized: According to the description in section 4.1.1.

• LHD. Randomized: According to the algorithm described in section 4.2.1.
Non-randomized: As above, but without randomization within bins. The
design levels were then merged such that the resulting design was measured
at exactly 8 levels.

• OA design. Randomized: According to the algorithm described in section
4.3.1. OA’s with p = 2 or p = 4 and the highest possible strength according
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LHS OA(p=2) OA(p=4) Random MBRD
min 2.36007 2.36323 2.45267 1.97414 2.61893
max 3.16226 3.03686 2.79613 3.68306 2.61893

median 2.60600 2.62571 2.61663 2.69055 2.61893
mean 2.65505 2.66068 2.61795 2.76187 2.61893

Table 8.5: Two factor designs with n = 16 samples: Results for the ASSC.

to the number of levels and samples was chosen as basis for the algorithm.
Non-randomized: As above, but without randomization within bins. The
design levels were merged such that the resulting design was measured at
exactly 8 levels.

• MBR design. Non-randomized: According to the algorithm described in
section 5.1.2, with 8 levels for each factor. The choice of design generators
for the different sample sizes are given in section A.2 of the appendix.
Randomized: For all n, we generated MBR-designs as described above with
8 levels for each factor, and used these as a basis for drawing permutations
according the algorithm described in section 5.3.1.

• Maximin LHS. Randomized: The design was created using the function
maximinLHS from the lhs-package in R. The design seeks to find a LHD which
is optimal with respect to the maximin distance criteria given in definition
3.

For each design method and each n = 16, 32, 64 and 128, we generated 100 designs
for comparison. For the LHD’s, OA designs and random designs, replicated sam-
ple points might occur for the non-randomized designs. If a design did not have n
unique samples, the design was rejected and a new design generated.

The OA’s used as basis for the OA algorithm were generated using the function
oa.design available in the DoE.base-package in R, and then checked for correctness.
We were not able to find OA’s of strength r = 3 for the OA-designs on p = 4 levels
with n = 64 and 128 samples, which should teoretically exist according to the
relationship n = λpr. Instead, OA’s of strength r = 2 with index λ = 4 and 8 for
n = 64 and 128 respectively were generated.

The criteria were computed under the following assumptions:

• RMSE/Max. True underlying function: a polynomial with squared terms
terms and interaction terms up to third order.
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Metamodel: Response surface model. For n = 16, a simple first order model
was fitted. For n = 32, 64 and 128 a second order model was fitted. The
exact representation of the true underlying function and the metamodels are
given in section A.1 of the appendix.
Validation points: 1000 points drawn randomly within the design space.

• Alias sum of squares criteria (ASSC). For n = 16 we used a first-order model
as the simple model and a full second order model as the extra terms. For
n = 32, 64 and 128 we used a second order model as the simple model and
extra terms of order three.

• Maximin criterion: Given directly from equation 6.1.

8.2.1 Non-randomized

In the non-randomized comparison study all designs are measured on exactly 8
levels for each factor.

In figure 8.2 and 8.3 the results for the different design methods and criteria have
been plotted against each other. Each point in the plot is the mean criterion value
of 100 designs for each design method and each number of samples n = 16, 32, 64
and 128. The notation OA(p = 2) and OA(p = 4) denotes OA designs based on
OA’s with 2 and 4 levels respectively. We start by looking at the plot for the
RMSE criterion at the top of figure 8.2. For n = 16 and 32, the general trend
is that OA(p = 4) performs the best, followed by OA(p = 2), LHD and at last
random designs. The MBR design scores somewhere between the OA(p = 2) and
the random design. Especially for n = 32, the MBR design performs only slightly
better than the random design. For n = 64 and 128 the OA(p = 4) gets a very
high score, and performs even worse than the random designs. The MBR design
gets the lowest RMSE scores for n = 64 and 128.

The Max criterion, plotted at the bottom of figure 8.2, shows the same trend
as the RMSE criterion. This is not surprising as the two criteria are closely re-
lated. However, for n = 16 all design methods perform almost equally good, except
for the random design. For n = 32, the MBR design gets about the same score as
the LHD. The result for the ASSC are plotted at the top of figure 8.3. The highest
criterion value for all sample sizes are found for the random design, followed by
the LHD and the OA(p = 2) design. The best scores were obtained for OA(p = 4).
The MBR design gets the same score as the LHD for n = 16, but performs the
second best after OA(p = 4) for n = 32, 64 and 128.
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The maximin distance criterion values are plotted at the bottom of figure 8.3.
The value of the criterion indicates the distance of the two closest points in the
design, so a high value should indicate that the design samples are evenly spread
out. Except for n = 16, the MBR design gets the clearly highest scores, followed
by the OA(p = 2) design, LHD and random design. The scores of OA(p = 4) were
somewhat variable. it scored good for n = 16, and then substantially worse for
increasing n. For n = 128, the criterion value were not computed.

For analysis of the variability of the different design methods, the minimum, max-
imum, mean and median value found from 100 designs were computed for each
criterion. The results for n = 16 sample points are presented in table 8.6, 8.7,
8.8 and 8.9 for the RMSE, Max, ASSC and maximin criteria respectively. For
n = 32, 64 and 128 the same general trend with respect to variability can be seen,
and the results are given in table A.1, A.2, A.3 and A.4 of the appendix.

LHS Random OA(p=2) OA(p=4) MBR
min 0.2653 0.2867 0.2685 0.2798 0.2726
max 0.4590 0.5257 0.3923 0.3625 0.4026

median 0.3246 0.3444 0.3054 0.3054 0.3132
mean 0.3323 0.3565 0.3117 0.3067 0.3181

Table 8.6: Non-randomized designs, n = 16 samples. Results for the RMSE
criterion.

LHS Random OA(p=2) OA(p=4) MBR
min 0.8672 0.8822 0.8873 0.9015 0.9267
max 1.8075 2.0369 1.7937 1.9743 1.6808

median 1.2248 1.2880 1.2003 1.1841 1.2265
mean 1.2541 1.3382 1.2228 1.2467 1.2386

Table 8.7: Non-randomized designs, n = 16 samples. Results for the Max criterion.

The random design generally gets the worst scores for the maximum and mean
value. However, the random designs sometimes perform very good, for example
as for seen in table 8.8, a random design gets the lowest ASSC value. This is not
unexpected. If several random designs are generated, we would expect some of
these to be good space-filling designs, but there is no certainty that a randomly
chosen random design will perform good.
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LHS Random OA(p=2) OA(p=4) MBR
min 5.1102 4.6419 4.9462 5.1826 4.8214
max 7.2599 9.6373 7.1564 6.3363 8.1297

median 6.1655 6.4556 5.9200 5.6375 6.0362
mean 6.1370 6.5596 5.9072 5.6585 6.1381

Table 8.8: Non-randomized designs, n = 16 samples. Results for the ASSC.

LHS Random OA(p=2) OA(p=4) MBR
min 0.1250 0.1250 0.2500 0.2500 0.2165
max 0.5000 0.4677 0.5303 0.5000 0.5303

median 0.3307 0.2795 0.3953 0.4146 0.3953
mean 0.3226 0.2765 0.3857 0.4016 0.3759

Table 8.9: Non-randomized designs, n = 16 samples. Results for the maximin
criterion.

The LHD generally gets low minimum values for all criteria, but also high maxi-
mum values compared to the MBR design and OA designs. The LHD gets slightly
higher mean values than all the other methods except for the random design.

The MBR design shows little variation of the design scores for n = 64 and 128,
and obtains the best minimum, maximum and mean score for most criteria. This
might imply that for the cases where the number of samples are relatively high,
the choice of which binary factors are confounded is less important, as all designs
gets a generally good score.

The exception for the MBR design is the designs with n = 32 experimental sam-
ples. With respect to both the RMSE and Max criteria, the MBR design scored a
little better or even worse than the random design. The set of design generators
chosen for these designs were probably a poor choice.

The OA(p = 4) design got the best overall scores for n = 16 and 32 samples. For
the designs with n = 64 and 128 we were not able to generate OA’s of strength
r = 3, and the designs based on the alternative OA’s generated in R performed
very unsatisfactory.
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8.2.2 Randomized

In the randomized comparison study, the design factor levels were assumed to be
measured continuously over the design space [0, 1]5.

Figure 8.4 and 8.5 show plots of the results for the different criteria and meth-
ods. The main trends are the same as found for the non-randomized designs.

For the RMSE and Max criteria in figure 8.4, the MBR design still gets poor
scores for n = 32 samples, but substantially better scores than all other methods
for n = 64 samples and also the best score for n = 128 samples. The maximin
LHD scores about as good as or better than the conventional LHD, except for the
case of n = 16, where it performs worse than all other design methods.

For the ASSC seen at top of figure 8.5, the maximin LHD scores very good. The
other design methods gets about the same scores as in the non-randomized setting.

Results for the maximin criterion are plotted at the bottom of figure 8.5. The
MBR design scores about as good as the maximin LHD. For n = 16 and 32, the
best criterion scores are obtained for the OA(p = 2) and OA(p = 4) designs re-
spectively.

The full summary tables for the design criteria for n = 16, 32, 64 and 128 design
samples can be found in table A.5, A.6, A.7 and A.8 of the appendix. All de-
sign methods show about the same variability in scores as for the non-randomized
designs. The maximin LHD has about the same variability as the conventional
LHD.
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Figure 8.1: Plots of different designs methods with k = 2 factors and n = 8
samples. Top: MBR design. Second from top: LHD. Second from the bottom:
OA design. Bottom: Random design.
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Figure 8.2: Results for the RMSE and Max criteria for five factor non-randomized
designs. Design methods: LHS: circles (◦), Random: squares (�), OA(p=2):
triangles (M), OA(p=4) diamonds: (�), MBR: pluss (+).
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Figure 8.3: Results for the Alias sum of squares and Maximin distance criteria for
five factor non-randomized designs. Design methods: LHS: circles (◦), Random:
squares (�), OA(p=2): triangles (M), OA(p=4) diamonds: (�), MBR: pluss (+).
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Figure 8.4: Results for the RMSE and Max criteria for five factor randomized
designs. Design methods: LHS: circles (◦), Random: squares (�), OA(p=2):
triangles (M), OA(p=4) diamonds: (�), MBR: pluss (+), Maximin LHS: cross(×).
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Figure 8.5: Results for the Alias sum of squares and Maximin distance criteria
for five factor randomized designs. Design methods: LHS: circles (◦), Random:
squares (�), OA(p=2): triangles (M), OA(p=4) diamonds: (�), MBR: pluss (+),
Maximin LHS: cross(×).



Chapter 9

Conclusion

We have performed a comparison study of the random design, LHD, OA design
and MBR design, where the main focus have been how the MBR design method
scored compared to the other designs. We have considered two-factor designs with
8 and 16 design samples, and five-factor designs with 16, 32, 64 and 128 design
samples.

The MBR design generally obtained good scores for all criteria. It scored sub-
stantially better than the random designs and LHD’s in most of the comparisons.
Compared to the OA designs, the MBR design scored similarly to the OA design
based on OA’s with 4 levels, and better than the 2 level OA design, however there
were variations with respect to the number of factors and samples.

For the two-factor experiment with 16 design samles, the MBR design scored espe-
cially good. It obtained better criterion values than all other design methods, and
showed very little variation with respect to how the design factors were confounded.

For the five-factor experiment, the MBR design scored the best for the n = 64
and 128 sample point designs. It obtained good mean, maximum and minimum
criterion values. For the n = 32 sample designs, however, the MBR design per-
formed poorly. We have chosen the set of design generators which would give us
the highest possible resolution in a conventional fractional factorial design. In the
case of the 32 sample MBR design this proved to be an unfortunate choice.

For a well chosen set of design generators, the MBR design seem to give good
scores independent of which binary factors are confounded with each other, es-
pecially for the designs with a relatively high number of samples. This is an
important property for an experimental design. For example, the LHD’s criterion
scores seems to vary quite a lot. Although the LHS algorithm may generate good
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space-filling designs, there is no absolute certainty that the designs will be balanced
in higher dimensions. For experiments with few factors, graphical inspection can
be applied to avoid designs with bad coverage or high co-linearity. If the number
of factors is high, this will quickly prove to be difficult. A design which ensures
overall good coverage will then be desirable, and the MBR design should be well
adapted to provide this.

Compared to each other, the random design, LHD and OA design performed much
as expected. Random designs generally obtained the worst average scores. The
LHD’s performed better than the random designs, but obtained higher mean and
maximum values than the OA designs. For the OA designs, the design based on
OA’s with 4 levels scored better than the OA’s with 2 levels, but only when we
were able to construct OA’s of the desirable strength. In experiments where high
order interactions are dominating, choosing an OA with fewer levels but higher
strength may be more important than an OA on many levels, as the strength de-
creases with an increasing number of levels.

Although the MBR design method generally performed good in our study, there
are some drawbacks to the design. First of all, the restrictions with respect to
the sample size of the design are much stronger than for the other methods. The
MBR design can only be constructed for sample sizes which are multiples of 2,
whereas for random sampling and LHS we are free in choosing whatever number
of samples desirable for conducting an experiment. The OA sampling algorithm
requires that the relationship n = λpr is fulfilled, and that an OA can exists and
can be found for the desired strength and number of levels. Compared to the other
design methods, especially random sampling and LHS, the MBR design is harder
to implement on a computer. It also requires that a set of design generators are
chosen, and a poor choice might strongly affect the properties of the design.

9.1 Further work
Further investigations as to the properties of the MBR design method should be
conducted before making any definite conclusions. In our comparison study, we
have only considered low-dimensional experiments, with designs of no more than
five factors. The underlying computer models we have considered were polynomials
with higher order terms. In computer experiment, the underlying model is usually
much more complicated and much harder to assess. If the underlying model has
greater local variations over the design space, or show abrupt non-linear behaviour,
the response surface models fitted as metamodels in this report will quickly prove
to simple. In such cases, more advanced metamodels like the kriging model might



CHAPTER 9. CONCLUSION 55

perform better, and this could have a large impact on the choice of the experimental
design method.
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Appendix A

A.1 Test Functions and Metamodels used in the
Comparison Study

For the two factor experiment, as the underlying computer model we chose as our
test function a polynomial with squared and cubic terms, and interaction terms
up to third order. The exact model is given as:

f(x1, x2) = x1 + x2 + x21 + x22 + x1x2 + 3x21x2 + 2x1x
2
2 + x32

For both n = 8 and 16, as metamodels we fitted full second order response surface
models given by:

ŷ = β0 + β1x1 + β2x2 + β11x
2
1 + β22x

2
2 + β12x1x2.

For the five factor experiment, as the underlying computer model we chose the
test function to be a polynomial with squared terms and interaction terms up to
third order. The exact model is given as:

f(x1, x2, x3, x4, x5) = x1 + 3x2 + 2x3 − 2x4 + x5 + x21 − 0.5x24 + 0.7x25 + 0.4x1x2

− 0.8x1x3 + 0.6x2x3 − 0.8x2x5 + 0.7x3x4 + 1.2x3x5 − 0.8x4x5

+ 0.3x21x3 + 0.7x21x4 − 0.4x21x5 + 0.2x22x3 + 0.4x22x4 + 0.2x22x5

− 0.7x23x4 + 0.5x23x5 + 0.1x24x5 − 0.4x1x
2
2 − 0.2x1x

2
3 + 0.3x1x

2
4

+ 0.6x1x
2
5 + 0.9x2x

2
3 + 0.3x2x

2
4 + 0.5x2x

2
5 + 0.2x3x

2
4

For n = 16, as metamodel we fitted a first order response surface model given by:

ŷ = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5x5. (A.1)
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For n = 32, 64 and 128, as metamodels we fitted response surface models with
main effect terms and second order interaction terms given by:

ŷ = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5x5

+ β12x1x2 + β13x1x3 + β14x1x4 + β15x1x5 + β23x2x3

+ β24x2x4 + β25x2x5 + β34x3x4 + β35x3x5 + β45x4x5

A.2 Design Generators for Construction of MBR
Designs

A.2.1 Two Factor Designs

Two factor MBR design with each factor on 8 levels. We denote the two factors by
A and B, and the binary factors for A by a1, a2 and a3 and for B by b1, b2 and b3.
To construct a MBR design with 16 levels, we need 26−Mconf = 16 ⇒ Mconf = 2
design generators. To obtain a resolution IV 26−2 fractional factorial design we
choose design generators of the form:

m1 = c1 c2 c3 m2 = c2 c3 c4.

From {a1, a2, a3, b1, b2, b3}, we choose two of the binary factors to be represented
by m1 and m2, and the remaining four binary factors to be represented by c1, c2, c3
and c4. There are several ways to assign the binary factors to the design generators,
and out of these we found a set of 45 combinations which yielded unique designs.

A.2.2 Five Factor Designs

Five factor designs with each factor on 8 levels. We denote the factors by {A,B,C,D,E},
and the respective binary factors by {a1, a2, a3, b1, b2, b3, c1, c2, c3, d1, d2, d3, e1, e2, e3}.
The set of design generators for all five factor MBR designs were chosen by the
statistical software Minitab, which suggest the design generators that gives the
highest possible resolution.

For all n = 16, 32, 64 and 128, we assignMconf of the binary factors {a1, a2, a3, b1, ..., e2, e3}
to represent {m1,m2, ...,mMconf

} and the remaining q = 15 −Mconf binary fac-
tors to represent {c1, c2, ..., cq}. As there are a number of different ways to assign
the binary factors to the design generators, for each generated MBR design we
randomly chose how the binary factors are assigned to {m1,m2, ...,mMconf

} and
{c1, c2, ..., cq}.
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For n = 16 we have Mconf = 11. To obtain a resolution III 215−11 fractional
factorial design we choose design generators of the form:

m1 = c1 c2 m7 = c1 c2 c3

m2 = c1 c3 m8 = c1 c2 c4

m3 = c1 c4 m9 = c1 c3 c4

m4 = c2 c3 m10 = c2 c3 c4

m5 = c2 c4 m11 = c1 c2 c3 c4

m6 = c3 c4

For n = 32 we have Mconf = 10. To obtain a resolution IV 215−10 fractional
factorial design we choose design generators of the form:

m1 = c1 c2 c3 m6 = c1 c4 c5

m2 = c1 c2 c4 m7 = c2 c3 c4

m3 = c1 c2 c5 m8 = c2 c3 c5

m4 = c1 c3 c4 m9 = c2 c4 c5

m5 = c1 c3 c5 m10 = c3 c4 c5

For n = 64 we have Mconf = 9. To obtain a resolution IV 215−9 fractional factorial
design we choose design generators of the form:

m1 = c1 c2 c4 m6 = c1 c3 c6

m2 = c1 c2 c5 m7 = c2 c4 c5 c6

m3 = c1 c2 c6 m8 = c3 c4 c5 c6

m4 = c1 c3 c4 m9 = c1 c2 c3 c4 c5 c6

m5 = c1 c3 c5

For n = 128 we haveMconf = 8. To obtain a resolution IV 215−8 fractional factorial
design we choose design generators of the form:

m1 = c2 c5 c6 m5 = c1 c3 c4 c5 c6

m2 = c5 c6 c7 m6 = c1 c2 c3 c5 c7

m3 = c1 c2 c6 c7 m7 = c1 c3 c4 c5 c7

m4 = c3 c4 c6 c7 m8 = c1 c2 c4 c5 c6 c7

A.3 Five Factor Design Result Tables
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LHS Random OA(p=2) OA(p=4) MBR
n=32
min 0.1555 0.1577 0.1620 0.1497 0.1518
max 0.3520 0.3575 0.2405 0.1960 0.5467

median 0.2026 0.2229 0.1892 0.1727 0.2147
mean 0.2088 0.2307 0.1923 0.1733 0.2277
n=64
min 0.1455 0.1487 0.1457 0.1871 0.1372
max 0.2007 0.2237 0.1865 0.2585 0.1919

median 0.1654 0.1695 0.1623 0.2157 0.1533
mean 0.1672 0.1715 0.1626 0.2167 0.1547
n=128

min 0.1411 0.1437 0.1430 0.1861 0.1357
max 0.1818 0.1891 0.1765 0.2275 0.1746

median 0.1529 0.1536 0.1503 0.2070 0.1460
mean 0.1536 0.1549 0.1515 0.2071 0.1475

Table A.1: Non-randomized designs, n = 32, 64 and 128 samples. Results for the
RMSE criterion.

LHS Random OA(p=2) OA(p=4) MBR
n=32
min 0.5888 0.5549 0.5611 0.5226 0.5350
max 1.6607 2.1793 1.5140 1.1237 2.4226

median 0.8745 1.0614 0.8228 0.6816 0.8644
mean 0.9387 1.0893 0.8405 0.6980 0.9495
n=64
min 0.4755 0.4721 0.4727 0.5658 0.4705
max 1.0777 1.4877 1.0107 1.2085 0.8712

median 0.6721 0.7189 0.6379 0.8206 0.5876
mean 0.7055 0.7371 0.6604 0.8283 0.5919
n=128

min 0.4369 0.4813 0.4533 0.6224 0.4305
max 0.8746 0.8768 0.7670 1.0807 0.7495

median 0.5912 0.6183 0.5873 0.7805 0.5377
mean 0.6102 0.6184 0.5896 0.7956 0.5400

Table A.2: Non-randomized designs, n = 32, 64 and 128 samples. Results for the
Max criterion.
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LHS Random OA(p=2) OA(p=4) MBR
n=32
min 4.8874 4.3746 5.1245 5.2296 5.6250
max 6.5548 7.3266 6.5201 6.0304 5.6250

median 5.7756 5.7919 5.7590 5.5926 5.6250
mean 5.7787 5.8553 5.7379 5.5727 5.6250
n=64
min 5.2651 4.5506 5.1819 5.4019 5.6250
max 6.1653 6.9486 6.1367 5.9272 5.6250

median 5.6967 5.6337 5.6864 5.6157 5.6250
mean 5.6974 5.7080 5.6831 5.6201 5.6250
n=128

min 5.2083 4.8699 5.2795 5.4227 5.6250
max 6.0266 6.5119 6.0882 5.7846 5.6250

median 5.6575 5.7068 5.6419 5.5877 5.6250
mean 5.6717 5.7462 5.6440 5.5852 5.6250

Table A.3: Non-randomized designs, n = 32, 64 and 128 samples. Results for the
ASSC.

LHS Random OA(p=2) OA(p=4) MBR
n=32
min 0.1250 0.1250 0.1250 0.1768 0.2165
max 0.3307 0.3062 0.3750 0.3750 0.4146

median 0.2333 0.1898 0.2795 0.2795 0.3307
mean 0.2337 0.1976 0.2706 0.2745 0.3141
n=64
min 0.1250 0.1250 0.1250 0.1250 0.1768
max 0.2500 0.2165 0.2500 0.1250 0.3307

median 0.1768 0.1768 0.1768 0.1250 0.2333
mean 0.1690 0.1559 0.1790 0.1250 0.2426
n=128

min 0.1250 0.1250 0.1250 NA 0.1768
max 0.1768 0.1768 0.1768 NA 0.2795

median 0.1250 0.1250 0.1250 NA 0.2165
mean 0.1374 0.1291 0.1369 NA 0.2157

Table A.4: Non-randomized designs, n = 32, 64 and 128 samples. Results for the
maximin criterion.
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LHS Random OA(p=2) OA(p=4) MBR Maximin LHS
n=16
min 0.2759 0.2725 0.2738 0.2640 0.2751 0.2918
max 0.5255 0.5578 0.3680 0.3599 0.4257 0.6098

median 0.3303 0.3463 0.3097 0.3132 0.3179 0.3572
mean 0.3361 0.3582 0.3126 0.3121 0.3228 0.3690
n=32
min 0.1573 0.1661 0.1586 0.1528 0.1521 0.1637
max 0.3847 0.3804 0.2563 0.2009 0.4845 0.3073

median 0.2063 0.2185 0.1880 0.1778 0.2219 0.2065
mean 0.2153 0.2288 0.1915 0.1772 0.2270 0.2110
n=64
min 0.1473 0.1437 0.1464 0.1810 0.1415 0.1427
max 0.1999 0.2206 0.1841 0.2673 0.1956 0.2037

median 0.1663 0.1700 0.1639 0.2114 0.1532 0.1653
mean 0.1673 0.1726 0.1647 0.2132 0.1556 0.1677
n=128

min 0.1409 0.1437 0.1404 0.1820 0.1385 0.1424
max 0.1725 0.1805 0.1640 0.2428 0.1672 0.1738

median 0.1525 0.1566 0.1524 0.2043 0.1469 0.1522
mean 0.1531 0.1574 0.1523 0.2049 0.1476 0.1538

Table A.5: Randomized designs, n = 16, 32, 64 and 128 samples. Results for the
RMSE criterion.
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LHS Random OA(p=2) OA(p=4) MBR Maximin LHS
n=16
min 0.9022 0.8940 0.8848 0.8832 0.8830 0.9759
max 2.1040 2.0730 1.8260 2.0584 1.9306 2.1782

median 1.2493 1.3381 1.2143 1.2445 1.2395 1.4164
mean 1.2785 1.3583 1.2337 1.2767 1.2809 1.4547
n=32
min 0.5567 0.5985 0.5513 0.5016 0.6183 0.5933
max 1.9822 2.4043 1.4213 1.0368 2.0298 1.7704

median 0.9604 0.9684 0.8189 0.7030 0.9699 0.9385
mean 1.0063 1.0353 0.8461 0.7164 0.9804 0.9841
n=64
min 0.4818 0.4212 0.4778 0.5743 0.4469 0.4757
max 0.9627 1.1798 1.0635 1.1994 0.8406 1.1279

median 0.6859 0.7182 0.6489 0.8119 0.5890 0.7030
mean 0.7037 0.7486 0.6798 0.8291 0.5997 0.7308
n=128

min 0.4374 0.4592 0.4308 0.5921 0.4354 0.4868
max 0.9575 0.9370 0.7969 1.2645 0.8811 1.0790

median 0.5894 0.6167 0.5826 0.7493 0.5380 0.5936
mean 0.5989 0.6319 0.5806 0.7743 0.5517 0.6160

Table A.6: Randomized designs, n = 16, 32, 64 and 128 samples. Results for the
Max criterion.
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LHS Random OA(p=2) OA(p=4) MBR Maximin LHS
n=16
min 5.2185 3.8871 4.9911 4.7047 4.6351 4.3442
max 7.1747 8.9799 6.8226 6.3879 7.8018 6.4902

median 6.1494 6.1491 5.9097 5.6011 5.9493 5.1338
mean 6.1541 6.1333 5.8872 5.6320 5.9757 5.2387
n=32
min 5.0612 4.0930 5.1593 5.1113 5.4112 4.5444
max 6.6224 7.3374 6.3603 6.0250 5.9243 5.9769

median 5.8145 5.9460 5.7271 5.5613 5.6449 5.0838
mean 5.7875 5.9062 5.7512 5.5835 5.6365 5.1481
n=64
min 5.2470 4.3831 5.2661 5.2729 5.4865 4.7002
max 6.2402 7.1139 6.1416 5.8917 5.7562 5.7424

median 5.6603 5.6731 5.6878 5.5639 5.6310 5.2302
mean 5.6903 5.6789 5.6710 5.5721 5.6320 5.2195
n=128

min 5.3311 5.0064 5.2234 5.3514 5.4748 5.1199
max 5.9955 6.4227 6.0628 5.8401 5.7117 5.7510

median 5.6529 5.6953 5.6688 5.5888 5.6223 5.3897
mean 5.6518 5.6949 5.6519 5.5756 5.6207 5.4106

Table A.7: Randomized designs, n = 16, 32, 64 and 128 samples. Results for the
ASSC.
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LHS Random OA(p=2) OA(p=4) MBR Maximin LHS
n=16
min 0.1090 0.0637 0.1752 0.2196 0.2121 0.1980
max 0.4859 0.4332 0.5193 0.4830 0.5034 0.4543

median 0.3218 0.2638 0.3995 0.4032 0.3568 0.3742
mean 0.3162 0.2671 0.3922 0.3884 0.3558 0.3657
n=32
min 0.1158 0.1055 0.1120 0.1451 0.1392 0.1830
max 0.3508 0.3269 0.3816 0.3811 0.3782 0.3306

median 0.2412 0.2027 0.2573 0.2855 0.2779 0.2791
mean 0.2363 0.2076 0.2558 0.2814 0.2725 0.2755
n=64
min 0.0600 0.0490 0.0971 0.0468 0.0840 0.0861
max 0.2685 0.2449 0.2542 0.1280 0.2926 0.2362

median 0.1752 0.1479 0.1801 0.0830 0.2172 0.1999
mean 0.1715 0.1460 0.1799 0.0834 0.2091 0.2014
n=128

min 0.0376 0.0639 0.0586 0.0229 0.0688 0.1236
max 0.1726 0.1769 0.1935 0.0903 0.2246 0.2024

median 0.1192 0.1154 0.1256 0.0583 0.1531 0.1477
mean 0.1176 0.1165 0.1256 0.0578 0.1563 0.1496

Table A.8: Randomized designs, n = 16, 32, 64 and 128 samples. Results for the
maximin criterion.
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