
Master of Science in Physics and Mathematics
February 2011
Trond Kvamsdal, MATH
Kjell Magne Mathisen, KT
Kjetil Johannessen, MATH

Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Mathematical Sciences

Isogeometric Analysis and Degenerated
Mappings

Siv Bente Raknes

Problem Description
In this thesis B-splines will be studied by programming an isogeometric finite element solver in
MATLAB, designed to solve linear elasticity problems. We will look at some geometries having a
degenerated mapping, and will further consider the effects different parameterizations of the
spline basis have on the derivatives.

Assignment given: 06. September 2010
Supervisor: Trond Kvamsdal, MATH

Preface
This Master’s thesis is my final work to obtain a Master of Science in Physics and Math-
ematics at the Norwegian University of Science and Technology. When educating for
a Master of Science in Physics and Mathematics, one may from the third year choose
between three main fields of study; technical physics, industrial mathematics and bio-
physics and medical technology. I have done my degree in the industrial mathematics
program with a specialization within the field of applied mathematics. While working on
this thesis I have been lucky to have three supervisors; Trond Kvamsdal and Kjetil Andre
Johannessen at the Department of Mathematical Sciences, and Kjell Magne Mathisen at
the Department of Structural Engineering.

I was first introduced to isogeometric analysis when I was working at SINTEF ICT
this summer. My task during the summer internship was to convert the geometrical
representation of a wind turbine blade from data points given in xy-coordinates to a full
3D model represented by NURBS. In my work I used a CAD program called Rhinoceros
[31], a drawing program that uses NURBS as basis functions. I also used a C++ library
called GoTools [12]. GoTools is developed by SINTEF and contains routines to handle
spline objects. During the summer internship I was inspired to learn the theory behind
splines and isogeometric analysis. As a consequence, I applied for a PhD fellowship in
the field of nonlinear isogeometric analysis of thin-walled structures, and got accepted.
The PhD will involve development, validation and implementation of prototype software
for nonlinear isogeometric finite element analysis of thin-walled structures, starting right
after I have turned in my Master’s thesis. To get a flying start on the PhD the topic of
my Master’s thesis was thus chosen to involve the basic theory on isogeometric analysis.
I am already familiar with the finite element method, and will in this thesis assume that
the reader is familiar with it as well.

At the beginning I spent much time reading existing literature on the topic and learn-
ing the basic theory on isogeometric analysis, B-splines and NURBS. Thereafter, most of
time was spent on implementing an isogeometric finite element solver for linear elasticity
problems using NURBS. I also spent much time on studying degenerated mappings and
implementing symbolic solvers in MATLAB. It was convenient for me to do all implemen-
tations in MATLAB, as it is the programming language I have the most experience with.
However, when exploiting symbolical implementations, I experienced that MATLAB has
its drawbacks.

Despite from late nights with writing and frustrating debugging, I have very much
enjoyed working on this thesis. I would like to express my gratitude to my supervisors
for inspiring me, introducing me to new challenges and for helping me carry out this
work. I would like to thank them for showing much interest in my work, and for their
help and support at the frequently advising sessions. I will also thank them for taking
me to the first conference on isogeometric analysis, IGA 2011, at the University of Texas,
Austin. At the conference I got up to date on ongoing research in this field, and got tons
of inspiration for further studies. I enjoyed interesting conversations with PhD students
and professors working within the same field, and got the opportunity to meet the persons
that have written textbooks on splines and isogeometric analysis.

I hope you will find my thesis interesting!

Siv Bente Raknes Trondheim, 30th of January 2011

Abstract

In this thesis we have given an introduction to isogeometric finite element anal-
ysis on linear elasticity problems in 2D using non uniform rational B-splines
(NURBS) as basis functions. We have studied the theory of B-splines and
have derived the equations needed to perform linear elasticity stress analysis.
An isogeometric finite element solver has been programmed in MATLAB. We
have also analyzed the effect degenerated mappings have on the derivatives
of the basis functions. We started by looking at a quadrilateral collapsing
to a triangle, considering different parameterizations and their impact on the
derivatives. We found that the derivatives were no longer in H1 and that our
basis was not a proper basis for finite element analysis. Our solution to this
problem is to form a new set of basis functions by summing the basis functions
at the singular points. Further we have applied this approach on a circular
surface and an infinite plate with a circular hole.

iii

Contents

1 Introduction 1

2 Isogeometric analysis using NURBS 7
2.1 B-splines . 7

2.1.1 Knot vectors . 7
2.1.2 Basis functions . 8
2.1.3 B-spline curves . 9
2.1.4 B-spline surfaces . 11
2.1.5 Derivatives of B-spline basis functions 12
2.1.6 Refinement; knot insertion . 13

2.2 NURBS . 14
2.2.1 Geometric perspective . 15
2.2.2 Basis functions . 15
2.2.3 Derivatives of basis functions . 16

2.3 Spaces and mappings . 19
2.3.1 The physical space . 19
2.3.2 The control mesh . 19
2.3.3 The parameter space . 20
2.3.4 The index space . 20
2.3.5 The parent element . 20

2.4 Isogeometric analysis vs finite element analysis 20

3 Theory of the finite element method 23
3.1 Some definitions . 23
3.2 The Hilbert space . 25
3.3 Formulation of the variational problem . 25
3.4 The finite element . 26

4 2D Linear elasticity 29
4.1 Strain . 29
4.2 Stress . 30
4.3 Traction . 31
4.4 Hooke’s law for plane stress . 32
4.5 Assumptions . 32
4.6 The equilibrium equation . 33
4.7 Strong form . 33
4.8 Weak form . 34

v

5 Isogeometric linear elasticity problems 35
5.1 The finite element discretization . 35
5.2 Solving the discrete problem . 37

6 Degenerated mappings 41
6.1 Triangle, degenerated quadrilateral . 41

6.1.1 Bilinear Lagrange basis functions 41
6.1.2 Bilinear B-spline basis functions . 43
6.1.3 Quadratic B-spline basis functions 52

6.2 Discussion . 60

7 Numerical results 63
7.1 Circular surface . 63
7.2 Infinite plate with circular hole . 69

8 Concluding remarks 79

A Implementations in MATLAB; Isogeometric finite element solver for
infinite plate with circular hole 85
A.1 Main method . 85
A.2 Pre-prosessor . 86

A.2.1 Geometry - Infinite plate with circular hole 86
A.2.2 Building the connectivity arrays . 87
A.2.3 Pre-prosessor . 88

A.3 Computations . 90
A.3.1 Calculating the basis functions and their derivatives 90
A.3.2 Shape function routine . 94
A.3.3 Calculate the Gaussian quadrature points and weights 96
A.3.4 Computations . 96

A.4 Post-processor . 102

Chapter 1

Introduction

Isogeometric Analysis (IA) is a computational approach that integrates Finite Element
Analysis (FEA) and Computer Aided Design (CAD). Isogeometric Analysis is developed
in the purpose of utilizing the same data set in both design and analysis. In todays CAD
and FEA packages one have to convert the data generated in design to a data set suitable
for FEA. Converting the data is not trivial, as the computational geometric approach is
different in CAD and FEA. IA makes it possible to utilize the NURBS geometry, which
is the most used basis in CAD packages, in FEA directly. Isogeometric analysis is thus a
great tool for optimizing models, as one easily can make refinements and perform testing
and analysis during design and development.

Computer Aided Engineering
Computer Aided Engineering (CAE) involves using computer software for instance to cre-
ate optimal designs or to perform analyses and simulations. In Computer Aided Engineer-
ing the finite element method is often applied as the analysis tool to solve partial differen-
tial equations by an piecewise polynomial approximation. Examples of fields within CAE
is stress analysis [25], thermal and fluid flow analysis [4], fluid-structure interactions [34],
computational fluid dynamics [30], kinematics [7], mechanical event simulation [9] and
optimization of products or processes [10]. CAE often consists of a pre-processing phase,
defining the model and environmental factors, an analysis solver and a post-processing
part where results are visualized. The Finite Element Method (FEM) started developing
in the 1950s [17], with all analyses made by hand. The method was therefore only applied
on small and easy systems.

The next decades as analysts got experience with the method on different problems
they started improving the algorithms and developing new basis function elements. Typ-
ically, Lagrange or Hermite polynomials are used as basis functions, and the problem do-
main is decomposed into non-overlapping elements of simple shapes like triangles, quadri-
laterals etc. To solve partial differential equations by the FEM one first multiplies by a
test function, also called a weighting function, before finding the variational formulation.
The trial and weighting functions are most often represented by the same basis functions
and used on the same elements. Next, the weak form is discretized in a finite dimensional
space. To improve the FEM one can thus either improve the variational method, the
spaces, the elements, or all those. For instance is the introduction of isoparametric ele-
ments an example of such an improvement. When computers were first used to perform

1

2 CHAPTER 1. INTRODUCTION

the analysis the computational efficiency was a very critical issue, making restriction on
the choice of elements and degrees of freedom. Computational efficiency is still an issue.
However, it turns out that higher order element uses more work per degrees of freedom
but less degrees of freedom to converge.

Computer Aided Design
Earlier, before computers were easily accessible, designers worked at drawing boards us-
ing pencils. As from 1966 [17] Computer Aided Design made it possible to use computer
technology in drawing and designing. Computers were now used to draw curves, surfaces
and figures in 2D, or even solid 3D-objects. CAD is today very important in industrial de-
sign, and is extensively used in shipbuilding, automobile industries, aerospace industries,
industrial and architectural design etc. [6]. CAD is also widely used in advertising and
to produce computer animation for special effects in movies [18]. The CAD community
evolved considerably in the 1970s, when it was possible to get computers with a graphical
user interface.

As from 1972 [17] designers started using linear combinations of B-splines to represent
curves. Non-uniform rational B-splines (NURBS) are a generalization of Bezier splines,
and have been used in CAD programs since 1975 [17]. NURBS made it easier to generate
and represent curves and surfaces with great flexibility and precision to handle both
analytic and free form shapes [6]. By using NURBS we can represent conic section like
circles, cylinders and spheres exactly. The development of NURBS began already in
the 1950s by engineers that needed a mathematically precise representation of free form
surfaces to model ship hulls, car bodies etc.. The precise representation was necessary
to be able to do an exact reproduction of the models. The most used basis functions to
represent geometries are NURBS. NURBS were in the beginning only used in proprietary
CAD packages of car companies, but are today used in all standard CAD packages [6].
Today there exists many efficient numerical stable algorithms to generate NURBS objects,
and refinement is easily done by knot insertion. Using NURBS lets us easily control the
continuity, as Cp−1-continuity is obtained using p-th order NURBS.

Todays needs
Nowadays we want to make more and more complex constructions, resulting in the need
of more efficient and accurate methods for design and analysis. It is a difficult task to
improve the efficiency, as there exists a gap between FEA and CAD. The design and
the analysis communities evolved independently of each other, as they had different goals
and needs. Analysts have been looking at accurate systems which are easy to interpret,
and at which is was possible to perform analysis computationally fast. Designers, on
the other hand, made systems that were easy to manipulate, visualize and construct.
As they looked at different geometric constructions, they developed to look at different
systems and naturally concentrated on improving algorithms and such according to the
respectively needs. With increasing computer power, a want to perform more complex
FEA on CAD geometries occurred.

With increased computer power, the running time is no longer the biggest bottleneck
for exploiting an efficient analysis. Instead, generating the geometrical mesh is. Before
one can perform analysis on the CAD model one need to make the geometry suitable

3

for analysis in a way that preserves the geometry in sufficiently detail. Converting the
geometric model is not trivial, and it takes a huge amount of man-time. In fact, for
complex models, converting the CAD geometry to an analysis-suitable mesh might take
over 80 percent of the total time spent on analysis [16]. To given an example on the
complexity of typical constructions; an average automobile consists of more than 3000
parts and a nuclear submarine consists of more than 1,000,000 parts [17].

More and more complex constructions are being produced. With the industry living
by the principle that time is money, there is also a growing need to decrease the time
spent on making new grids for analysis. Consequently, there has been a lot of research
on how to automate the process of converting from one system to the other. However,
none of the algorithms and techniques developed turned out very successful in the in-
dustry. Instead of being an all automated process, the mesh generators are mostly used
as an supplement. Analysts still both need and prefer to make and improve the grids
by hand. Mesh generators only approximates the design, loosing the information on the
exact geometry in the process. Making refinements are thus difficult. To perform mesh
refinement one need to know the exact geometry, making the analysts dependent on a
good communication with the designer. A seamless and automatic process was hence not
obtained. Without an accurate geometry and mesh adaptivity, convergence and high-
precision result are not possible to obtain. Shell buckling analysis is an good example on
a very sensitive case where small errors in the geometric model may lead to huge errors in
the analysis. Also, sliding contact between bodies will not be accurately modeled when
the geometric description is not precise [16].

The development of isogeometric analysis
Researchers got a feeling that the problem needed to be solved differently. In 2003,
Thomas Hughes at the University of Texas, Austin started working on a different approach
aiming to fill the gap between FEA and CAD. Hughes believed that struggling with
conversion, refinement and automatic mesh generators to connect the two systems was
not the right way to approach the problem; rather he believed that the real issue lied in the
fact that two different systems are being used. Hughes claims that using the same system
in both design and analysis would be more convenient as well as giving more accurate
results. Together with his PhD students, J. Cottrell and Y. Bazilevs, they continued the
research on how to use the same basis functions in design and finite element analysis,
an approach they called isogeometric analysis. As engineering design is dominated by
NURBS, and NURBS are ofter more suited to represent geometries compared to Lagrange
or Hermite polynomials, they found it better to change the bases used in analysis by the
bases used in design. In 2005 they released the first paper on isogeometric analysis [16],
presenting a seamless interaction between design and analysis.

CAD and FEA grew up and developed independently, but could with the concept
of isogeometric analysis start developing towards the same goals. Hughes, Cottrell and
Bazilevs have put a lot of work in initiating conversations between designers and analysts;
to make them agree upon geometrical description and help them gaining knowledge of
both sides. They encourage computational analysts to learn about isogeometric analysis,
and to start exploiting this seamless interaction between design and analysis. To make
the isogeometric approach successful and to break down the barriers between engineering
design and analysis, reconstruction of the entire process is necessary, and changes must

4 CHAPTER 1. INTRODUCTION

be done by both sides. The analysts need to start working with different geometries and
basis functions, and designers need to create better models that are suited for analysis.

By utilizing NURBS as basis functions one no longer have to make the finite element
meshes explicitly, one can instead use the meshes made to represent the geometry in
CAD programs. When the same geometric model is used in both design and analysis,
analysis will be performed on a precise geometric model, resulting in faster and more
accurate results. Hence, a much greater precision is obtained. Examples of fields where
isogeometric analysis is suitable are [16] structural mechanics, fluid dynamics, acoustics,
heat transfer and electromagnetics [1]. Optimization of CAD geometries has before the
concept of isogeometric analysis been difficult and non existing in most industries, since
the meshes haven’t been equal and the mapping between CAD geometries and FE meshes
has not been integrated in commercial FE solvers.

Through the introduction of isogeometric analysis, a great computational tools for
optimizing designs will be available. Lets say we want to optimize the design of a ship.
Building and testing the properties of the ship is extremely expensive and time consuming,
we for sure want do much pre-testing on the computer. If we then need to make changes
in the design and perform another FE analysis, a lot of time will be spent on making
the new FE mesh. It is very time consuming to make a new FE meshes every time one
want to check the effect of a small change in the design. Also, the FE analysis gives only
an approximation of the design. With a precise isogeometric analysis tool in hand this
process would be much more efficient. Another benefit of exploiting isogeometric analysis
is that making refinements without changing the geometry is easily done by for instance
inserting additional knots.

The concept of isogeometric analysis has proven to be successful in both the inter-
est of designers as well as of analysts. Not needing to generate the geometrical mesh
to perform analysis makes the process much more efficient, saving a lot of man-hours.
NURBS-based isogeometric analysis has already been applied to for instance fluids [41],
structures [22], fluid-structure interaction [42], phase-field modeling [13], electromagnet-
ics, biomedical modeling [45], shape optimization [3, 38], modeling of structural vibrations
[20] and structural dynamics and wave propagation [19].

This thesis
This thesis serves to be an introduction to isogeometric finite element analysis on lin-
ear elasticity problems. In addition to just learning the basics, we have attempted to
solve problems caused by degenerated mappings. Example of a degenerated mapping is
a quadrilateral where one line collapse to a point, forming a triangle. It could also be
a hexahedron collapsing into a pyramid. If we have degenerated mappings, or singular
parameterizations, it can happen that some of the resulting test functions are not well
defined at the singular points and are not integrable. If so, the stiffness matrix integrals
will not exist either. Singularities in the parameterization can be caused by intrinsic
properties of the geometry of the object or by distortions of regular parameterizations,
possibly due to mesh adaption in shape optimization [36]. If that is the case one can avoid
the singularities via some constraints [36]. In many cases it is difficult or even impossible
to avoid singularly parametrized objects, for instance when working with single patch
circular domains [36]. E. Cohen et. al. emphasizes in the paper Analysis-aware modeling:
Understanding quality considerations in modeling for isogeometric analysis [8] the impor-

5

tance of creating analysis suitable models. The main idea of analysis-aware modeling is
that model properties and parameters must be selected to facilitate isogeometric analysis
[8]. To obtain that, continual interaction and dialouge between designers and analysts is
necessary. The quality of models are critical for the quality of the analysis. For instance,
mesh distortion is a huge problem in finite element analysis, as it may lead to invalid
computational analysis [33]. In this thesis we will look at degenerated mappings that
cause the derivatives to be infinite, and for that reason creates a non-physical singularity
at the degeneracy. Thomas Hughes stated this problem in his book on the finite element
method from 1987 [15]. His approach for solving the problem was to create a new set of
basis functions by adding the basis functions at the coalescing nodes. We want to bring
this issue up in an isogeometric setting.

In Chapter 2 we start by studying B-splines and NURBS, before looking at isogeomet-
ric analysis in comparison to classical finite element analysis. Chapter 3 contains some
theory of the finite element method that we need when studying degenerated mappings in
Chapter 6. As we assume the reader to be familiar with classical finite element analysis,
we have not given all details and proves. In chapter 4 we will give an introduction to
2D linear elasticity, defining terms like strain and stress, and deriving the equilibrium
equation along with the strong and weak forms. In Chapter 5 we have considered the
finite element discretization of the weak form, and have given details on how to solve the
discrete problem from a computational point of view. As already mentioned, in Chapter
6 we have been looking at degenerated mappings, considering different parameterizations
of a quadrilateral collapsing to a triangle. In Chapter 7 we have tested our theory on
how to deal with degenerated mappings on actual problems. We have been looking at a
circular surface and the well known problem; an infinite plate with a circular hole. We
have done all programming in MATLAB. Implementations can be found in the appendix.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Isogeometric analysis using NURBS

Isoparametric analysis involves using the same basis functions to represent design as well
as to perform analysis, whereas isogeometric analysis also implies letting the geometry
be the deciding factor on exactly what kind of basis functions to use. The isogeometric
concept is that the basis functions that exactly represents the geometry is the same that
spans the solution space in analysis. In CAD, Non Uniform Rational B-Splines (NURBS)
are frequently used to represent geometries, and in CAE, the classical finite element
method is commonly used as the analysis tool. By the isogeometric concept our goal is
to fill the gap between design and analysis by introducing a seamless transfer of models.
The main idea in isogeometric analysis is to use NURBS as basis functions in both design
and in the finite element method.

NURBS are, as the name indicate, built from B-splines. To get a better understanding
of NURBS we will therefore first take a look at B-splines. Toward the end of this chapter
we will to some extent compare isogeometric analysis to classical finite element analysis.

Be aware that we in this thesis refer to the degree and the order of a polynomial as
the same quantity, that is, a quadratic polynomial is of both order and degree two.

2.1 B-splines
B-splines are built from piecewise polynomial functions, i.e., from a set of polynomial
functions that are defined on non-overlapping connected intervals. At the interval bound-
aries we require the polynomial functions to be continuous. B-splines are consequently
smooth, differentiable and continuous functions within each subinterval. Across connected
subintervals on the other hand, they are continuous but not necessarily differentiable. B-
splines are used as basis functions in most CAD programs because they are very well
suited for representing geometries consisting of curves or surfaces.

2.1.1 Knot vectors
A B-spline consists of n piecewise polynomial basis functions of degree p. To define the
piecewise polynomial basis functions we make use of knot vectors. A knot vector, Ξ, is
defined by a set of coordinates, or knots, that gives information on where the subintervals
are connected. The knots are located at the interval boundaries. A knot vector is a one
dimensional non-decreasing set of real valued coordinates Ξ = {ξ1, ξ2, ..., ξn+p+1}, where

7

8 2.1 B-splines

ξi ∈ R is the ith knot, i is the knot index, i = 1, 2, ..., n+ p+ 1, p is the polynomial order
and n is the number of basis function [17, 27].

The knot-spans define element domains where the basis functions are smooth, that
is, where they are C∞. Across knots the basis functions are Cp−m, where p is the degree
of the polynomial and m is the multiplicity of the knot. Knots may be located at the
same coordinates; we then say that we have repeated knot values. Repeated knot values
cause a reduction of the continuity of the basis functions across that knot, a property
that is frequently exploited in CAD. If the first and last knot values are repeated p + 1
times, the knot vector is said to be open. An open knot vector forces the basis functions
to interpolate the knots at the beginning and the end of the interval the knot vector
represents. In general, the basis functions are not interpolating the interior knots.

2.1.2 Basis functions
The B-spline basis functions are defined recursively [16] by

Ni,p(ξ) = ξ − ξi
ξi+p − ξi

Ni,p−1(ξ) + ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ)

for p = 1, 2, 3, For p = 0 we have that

Ni,0(ξ) =
{

1 if ξi ≤ ξ < ξi+1
0 otherwise

If the denominators in the factor we multiply the basis functions by are zero we define
the factor to be zero. That is,

ξ − ξi
ξi+p − ξi

≡ 0 if ξi+p − ξi = 0,

ξi+p+1 − ξ
ξi+p+1 − ξi+1

≡ 0 if ξi+p+1 − ξi+1 = 0.

This formula is also known as the Cox-de Boor recursion formula [16]. Dynamic program-
ming is recommended to improve the running time of this recursively formula. Else wise
the same values will be calculated several times.

We have n basis functions, with Ni,p being the ith basis function of order p, i ∈ [1, n].
The number of basis functions is determined by the order and the number of knots; we
have n + p + 1 knots resulting in n basis functions. Increasing the number of knots will
consequently also increase the number of basis function. It is worth noticing that the
basis functions are non-negative and that they form a partition of unity, i.e.

Ni,p(ξ) ≥ 0 ∀ξ,
n∑
i=1

Ni,p(ξ) = 1.

Two other properties of the basis functions are that they have local support and local
knots. The properties are stated in Lemma 2.6 in [27] and involve the following; Assume
that we have the knot vector Ξ = {ξ1, ξ2, ..., ξn+p+1}. Then Np

i (ξ) = 0 if ξ is outside the
interval [ξi, ξi+p+1). Thus, the ith B-spline Np

i (ξ) depends only on the knots [ξi, ξi+p+1).

2.1.3 B-spline curves 9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Basis functions

xi

et
a

Figure 2.1: Basis functions for knot vector Ξ = {0, 0, 0, 0.5, 1, 1, 1} of degree 2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Basis functions

xi

et
a

Figure 2.2: Basis functions for knot vector Ξ = {0, 0, 0, 0.5, 0.5, 1, 1, 1} of degree 2.

An example
Consider the knot vector Ξ = {0, 0, 0, 0.5, 1, 1, 1} of degree p = 2. This is an open knot
vector, forcing the basis functions to interpolate the knots at the boundary of the domain.
With seven knots and polynomials of degree two we will have n = 7 − 2 − 1 = 4 basis
functions available to construct the B-spline curve. Since we have no repeated knots
the basis functions will be Cp−m = C1-continuous across the knot in the interior of the
domain. The basis functions are shown in Figure 2.1.

We may increase the multiplicity of knots by inserting another knot at 0.5, resulting
in the knot vector Ξ = {0, 0, 0, 0.5, 0.5, 1, 1, 1}, still of degree p = 2. The n = 8−2−1 = 5
basis functions will in this case be Cp−m = C0-continuous across knots in the interior of
the domain and will interpolate the knots at the beginning and end of the interval. The
basis functions corresponding to this knot vector are shown in Figure 2.2.

2.1.3 B-spline curves
B-spline curves in Rd are made by a linear combination of B-spline basis function. The co-
efficients we multiply the basis functions by prior to adding them are called control points.
The resulting B-spline curve does not need to interpolate the control points. However,
we may force it to do so by utilizing a knot vector with sufficient multiplicity to insure
that the basis functions, and hence the B-spline curve, will be Cp−m = C0-continuous

10 2.1 B-splines

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
B−spline curve

x

y

Figure 2.3: B-spline curve in R1 for control points B = [0,−1, 1, 0] and knot vector
Ξ = {0, 0, 0, 0.5, 1, 1, 1} of degree 2.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
B−spline curve

x

y

Figure 2.4: B-spline curve for knot vector Ξ = {0, 0, 0, 0.5, 1, 1, 1} of degree 2 and the
control points Bx = [0, 3, 2, 1] and By = [0, 5, 0, 5].

across that particular knot. For instance, the open knot vector Ξ = {0, 0, 0, 0.5, 1, 1, 1}
of degree p = 2 will force the B-spline curve to interpolate the first and the last control
point. For the knot vector Ξ = {0, 0, 0, 0.5, 0.5, 1, 1, 1} of degree p = 2 the B-spline curve
will in addition interpolate the control point belonging to ξ = 0.5.

Say we have n basis functions Ni,p(ξ), i = 1, 2, . . . , n, with control points Bi ∈ Rd.
The corresponding B-spline curve is then given by

C(ξ) =
n∑
i=1

Ni,p(ξ)Bi.

This expression can be interpreted as a mapping taking us from a parameter space spanned
by the knot vector to a physical space defined by the control points. More on this is to
come in section 2.3.

For knot vector Ξ = {0, 0, 0, 0.5, 1, 1, 1} of degree 2 and control points B = [0,−1, 1, 0]
in R1 we get the curve shown in Figure 2.3. The same knot vector with control points
Bx = [0, 3, 2, 1] and By = [0, 5, 0, 5] in R2 gives the curve shown in Figure 2.4. The control
points are shown as red squares. We see that the curve only interpolates the first and last
control points.

2.1.4 B-spline surfaces 11

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
B−spline curve

x

y

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
B−spline curve

x

y

Figure 2.5: B-spline curve for knot vector Ξ = {0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1} of degree 2
and control points located at red squares.

Because the basis functions have local support only a small part of the curve will be
changed if we change a control point. Figure 2.5 illustrates this. Here we have changed
the x-coordinate of first control point from 2 to 0. As you can see, only the part of the
curve that is closest to the moved control point has changed. This is one of the reasons
why B-splines are used in CAD programs; due to the local support of basis functions one
can easily manipulate curves by dragging the control points.

2.1.4 B-spline surfaces
With the basic concept of B-spline curves fresh in mind we are now ready to take a look at
B-spline surfaces. Assume as before that we have the knot vector Ξ = {ξ1, ξ2, . . . , ξn+p+1},
where ξi ∈ R is the ith knot, i is the knot index, i = 1, 2, . . . , n+p+1, p is the polynomial
order and n is the number of basis function. In order to create a surface we need to
introduce a second knot vector; H = {η1, η2, . . . , ηm+q+1}, where ηj ∈ R is the jth knot, j
is the knot index, j = 1, 2, . . . ,m+ q + 1, m is the polynomial order and q is the number
of basis function. The basis functions for the surface is formed by a tensor product of the
basis functions Ni,p(ξ), i = 1, 2, . . . , n, and Mj,q(η), j = 1, 2, . . . ,m. Together with the
control net Bij ∈ Rd the B-spline surface is given by

S(ξ, η) =
n∑
i=1

m∑
j=1

Ni,p(ξ)Mj,q(η)Bij. (2.1)

Notice that also the tensor product will form a partition of unity;
∀(ξ, η) ∈ [ξ1, ξn+p+1]× [η1, ηm+q+1]

n∑
i=1

m∑
j=1

Ni,p(ξ)Mj,q(η) =
(

n∑
i=1

Ni,p(ξ)
) m∑

j=1
Mj,q(η)

 = 1.

An example

Consider the knot vector H = {0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1} of degree p = 2 with corre-
sponding basis functions as shown in Figure 2.6. Together with the basis functions made
by the knot vector Ξ = {0, 0, 0, 0.5, 1, 1, 1} of degree q = 2, shown in Figure 2.1 and the

12 2.1 B-splines

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Basis functions

xi

et
a

Figure 2.6: Basis functions for knot vector H = {0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1} of degree 2.

Table 2.1: Control net Bi,j

(i,j) 1 2 3 4 5 6
1 (3,0) (3.5,1) (3,2) (3,3) (3.5,4) (3,5)
2 (2,1) (2.5,2) (2,3) (2,4) (2.5,5) (2,6)
3 (1,0) (1.5,1) (1,2) (0.5,3) (1,4) (1,5)
4 (0,1) (0.5,2) (0,3) (0.4,4) (0,5) (0.2,6)

control net given in Table 2.1 we can create a B-spline surface by the formula (2.1). The
corresponding surface is shown in Figure 2.7.

2.1.5 Derivatives of B-spline basis functions

To do analysis on B-splines we often need to know the expression for the derivatives. For
a polynomial of order p with a knot vector Ξ the derivative of the ith basis function is
given by [16]

d

dξ
Ni,p(ξ) = p

ξi+p − ξi
Ni,p−1(ξ)− p

ξi+p+1 − ξi+1
Ni+1,p−1(ξ). (2.2)

By differentiating (2.2) k times we obtain

dk

dkξ
Ni,p(ξ) = p

ξi+p − ξi

(
dk−1

dk−1ξ
Ni,p−1(ξ)

)
− p

ξi+p+1 − ξi+1

(
dk−1

dk−1ξ
Ni+1,p−1(ξ)

)
(2.3)

Using (2.2) we can express the right side of (2.3) by lower order basis functions. A
generalized expression for higher derivatives of B-splines is thus given by [16]

dk

dkξ
Ni,p(ξ) = p!

(p− k)!

k∑
j=0

αk,jNi+j,p−k(ξ),

2.1.6 Refinement; knot insertion 13

0 0.5 1 1.5 2 2.5 3 3.5
0

1

2

3

4

5

6
B−spline surface

x

y

Figure 2.7: B-spline surface for the control net Bi,j given in Table 2.1 and knot vectors
Ξ = {0, 0, 0, 0.5, 1, 1, 1} and H = {0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1} of degree 2.

where

α0,0 = 1,

αk,0 = αk−1,0

ξi+p−k+1 − ξi
,

αk,j = αk−1,j − αk−1,j−1

ξi+p+j−k+1 − ξi+j
j = 1, ..., k − 1,

αk,k = −αk−1,k−1

ξi+p+1 − ξi+k
.

2.1.6 Refinement; knot insertion

There are several ways to refine a B-spline. We could either insert additional knots, in-
crease the order of the basis or do both. Inserting additional knots are called h-refinement
and increasing the order is referred to as order elevation or p-refinement. Doing both is
known as k-refinement. In this thesis we will only consider knot insertion. More about
all three types of refinement can be found in [17].

Inserting additional knots will enrich the basis without changing the curve geometri-
cally or parametrically. Assume that we begin with the knot vector Ξ = {ξ1, ξ2, . . . , ξn+p+1}
with n corresponding basis function and the control points B = {B1,B2, . . . ,Bn}. By
inserting more knots we can extended Ξ to a knot vector Ξ̃ = {ξ̃1 = ξ1, ξ̃2, . . . , ξ̃n+m+p+1 =
ξn+p+1}, Ξ ⊂ Ξ̃. Our set of basis functions will now be extended to consist of n+m basis
functions. We also need to extend B to contain n+m control points. We create the new
control points B̃ = {B̃1, B̃2, . . . , B̃n+m} by a linear combination of the previous control
points, B. The new control points B̃ are given by [17, 27]

B̃ = TpB

14 2.2 NURBS

0 0.5 1 1.5 2 2.5 3 3.5 4
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6
B−spline curve

x

y

0 0.5 1 1.5 2 2.5 3 3.5 4
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6
B−spline curve

x

y

Figure 2.8: Knot refinement from Ξ = {0, 0, 0, 0.5, 1, 1, 1} to Ξ̃ =
{0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1}. Notice that the curve remains unchanged.

where

T q+1
i,j = ξ̃i+q − ξj

ξj+q − ξj
T qi,j + ξj+q+1 − ξ̃i+q

ξj+q+1 − ξj+1
T qi,j+1

for q = 0, 1, 2, . . . , p− 1 and

T 0
i,j =

{
1 ξ̃i ∈ [ξj, ξj+1)
0 otherwise .

Knot insertion can also be used to create repeated knots. The continuity of the basis
will then be reduced while the curve will be the same. In Figure 2.8 we have exploited a
knot insertion, increasing the knot vector Ξ = {0, 0, 0, 0.5, 1, 1, 1} of order 2 to an extended
knot vector Ξ̃ = {0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1}. Observe that the B-spline curve is similar
before and after additional knots were inserted.

2.2 NURBS
NURBS, non uniform rational B-splines, are piecewise rational polynomials built from B-
splines. The term non uniform refers to using non uniform knot vectors. The term rational
refers to the fact that NURBS are a combination of B-splines basis functions multiplied
by a weighting factor, divided by the sum of the B-spline basis functions multiplied by
the same weights. If all the weights are equal to one, NURBS will be equal to B-splines.

NURBS are very adequate to represent geometrical entities, especially conic sections
like circles and ellipses. Using second order Lagrange polynomials on quadrilateral ele-
ments in standard FEA we would need quite many nodes to give a good approximation of
a circle. When using NURBS on the other hand, we are able to represent a circle exactly
by only nine points. NURBS are because of that ability, among others, frequently used in
CAD to represent geometry. Using NURBS to represent both the physical domain used
in analysis and the solution will give more accurate results than first reconstructing and
simplifying the geometry to create an FE mesh and then approximating the solution us-
ing Lagrange polynomials. NURBS provides better accuracy and robustness, generalizing
and improving traditional piecewise polynomial basis functions [16]. Using NURBS also

2.2.1 Geometric perspective 15

provides great flexibility. For instance, by changing the order, the location or the multi-
plicity of the knot vectors, we are able to change the basis functions to possess desired
properties. Making changes in the control net will also contribute to change the mapping
and consequently the resulting curve or surface.

2.2.1 Geometric perspective
NURBS are regular B-spline curves that have been projected to a space of one dimension
smaller. That is, NURBS in Rd are made from a projecting transformation of B-spline
curves in Rd+1 [17, 24, 26]. Conic sections like circles or ellipses are thus made by project-
ing piecewise quadratic B-spline curves from the (x, y, z)-plane to the (x, y, z = 1)-plane.

Assume that we have the B-spline curve Cw(ξ) with control points Bw
i ∈ Rd+1. The

projected NURBS control points Bi are then given from the B-spline control points by

(Bi)j = (Bw
i)j
wi

j = 1, . . . , d

wi = (Bi)d+1

Here (Bi)j is the jth component of the vector Bi and wi is the ith weight. In R3, the
weights corresponds to the z-coordinates of the B-spline curve. Dividing the NURBS
control points by the weight are thus the same as applying a projective transformation
on them. The same transformations need to be exploited on every point on the curve.
With B-spline curves in R3 that implies dividing all points by its height, see Figure 2.9.
To exploit the same transformation on all points we divide all points by the weighting
function

W (ξ) =
n∑
i=1

Ni,p(ξ)wi,

where Ni,p(ξ) are the B-spline basis functions. The NURBS curve, C(ξ), can now be
defined as

(C(ξ))j = (Cw(ξ))j
W (ξ) j = 1, . . . , d

where C(ξ)w = ∑n
i=1Ni,p(ξ)Bw

i = ∑n
i=1Ni,p(ξ)Biwi.

2.2.2 Basis functions
With the geometric point of view established we can define the NURBS basis functions
as

Rp
i (ξ) = Ni,p(ξ)wi

W (ξ) (2.4)

where
W (ξ) =

n∑
i=1

Ni,p(ξ)wi

as before. NURBS curves are then given by

C(ξ) =
n∑
i=1

Rp
i (ξ)Bi.

16 2.2 NURBS

z

y
x

z=1

w
i

Bi
w

Bi

z

y

x

z=1

Cw ξ 

C ξ 

Figure 2.9: Projective transformation from a quadratic B-spline in R3 to a circle in R2.
The figure is reconstructed from Figure 2.28 in [17].

This is the mapping from the parameter space to the physical space, as we will discuss in
Chapter 2.3.

In 2D the basis function are given as a tensor product by

Rp,q
i,j (ξ, η) = Ni,p(ξ)Mj,q(η)wi,j

W (ξ, η) , (2.5)

with
W (ξ, η) =

n∑
i=1

m∑
j=1

Ni,p(ξ)Mj,q(ξ)wi,j.

Surfaces are in the same way given by

S(ξ, η) =
n∑
i=1

m∑
j=1

Rp,q
i,j (ξ, η)Bi,j.

Extension to three dimensions are done analogously. Notice that if all weights are equal
to one, NURBS and B-spline are the same.

2.2.3 Derivatives of basis functions
Using NURBS in analysis we often need to know the derivatives of the basis functions.
We get the first derivative by differentiating (2.4) with respect to ξ using the quotient
rule. We thus obtain

d

dξ
Rp
i (ξ) = wi

Ni,p(ξ)′W (ξ)−Ni,p(ξ)W (ξ)′
(W (ξ))2 ,

where
W (ξ)′ =

n∑
i=1

Ni,p(ξ)′wi.

Generalizing to higher order terms we get that [17]

dk

dkξ
Rp
i (ξ) =

wi
dk

dkξ
Ni,p(ξ)−

∑k
j=1

k!
j!(k−j)!W

(j)(ξ) dk−1

dk−1ξ
Rp
i (ξ)

W (ξ) .

2.2.3 Derivatives of basis functions 17

In 2D, differentiating (2.5) with respect to ξ yields

d

dξ
Rp,q
i,j (ξ, η) = wi,j

(
d
dξ
Ni,p(ξ)

)
Mj,q(η)W (ξ, η)−Ni,p(ξ)Mj,q(η)

(
d
dξ
W (ξ, η)

)
(W (ξ, η))2 .

With respect to η we get

d

dη
Rp,q
i,j (ξ, η) = wi,j

Ni,p(ξ)
(
d
dη
Mj,q(η)

)
W (ξ, η)−Ni,p(ξ)Mj,q(η)

(
d
dη
W (ξ, η)

)
(W (ξ, η))2 .

Here
d

dξ
W (ξ, η) =

n∑
i=1

m∑
j=1

(
d

dξ
Ni,p(ξ)

)
Mj,q(η)wi,j

and
d

dη
W (ξ, η) =

n∑
i=1

m∑
j=1

Ni,p(ξ)
(
d

dη
Mj,q(η)

)
wi,j.

18 2.2 NURBS

ξ

η
η1

 η
2

 η
3
 η

 4
 η

5
 η

6

ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 ξ7

Parameter space

Index space

 Parent element

(1,1)

ξ̂

η̂

(-1,-1)

Physical space

in
te

gr
at

io
n (1,1)

ξ̂

η̂

(-1,-1)(1,1)

η={0,0,0,1,1,1}
ξ={0,0,0,0.5,1,1,1}

S ξ , η=∑i=1
n ∑ j=1

m Ri , j
p , q

ξ , ηB i , j

Ri , j
p , q

ξ , η=P /Q

Q=∑ k=1
n ∑l=1

m N k , p ξ M l , qηw k , l

P=N i , p ξ M j ,q ηwi , j

 Mapping

 NURBS basis functions

M j ,q=2 N i , p=2

Figure 2.10: The different spaces. We here see a physical mesh consisting of one patch.
In the physical space the control mesh is shown as red dotted lines and the control points
are shown as red squares. Notice that the control elements are bilinear quadrilaterals. The
blue lines in the physical space shows how it is divided into knot spans, corresponding to
how the parameter space is divided into two elements by the knots. The support of each
element is shown in colors in the index space. The green element in the parameter space
has support on the green and the turquoise area in the index space. The blue area in the
parameter space has support on the turquoise and the blue area in the index space. Notice
that the support is overlapping for knots of degree greater than one. Knot vectors of degree
two, as we are dealing with here, have support in the area that is spanned by two knots in
each direction.

19

2.3 Spaces and mappings

In classical finite element analysis we are working on different domains; we have the
physical mesh, the physical elements and the parent domain. The physical mesh is where
the geometry is represented with help from nodes. The physical mesh is divided into
non overlapping physical elements. The parent element is where we perform integration
by utilizing Gaussian quadrature. All physical elements are mapped to the same parent
element, and we can apply the inverse mapping to return to the physical element after the
integration is exploited. The physical elements are defined by the nodal coordinates, and
the degrees of freedom are the values of the basis function at the nodes. Due to compact
support, the local basis functions only have support on neighboring elements. The basis
functions are interpolating the nodes and are often called shape functions.

In isogeometric analysis we are also working on different domains. We have the physical
mesh, the control mesh, the parameter space, the index space and the parent element, all
shown in Figure 2.10.

2.3.1 The physical space

The physical space is where the actual geometry is represented by a linear combination
of the basis functions and the control points. The basis functions are usually not inter-
polating the control points. The physical mesh is a decomposition of the geometry and
can be divided into elements in two different ways; we can either divide it by patches or
by knot spans.

A patch can be thought of as a subdomain. Patches are curves in 1D, surfaces in
2D and volumes in 3D. Many geometries can be modeled by a single patch, as is the
case for all geometries we will consider in this thesis. Each patch can again be divided
into knot spans. Knot spans are bounded by the knots and define element domains
where the basis functions are smooth. The basis functions are smooth in the interior of
the elements, and are at the boundary, that is, across knots, Cp−m-continuous. p is the
polynomial degree and m is the multiplicity of the particular knot. Knot spans are the
smallest elements. In the parent domain knots are points in 1D, lines in 2D and planes
in 3D. In the physical space they are points in 1D, curves in 2D and surfaces in 3D.

2.3.2 The control mesh

The control mesh is defined by the control points. The control mesh interpolates all
control points. It controls the geometry, but does generally not coincide with the physical
mesh. In 1D the control elements are straight lines between two control points. In 2D
the mesh consists of bilinear quadrilaterals defined by four control points. In 3D the
control elements are trilinear hexahedras defined by eight control points [17]. The control
variables are located at the control points and are the degrees of freedom [17]. The control
mesh may be degenerated, for instance from a quadrilateral to a triangle. Control meshes
may be severely distorted while the physical geometry still remains well defined.

20 2.4 Isogeometric analysis vs finite element analysis

2.3.3 The parameter space
The parameter space is where the NURBS basis functions Rp,q

i,j are defined and where the
local elements are given by the knots. The knot vector is uniform if all the knots are
equally distributed in the parameter space. The parameter space is local to patches. In
our finite element code we hence have to loop over all patches in addition to looping over
all elements on the current patch. We map a patch of multiple elements in the parameter
space into the physical space. Each element in the physical space is thus an image of
the corresponding element in the parameter space [17]. The mapping from the parameter
space to the physical space is for surfaces given by

S(ξ, η) =
n∑
i=1

m∑
j=1

Rp,q
i,j (ξ, η)Bi,j,

a mapping that is global to the whole patch.

2.3.4 The index space
In the index space of a patch each knot can be uniquely identified, that included knots
having multiplicity greater than one. The index space is spanned by the area [1, n+p+1]
in the i-direction and [1,m+ q+ 1] in the j-direction, and is thus given by [1, n+ p+ 1]×
[1,m+ q + 1].

2.3.5 The parent element
The parent element is the constant area [−1, 1] × [−1, 1] and is where we perform the
integration. We map ξ and η in the parameter space to ξ̂ and η̂ in the parent element to
make it easier to exploit Gaussian quadrature. The mapping from the parent element to
the parameter space is given by

ξ(ξ̂) = (ξi+1 − ξi)ξ̂ + (ξi+1 + ξi)
2 ,

η(η̂) = (ηi+1 − ηi)η̂ + (ηi+1 + ηi)
2 .

In Chapter 5 we will take a closer look on the different mappings from a computational
point of view.

2.4 Isogeometric analysis vs finite element analysis
In this section we will mention some of the differences and similarities between isogeomet-
ric analysis and standard finite element analysis. The concept of isogeometric analysis is
that the basis functions that are used to model the exact geometry are also used as a basis
for the solution field. In classical FEA it is the other way around; the basis functions
we choose to approximate the unknown solution field is used to approximate the already
known geometry. NURBS based Galerkin finite element method is somewhat similar to
classical FEA, only now, different basis functions are being used.

21

Table 2.2: Comparing isogeometric analysis and finite element analysis
Isogeometric analysis Finite element analysis
Control points Nodal points
Control variables Nodal variables
Knots Mesh
Exact geometry Approximated geometry
NURBS basis functions Lagrange basis functions
Basis not interpolating control points Basis interpolating nodes
Patches Subdomains

Compact support
Partition of unity

The code architecture of isogeometric analysis is shown in Figure 2.11. The routines
shown in blue differ from those used in classical FEA. To convert a finite element code
into a single patch isogeometric code we first of all need a different input. We do no
longer take an FE mesh and nodal points as input to describe the geometry, but rather
knot vectors and control points. The connectivity array that links the local shape function
numbering to a global shape function numbering is also different. In isogeometric analysis,
the connectivity array is calculated automatically from knot vectors and their polynomial
orders, see Appendix A.2.2. Both the connectivity array and the global stiffness matrix are
dependent of the basis that is being used. Thus, they will also differ from connectivity
arrays and global matrices in classical FEA. Also, the routines that evaluate the basis
functions and their derivatives are necessarily different when using NURBS. In addition,
the output data needs to be represented differently.

In isogeometric analysis exact geometry is employed at all levels of discretization. In
classical FEA on the other hand, we apply a piecewise polynomial approximation. Rather
applying isogeometric analysis we obtain not only a greater accuracy of the solution, but
also, we need no external descriptions of the geometry to do refinements. In both IA and
FEA, the solution of the weak form is a linear combination of the basis functions. In IA,
the coefficients are the control variables, while in FEA they are the nodal variables. In
IA, control points and control variables are generally not interpolated, unlike the nodal
points and variables in classical FEA. Both methods are isoparametric implementations of
Galerkin’s method [16] utilizing an element approach with basis functions having compact
support. In both approaches, the bases being used forms a partition of unity, and the
bandwidth of matrices corresponds to the given polynomial order and are equal. In clas-
sical FEA, nodal basis function can be positive or negative, while NURBS basis functions
are only positive. In FEA, the degrees of freedom are located at the nodes, while in IA
they are located at the control points. In FEA the continuity of the basis functions are
fixed, while in IA we can easily control the continuity to be as desired. Table 2.2 sums
up some of the differences and similarities.

22 2.4 Isogeometric analysis vs finite element analysis

Pre-processor Read input data

Set K=0, F=0K=0, F=0

Computations Loop through elements

Loop through quadrature points

Set Ke=0, Fe=0Ke=0, Fe=0

Evaluate basis functions and
derivatives

Add contributions to Ke Ke and FeFe

Assemble Ke → K Ke → K and Fe → FFe → F

Solve Kd= F Kd= F

Post-processor Write output data, visualization

Build connectivities and
allocate global arrays

Figure 2.11: Flow chart for one patch isogeometric analysis. The routines in blue differ
from those in classical finite element analysis. All routines have been programmed in
MATLAB for a 2D linear elasticity problem, and are given in detail in the appendix.

Chapter 3

Theory of the finite element method

In this chapter we are going to look at some of the theory behind the finite element method
in order to understand what a finite element is. In the first section we will refresh our
knowledge by reviewing some definitions we need to be familiar with in order to establish
and study the space of basis functions. Next we will consider the variational formulation,
and at last we will look at what determines a finite element. As we assume the reader to
be familiar with the finite element method we will not prove the applied theorems. The
definitions and theorems with proves are thus to be found in [5, 32, 44].

3.1 Some definitions
Linear space

A set X is a linear space if

(i) v1 + v2 ∈ X ∀v1, v2 ∈ X,

(ii) αv ∈ X ∀v ∈ X ,∀α ∈ R.

Linear functionals

L is a linear functional if L : X 7→ R such that L(αv1 + v2) = αL(v1) + L(v2) ∀α ∈
R,∀v1, v2 ∈ X.

Bilinear functionals

A is a bilinear functional if A : X × Y 7→ R such that

(i) A(u, v̄) is a linear functional in u for fixed v̄,

(ii) A(ū, v) is a linear functional in v for fixed ū.

Inner product space

An inner product space is a vector space V over the field F together with the inner product
〈·, ·〉 : V × V → F that satisfies the following axioms for all vectors x, y, z ∈ V and all
scalars a ∈ F:

23

24 3.1 Some definitions

(i) 〈x, y〉 = 〈y, x〉,

(ii) 〈ax, y〉 = a〈x, y〉,

(iii) 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉,

(iv) 〈x, x〉 ≥ 0 with equality only for x = 0.

Norm

Given a linear vector space V , a norm, ‖·‖, is a function on V with values in R+ with
properties

(i) ‖v‖ ≥ 0 ∀v ∈ V ,

(ii) ‖v‖ = 0 if and only if v = 0,

(iii) ‖c · v‖ = |c| ‖v‖ ∀c ∈ R, v ∈ V ,

(iv) ‖v + u‖ ≤ ‖v‖+ ‖u‖ ∀v, u ∈ V .

Metric space

A metric space is a pair (X, d), where X is a set and d is a distance function on X, i.e.
d : X ×X → R. The distance function d must for all element x, y, z ∈ X satisfy

(i) d is real valued, finite and non-negative,

(ii) d(x, y) = 0 if and only if x = y,

(iii) d(x, y) = d(y, x),

(iv) d(x, y) ≤ d(x, z) + d(z, y).

Completeness

A metric space X is complete if any Cauchy sequence (xn ∈ X such that ‖xn − xm‖X → 0
as n,m→∞) converges to a member of X.

Banach space

A normed linear space (V, ‖·‖) is called a Banach space if it is complete with respect to
the metric induced by the norm ‖·‖. A Banach space is a complete metric space, where
the metric is induced by the norm

‖·‖V ; d(x, y) = ‖x− y‖V .

Hilbert space

A Hilbert space is a Banach space with a norm induced by the inner product of the Hilbert
space, ‖x‖H =

√
(x, x)H .

25

Bounded coercive form

A bilinear form a(·, ·) on a normed linear space H is bounded or continuous, if there exists
a C <∞ such that

|a(u, v)| ≤ C ‖u‖ ‖v‖ ∀u, v ∈ H.

a(·, ·) is coercive if ∃ α > 0 such that

a(u, u) ≥ α ‖v‖2 ∀v ∈ H.

3.2 The Hilbert space
The Hilbert space H is a linear space with the inner product (·, ·)H and the norm ‖u‖H ≡√

(u, u). The Hilbert space is a complete inner product space. For m > 0 the Hilbert
space is given by

Hm(Ω) ≡

v|
∫

Ω
v2dA <∞,

∫
Ω

(
dv

dx

)2

dA <∞, . . . ,
∫

Ω

(
dmv

dxm

)2

dA <∞

 ,
with the inner product

(u, v)Hm(Ω) =
m∑
j=0

∫ 1

0

dju

dxj
djv

dxj
dx

and the norm

‖u‖Hm(Ω) =
 m∑
j=0

∫ 1

0

(
dju

dxj

)2

dx

 1
2

.

Given the Hilbert space H we can define a dual space H ′ as the space of all bounded
linear functionals L(v), where L(v) is bounded if L(v) ≤ C ‖v‖H ∀v ∈ H. The norm of
L(v) is given by

‖L‖H′ = sup
v∈H,v 6=0

L(v)
‖v‖H

.

By Riesz representation theorem [5] any continuous linear functional L on a Hilbert
space can be represented uniquely as

L(v) = (u, v)

for some u ∈ H. Further we have that

‖L‖H′ = ‖u‖H .

3.3 Formulation of the variational problem
Suppose that

(1) (H, (·, ·)) is a Hilbert space.

(2) V is a closed subspace of H.

26 3.4 The finite element

(3) a(·, ·) is a bilinear form on V , not necessarily symmetric.

(4) a(·, ·) is bounded or continuous on V .

(5) a(·, ·) is coercive on V .

The variational problem is then given as [5];
Given l ∈ V ′, find u ∈ V such that

a(u, v) = l(v) ∀v ∈ V. (3.1)

The existence and uniqueness of the solution is guaranteed by the Lax-Milgram theo-
rem [5]; Given a Hilbert space (V, (·, ·)), a continuous, coercive bilinear form a(·, ·) and a
continuous linear functional l ∈ V ′, there exists a unique u ∈ V such that

a(u, v) = l(v) ∀v ∈ V.

The Galerkin approximation can now be given as; Given finite-dimensional subspaces
Vh, V

D
h ⊂ V and l ∈ V ′, find uh ⊂ V D

h such that

a(uh, v) = l(v) ∀v ∈ Vh.

If a(u, v) involves only first derivatives and we have Dirichlet boundary conditions,

V =
{
v ∈ H1(Ω)|v|Γ = 0

}
,

V D =
{
u ∈ H1(Ω)|u|Γ = ū

}
,

where H1(Ω) ≡
{
v|
∫

Ω v
2dA <∞,

∫
Ω

(
dv
dx

)2
dA <∞,

∫
Ω

(
dv
dy

)2
dA <∞

}
.

3.4 The finite element
The finite element is defined by [5]:

Let

(i) K ⊆ Rn be a bounded closed set with nonempty interior and piecewise
smooth boundary (the element domain),

(ii) P be a finite-dimensional space of functions K (the space of shape func-
tions),

(iii) N = {N1, N2, . . . , Nk} be a basis for P ′ (the set of nodal variables).

Then (K,P ,N) is called a finite element.

When (K,P ,N) is a finite element then the basis {φ1, φ2, . . . , φk} of P dual to N ,
that is, the basis Ni(φj) = δij, is the nodal basis of P .

Lets look at the following example to better understand the definition of a finite
element; Let K = [−1, 1] and P be the set of all linear polynomials of degree less than or

27

x

y
(1,1)

(-1,-1)

z1 z2

z3z4

L1

L2
L4

L3

Figure 3.1: The lines L1, L2, L3, L4 for the square [−1, 1] × [−1, 1] with the nodes
z1, z2, z3, z4.

equal to 1. Let N = {N1, N2} and N1(v) = v(−1), N2(v) = v(1) ∀v ∈ P . Then (K,P ,N)
is a finite element with the nodal basis φ1(x) = 1

2(1 − x), φ2(x) = 1
2(1 + x). In general

in 1D; Let K = [a, b] and Pk be the set of all polynomials of degree less than or equal to
k. Let N = {N0, N1, . . . , Nk} and Ni(v) = v(a + (b−a)i

k
) ∀v ∈ Pk, i = 0, 1, . . . , k. Then

(K,Pk,Nk) is a finite element.
Lemma (3.1.4) in [5] says that if P is a k-dimensional vector space and

N = {N1, N2, . . . , Nk} is a subset of the dual space P ′, then the two following statements
are equivalent;

(i) N = {N1, N2, . . . , Nk} is a basis for P ′.

(ii) Given v ∈ P with Niv = 0 for i = 1, 2, . . . , k, then v ≡ 0.

Notice that k = dimP = dimP ′ and that N determines P if φ ∈ P with N(φ) = 0
∀N ∈ N implies that φ = 0.

Assume we want to construct a finite element on the square [−1, 1] × [−1, 1] using
linear basis functions. In the following we will refer to the hyperplane {x : L(x) = 0},
where L is a non-degenerated linear function, as L. More precisely, L is a line if we are
in R2, a plane in R3 and a hyperplane in Rn for n > 3. Lemma (3.1.10) in [5] then says
that if we let P be a polynomial of degree k ≥ 1 that vanishes on a hyperplane L and
Q be a polynomial of degree (k − 1), then P = LQ. We will use this to construct the
finite element shown in Figure 3.1. First we let K = [−1, 1]× [−1, 1], P be the set of all
bilinear polynomials {c0 + c1x + c2y + c3xy} and N = {N1, . . . N4} where Ni(v) = v(zi).
To show that N determines P we suppose that a polynomial P ∈ P vanishes at all the
nodes z1, z2, z3 and z4. We let L1, L2, L3 and L4 be non-trivial linear functions that define
the edges of the square. The restriction to P to any side of the square is then a first order
polynomial of one variable, and we can write P = cL1L2 for some constant c. We then
have that 0 = P (z4) = cL1(z4)L2(z4) ⇒ c = 0 since L1(z3) 6= 0 and L2(z3) 6= 0. Hence,
P (x, y) ≡ 0 on K and N determines P . (K,P ,N) is thus a finite element. We can now

28 3.4 The finite element

construct the basis functions, getting that

φ1(x, y) = cL3(x)L2(y) = c(1− x)(1− y) = 1
4(1− x)(1− y),

φ2(x, y) = cL3(x)L4(y) = c(1 + x)(1− y) = 1
4(1 + x)(1− y),

φ3(x, y) = cL1(x)L4(y) = c(1 + x)(1 + y) = 1
4(1 + x)(1 + y),

φ4(x, y) = cL1(x)L2(y) = c(1− x)(1 + y) = 1
4(1− x)(1 + y),

since we require that φ1(−1,−1) = 1, φ2(1,−1) = 1, φ3(1, 1) = 1 and φ4(−1, 1) = 1.
In this thesis we need to consider the definition of a finite element in an isogeometric

setting, thus, we have to translate the meaning of the different terms. In isogeometric
analysis the term element in the definition corresponds to a patch. Be aware that in
calculations we often talk about elements referring to the knot spans, more precisely, the
images of knot spans in the physical space. If we consider the definition of a finite element
in an isogeometric setting, an element domain is thus referring to a patch and the nodal
variables corresponds to the control variables.

We will also only consider subspaces of the Hilbert space H1 as the space of basis
functions. The control variables will thus lie in the dual space of H1. The dimension of
the basis function space must be equal to the dimension of the dual space, which again is
equal to the dimension of the degrees of freedom. Hence, the number of basis functions
and the number of degrees of freedom must coincide.

Chapter 4

2D Linear elasticity

In this thesis we will consider solid materials that undergoes small deformations when
they are subjected to stress, and that, if the stress forces are not too large, will return
to their natural shape. We will assume that we have a linear relationship between stress
and strain components, and that the stress states do not produce yielding. Hence, we can
apply linear elasticity theory, a simplification of the nonlinear theory of elasticity that is
a branch of continuum mechanics [2]. The assumptions mentioned above are reasonable
for many engineering design scenarios, which is why linear elasticity is much used in
structural analysis together with the finite element method. In this chapter we will give
a short introduction on principals, terms and quantities in structural mechanics related
to linear elasticity problems. We will start by defining quantities like strain, stress and
traction, before deriving the equilibrium equations on strong and weak form.

4.1 Strain
Strain is a dimensionless quantity describing the relative amount of deformation of a body.
It is a measure of the relative displacement between particles in the material and measures
how much a given displacement differs locally from a rigid-body displacement [23]. To
obtain an expression for strain we start by writing the displacement vector as

u =
[
ux
uy

]
.

Strain is the same as elongation divided by original length. Extensional strains are thus
given by [37]

εxx = lim
∆x→0

ux(x+ ∆x, y)− ux(x, y)
∆x = ∂ux

∂x

εyy = lim
∆y→0

uy(x, y + ∆y)− uy(x, y)
∆y = ∂uy

∂y
,

whereas shear strain,γxy, is given by

γxy = ∂uy
∂x

+ ∂ux
∂y

= α1 + α2.

29

30 4.2 Stress

α1

α2

u(x+Δx,y)

u(x,y+Δy)

u(x,y)

u(x+Δx,y+Δy)

x

y

Figure 4.1: Deformation of a control volume. The figure is reconstructed from Figure 9.1
in [11].

Shear strain measures the change in angle between unit vectors in x- and y-directions, see
Figure 4.1. The total strain can hence be expressed as

ε =

 εxx
εyy
γxy

 =


∂
∂x

0
0 ∂

∂y
∂
∂y

∂
∂x

 [ux
uy

]
= ∇Su.

Recall that these are the linearized equations that are valid only for small deformations
where higher order terms can be ignored.

4.2 Stress
Stress is a quantity measuring the strength of forces causing deformation of a body, and
is defined to be force per unit area. In two dimensions stresses are forces per unit area
acting on the planes normal to the x- or y-axis [11]. Stress can in vector form be expressed
as

σ =

 σxx
σyy
σxy

 ,
where the first subscript denotes the direction of the normal to the plane at where the
stress is acting and the second subscript denotes the direction of the force, see Figure 4.2.
Notice that σxy = σyx.

31

y

x

σxx

σyy

σxy

σyx
σx

σy

-σy

-σx

Figure 4.2: Stress components. The figure is reconstructed from Figure 9.3 in [11].

y

x

dΓ

-σx

dy

dx

-σy

-nx i

-ny j
-n

 t

Figure 4.3: Relationship between stress and traction. The figure is reconstructed from
Figure 9.4 in [11].

4.3 Traction

Traction is like stress also a quantity measured in force per unit area. Traction is the
same as stress, only associated with a specific surface, such as the outer boundary of a
domain. Stress vectors could give information about traction at a point on any surface.

Figure 4.3 shows the relationship between stress and traction. Making the forces in
Figure 4.3 to be in equilibrium we must require that

tdΓ− σxdy − σydx = 0.

Using that dy = nxdΓ, dx = nydΓ, dividing by dΓ and multiplying by unit vectors gives
the expressions

tx = σxxnx + σxyny = σxn,
ty = σxynx + σyyny = σyn.

32 4.5 Assumptions

4.4 Hooke’s law for plane stress

When stress and strain are small enough they are proportional quantities [43]. The linear
relationship between them is called Hooke’s law and is expressed as

Stress
Strain = Elastic modulus.

In our case, studying linear elasticity problems, Hooke’s law is given as

σ = Dε.

In two dimensions D will be a 3× 3 matrix, looking differently depending on whether we
assume plane strain or plane stress. Plane stress implies that we assume the body to be
thin compared to the dimension in the xy-plane. In other words, σzz could be neglected.
We will assume plane stress and isotropic material using the following expression for D:

D = E

1− ν2

 1 ν 0
ν 1 0
0 0 (1− 2ν)/2

 ,
where E is Young’s modulus and ν is Poisson’s ratio. Young’s modulus and Poisson’s
ratio are constants depending on the material properties. Notice that D is symmetric
positive definite. When ν 6= 0 D will couple the different directions.

4.5 Assumptions

The theory of linear elasticity is often applied in stress analysis for problems in solid me-
chanics. However, for the theory to be applicable some assumptions needs to be fulfilled.
First of all we need the behavior of the material we are analyzing to be linear. Also, when
external forces are acting on the structure, deformations must be small and no gaps or
overlaps could occur. In addition, dynamic effects have to be negligible. Dynamic effects
will be small if the d’Alembert forces, which are equal to the mass of the body times the
acceleration, are small compared to the the loads acting on the body [11]. In order to
fulfill these assumptions the following requirements must be satisfied:

(i) Deformations must be smooth.

(ii) Hooke’s law must be satisfied.

(iii) The body must be in equilibrium.

Assumption (i) will be satisfied if ε = ∇Su, which is referred to as the kinematic equation.
Assumption (ii), Hooke’s law, is given as σ = Dε and is called the constitutive equation.
Assumption (iii) is called the equilibrium equation and will be derived in the next section.

33

Δx

Δy

b

-σy(x,y-Δy/2)-σ
x(
x-
Δ
x/
2,
y)

σy(x,y+Δy/2)

σ
x(
x+
Δ
x/
2,
y)

t

Figure 4.4: Traction and body forces acting on a infinitesimal element. The figure is
reconstructed from Figure 9.5 in [11].

4.6 The equilibrium equation
We are considering a body where tractions, t, are acting along the boundary Γ and body
forces per unit volume, b, are acting on the whole body. Body forces are for instance
gravity forces, magnetic forces or thermal stresses. Figure 4.4 shows how stresses and body
forces are acting on an inner infinitesimal element of the domain Ω. For the infinitesimal
element to be in equilibrium we must require that

− σx(x−
∆x
2 , y)∆y + σx(x+ ∆x

2 , y)∆y

− σy(x, y −
∆y
2)∆x+ σy(x, y + ∆y

2)∆x+ b(x, y)∆x∆y = 0.

If we divide by ∆x∆y and take the limit as ∆x→ 0, ∆y → 0 we obtain the equation

∂σx
∂x

+ ∂σy
∂y

+ b = 0.

Inserting for σx and σy gives us in vector form

∇ · σx + bx = 0, ∇ · σy + by = 0.

The body will hence be in equilibrium if the following equation is satisfied:

∇T
Sσ + b = 0.

4.7 Strong form
The relations for 2D linear elasticity is given by the equilibrium equation, the kinematics
equation and the constitutive equation. Two types of boundary conditions will be con-
sidered, prescribed traction and prescribed displacement. Prescribed traction is written
as

σx · n = t̄x and σy · n = t̄y on Γt, (4.1)
whereas prescribed displacement is written as

u = ū on Γu.

34 4.8 Weak form

We have that Γu ∪ Γt = Γ and that Γu ∩ Γt = 0. The strong form for linear elasticity is
hence formed by the three equations for the boundary conditions together with the three
following equations

∇ · σx + bx = 0, ∇ · σy + by = 0 (4.2)
and

σ = D∇Su.

4.8 Weak form
Let w =

[
wx wy

]T
be weight functions such that w = 0 on Γu and let the trial solutions

be such that u = ū on Γu. To obtain the weak form we first multiplying equation (4.1)
and equation (4.2) by admissible weight functions and integrate over the domain Ω. We
then get ∫

Ω
wx∇ · σxdΩ +

∫
Ω
wxbxdΩ = 0 ∀wx ∈ U0, (4.3)∫

Ω
wy∇ · σydΩ +

∫
Ω
wybydΩ = 0 ∀wy ∈ U0, (4.4)∫

Γt
wx(t̄x − σx · n)dΓ = 0 ∀wx ∈ U0 and (4.5)∫

Γt
wy(t̄y − σy · n)dΓ = 0 ∀wy ∈ U0, (4.6)

where U0 = {w|w ∈ H1,w = 0 on Γu}. Applying Green’s theorem to the first terms
in equation (4.3) and equation (4.4) before adding the two equations yields∫

Ω
(∇wx · σx +∇wy · σy)dΩ =

∮
Γt

(wxσx · n + wyσy · n)dΓ +
∫

Ω
(wxbx + wyby)dΩ, (4.7)

since wx and wy vanish on Γu. Substituting equation (4.5) and equation (4.6) into equation
(4.7), writing in vector form and using that ∇wx · σx +∇wy · σy = (∇Sw)Tσ yields∫

Ω
(∇Sw)TσdΩ =

∫
Γt

wT t̄dΓ +
∫

Ω
wTbdΩ ∀w ∈ U0.

Using that σ = D∇Su we can write the weak form as:

Weak form:
Find u ∈ U such that

a(u,w) = l(w) ∀w ∈ U0

where

a(u,w) =
∫

Ω
(∇Sw)TD∇SudΩ,

l(w) =
∫

Γt
wT t̄dΓ +

∫
Ω

wTbdΩ,

U = {u|u ∈ H1,u = ū on Γu},
U0 = {w|w ∈ H1,w = 0 on Γu}. (4.8)

Chapter 5

Isogeometric linear elasticity
problems

5.1 The finite element discretization
We consider the domain Ω with boundary Γ in the physical space, the domain Ω̃ in the
parameter space and the domain Ω̂ in the parent element, see Figure 5.1. The mapping
x : Ω̃ 7→ Ω is the geometrical mapping that maps values in the parameter domain to
values in the physical domain. When we are talking about elements in this setting we are
referring to the images of knot spans under that mapping. We denote the knot spans by
Ω̃e in the parameter space and Ωe in the physical space. e runs from 1, . . . , nel, where nel
denotes the total number of elements. We are counting all knot spans independently of
its measure. That is, we also count knot spans that have zero measure because of knots
with multiplicity greater than one. We can thus say that we are considering the elements
in the index space.

We let nnp be the total number of basis functions, also corresponding to the total
number of control points. R are the shape functions and Bcp =

[
Bcp
x Bcp

y

]
the control

points. nen is the number of basis functions that have support on the current element.
The mapping x is given by

x =
[
x
y

]
=
[∑nnp

i=1 Ri(ξ, η)Bcp
xi∑nnp

i=1 Ri(ξ, η)Bcp
yi

]

We express the trial solution, u(x, y), the weight functions, w(x, y), and the body force,
b(x, y), as

u(x, y) = R(ξ, η)d (x, y) ∈ Ω,
w(x, y) = R(ξ, η)w (x, y) ∈ Ω,
b(x, y) = R(ξ, η)b (x, y) ∈ Ω,

where
d =

[
ux1 uy1 ux2 uy2 . . . uxnnp uynnp

]T
are the displacements at the control points and

w =
[
wx1 wy1 wx2 wy2 . . . wxnnp wynnp

]T
35

36 5.1 The finite element discretization

x

y

Ω

Physical
space

ξ

η
(1,1)

ξ

(1,1)

Ω
~

Parameter
space

ξ

η̂

^

(1,1)

(-1,-1)

Ω^
^

Parent
element

ξ−1

ξx

J x , ξ J ξ , ξ^

Figure 5.1: Mapping between the physical space, the parameter space and the parent ele-
ment.

are the values of the weight functions at the control points. Notice that we have two
degrees of freedom at each control point, one for the x-direction and one for the y-direction.

In the weak form we compute the integral over the domain, Ω, as a sum of integrals
computed over each element domain, Ωe;

nel∑
e=1

{∫
Ωe

(∇Swe)TDe∇SuedΩ−
∫

Γte
weT t̄dΓ−

∫
Ωe

weTbdΩ
}

= 0. (5.1)

Now let

ue(x, y) = Re(ξ, η)de (x, y) ∈ Ωe,

we(x, y) = Re(ξ, η)we (x, y) ∈ Ωe,

be(x, y) = Re(ξ, η)be (x, y) ∈ Ωe,

where

de =
[
uex1 uey1 uex2 uey2 . . . uexnen uyenen

]T
,

we =
[
wex1 wey1 wex2 wey2 . . . wexnen wyenen

]T
,

be =
[
bex1 bey1 bex2 bey2 . . . bexnen byenen

]T
.

The notation (∗)ex1 refers to local control point number 1 in element e in the x-direction.
The element shape function matrix, Re, is given by

Re =
[
Re

1 0 Re
2 0 . . . Re

nen 0
0 Re

1 0 Re
2 . . . 0 Re

nen

]
.

We then express the strain as

εe =

 εexx
εeyy
γexy

 = ∇Sue = ∇SRede = Bede,

37

where

Be = ∇SRe =


∂Re1
∂x

0 ∂Re2
∂x

0 . . .
∂Renen
∂x

0
0 ∂Re1

∂y
0 ∂Re2

∂y
. . . 0 ∂Renen

∂y
∂Re1
∂y

∂Re1
∂x

∂Re2
∂y

∂Re2
∂x

. . .
∂Renen
∂y

∂Renen
∂x

 .
Inserting the above into equation (5.1) we obtain

nel∑
e=1

{∫
Ωe

weTBeTDeBededΩ−
∫

Γte
weTReT t̄dΓ−

∫
Ωe

weTReTRebedΩ
}

= 0

If we let
Ke =

∫
Ωe

BeTDeBedΩ

be the element stiffness matrix and

f e =
∫

Γte
ReT t̄dΓ +

∫
Ωe

ReTRebedΩ

be the external force matrix we get that

nel∑
e=1

weT {Kede − f e} = 0.

Let K be the global stiffness matrix and f be the global force matrix. Assembling the
system and using that w is arbitrary make our discrete problem look like

Kd = f .

5.2 Solving the discrete problem
In order to calculate the stiffness matrix and force matrix we will approximate the in-
tegrals utilizing Gaussian quadrature. To do that we map the parameter space and
the physical space to the parent element, cf. Figure 2.10 and Figure 5.1, where we
perform the integration. Assume we have the knot vectors Ξ = {ξ1, ξ2, ..., ξn+p+1} and
H = {η1, η2, ..., ηm+q+1}. The mapping ξ : Ω̂ 7→ Ω̃ from the parent element to the param-
eter space is thus given by

ξ =
[
ξ(ξ̂)
η(η̂)

]
=
 (ξi+1−ξi)ξ̂+(ξi+1+ξi)

2
(ηi+1−ηi)η̂+(ηi+1+ηi)

2

 . (5.2)

The Jacobian matrix taking us from the parameter space to the parent element is given
by

Jξ,ξ̂(ξ̂, η̂) =
 ∂ξ∂ξ̂ ∂ξ

∂η̂
∂η

∂ξ̂

∂η
∂η̂

 =
 (ξi+1−ξi)ξ̂

2 0
0 (ηi+1−ηi)η̂

2

 .
We only have an explicit expression for the basis functions Ri(ξ, η) in terms of ξ and η.

However, to be able to calculate B we need to know ∇Ri, the derivatives with respect to

38 5.2 Solving the discrete problem

x and y. To find the expression for ∇Ri we will first look at the mapping x : Ω̃ 7→ Ω from
the parameter space to the physical space. The mapping x have the Jacobian matrix

Jx,ξ =
[∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

]
,

with the inverse

(Jx,ξ)−1 =
[∂ξ
∂x

∂ξ
∂y

∂η
∂x

∂η
∂y

]
.

We now let
∇ =

[
∂
∂x
∂
∂y

]
, ∇̂ =

[
∂
∂ξ
∂
∂η

]
.

Hence we have that

∇ =
[
∂
∂x
∂
∂y

]
=
[
∂ξ
∂x

∂η
∂x

∂ξ
∂y

∂η
∂y

] [
∂
∂ξ
∂
∂η

]
= (Jx,ξ)−T ∇̂.

Defining G = (Jx,ξ)−T we get that

∇Ri(x, y) =
[
∂Ri
∂x
∂Ri
∂y

]
=
[
∂ξ
∂x

∂η
∂x

∂ξ
∂y

∂η
∂y

] ∂Ri(ξ,η)
∂ξ

∂Ri(ξ,η)
∂η

 =
[
∂ξ
∂x

∂η
∂x

∂ξ
∂y

∂η
∂y

] [
∂
∂ξ
∂
∂η

]
Ri(ξ, η) = G∇̂Ri(ξ, η).

We are thus able to calculate B, as we already know the expression for ∇̂Ri(ξ, η), cf.
Chapter 2.2.3.

To map Ω to Ω̂ to perform the integration we need to know the Jacobian Jx,ξ̂. We
observe that

Jx,ξ̂ =
∂x∂ξ̂ ∂x

∂η̂
∂y

∂ξ̂

∂y
∂η̂

 =
[∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

]  ∂ξ∂ξ̂ ∂ξ
∂η̂

∂η

∂ξ̂

∂η
∂η̂

 = Jx,ξJξ,ξ̂.

We can thus express the stiffness matrix as

Ke =
∫

Ωe
BeTDeBedΩ =

∫ 1

−1

∫ 1

−1
BeTDeBe|Jx,ξ̂

e|dξ̂dη̂

=
ngp∑
i=1

ngp∑
j=1

BeT (ξ(ξ̂i), η(η̂j))DeBe(ξ(ξ̂i), η(η̂j))|Jx,ξ̂
e(ξ̂i, η̂j)|ρiρj,

where ngp is the number of gauss points and ρi are the corresponding weights. Recall the
force matrix

f e =
∫

Γte
ReT t̄dΓ +

∫
Ωe

ReTRebedΩ = f eΓ + f eΩ.

We calculate the element body force matrix in the following way

f eΩ =
∫

Ωe
ReTRebedΩ =

∫ 1

−1

∫ 1

−1
ReTRebe|Jx,ξ̂

e|dξ̂dη̂

=
ngp∑
i=1

ngp∑
j=1

ReT (ξ(ξ̂i), η(η̂j))Re(ξ(ξ̂i), η(η̂j))be|Jx,ξ̂
e(ξ̂i, η̂j)|ρiρj.

39

Assume prescribed traction at the physical domain at the boundary Γ. The boundary
force vector is then calculated as either

f eΓ =
∫

Γte
ReT t̄dΓ =

∫ 1

−1
ReT (ξ(ξ̂ = a), η(η̂))̄t|Jx,ξ̂

e|dη̂

=
ngp∑
j=1

ReT (ξ(ξ̂ = a), η(η̂j))̄t|Jx,ξ̂
e(ξ̂ = a, η̂j)|ρj,

for the part of the boundary we ξ is constant, or

f eΓ =
∫

Γte
ReT t̄dΓ =

∫ 1

−1
ReT (ξ(ξ̂), η(η̂ = b))̄t|Jx,ξ̂

e|dξ̂

=
ngp∑
i=1

ReT (ξ(ξ̂i), η(η̂ = b))̄t|Jx,ξ̂
e(ξ̂i, η̂ = b)|ρi

for the part of the boundary we η is constant.
After assembling all contributions to K and f we can solve with respect to d and

further calculate strain and stresses. Recall that εe = Bede and σe = Deεe = DeBede.
Details on how this is programmed in MATLAB can be found in the appendix.

40 5.2 Solving the discrete problem

Chapter 6

Degenerated mappings

During analysis we have experienced some difficulties with non-physical singularities, that
is, singular points existing in the mapping but not in the actual physical problem. Because
of this we want to study degenerated mappings in hope of finding a way to deal with this
issue. We will look at some different degenerated mappings, starting by looking at a
triangle.

6.1 Triangle, degenerated quadrilateral

In this chapter we are going to study what happens when a quadrilateral is degenerated
to a triangle. Consider the quadrilateral shown in Figure 6.1. Let the length of one of the
sides decrease to a length ε. We are going to look at mappings and basis functions when
ε→ 0. We will also consider what happens when the side is completely degenerated to a
point, that is, when ε = 0.

6.1.1 Bilinear Lagrange basis functions

We will first take a look at what is happening with Lagrange basis functions during such a
degeneration in order to gain some experience on the issue and to establish a hypothesis on
how B-spline basis function will behave. Thereafter, with the behavior of Lagrange basis
functions established, we will consider the same case exploiting B-spline basis function in
isogeometric analysis.

ε ε=0

Figure 6.1: Degenerating a quadrilateral to a triangle.

41

42 6.1 Triangle, degenerated quadrilateral

x

y
(1,1)

(-1,-1)

1 2

34

Figure 6.2: Illustration of the quadrilateral showing the numbering of the basis functions.

Table 6.1: Derivatives of φ with respect to x and y.
dφ1
dx

= −1
4(1− y) dφ1

dy
= −1

4(1− x)
dφ2
dx

= 1
4(1− y) dφ2

dy
= −1

4(1 + x)
dφ3
dx

= 1
4(1 + y) dφ3

dy
= 1

4(1 + x)
dφ4
dx

= −1
4(1 + y) dφ4

dy
= 1

4(1− x)

Consider the quadrilateral shown in Figure 6.2 with the basis functions

φ1(x, y) = 1
4(1− x)(1− y),

φ2(x, y) = 1
4(1 + x)(1− y),

φ3(x, y) = 1
4(1 + x)(1 + y),

φ4(x, y) = 1
4(1− x)(1 + y),

and the corresponding derivatives that are given in Table 6.1. This is the same quadri-
lateral as we looked at in chapter 3.4, when we constructed a finite element. We now let
the top side of the quadrilateral collapse to a point, forming the triangle shown in Figure
6.3. The basis functions of the triangle are given by

x

y

(1,-1)(-1,-1)
a b

c (0.5,1)

Figure 6.3: Triangle, degenerated quadrilateral. The numbering of the basis functions is
shown by red letters.

6.1.2 Bilinear B-spline basis functions 43

Table 6.2: Derivatives of ψ with respect to x and y.
dψa
dx

= −1
4(1− y) dψa

dy
= −1

4(1− x)
dψb
dx

= 1
4(1− y) dψb

dy
= −1

4(1 + x)
dψc
dx

= 0 dψc
dy

= 1
2

ψa(x, y) = 1
4(1− x)(1− y),

ψb(x, y) = 1
4(1 + x)(1− y),

ψc(x, y) = 1
2(1 + y),

and the derivatives are given in Table 6.2. We observe that if we add the two basis
functions of the quadrilateral at the degenerated side, φ3 and φ4, we obtain the basis
function of the triangle at the degenerated point;

ψc(x, y) = φ3(x, y) + φ4(x, y) = 1
4(1 + x)(1 + y) + 1

4(1− x)(1 + y) = 1
2(1 + y)

Also adding the derivatives result in the same derivatives as those of the triangle;
dψc(x, y)

dx
= dφ3

dx
+ dφ4

dx
= 1

4(1 + y)− 1
4(1 + y) = 0

dψc(x, y)
dy

= dφ3

dy
+ dφ4

dy
= 1

4(1 + x) + 1
4(1− x) = 1

2
We thus see that the set of basis functions should be reduced when we have a degen-

eracy, and that the new set of basis functions is formed by adding the basis functions
spanning the line that has been degenerated to a point. Recall the definition of a finite
element given in Chapter 3.4 and that the dimension of the space of shape functions must
coincide with the number of degrees of freedom. The original quadrilateral has four ba-
sis functions and four degrees of freedom, while the degenerated quadrilateral have four
basis functions and only three degrees of freedom. The degenerated quadrilateral is thus
contradicting the definition of a finite element, and can consequently not be defined as
a proper finite element. If we consider the basis functions of the triangle on the other
hand, ψa, ψb and ψc, we will have three basis functions and three degrees of freedom. The
triangle could hence be considered a proper finite element. Our hypothesis is thus that
we need to redefine the set of basis functions when the mapping is degenerated, and that
the new set of basis functions is formed by adding the basis functions corresponding to
the degeneracy.

6.1.2 Bilinear B-spline basis functions
With the Lagrange basis function fresh in mind, we will now study the same case with B-
spline basis function. Our hypothesis is that a similar behavior is expected from B-spline
basis functions. The triangle in Figure 6.4 with ε→ 0 is modeled by the knot vectors

Ξ = {0, 0, 1, 1},
H = {0, 0, 1, 1},

44 6.1 Triangle, degenerated quadrilateral

ξ

η η

ξ1 2

34

1 2

3
(1,1)

(0.5-ε,1) η

ξa b

c

(0.5,1)

(1,0)(0,0)(0,0)(0,0) (1,0)

4
(0.5+ε,1)

Figure 6.4: Degenerating a quadrilateral; geometry and numbering of basis functions.

Table 6.3: Control net Bi,j

(i,j) Control point Bi,j Weight wij (ξ, η)
(1,1) (0,0) 1 (0,0)
(2,1) (1,0) 1 (1,0)
(1,2) (1

2 − ε, 1) 1 (0,1)
(2,2) (1

2 + ε, 1) 1 (1,1)

and the control net and weights given in Table 6.3. The B-spline basis functions are for
this geometry given by

R1 = (η − 1)(ξ − 1),
R2 = −ξ(η − 1),
R3 = −η(ξ − 1),
R4 = ηξ,

in the parameter space. The derivatives with respect to ξ and η are given in Table 6.4.
We have that

dx
dξ

=
[dx

dξ
dx
dη

dy
dξ

dy
dη

]
=
[

2εη − η + 1 (2ε−1)(2ξ−1)
2

0 1

]
,

resulting in the Jacobian

Jx,ξ =
∣∣∣∣∣dx
dξ

∣∣∣∣∣ = 2εη − η + 1.

When ε = 0 and η = 1, Jx,ξ is zero. Consequently, the mapping will be singular at the
point c corresponding to the degenerated line.

Recall that
∇Ri(x, y) = G∇̂Ri(ξ, η) = (Jx,ξ)−T ∇̂Ri(ξ, η).

Table 6.4: Derivatives with respect to ξ and η.
dR1
dξ

= η − 1 dR1
dη

= ξ − 1
dR2
dξ

= 1− η dR2
dη

= −ξ
dR3
dξ

= −η dR3
dη

= 1− ξ
dR4
dξ

= η dR4
dη

= ξ

6.1.2 Bilinear B-spline basis functions 45

Table 6.5: Derivatives with respect to x and y
dR1
dx

= η−1
2εη−η+1

dR1
dy

= ε(2ξ−1)
η(2ε−1)+1 −

2ε−1
4ε−2

dR2
dx

= − η−1
2εη−η+1

dR2
dy

= −2ε−1
4ε−2 −

ε(2ξ−1)
η(2ε−1)+1

dR3
dx

= − η
2εη−η+1

dR3
dy

= 1
2 −

ξ− 1
2

2εη−η+1
dR4
dx

= η
2εη−η+1

dR4
dy

= ξ− 1
2

2εη−η+1 + 1
2

To find the Jacobian matrix (Jx,ξ)−T we first use that

dξ
dx

=
(

dx
dξ

)−1

=
[dξ

dx
dξ
dy

dη
dx

dη
dy

]
=
[1

2εη−η+1 −
(2ε−1)(2ξ−1)
2(2εη−η+1)

0 1

]
.

(Jx,ξ)−T is thus given by

(Jx,ξ)−T =
 1

2εη−η+1 0
− (2ε−1)(2ξ−1)

2(2εη−η+1) 1

 ,

yielding the derivatives with respect to x and y as shown in Table 6.5. We see that when
η = 1, G→ ±∞ as ε→ 0. When ε = 0 G is not defined. The derivatives with respect to
x and y will in consequence either not be defined.

We will do further analysis of the derivatives. Consider the derivatives with respect
to x and y when ε = 0;

dR1

dx
= −1, dR1

dy
= −1

2 ,

dR2

dx
= 1, dR2

dy
= −1

2 ,

dR3

dx
= − η

−η + 1 ,
dR3

dy
= 1

2 −
ξ − 1

2
−η + 1 ,

dR4

dx
= η

−η + 1 ,
dR4

dy
=

ξ − 1
2

−η + 1 + 1
2 .

We observe that dR1
dx

, dR1
dy

, dR2
dx

and dR2
dy

are in H1. Now we want to find out whether
or not dR3

dx
, dR3

dy
, dR4

dx
, dR4

dy
are in H1. Integrating the square of the derivatives over the

46 6.1 Triangle, degenerated quadrilateral

computational domain gives
∫ 1

0

∫ 1

0

(
dR3

dx

)2

dηdξ =
∫ 1

0

∫ 1

0

η2

(−η + 1)2dηdξ =
∫ 1

0

∫ 1

0
1 + 2(η − 1) + 1

(−η + 1)2 dηdξ

=
[
η − 2 ln(1− η) + 1

1− η

]1

0
= lim

a→0

(
−2 ln(a) + 1

a

)
→∞

∫ 1

0

∫ 1

0

(
dR3

dy

)2

dηdξ =
∫ 1

0

∫ 1

0

(
1
2 −

ξ − 1
2

−η + 1

)2

dηdξ =
∫ 1

0

1
4 + 1

12(1− η)2dη

= 1
4 +

[
1

12(1− η)

]1

0
= 1

4 + 1
12 · lima→0

(1
a

)− 1
12 →∞∫ 1

0

∫ 1

0

(
dR4

dx

)2

dηdξ =
∫ 1

0

∫ 1

0

η2

(−η + 1)2dηdξ =
[
η − 2 ln(1− η) + 1

1− η

]1

0
→∞

∫ 1

0

∫ 1

0

(
dR4

dy

)2

dηdξ =
∫ 1

0

∫ 1

0

(
1
2 +

ξ − 1
2

−η + 1

)2

dηdξ = 1
4 + 1

12 · lima→0
(1
a

)− 1
12 →∞

Hence, dR3
dx

, dR3
dy

, dR4
dx

, dR4
dy

/∈ H1. Our basis functions can as a consequence not be used as
a basis in finite element analysis.

As with bilinear Lagrange basis functions we try to form a new set of basis functions
by summing the basis functions and the derivatives at the degenerated line, yielding

Rc = R3 +R4 = −η(ξ − 1) + ηξ = η,

dRc

dx
= dR3

dx
+ dR4

dx
= − η

2εη − η + 1 + η

2εη − η + 1 = 0,

dRc

dy
= dR3

dy
+ dR4

dy
= 1

2 −
ξ − 1

2
2εη − η + 1 +

ξ − 1
2

2εη − η + 1 + 1
2 = 1.

We see that Rc is a valid basis function and that Rc, dRcdx and dRc
dy

are in H1. If we rather
use the basis functions Ra = R1, Rb = R2 and Rc to represent the triangle, all basis
function will be in H1.

Numerical results

We have solved this case with ε = 0 symbolically in MATLAB. Figure 6.5 shows the
control points and the points that are used in visualizations.

Figure 6.6 shows the Jacobian Jx,ξ plotted both in the physical space and the parameter
space. We observe that the mapping is singular at the point c of the triangle and for η = 1.

Figure 6.7 shows the basis functions R1, . . . , R4 in the parameter space. The basis
functions are equal to one at "its corner" and equal to zero at all other corners. The basis
functions are apparently representing the parameter space correctly.

Figure 6.8 shows the basis functions R1, . . . , R4 in the physical space. We observe that
R3 and R4, because of the degeneracy, are not representing the physical space very well.
In accordance with our hypothesis, we have summed the basis functions R3 and R4. The
sum, Rc, is shown in Figure 6.9. We see that Rc is a valid basis function.

6.1.2 Bilinear B-spline basis functions 47

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Control net

x

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Physical mapping

x

y

Figure 6.5: Control net and visualization points.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

Jacobian

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

xi

Jacobian
et
a

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6.6: Jacobian Jx,ξ in physical space and parameter space.

Figure 6.10 shows the derivatives of the basis functions R1, . . . , R4 with respect to x.
We see that, as expected, dR3

dx
and dR4

dx
are tending to ±∞ and are not defined as η → 1.

As they are not defined at η = 1 and η = 0.95 is our last visualization point, MATLAB
are not able to plot the basis functions in the area [0.95 < η ≤ 1]. If our visualization
point had been closer to η = 1 we would have see that the derivatives would grow very
big. They are tending to infinity, but MATLAB have difficulties plotting that. Figure
6.11 shows the derivatives of the basis functions R1, . . . , R4 with respect to y. Similarly
as for the derivatives with respect to x, we see that dR3

dy
and dR4

dy
are tending to ±∞ and

are not defined as η → 1.
Figure 6.12 shows dRc

dx
= dR3

dx
+ dR4

dx
and dRc

dy
= dR3

dy
+ dR4

dy
. We see that dRc

dx
and dRc

dy

are defined everywhere and are, as expected, equal to zero and one. To calculate dRc
dx

and
dRc
dy

we have summed the terms symbolically in MATLAB before evaluating them. If we
had evaluated the derivatives before adding them, dRc

dx
and dRc

dy
would not be defined. To

obtain the correct expressions for dRc
dx

and dRc
dy

we need to exploit the fact that the terms
in dR3

dx
, dR4

dx
, dR3

dy
and dR4

dy
that are not defined as η = 1 will cancel when we add them. To

illustrate this we will consider a simpler example; Let F1 = 1
x
, F2 = − 1

x
and F3 = x. The

48 6.1 Triangle, degenerated quadrilateral

0
0.5

1

0

0.5

1
0

0.5

1

xi

R4

eta
0

0.2

0.4

0.6

0.8

1

0
0.5

1

0
0.5

1
0

0.5

1

xi

R3

eta
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

R1

xi

eta 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
0.5

1

0
0.5

1
0

0.5

1

xi

R2

eta
0

0.2

0.4

0.6

0.8

1

Figure 6.7: The basis functions R1, R2 R3 and R4 in the parameter space.

sum F = F1 + F2 + F3 evaluated in x = 0 is thus given by

F = F1 + F2 + F3 = 1
x
− 1
x

+ x = x = 0.

If we had evaluated the individual terms in x = 0 before adding them we would obtain

F = F1 + F2 + F3 = NAN −NAN + x = NAN.

NAN is an abbreviation for not a number. Hence, from a computational point of view,
for instance when programming in MATLAB, F would not be defined, even though we
know perfectly well that F is continuous and defined for all x. We thus have to be aware
of how we performing the analysis, such that we add the basis functions before evaluating
them. In MATLAB we have solved this issue by utilizing the symbolic toolbox, more
precisely syms, vpa, eval and simple [28]. The downsides of symbolic calculations are that
the running time is increasing tremendously and that we consequently won’t be able to
perform complex or huge analysis.

6.1.2 Bilinear B-spline basis functions 49

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

R4

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

R3

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

R1

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

R2
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6.8: The basis functions R1, R2 R3 and R4 in the physical space.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

Rc

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6.9: Rc, the sum of basis functions at the degenerated side.

50 6.1 Triangle, degenerated quadrilateral

0

0.5

1

0
0.2

0.4
0.6

0.8
1

−20

−15

−10

−5

0

x

dR4dx

y

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

0

0.5

1

00.20.40.60.81
0

5

10

15

20

x

dR3dx

y

0

2

4

6

8

10

12

14

16

18

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

dR1dx

−1.5

−1

−0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

dR2dx

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 6.10: Derivatives of basis functions with respect to x.

6.1.2 Bilinear B-spline basis functions 51

0
0.5

1

00.20.40.60.81
−10

−5

0

5

10

15

x

dR4dy

y

−8

−6

−4

−2

0

2

4

6

8

10

0

0.5

1

00.20.40.60.81
−10

−5

0

5

10

15

x

dR3dy

y

−8

−6

−4

−2

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

dR1dy

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y
dR2dy

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 6.11: Derivatives of basis functions with respect to y.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

dRdxsum

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

dRdysum

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 6.12: dRc
dx

and dRc
dy

, the sum of the derivatives at the degenerated side.

52 6.1 Triangle, degenerated quadrilateral

ξ

η η

ξ1 2

34

1 25

6

7

8 9 6

5

8 9

(1,1) (0.5+ε,1)

(1,0)(0,0)

η

ξa b

c

e

d

f g

(0.5,1)

(1,0)(0,0)

374
(0.5-ε,1)

(0,0)

Figure 6.13: Degenerating a quadrilateral; geometry and numbering for quadratic basis
functions.

Table 6.6: Control net Bi,j for modeling the degenerated quadrilateral with quadratic
basis functions.

(i,j) Control point Bi,j Weight wij (ξ, η)
(1,1) (0,0) 1 (0,0)
(2,1) (0.5,0) 1 (0.5,0)
(3,1) (1,0) 1 (1,0)
(1,2) (0.25,0.5) 1 (0,0.5)
(2,2) (0.5,0.5) 1 (0.5,0.5)
(3,2) (0.75,0.5) 1 (1,0.5)
(1,3) (0.5-ε,1) 1 (0,1)
(2,3) (0.5,1) 1 (0.5,1)
(3,3) (0.5+ε,1) 1 (1,1)

6.1.3 Quadratic B-spline basis functions

We have also looked at the same case utilizing quadratic basis functions to study if the
behaviour is similar. Consider the degenerated quadrilateral given in Figure 6.13. The
triangle in Figure 6.13 with ε→ 0 is modeled by the knot vectors

Ξ = {0, 0, 0, 1, 1, 1},
H = {0, 0, 0, 1, 1, 1},

and the control net and weights given in Table 6.6.

6.1.3 Quadratic B-spline basis functions 53

Table 6.7: Derivatives with respect to ξ and η.
dR1
dξ

= 2(η − 1)2(ξ − 1) dR1
dη

= 2(η − 1)(ξ − 1)2

dR2
dξ

= 2ξ(η − 1)2 dR2
dη

= 2ξ2(η − 1)
dR3
dξ

= 2η2ξ dR3
dη

= 2ηξ2

dR4
dξ

= 2η2(ξ − 1) dR4
dη

= 2η(ξ − 1)2

dR5
dξ

= −2(2ξ − 1)(η − 1)2 dR5
dη

= −4ξ(η − 1)(ξ − 1)
dR6
dξ

= −4ηξ(η − 1) dR6
dη

= 2ξ2(2η − 1)
dR7
dξ

= −2η2(2ξ − 1) dR7
dη

= −4ηξ(ξ − 1)
dR8
dξ

= −4η(η − 1)(ξ − 1) dR8
dη

= −2(2η − 1)(ξ − 1)2

dR9
dξ

= 4η(2ξ − 1)(η − 1) dR9
dη

= 4ξ(2η − 1)(ξ − 1)

The quadratic B-spline basis functions are in the parameter space given by

R1 = (η − 1)2(ξ − 1)2,

R2 = ξ2(η − 1)2,

R3 = η2ξ2,

R4 = η2(ξ − 1)2,

R5 = −2ξ(η − 1)2(ξ − 1),
R6 = −2ηξ2(η − 1),
R7 = −2η2ξ(ξ − 1),
R8 = −2η(η − 1)(ξ − 1)2,

R9 = 4ηξ(η − 1)(ξ − 1).

The derivatives with respect to ξ and η are given in Table 6.7.
We have that

dx
dξ

=
[dx

dξ
dx
dη

dy
dξ

dy
dη

]
=
[

2εη2 − η + 1 (4εη−1)(2ξ−1)
2

0 1

]
,

resulting in the Jacobian

Jx,ξ =
∣∣∣∣∣dx
dξ

∣∣∣∣∣ = 2εη2 − η + 1.

When ε = 0 and η = 1, Jx,ξ is zero. Consequently, the mapping will be singular at the
point c corresponding to the degenerated line, similarly as for the bilinear basis functions.

To find the Jacobian matrix (Jx,ξ)−T we use that

dξ
dx

=
(

dx
dξ

)−1

=
[dξ

dx
dξ
dy

dη
dx

dη
dy

]
=
[1

2εη2−η+1 −
(4εη−1)(2ξ−1)
2(2εη2−η+1)

0 1

]
.

(Jx,ξ)−T is thus given by

(Jx,ξ)−T =
 1

2εη2−η+1 0
− (4εη−1)(2ξ−1)

2(2εη2−η+1) 1

 ,
yielding the derivatives with respect to x and y as shown in Table 6.8. We see that when

54 6.1 Triangle, degenerated quadrilateral

Table 6.8: Derivatives with respect to x and y.
dR1
dx

= 2(η−1)2(ξ−1)
2εη2−η+1

dR1
dy

= − (η−1)(ξ−1)(4εη−η+4εη2ξ−8εηξ+1)
2εη2−η+1

dR2
dx

= 2ξ(η−1)2

2εη2−η+1
dR2
dy

= − ξ(η−1)(η+4εη−4εη2+4εη2ξ−8εηξ−1)
2εη2−η+1

dR3
dx

= 2η2ξ
2εη2−η+1

dR3
dy

= −ηξ(η−2ξ−4εη2+4εη2ξ)
2εη2−η+1

dR4
dx

= 2η2(ξ−1)
2εη2−η+1

dR4
dy

= η(ξ−1)(−4εξη2+η+2ξ−2)
2εη2−η+1

dR5
dx

= −2(2ξ−1)(η−1)2

2εη2−η+1
dR5
dy

= − (η−1)(η+4εη−4εη2+16εηξ2+8εη2ξ−8εη2ξ2−16εηξ−1)
2εη2−η+1

dR6
dx

= − 4ηξ(η−1)
2εη2−η+1

dR6
dy

= 2ξ(2ξ−1)(η−1)(η−2)
2εη2−η+1 − 2ξ(2η + 3ξ − 2ηξ − 2)

dR7
dx

= −2η2(2ξ−1)
2εη2−η+1

dR7
dy

= 8η3ξ2−8η3ξ+4η3

2η2 + η(2ξ−1)2(η−2)
2εη2−η+1

dR8
dx

= −4η(η−1)(ξ−1)
2εη2−η+1

dR8
dy

= 2(ξ − 1)(2ηξ − 3ξ + 1) + 2(2ξ−1)(η−1)(η−2)(ξ−1)
2εη2−η+1

dR9
dx

= 4η(2ξ−1)(η−1)
2εη2−η+1

dR9
dy

= 8ηξ − 12ξ − 4η − 8ηξ2 + 12ξ2 − 2(2ξ−1)2(η−1)(η−2)
2εη2−η+1 + 4

Table 6.9: Analysis of the derivatives.∫ 1
0
∫ 1

0

(
dR1
dx

)2
dηdξ = 4

9
∫ 1

0
∫ 1
0

(
dR1
dy

)2
dηdξ = 1

9∫ 1
0
∫ 1

0

(
dR2
dx

)2
dηdξ = 4

9
∫ 1

0
∫ 1
0

(
dR2
dy

)2
dηdξ = 1

9∫ 1
0
∫ 1

0

(
dR3
dx

)2
dηdξ =∞

∫ 1
0
∫ 1
0

(
dR3
dy

)2
dηdξ =∞∫ 1

0
∫ 1

0

(
dR4
dx

)2
dηdξ =∞

∫ 1
0
∫ 1
0

(
dR4
dy

)2
dηdξ =∞∫ 1

0
∫ 1

0

(
dR5
dx

)2
dηdξ = 4

9
∫ 1

0
∫ 1
0

(
dR5
dy

)2
dηdξ = 67

3 − 32 ln(2)∫ 1
0
∫ 1

0

(
dR6
dx

)2
dηdξ = 16

9
∫ 1

0
∫ 1
0

(
dR6
dy

)2
dηdξ = 11

45∫ 1
0
∫ 1

0

(
dR7
dx

)2
dηdξ =∞

∫ 1
0
∫ 1
0

(
dR7
dy

)2
dηdξ =∞∫ 1

0
∫ 1

0

(
dR8
dx

)2
dηdξ = 16

9
∫ 1

0
∫ 1
0

(
dR8
dy

)2
dηdξ = 11

45∫ 1
0
∫ 1

0

(
dR9
dx

)2
dηdξ = 16

9
∫ 1

0
∫ 1
0

(
dR9
dy

)2
dηdξ = 8

15

η = 1, G → ±∞ as ε → 0. When ε = 0, G is not defined. The derivatives with respect
to x and y will in consequence not be defined either.

We will do further analysis of the derivatives in the same way as we did with the
derivatives of the bilinear basis functions. We have considered the derivatives with re-
spect to x and y when ε = 0 and have integrated the square of the derivatives over the
computational domain. The result is given in Table 6.9.

We observe that dR4
dx

,dR7
dx

,dR3
dx

,dR4
dy

,dR7
dy

,dR3
dy

/∈ H1. The quadratic basis functions can as
a consequence not be used as a basis in finite element analysis.

We try to form a new set of basis functions by summing the basis functions and the
derivatives at the degenerated line, yielding

Rc = R4 +R7 +R3 = η2(ξ − 1)2 − 2η2ξ(ξ − 1) + η2ξ2 = η2,

dRc

dx
= dR4

dx
+ dR7

dx
+ dR3

dx
= 2η2(ξ − 1)

2εη2 − η + 1 −
2η2(2ξ − 1)
2εη2 − η + 1 + 2η2ξ

2εη2 − η + 1 = 0,

dRc

dy
= dR4

dy
+ dR7

dy
+ dR3

dy
= 2η.

We see that Rc is a valid basis function and that Rc, dRcdx and dRc
dy

are in H1. If we rather

6.1.3 Quadratic B-spline basis functions 55

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Control net

x

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Physical mapping

x

y
Figure 6.14: Control net and visualization points.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

Jacobian

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

xi

Jacobian
et
a

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6.15: Jacobian Jx,ξ in physical space and parameter space.

use the basis functions Ra = R1, Rb = R2, Rc, Rd = R5, Re = R6, Rf = R8 and Rg = R9
to represent the triangle, all basis function will be in H1.

Numerical results

We have solved this case with ε = 0 symbolically in MATLAB. Figure 6.14 shows the
control points and the points that are used in visualizations.

Figure 6.15 shows the Jacobian Jx,ξ plotted both in the physical space and the param-
eter space. We observe that the mapping is singular at the point c of the triangle and for
η = 1.

Figure 6.16 shows the basis functions R1, . . . , R9 in the parameter space. The basis
functions are apparently representing the space correctly.

Figure 6.17 shows the basis functions R1, . . . , R9 in the physical space. We observe
that R3, R4 and R7 not are representing the physical space very well. We have summed
the basis functions R3, R4 and R7. The sum, Rc, is shown in Figure 6.18. We see that Rc

is a valid basis function.

56 6.1 Triangle, degenerated quadrilateral

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

xi

R4

eta
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.1

0.2

0.3

0.4

0.5

xi

R7

eta
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

xi

R3

eta
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.1

0.2

0.3

0.4

0.5

xi

R8

eta
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.05

0.1

0.15

0.2

0.25

xi

R9

eta
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.1

0.2

0.3

0.4

0.5

xi

R6

eta
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

xi

R1

eta
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.1

0.2

0.3

0.4

0.5

xi

R5

eta
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

xi

R2

eta
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6.16: The quadratic basis functions R1, . . . , R9 in the parameter space.

Figure 6.19 shows the derivatives of the basis functions R1, . . . , R9 with respect to x.
We see that, as expected, dR4

dx
, dR4

dx
and dR7

dx
are tending to ±∞ and are not defined as

η → 1. Figure 6.20 shows the derivatives of the basis functions R1, . . . , R9 with respect
to y. Similarly as for the derivatives with respect to x, we see that dR3

dy
, dR4

dy
and dR7

dy
are

tending to ±∞ and are not defined as η → 1. Figure 6.21 shows dRc
dx

= dR3
dx

+ dR4
dx

+ dR7
dx

and dRc
dy

= dR3
dy

+ dR4
dy

+ dR7
dy

. We see that dRc
dx

and dRc
dy

are defined everywhere and are, as
expected, equal to zero and 2η.

6.1.3 Quadratic B-spline basis functions 57

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

R4

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

R7

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

R3

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

R8

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

R9
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

R6

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

R1

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

R5

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

R2

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6.17: The quadratic basis functions R1, . . . , R9 in the physical space.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

Rc

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6.18: Rc, the sum of basis functions at the degenerated side.

58 6.1 Triangle, degenerated quadrilateral

0

0.5

1

00.20.40.60.81
−40

−35

−30

−25

−20

−15

−10

−5

0

x

dR4dx

y

−35

−30

−25

−20

−15

−10

−5

0

0

0.5

1

0

0.5

1
−40

−20

0

20

40

x

dR7dx

y

−30

−20

−10

0

10

20

30

0 0.2
0.4

0.6
0.8 1

0

0.5

1
0

5

10

15

20

25

30

35

40

x

dR3dx

y

5

10

15

20

25

30

35

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

dR8dx

y

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

dR9dx

y

−4

−3

−2

−1

0

1

2

3

4

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

dR6dx

y

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

dR1dx

y

−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

dR5dx

y

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

dR2dx

y

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 6.19: Derivatives of the basis functions with respect to x.

6.1.3 Quadratic B-spline basis functions 59

0

0.5

1

00.20.40.60.81
−5

0

5

10

15

20

x

dR4dy

y

−2

0

2

4

6

8

10

12

14

16

18

0

0.5

1

0

0.5

1
−20

−15

−10

−5

0

5

x

dR7dy

y
−18

−16

−14

−12

−10

−8

−6

−4

−2

0

0
0.5

1

00.20.40.60.81
−5

0

5

10

15

20

x

dR3dy

y

−2

0

2

4

6

8

10

12

14

16

18

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

dR8dy

y

−0.5

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

dR9dy
y

−2

−1.5

−1

−0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

dR6dy

y

−0.5

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

dR1dy

y

−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

dR5dy

y

−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

dR2dy

y

−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Figure 6.20: Derivatives of the basis functions with respect to y.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

dRcdx

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

dRcdy

y

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 6.21: dRc
dx

and dRc
dy

, the sum of the derivatives at the degenerated side.

60 6.2 Discussion

6.2 Discussion
In this chapter we have considered a quadrilateral that was degenerated to a triangle. We
observed that the original quadrilateral had the same number of basis functions as the
number of degrees of freedom. When two or more control points coincided our mapping got
degenerated and the number of degrees of freedom was reduced. When the quadrilateral
was degenerated, but was spanned by the same set of basis functions, the number of basis
functions were greater than the number of degrees of freedom. We found that the first
derivatives of the basis functions at the degeneracy were infinite. Consequently, the basis
functions were no longer in H1. Because of that our degenerated quadrilateral could not
be considered as a proper finite element, and the finite element method could not be
applied.

We observed that if we added the basis functions spanning the line that was degener-
ated to a point, we could form a new set of basis functions. The new set of basis functions
were then all in H1 and the number of basis functions were the same as the number of de-
grees of freedom. The new set of basis functions was also equal to the basis functions of a
triangle. The degenerated quadrilateral was thus a proper finite element. Based on these
observations we came up with a hypothesis saying that when a mapping is degenerated
we need to redefine the set of basis functions, with the new set of basis functions being
formed by adding the basis functions corresponding to the degeneracy. We now want to
discuss this hypothesis further.

We start by looking at the properties of the new set of basis functions. Recall that
our original set of basis functions R = {R1, . . . , Rn} are non-negative and that they form
a partition of unity, i.e.

Ri(ξ) ≥ 0 ∀ξ,
n∑
i=1

Ri(ξ) = 1.

Our new set of basis function, R̃ = {R̃1 = R1, R̃k = (Ri + Rj 6=i), . . . , R̃m = Rn} will
possess the same properties since

R̃k = Ri︸︷︷︸
≥0

+ Rj︸︷︷︸
≥0

≥ 0,

m∑
i=1

R̃i =
n∑
i=1

Ri = 1.

The new set of basis functions are still non-negative and form a partition of unity, indi-
cating that our new basis is a valid basis.

We are now going to study if our element domain still is a proper finite element after it
has been degenerated. Confirm the definition of a finite element in Chapter 3.4. Consider
the finite element (K,P ,N) where P is the set of all bilinear polynomials of degree less
than or equal to k. Assume that the element domain, K, is degenerated due to coinciding
control variables, Ni = Nj ∈ N . The dimension of P ′ is then reduced as the degrees of
freedom is reduced. The dimension of P is then no longer equal to the dimension of P ′,
and our basis is no longer linear independent as dimN 6= dimP .

In this particular case our basis functions were no longer in H1 after degenerating from
a quadrilateral to a triangle. In consequence, we are no longer considering the variational

61

problem (3.1) as the assumption now are violated. The bilinear form a(·, ·) is not bounded
on V and is not in V ′. Due to the fact that the basis functions are not in H1, the finite
element method could not be applied. Forming a new set of basis functions as explained
earlier would in this case solve the problems caused by the degenerated mapping. It still
remains to prove if this approach is general and will generate valid basis functions for all
types of degenerated mappings.

62 6.2 Discussion

Chapter 7

Numerical results

7.1 Circular surface
We want to model a circular surface by the knot vectors

Ξ = {0, 0, 0, 0.25, 0.25, 0.5, 0.5, 0.75, 0.75, 1, 1, 1},
H = {0, 0, 1, 1},

of order p = 2 and q = 1 respectively. The control net and weights are given in Table 7.1.
The control net and the physical mapping are shown in Figure 7.1. The circular surface
consists of four knot spans, as shown in the figure of the physical mapping. The basis
functions have a different expression in each knot span. As we have four knot spans, each
basis function will be given by a unique polynomial in each of the four non-overlapping
intervals corresponding to the knot spans. When we are calculating the basis functions
symbolically, we therefore only need to find the expression for the basis functions in each
knot span, and not in all the visualization points.

Figure 7.2 shows the Jacobian Jx,ξ plotted in the physical space. We observe that
the mapping is singular where we have coinciding control points. Some of the derivatives
with respect to the physical coordinates x and y are shown in Figure 7.3. We see that
the derivatives are tending to ±∞ at the center of the circle, due to the inverse of the
Jacobian tending to infinity. As we are not able to plot values that huge in MATLAB,

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Control net

x

y

Figure 7.1: Control net and physical mapping.

63

64 7.1 Circular surface

Table 7.1: Control net Bi,j

(i,j) Control point Bi,j Weight wij
(1,1) (0,0) 1
(2,1) (0,0) 1
(3,1) (0,0) 1
(4,1) (0,0) 1
(5,1) (0,0) 1
(6,1) (0,0) 1
(7,1) (0,0) 1
(8,1) (0,0) 1
(9,1) (0,0) 1
(1,2) (1,0) 1
(2,2) (1,1) 1√

2
(3,2) (0,1) 1
(4,2) (-1,1) 1√

2
(5,2) (-1,0) 1
(6,2) (-1,-1) 1√

2
(7,2) (0,-1) 1
(8,2) (1,-1) 1√

2
(9,2) (1,0) 1

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

Jacobian

y

1

2

3

4

5

6

7

Figure 7.2: Jacobian Jx,ξ in the physical space.

we see a hole in the circular surface at the origin. Notice that the Jacobian is dependent
on the angle θ. The knot spans are symmetric, but within each knot span, the mapping
is dependent of both r and θ. Even though the knot vector is uniform, the quadratic
parametrization is not uniform in the physical space.

If we as explained in Chapter 6 sum the nine basis functions at the middle of the
circle, we get the new basis function Rsum, as shown in Figure 7.4. We see that Rsum is
a valid basis function. As we have four knot spans we need to calculate four expressions

65

for Rsum. Doing that we find that Rsum is given by

Rsum =



− r−1
−4 r (4

√
2−8) (θ

2π)2
+4 r (√2−2) (θ

2π)+1
if 0 ≤ θ < π

2
r−1

4 r (4
√

2−8) (θ
2π)2

−4 r (3
√

2−6) (θ
2π)+4 r

(√
2

2 −1
)
−1

if π
2 ≤ θ < π

r−1
4 r (4

√
2−8) (θ

2π)2
−4 r (5

√
2−10) (θ

2π)+4 r
(

3
√

2
2 −3

)
−1

if π ≤ θ < 3π
2

r−1
4 r (4

√
2−8) (θ

2π)2
−4 r (7

√
2−14) (θ

2π)+4 r (3
√

2−6)−1
if 3π

2 ≤ θ < 2π

for 0 ≤ r ≤ 1. We see that the basis function is dependent of the angle. A rational
B-spline representation of a circle is geometrically exact, but the parametrization is not
uniform. We have parametrized the circle using uniform knot vectors. However, the
quadratic parametrization will not be uniform in the physical space. Therefore, our basis
functions will be dependent on the angle.

We have also summed the derivatives of the basis function at the degenerated mapping
in the middle of the circle symbolically. The summed derivatives are shown from different
angles in Figure 7.5 and 7.6. We see that the derivatives of Rsum with respect to x and
y are finite and are C0-continuous at the origin. Using this approach and forming a new
set of basis functions will hence make us able to calculate the correct derivatives in the
middle of the circle. We are thus able to calculate stresses correctly, and are not obtaining
non-physical singularities due to a degenerated mapping.

66 7.1 Circular surface

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1
−2

0

2

4

6

8

10

x

dRdx(1,1)

y
−1

0

1

2

3

4

5

6

7

8

9

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1
−10

0

10

20

30

x

dRdx(2,1)

y
−5

0

5

10

15

20

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1
−30

−20

−10

0

10

20

30

x

dRdx(3,1)

y
−25

−20

−15

−10

−5

0

5

10

15

20

25

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1
−30

−20

−10

0

10

x

dRdx(4,1)

y

−25

−20

−15

−10

−5

0

5

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1
−10

−8

−6

−4

−2

0

2

x

dRdx(5,1)

y
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1
−30

−20

−10

0

10

x

dRdx(6,1)

y

−20

−15

−10

−5

0

5

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1
−30

−20

−10

0

10

20

30

x

dRdx(7,1)

y
−25

−20

−15

−10

−5

0

5

10

15

20

25

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1
−10

0

10

20

30

x

dRdx(8,1)

y
−5

0

5

10

15

20

25

Figure 7.3: Some of the derivatives with respect to x. We see that the derivatives tend to
±∞.

67

Figure 7.4: Rsum, the sum of basis functions at the degenerated point in the middle of the
circle.

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

y

d(Rsum)/dx

x

z

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1

−1

0

1
−1

−0.5

0

0.5

1

y
x

d(Rsum)/dx

z

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1

0

1

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1

y

d(Rsum)/dx

x

z

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

d(Rsum)/dx

x

y

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 7.5: dRsum
dx

, the sum of the derivatives with respect to x at the degenerated point in
the middle of the circle.

68 7.1 Circular surface

−1−0.500.51
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

d(Rsum)/dy

y

z

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1

0

1

−1

0

1
−1

−0.5

0

0.5

1

y

d(Rsum)/dy

x

z

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1

0

1

−1

0

1
−1

−0.5

0

0.5

1

x

d(Rsum)/dy

y

z

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1−0.500.51

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

d(Rsum)/dy

y

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 7.6: dRsum
dy

, the sum of the derivatives with respect to y at the degenerated point in
the middle of the circle.

69

Figure 7.7: Infinite plate with circular hole.

Table 7.2: Problem description.
Tx = 10.0
R = 1
L = 4
E = 105

ν = 0.3
r2 = x2+y2

θ = arctan(y, x)

7.2 Infinite plate with circular hole

To verify that our MATLAB-code is correct we have for one thing looked at a already
solved linear elasticity problem, the infinite plate with a circular hole. We will solve the
equations

∇ · σ(u) = 0 in Ω, (7.1)
u = gD on ΓD, (7.2)

σ · n = gN on ∂ΓN . (7.3)

We have considered the same control net, weights and boundary conditions as employed
in [17] and [16]. The problem is shown in Figure 7.7. Due to symmetry we need only to
consider the area shown in blue. The part of the plate we are looking at is a square of
length L = 4 with one fourth of the circular hole with radius R = 1. We have set Young’s
modulus to E = 105 and Poisson’s ration to ν = 0.3. We also use the relations r2 = x2+y2

and θ = arctan(y, x). Table 7.2 summarizes the quantities used in our problem.

70 7.2 Infinite plate with circular hole

Table 7.3: Control net Bi,j

i/j 1 2 3
1 (-1,0) (-2.5,0) (-4,0)
2 (-1,

√
2-1) (-2.5,0.75) (-4,4)

3 (1-
√

2,1) (-0.75,2.5) (-4,4)
4 (0,1) (0,2.5) (0,4)

Table 7.4: Weights
(i,j) 1 2 3
1 1 1 1
2 s 1 1
3 s 1 1
4 1 1 1

At the arc of the circle we have Neumann boundary conditions σ · n = 0. Recall that

σ =

 σxx
σyy
σxy

 .
At the connected boundary in y-direction we have boundary conditions ux = 0 and ty = 0.
At the connected boundary in x-direction we have uy = 0 and tx = 0, cf. Figure 7.7.
At the two remaining sides we have prescribed traction with Tx = 10.0. As our plate is
infinite we can use the exact solution to calculate the prescribed traction [21]. The exact
solution is given by [35]

σxx = Tx ·
{

1− R2

r2

(3
2 cos(2θ) + cos(4θ)

)
+ 3R4

2r4 cos(4θ)
}
,

σyy = Tx ·
{
−R

2

r2

(1
2 cos(2θ)− cos(4θ)

)
− 3R4

2r4 cos(4θ)
}
,

σxy = Tx ·
{
−R

2

r2

(1
2 sin(2θ) + sin(4θ)

)
+ 3R4

2r4 sin(4θ)
}
,

with r, R and θ as in Figure 7.7 and Table 7.2.
To solve our problem we employ the knot vectors

Ξ = {0, 0, 0, 0.5, 1, 1, 1},
H = {0, 0, 0, 1, 1, 1},

of order p = q = 2 and the control net given in Table 7.3. The corresponding weights are
given in Table 7.4, where s = 1

2(1 + 1√
2). The control net and physical mapping is shown

in Figure 7.8. Notice that we will have a singularity at (−4, 4) resulting in the Jacobian
Jx,ξ being equal to zero at that point, see Figure 7.9.

Figure 7.10 shows the displacements. Notice that the displacement in x-direction is
zero at x = 0 and that the displacement in y-direction is zero at y = 0, as given in the
boundary conditions. From our boundary conditions it is also expected that we have a
greater displacement in the x-direction than in the y-direction.

71

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
0

0.5

1

1.5

2

2.5

3

3.5

4
Control net

x

y

(a) Control net.

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
0

0.5

1

1.5

2

2.5

3

3.5

4
Physical mapping

x

y

(b) Physical mapping.

Figure 7.8: Control net and physical mapping for Ξ = {0, 0, 0, 0.5, 1, 1, 1}, H =
{0, 0, 0, 1, 1, 1}.

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
0

0.5

1

1.5

2

2.5

3

3.5

4

x

Jacobian

y

0

5

10

15

20

25

30

35

40

45

Figure 7.9: Jacobian Jx,ξ in the physical space.

We want to solve this issue by summing the two basis functions belonging to the
degenerated point. Figure 7.12 shows the two basis functions before and after we have
added them in Rsum.

Figure 7.13 shows the derivatives of Rsum with respect to x and y from different angles.
We see that the derivatives are smooth and finite.

We have done refinements by inserting new knots and have calculated the stresses.
Figures 7.15, 7.16 and 7.17 shows the stresses σxx, σyy and σxy before and after refinements.
The new control net is shown in Figure 7.14. We can compared our solution against the
exact solution which is also shown in the figures 7.15, 7.16 and 7.17.

72 7.2 Infinite plate with circular hole

Figure 7.10: Displacement in x- and y-direction when Tx = 10.0.

Figure 7.11: Derivatives of the basis functions at the degenerated point.

73

Figure 7.12: Rsum is shown at the bottom figure and is the sum of the two basis functions
shown above.

74 7.2 Infinite plate with circular hole

−4 −3 −2 −1 0
0

0.5

1

1.5

2

2.5

3

3.5

4

x

d(Rsum)\dx

y

−0.25

−0.2

−0.15

−0.1

−0.05

0

−4 −3 −2 −1 0
0

0.5

1

1.5

2

2.5

3

3.5

4

x

d(Rsum)/dy

y

0

0.05

0.1

0.15

0.2

0.25

−4
−3.5

−3
−2.5

−2
−1.5

−1
−0.5

0

0

1

2

3

4

−0.2

−0.1

0

x

d(Rsum)\dx

y

z

−0.25

−0.2

−0.15

−0.1

−0.05

0

−4

−2

0 0
1

2
3

40

0.05

0.1

0.15

0.2

y

d(Rsum)/dy

x

0

0.05

0.1

0.15

0.2

0.25

−4−3.5−3−2.5−2−1.5−1−0.50

0

2

4
−0.25

−0.2

−0.15

−0.1

−0.05

0

y

x

d(Rsum)\dx

z

−0.25

−0.2

−0.15

−0.1

−0.05

0

−4

−3

−2

−1

0 0
1

2
3

4

0

0.1

0.2

y

d(Rsum)/dy

x 0

0.05

0.1

0.15

0.2

0.25

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−0.25

−0.2

−0.15

−0.1

−0.05

0

x

d(Rsum)\dx

z

−0.25

−0.2

−0.15

−0.1

−0.05

0

0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

y

d(Rsum)/dy

0

0.05

0.1

0.15

0.2

0.25

Figure 7.13: dRsum
dx

and dRsum
dy

, the summed derivatives of the basis functions at the degen-
erated point.

75

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
0

0.5

1

1.5

2

2.5

3

3.5

4
Control net

x

y

Figure 7.14: Control net after refinement by knot insertion.

(a) Numerical stress σxx when
Ξ = {0, 0, 0, 0.5, 1, 1, 1} and
H = {0, 0, 0, 1, 1, 1}

(b) Numerical stress σxx after refinements

(c) Exact stress σxx

Figure 7.15: Numerical and exact stress σxx.

76 7.2 Infinite plate with circular hole

(a) Numerical stress σyy when Ξ =
{0, 0, 0, 0.5, 1, 1, 1} and H = {0, 0, 0, 1, 1, 1}

(b) Numerical stress σyy after refinements

(c) Exact stress σyy

Figure 7.16: Numerical and exact stress σyy.

77

(a) Numerical stress σxy when Ξ =
{0, 0, 0, 0.5, 1, 1, 1} and H = {0, 0, 0, 1, 1, 1}

(b) Numerical stress σxy after refinements

(c) Exact stress σxy

Figure 7.17: Numerical and exact stress σxy when Tx = 10.0.

78 7.2 Infinite plate with circular hole

Chapter 8

Concluding remarks

In this thesis we have programmed a NURBS isogeometric finite element solver and stud-
ied mappings where quadrilaterals have been degenerated to triangles. We observed that
the original quadrilateral had the same number of basis functions as the number of degrees
of freedom. When two or more control points coincided our mapping got degenerated and
the number of degrees of freedom was reduced. When the quadrilateral was degenerated,
but was spanned by the same set of basis functions, the number of basis functions was
greater than the number of degrees of freedom. Because of that our degenerated quadri-
lateral could not be considered as a proper finite element and the finite element method
could not be applied. For the finite element (K,P ,N) we found that the dimension of
P ′ was reduced as the degrees of freedom was reduced. The dimension of P was then
no longer equal to the dimension of P ′, and the basis functions were consequently not
linear independent. We also found that the first derivatives of the basis functions at the
degeneracy were infinite. As a result, the basis functions were no longer in H1, meaning
that they were not integrable and the stiffness matrix integral would not exist. Also, we
would then not be considering the variational problem (3.1), as the assumption would be
violated. The bilinear form would no longer be not bounded on V and would not be in
V ′. Hence, the finite element method could not be applied.

To solve the problems caused by the degenerated mapping we formed a new set of basis
functions by adding the basis functions corresponding to the degeneracy. We successfully
applied that approach for a degenerated parameterization of a circular surface and of an
infinite plate with a circular hole. The new set of basis functions were then all in H1 and
the number of basis functions were the same as the number of degrees of freedom. We
found that the new set of basis functions were non-negative, that they formed a partition
of unity and that the degenerated element was still a proper finite element. Thus, it still
remains to prove if this approach is general and will generate valid basis functions for all
types of degenerated mappings.

To be able to evaluate the derivatives correctly we had to add them symbolically and
simplify before evaluating. We did this by applying the symbolic toolbox in MATLAB. We
have only done calculations on small problems, still we soon discovered that the symbolic
calculations are very slow. Especially considering the algorithms to make simplifications
and to perform the evaluations. Another downside is that we use a lot of memory when
storing symbolic matrices. When doing symbolic calculations one must also be aware of
how the evaluations are performed. That we discovered when looking at the quadrilateral
in Figure 6.4 with the symbolic value ε in addition to ξ and η. When we were evaluating

79

80 CHAPTER 8. CONCLUDING REMARKS

the derivatives for the case of ε = 0, we could not just simplify the derivatives and then
evaluate with respect to ε, ξ and η. Rather we had to first evaluate the symbolic expression
with ε = 0, then simplify, and at last evaluate with respect to ξ and η. Else we would only
obtain values being infinity or not a number. Also, one needs to be attentive when using
built in functions to find inverses etc.. At first we used the built in function to find the
inverse of the Jacobian matrix. After evaluating the derivatives at the degenerated point
we had troubles with the value having the wrong sign. At this point the determinant of
the Jacobian is zero. After debugging we discovered that the evaluation algorithm would
return a values for the determinant being −1e − 10 instead of 0.0. When evaluating

1
detJ this gave a huge error. We could hence not apply the built in function and had to
calculate the inverse of the Jacobian by multiplying 1

| det J| to the matrix. In our case
we knew that the determinant of the Jacobian was positive everywhere, so this method
was applicable. We are not sure if there are many other similar cases one can meet when
performing symbolic calculations, and can only conclude that one need to be aware of such
problems. The most crucial downside of symbolic calculations are however the running
time and the use of memory that increases tremendously. Because of that we will not be
able to perform complex or huge analysis. We do not recommend to do such calculations
in MATLAB, but it could however be interesting to try other programming languages. In
future work it also remains to prove if this approach of adding basis functions is general
and will generate valid basis functions for all types of degenerated mappings.

There are many degenerations that leads to a triangle. The approach we used to solve
this issue seems from our calculations to give good results. However, the execution of
it has to be done differently. Based on our experiences, symbolic calculations should be
avoided. In future work it might be more interesting to consider parameterizations leading
to the mappings not being degenerated. In particular, it would be interesting to look at
triangular B-splines [29] and triangular NURBS [14]. There are ongoing research on using
triangular B-splines in isogeometric analysis. As the work is in progress we were not able
to find any papers on it. However, Gang XU, a Postdoctoral Fellow at the GALAAD
Team, INRIA Sophia Antipolis, are currently working on the issue. When the research
papers are available they will probably be posted at the urls [39] and [40].

Bibliography

[1] A. Buffa, G. Sangalli, and R. Vázquez. Isogeometric analysis in electromagnetics:
B-splines approximation. Computer Methods in Applied Mechanics and Engineering,
199:1143–1152, 2010.

[2] A. J. M. Spenser. Continuum mechanics. Dover, 2004.

[3] A.P. Nagy, M.M. Abdalla, and Z. Gurda. Isogeometric sizing and shape optimisa-
tion of beam structures. Computer Methods in Applied Mechanics and Engineering,
199:1216–1230, 2010.

[4] B. Xiao and P. Weng. Integrated analysis of the electromagnetical, thermal, fluid
flow fields in a Tokamak. Fusion Engineering and Design, 81(8-14):1549–1554, 2006.
Proceedings of the Seventh International Symposium on Fusion Nuclear Technology.

[5] S. C. Brenner and L. R. Scott. The Mathematical Theory of Finite Element Methods.
Springer, 3. edition, 2008.

[6] D. F. Rogers. An introduction to NURBS with historical perspective. Academic Press,
2001.

[7] E. C. Teo, Q. H. Zhang, and R. C. Huang. Finite element analysis of head-neck
kinematics during motor vehicle accidents: Analysis in multiple planes. Medical
Engineering and Physics, 29(1):54–60, 2007.

[8] E. Cohen, T. Martin, R.M. Kirby, T. Lyche, and R.F. Riesenfeld. Analysis-aware
modeling: Understanding quality considerations in modeling for isogeometric analy-
sis. Computer Methods in Applied Mechanics and Engineering, 199:334–356, 2010.

[9] E. Laniado Jácome, J. Meneses Alonso, and V. Diaz López. A study of sliding
between rollers and races in a roller bearing with a numerical model for mechanical
event simulations. Tribology International, 43(11):2175–2182, 2010.

[10] E. Nakamachi, H. Kuramae, H. Sakamoto, and H. Morimoto. Process metallurgy
design of aluminum alloy sheet rolling by using two-scale finite element analysis and
optimization algorithm. International Journal of Mechanical Sciences, 52(2):146–
157, 2010.

[11] J. Fish and T. Belytschko. A First Course in Finite Elements. Wiley, England, 2008.

[12] Gotools. http://www.sintef.no/Projectweb/Geometry-Toolkits/GoTools/ .

81

82 BIBLIOGRAPHY

[13] H. Gomez, V. Calo, and T. J. R. Hughes. Isogeometric Analysis of Phase-Field
Models: Application to the Cahn-Hilliard Equation. In ECCOMAS Multidisciplinary
Jubilee Symposium, volume 14, pages 1–16. Springer Netherlands, 2009.

[14] H. Qin and D. Terzopoulos. Triangular NURBS and their dynamic generalizations.
Computer Aided Geometric Design, 14(4):325 – 347, 1997.

[15] T. J. R. Hughes. The Finite Element Method, linear static and dynamic finite element
analysis. Prentice-Hall, 1987.

[16] T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs. Isogeometric Analysis: CAD, Finite
Elements, NURBS, Exact Geometry and Mesh Refinement. Computer Methods in
Applied Mechanics and Engineering, 194:4135–4195, 2005.

[17] T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs. Isogeometric Analysis: Toward
Unification of CAD and FEA. Wiley, 2009.

[18] I. V. Kerlow. The art of 3D computer animation and effects. Wiley, 2004.

[19] J. A. Cottrell, T. J. R. Hughes, and A. Realiand G. Sangalli. Isogeometric discretiza-
tions in structural dynamics and wave propagation, pages 13–16. Number June. 2007.

[20] J. A. Cottrell, Y. Bazilevs, and T. J. R. Hughes. Isogeometric analysis of struc-
tural vibrations. Computer Methods in Applied Mechanics and Engineering, 195(41-
43):5257–5296, 2006.

[21] J. E. Akin. Finite Element Analysis with error estimators, an introduction to the
FEM and adaptive error analysis for engineering students. Elsevier, 2005.

[22] J. Lu and X. Zhou. Cylindrical element: Isogeometric model of continuum rod.
Computer Methods in Applied Mechanics and Engineering, 200(1-4):233–241, 2011.

[23] J. Lubliner. Plasticity theory. Pearson Education Inc, 1990.

[24] K. A. Johannessen. An adaptive isogeometric finite element analysis. Master’s thesis,
Norwegian University of Science and Technology, June 2009.

[25] L.A.M. Mendes and L.M.S.S. Castro. Hybrid-mixed stress finite element models in
elastoplastic analysis. Finite Elements in Analysis and Design, 45(12):863 – 875,
2009.

[26] P. S. Larsen. A comparison of accuracy and computational efficiency between the
finite element method and the isogeometric analysis for two dimensional Poisson
problems. Master’s thesis, Norwegian University of Science and Technology, June
2009.

[27] T. Lyche and K. Mørken. Spline Methods. Lecture notes in INF-MAT5340011 Spline
Methods at the University of Oslo, May 2008.

[28] MATLAB symbolic toolbox. http://www.mathworks.com/help/toolbox/symbolic/ .

[29] P. Fong and H.-P. Seidel. An implementation of triangular B-spline surfaces over
arbitrary triangulations. Computer Aided Geometric Design, 10(3-4):267 – 275, 1993.

BIBLIOGRAPHY 83

[30] R. C. Almeida, R. A. Feijóo, A. C. Galeão, C. Padra, and R S. Silva. Adaptive
finite element computational fluid dynamics using an anisotropic error estimator.
Computer Methods in Applied Mechanics and Engineering, 182(3-4):379–400, 2000.

[31] Homepage of Rhinoceros. http://www.rhino3d.com/ .

[32] E. Rønquist, A T. Patera, and T. Kvamsdal. Lecture notes in TMA4220 Numer-
ical solution of partial differential equations by finite element methods, Norwegian
University of Science and Technology .

[33] S. Lipton, J. A. Evans, Y. Bazilevs, T. Elguedj, and T. J. R. Hughes. Robustness
of isogeoemtric structural discretizations under severe mesh distortion. Computer
Methods in Applied Mechanics and Engineering, 199:357–373, 2010.

[34] S.R. Idelsohn, E. Oñate, F. Del Pin, and N. Calvo. Fluid-structure interaction using
the particle finite element method. Computer Methods in Applied Mechanics and
Engineering, 195(17-18):2100–2123, 2006. Fluid-Structure Interaction.

[35] Exact stress solution for infinite plate with circular hole.
http://en.wikiversity.org/wiki/Introduction_to_Elasticity/Plate_with_hole_in
_tension.

[36] T. Takacs. Existens of stiffness matrix integrals for singularly parametrized domains
in isogeometric analysis. November 2010.

[37] W. Slaughter. The linearized theory of elastscity. Birkhäuser, 2002.

[38] X. Qian. Full analytical sensitivities in NURBS based isogeometric shape optimiza-
tion. Computer Methods in Applied Mechanics and Engineering, 199:2059–2071, 2010.

[39] G. XU. GALAAD Team, INRIA Sophia Antipolis, Isogeometric analysis using tri-
angular B-splines.
http://www-sop.inria.fr/members/Gang.Xu/English/isogeometric%20analysis.html.

[40] G. XU. GALAAD Team, INRIA Sophia Antipolis, Isogeometric analysis using
triangular B-splines.
http://www-sop.inria.fr/galaad/wiki/index.php/Isogeometric_analysis_and_shape_
optimization.

[41] Y. Bazilevs and T .Hughes. NURBS-based isogeometric analysis for the computation
of flows about rotating components. Computational Mechanics, 43:143–150, 2008.

[42] Y. Bazilevs, V. Calo, Y. Zhang, and T. Hughes. Isogeometric Fluid-structure Inter-
action Analysis with Applications to Arterial Blood Flow. Computational Mechanics,
38:310–322, 2006.

[43] Young and Freedman. University Physics. PEARSON Addison Weasley, USA, 2004.

[44] N. Young. An introduction to Hilbert space. Cambridge, 1988.

84 BIBLIOGRAPHY

[45] Y. Zhang, Y. Bazilevs, S. Goswami, C. Bajaj, and T. Hughes. Patient-Specific Vas-
cular NURBS Modeling for Isogeometric Analysis of Blood Flow. In Proceedings of
the 15th International Meshing Roundtable, pages 73–92. Springer Berlin Heidelberg,
2006.

Appendix A

Implementations in MATLAB;
Isogeometric finite element solver for
infinite plate with circular hole

A.1 Main method

function FEM()

%ne l number o f e lements
%nnp number o f g l o b a l b a s i s f unc t i on s
%nen number o f l o c a l b a s i s f unc t i on s
%INC NURBS coord ina t e s array
%IEN Connenct iv ty array
% ContrPts Contro l po in t s

[knot_xi , knot_eta , p_xi , p_eta , ContrPts , n ,m]=geometry () ;

%bu i l d c o nn en c t i v i t i e s and a l l o c a t e g l o b a l arrays
[INC , IEN , nel , nnp , nen]=bui ldArrays (n ,m, p_xi , p_eta) ;

%Presc r i b e body f o r c e s
Fbody_y=0∗ones (nnp , 1) ;
Fbody_x=0∗ones (nnp , 1) ;

Fbody=zeros (2∗nnp , 1) ;
Fbody (1 : 2 : 2 ∗ nnp−1)=Fbody_x ;
Fbody (2 : 2 : 2 ∗ nnp)=Fbody_y ;

[dof , ud , ndof ,D, tract ionboundary , tpre , boundary_west ,
boundary_north]= pr ep ro c e s s o r (INC , IEN , nel , nnp , nen , ContrPts) ;

85

86 A.2 Pre-prosessor

Support_element_boundary_west=6;
Support_element_boundary_north=6;

[A,F , DBGausspt , ngp , Mass]=computation (INC , IEN , nel , nnp , nen , dof , ud ,
ndof , knot_xi , knot_eta , p_xi , p_eta , ContrPts ,D, tract ionboundary
, tpre , boundary_west , boundary_north , Fbody , n ,m,
Support_element_boundary_west , Support_element_boundary_north)
;

%Solve Au=F by the con juga te g rad i en t method
t o l=1e−6;
maxit=50;
U=pcg (A,F , to l , maxit) ;
s o l u t i o n=ud ;

%Expanding U to inc l ude the nodes at the D i r i c h l e t boundary
for i =1:2∗nnp

i f dof (i)>0
s o l u t i o n (i)=U(dof (i)) ;
end

end

po s tp ro c e s s o r (D, so lu t i on , INC , IEN , nen , nel , nnp , DBGausspt , ngp ,
ContrPts , n ,m, p_xi , p_eta , knot_xi , knot_eta ,U) ;

end

A.2 Pre-prosessor

A.2.1 Geometry - Infinite plate with circular hole

function [knot_xi , knot_eta , p_xi , p_eta , B, n ,m]=geometry ()

knot_xi = [0 , 0 , 0 , 0 . 5 , 1 , 1 , 1] ;
knot_eta = [0 , 0 , 0 , 1 , 1 , 1] ;
p_xi=2;
p_eta=2
n=length (knot_xi)−p_xi−1;
m=length (knot_eta)−p_eta−1;
s=(1+1/sqrt (2)) /2 ;
B = zeros (n ,m, 3) ;

B(: , 1 , 1) = [−1 −1 1−sqrt (2) 0] ;
B(: , 1 , 2) = [0 sqrt (2)−1 1 1] ;
B(: , 1 , 3) = [1 s s 1] ;

B(: , 2 , 1) = [−2.5 −2.5 −0.75 0] ;

A.2.2 Building the connectivity arrays 87

B(: , 2 , 2) = [0 0 .75 2 .5 2 . 5] ;
B(: , 2 , 3) = [1 1 1 1] ;

B(: , 3 , 1) = [−4 −4 −4 0] ;
B(: , 3 , 2) = [0 4 4 4] ;
B(: , 3 , 3) = [1 1 1 1] ;

end

A.2.2 Building the connectivity arrays

function [INC , IEN , nel , nnp , nen]=bui ldArrays (n ,m, p , q)
%number o f e lements
ne l=(n−p) ∗(m−q) ;
%number o f g l o b a l b a s i s f unc t i on s
nnp=n∗m;
%number o f l o c a l b a s i s f unc t i on s
nen=(p+1)∗(q+1) ;
%NURBS coord ina t e s array
INC=zeros (nnp , 2) ;
%Connenct ivty array
IEN=zeros (nen , ne l) ;
%increment g l o b a l f unc t i on number
A=0;
%increment e lement number
e=0;
%g l o b a l f unc t i on number
B=0;
%l o c a l f unc t i on number
b=0;
for j =1:m

for i =1:n
A=A+1;
%ass i gn NURBS coord ina t e s
INC(A, 1)=i ;
INC(A, 2)=j ;
i f (i−(p+1)>−1e−10 && j−(q+1)>−1e−10)

e=e+1;
for j l o c =0:q

for i l o c =0:p
B=A−j l o c ∗n−i l o c ;
b=j l o c ∗(p+1)+i l o c +1;
IEN(b , e)=B;

end
end

end
end

88 A.2 Pre-prosessor

end
end

A.2.3 Pre-prosessor

function [dof , ud , ndof ,D, tract ionboundary , tpre , boundary_west ,
boundary_north]= pr ep ro c e s s o r (INC , IEN , nel , nnp , nen , ContrPts)

%%%
%Descr ip t i on o f v a r i a b l e s
%%%

%ne l number o f e lements
%nnp number o f g l o b a l b a s i s f unc t i on s
%nen number o f l o c a l b a s i s f unc t i on s
%INC NURBS coord ina t e s array s i z e=(nnp , 2)
%IEN Connenct iv ty array s i z e=(nen , ne l)

%D − c o n s t i t u t i v e matrix . Hooke ’ s law : S t r e s s=D∗ Stra in
%E − Young ’ s modulus [Pa]
%ny − Poisson ’ s ra t i on
%trac t ionboundary − boundary wi th p r e s c r i b e d t r a c t i o n
%s t r a i n − [s t ra in_xx ; s tra in_yy ; s tra in_xy]
%tpre − p r e s c r i b e d t r a c t i o n [s t r e s s_xx+s t re s s_xy ; s t res s_yy+

st re s s_xy]
%dof − vec t o r t ha t t a g s the nodes at the d i r i c h l e t boundary
%ud − p r e s c r i b e d d i sp lacement
%ndof − number o f degrees o f freedom
%nodesboundary_west − s t o r e s the nodes on the par t o f the

boundary c a l l e d boundary_west
%nodesboundary_north − s t o r e s the nodes on the par t o f the

boundary c a l l e d boundary_north

%%%
%INPUT
%%%
%remember to make ’ t rac t ionboundary ’ , ’ tpre ’ and p r e s c r i b e d

d i sp lacement f i t the computat iona l domain

%Young ’ s modulus [Pa]
E=10^5;

%Poisson ’ s ra t i on
ny=0.3;

%Cons t i t u t i v e matrix ; p lane s t r e s s
D=(E/(1−ny^2)) ∗ [1 ny 0 ; ny 1 0 ;0 0 0.5∗(1−ny)] ;

A.2.3 Pre-prosessor 89

%Cons t i t u t i v e matrix ; p lane s t r a i n
%D=(E/(1+ny)∗(1−2∗ny))∗[1−ny ny 0 ; ny 1−ny 0;0 0 0.5∗(1−2∗ny)] ;

%Tract ionboudary
t ract ionboundary=[1 2] ; %[boundary_west boundary_north]

% %Prescr i bed s t r a i n
% s t r a i n =[−1;−1;−1];
% %Ca l cu l a t i n g the p r e s c r i b e d t r a c t i o n knowing the p r e s c r i b e d

s t r a i n
% s t r e s s=D∗ s t r a i n ;
% tx=s t r e s s (1)+s t r e s s (3) ;
% ty=s t r e s s (2)+s t r e s s (3) ;
% tpre=[t x t x ;0 0] ; %ex : t p r e=[tx_trac t ionboundary (1) tx_trb (2) ;

ty_trb (2) ty_trb (2)] ;

tpre =[0 0 ;0 0] ;
%%%

nnpxy=nnp ∗2 ;

%Number o f degrees o f freedom
ndof=0;

%dof t a g s the nodes at the d i r i c h l e t boundary
dof=−1∗ones (nnpxy , 1) ;

%ud s t o r e s the a l r eady known va lu e s o f u
ud=zeros (nnpxy , 1) ;

%%%
%Finding the boundary nodes , the nodes at the i n t e r f a c e frame ,

the degrees o f freedom and the va l u e s in ud
%%%
boundary_west = [] ;
boundary_north = [] ;

degdof=−1;
k=1;
for i =1:nnp

inc=INC(i , :) ;
Cx=ContrPts (inc (1) , i nc (2) ,1) ;
Cy=ContrPts (inc (1) , i nc (2) ,2) ;
i f Cx>−1e−10

ud(k)=0;
else

ndof=ndof+1;

90 A.3 Computations

dof (k)=ndof ;
end

i f Cy<1e−10
ud(k+1)=0;

else
ndof=ndof+1;
dof (k+1)=ndof ;

end

i f Cx+4<1e−10
boundary_west=[boundary_west k k+1] ;

end

i f Cy−4>−1e−10
boundary_north=[boundary_north k k+1] ;

end

i f (Cx+4<1e−10 && Cy−4>−1e−10)
i f degdof<0

degdof=ndof ;
else

dof (k)=degdof −1;
dof (k+1)=degdof ;
ndof=ndof−2;

end
end

k=k+2;
end

end

A.3 Computations

A.3.1 Calculating the basis functions and their derivatives

function [N N_diff]= ge tBas i sandDer iva t i ve s (p_xi , xi , knot_xi , d)
%d=1 re t u r s the f i r s t d e r i v a t i v e , d=2 re turns the second

d e r i v a t i v e e t c

%%%
%Function to c a l c u l a t e b a s i s f unc t i on s r e c u r s i v e l y
%−−
function N=ca l cBsp l i n e (knot , xi , i , p , p s t a t i c)
i f (i−(length (knot)−p s t a t i c)<−1e−10)
i f (M(i , p+1)<i n f)

A.3.1 Calculating the basis functions and their derivatives 91

N=M(i , p+1) ;
else

i f (p>0)
i f (knot (i+p)−knot (i))<1e−10

a=0;
else

a=((xi−knot (i)) /(knot (i+p)−knot (i))) ;
end
i f (knot (i+p+1)−knot (i +1))<1e−10

b=0;
else

b=((knot (i+p+1)−x i) /(knot (i+p+1)−knot (i +1))) ;
end

N=a∗ c a l cBsp l i n e (knot , xi , i , p−1, p s t a t i c)+b∗
c a l cBsp l i n e (knot , xi , i +1,p−1, p s t a t i c) ;

e l s e i f (p<1e−10)
i f ((xi−knot (i)>−1e−15) && (knot (i +1)−xi>1e−15))

N=1;
e l s e i f ((xi−knot (i)>−1e−15) && (knot (i +1)−xi>−1e−15)

&& (length (knot)−ps ta t i c −1)−i <1e−10)
N=1;

else
N=0;

end
end
M(i , p+1)=N;

end
else
N=0;
end
end

%%%
%Ca l cu l a t e a l l b a s i s f unc t i on s f o r a l l v a l u e s o f x i and e ta
%−−

B_xi=i n f ∗ones (length (knot_xi)−p_xi−1, length (x i)) ;
p s t a t i c_x i=p_xi ;
dB_xi=i n f ∗ones (length (knot_xi)−p_xi−1, length (x i)) ;
N=zeros (p_xi+1 ,1) ;
N_diff=zeros (p_xi+1 ,1) ;

for j =1: length (x i) ;
M=i n f ∗ones (length (knot_xi)−p_xi−1,p_xi+1) ;

for k=1: length (knot_xi)−p_xi−1
B_xi (k , j)=ca l cB sp l i n e (knot_xi , x i (j) , k , p_xi , p s ta t i c_x i) ;

92 A.3 Computations

end
i f (d==1)

for k=1: length (knot_xi)−p_xi−1
dB_xi (k , j)=F i r s tDe r i vBsp l i n e (knot_xi , k , p_xi ,M,

p s ta t i c_x i) ;
end

else
for k=1: length (knot_xi)−p_xi−1

dB_xi (k , j)=Der ivBsp l ine (knot_xi , k , p_xi ,M, pstat i c_x i ,
d) ;

end
end

N=B_xi ;
N_diff=dB_xi ;

end

end

%%%
%Function to c a l c u l a t e the f i r s t d e r i v a t i v e o f b a s i s f unc t i on s
%−−−
function dN=Fi r s tDe r i vBsp l i n e (knot , i , p ,M, p s t a t i c)
i f (i−(length (knot)−p s t a t i c)<−1e−10)

i f (knot (i+p)−knot (i))<1e−10
a=0;

else
a=(p/(knot (i+p)−knot (i))) ;

end
i f (knot (i+p+1)−knot (i +1))<1e−10

b=0;
else

b=(p/(knot (i+p+1)−knot (i +1))) ;
end
i f (i−(length (knot)−ps ta t i c −1)<−1e−10)

dN=a∗M(i , p)−b∗M(i +1,p) ;
e l s e i f (i−(length (knot)−p s t a t i c)<−1e−10)

dN=a∗M(i , p) ;
end

end
end

%%%
%Function to c a l c u l a t e the d−d e r i v a t i v e o f b a s i s f unc t i on s
%−−
function dNk=Der ivBsp l ine (knot , i , p ,M, p s t a t i c ,m)
sum=0;

A.3.1 Calculating the basis functions and their derivatives 93

f a c=(f a c t o r i a l (p) / f a c t o r i a l (p−m)) ;
for l =0:m
i f (i+l−(length (knot)−p s t a t i c)<−1e−10)

% i f A(m+1, l +1)<i n f
% sum=sum+fac ∗A(m+1, l +1)∗M(i+l , p−m+1) ;
% e l s e

sum=sum+fac ∗alpha (m, l , i , p , knot)∗M(i+l , p−m+1) ;
% end

end
end

dNk=sum ;
end

function a=alpha (k , j , i , p , knot)
i f (i+j−(length (knot)−p)<−1e−10)

%i f (A(k+1, j +1)<i n f)
% a=A(k+1, j +1) ;
%e l s e

i f (k>−1e−10 && j>−1e−10)
i f (k<1e−10 && j<1e−10)

a=1;
e l s e i f (k>1e−10 && j<1e−10)

i f (knot (i+p−k+1)−knot (i)<1e−10)
a=0;

else
a=alpha (k−1, j , i , p , knot) /(knot (i+p−k+1)−knot (

i)) ;
end

e l s e i f (k>1e−10 && j>1e−10 && j−(k−1)<1e−10)
i f (knot (i+p+j−k+1)−knot (i+j)<1e−10)

a=0;
else

a=(alpha (k−1, j , i , p , knot)−alpha (k−1, j −1, i , p ,
knot)) /(knot (i+p+j−k+1)−knot (i+j)) ;

end
e l s e i f (k>1e−10 && j>1e−10 && k−j <1e−10)

i f (knot (i+p+1)−knot (i+k)<1e−10)
a=0;
else

a=(−alpha (k−1,k−1, i , p , knot)) /(knot (i+p
+1)−knot (i+k)) ;

end
end

end
% A(k+1, j +1)=a ;

%end

94 A.3 Computations

end
end

A.3.2 Shape function routine

function [R dR_dx J_mat]=Shape_function (ni , nj , xi , eta , knot_xi ,
knot_eta , ContrPts , p_xi , p_eta , nen)

%Unvariate B−s p l i n e b a s i s f unc t i on s and d e r i v a t i v e s wrt
parametr ic coord

[N_xi dN_xi]= getBas i s&Der i va t i v e s (p_xi , xi , knot_xi , 1) ;
[N_eta dN_eta]= ge tBas i s&Der i va t i v e s (p_eta , eta , knot_eta , 1) ;
support_xi=zeros (p_xi+1 ,1) ;
i f ni−p_xi>1e−10

for i =0:p_xi
support_xi (i +1)=ni−p_xi+i ;
end

end
support_eta=zeros (p_eta+1 ,1) ;
i f nj−p_eta>1e−10

for i =0:p_eta
support_eta (i +1)=nj−p_eta+i ;
end

end
N_xi=N_xi(support_xi) ;
dN_xi=dN_xi (support_xi) ;
N_eta=N_eta (support_eta) ;
dN_eta=dN_eta (support_eta) ;

%t r i v a r i a t e NURBS ba s i s f unc t i on s
R=zeros (1 , nen) ;
%t r i v a r i a t e NURBS func t i on s d e r i v a t i v e s wrt p h y s i c a l coord
dR_dx=zeros (2 , nen) ;
%t r i v a r i a t e NURBS func t i on s d e r i v a t i v e s wrt parametr ic coord
dR_dxi=zeros (2 , nen) ;
%Der i va t i v e o f p h y s i c a l coord wrt parametr ic coord
dx_dxi=zeros (2 , 2) ;
%Inver se o f dx_dxi
dxi_dx=zeros (2 , 2) ;

%Der i va t i v e o f parametr ic coord wrt parent e lement coord
dx i_dt i l d ex i=zeros (2 , 2) ;
%Jacobian matrix
J_mat=zeros (2 , 2) ;

%%%

A.3.2 Shape function routine 95

W=0;
dW_dxi=0;
dW_deta=0;
for j =0:p_eta

for i =0:p_xi
w=ContrPts (ni−i , nj−j , 3) ;
W=W+N_xi(p_xi+1− i)∗N_eta (p_eta+1− j)∗w;
dW_dxi=dW_dxi+dN_xi (p_xi+1− i)∗N_eta (p_eta+1− j)∗w;
dW_deta=dW_deta+N_xi(p_xi+1− i)∗dN_eta (p_eta+1− j)∗w;

end
end

index_R=0;
for j =0:p_eta

for i =0:p_xi
index_R=index_R+1;
w=ContrPts (ni−i , nj−j , 3) ;
R(index_R)=w∗(N_xi (p_xi+1− i)∗N_eta (p_eta+1− j)) /W

;
dR_dxi (1 , index_R)=w∗(dN_xi (p_xi+1− i)∗N_eta (p_eta

+1− j)∗W−dW_dxi∗N_xi(p_xi+1− i)∗N_eta (p_eta+1− j
)) /(W^2) ;

dR_dxi (2 , index_R)=w∗(N_xi (p_xi+1− i)∗dN_eta (p_eta
+1− j)∗W−dW_deta∗N_xi(p_xi+1− i)∗N_eta (p_eta+1−
j)) /(W^2) ;

end
end

%%%
%Gradient mapping from parameter space to p h y s i c a l space
loc_num=0;
for j =0:p_eta

for i =0:p_xi
loc_num=loc_num+1;
for a=1:2

for b=1:2
dx_dxi (a , b)=dx_dxi (a , b)+ContrPts (ni−i , nj−j , a)∗

dR_dxi (b , loc_num) ;
end

end

end
end

%Compute in v e r s e o f g rad i en t

96 A.3 Computations

dxi_dx=inv (dx_dxi) ;

%Compute d e r i v a t i v e s o f b a s i s f unc t i on s wrt p h y s i c a l coord
dR_dx=dxi_dx ’∗dR_dxi ;

%Gradient mapping from parent e lement to parameter space
dx i_dt i l d ex i (1 , 1)=(knot_xi (n i+1)−knot_xi (n i)) /2 ;
dx i_dt i l d ex i (2 , 2)=(knot_eta (nj+1)−knot_eta (nj)) /2 ;

%Compute Jacobian matrix
J_mat=dx_dxi∗ dx i_dt i l d ex i ;

end

A.3.3 Calculate the Gaussian quadrature points and weights

function Gauss=GaussianQuadrature (ngp)
syms x real

p=vpa (zeros (ngp , 1)) ;
p (1) =1;
p (2)=x ;
n=1;
i f ngp>1

for i =2:ngp
p(i +1)=(1/(n+1)) ∗ ((2∗n+1)∗x∗p(i)−n∗p(i −1)) ;
n=n+1;

end
end

Xt=so l v e (p(ngp+1)) ;
X=real (double (Xt)) ;
dp=d i f f (p(ngp+1)) ;
wi=zeros (length (X) ,1) ;
w=2/((1−x^2)∗dp^2) ;

for i =1: length (X)
x=X(i) ;
wi (i)=real (eval (w)) ;

end

Gauss=[X wi] ;
end

A.3.4 Computations

function [A,F , DBGausspt , ngp , Mass]=computation (INC , IEN , nel , nnp ,
nen , dof , ud , ndof , knot_xi , knot_eta , p_xi , p_eta , ContrPts ,D,

A.3.4 Computations 97

tract ionboundary , tpre , boundary_west , boundary_north , Fbody , n ,m,
Support_element_boundary_west , Support_element_boundary_north)

%%%
F = zeros (ndof , 1) ;
A = sparse (ndof , ndof) ;
Mass = sparse (ndof , ndof) ;

%number o f Gauss po in t s
ngp=5;
Gauss=GaussianQuadrature (ngp) ;

DBGausspt=zeros (3 , ngp∗ngp∗nen ∗2 ,2) ;

%Expand matrix to inc l ude both x− and y−coord ina te
function M=ExpandMatrix (Mtemp)

S i z e=s ize (Mtemp) ;
M=sparse (S i z e (1) ∗2 , S i z e (2) ∗2) ;
i 1 =1:2 : S i z e (1) ∗2 ;
i 2 =2:2 : S i z e (1) ∗2 ;
j 1 =1:2 : S i z e (2) ∗2 ;
j 2 =2:2 : S i z e (2) ∗2 ;
h=1: S i z e (1) ;
kk=1: S i z e (2) ;
M(i1 , j 1)=Mtemp(h , kk) ;
M(i2 , j 2)=Mtemp(h , kk) ;

end

%Mapping from parent e lement to parameter space
function x i=parameter (knot_xi , x i t i l d e , n i)

x i =((knot_xi (n i+ones (length (n i) , 1))−knot_xi (n i))∗ x i t i l d e
+(knot_xi (n i+ones (length (n i) , 1))+knot_xi (n i))) /2 ;

end

%%%
for k = 1 : ne l % loop through e lements

indexGP=1:2∗nen ;

%NURBS coord ina t e s
ni=INC(IEN(1 , k) ,1) ;
n j=INC(IEN(1 , k) ,2) ;

%Check i f e lement has zero measure
i f (knot_xi (n i+1)==knot_xi (n i) | | knot_eta (nj+1)==knot_eta (nj

))
cont inue ;

end

98 A.3 Computations

%g l o b a l numbering
globalnodestemp=IEN (: , k) ;

for i =1:nen
g loba lnodes (i ∗2)=globalnodestemp (i) ∗2 ;
g loba lnodes (2∗ i −1)=globalnodestemp (i) ∗2−1;

end

%Body f o r c e s on element k
FEbody=Fbody (g loba lnodes) ;

%%%
%Computing Ak , FEbody and FEtract ion
%%%

Ak=zeros (2∗nen ,2∗ nen) ;
Mk=zeros (2∗nen ,2∗ nen) ;
tk=zeros (2∗nen , 1) ;

for a l f a =1:ngp %for a l l gauss po in t s
for beta=1:ngp

%Parametric coord
x i=parameter (knot_xi , Gauss (a l f a , 1) , n i) ;
e ta=parameter (knot_eta , Gauss (beta , 1) , nj) ;

%Ca l cu l a t e b a s i s f unc t i on s and d e r i v a t i v e s
[R dR_dx J]=Shape_function (ni , nj , xi , eta , knot_xi ,

knot_eta , ContrPts , p_xi , p_eta , nen) ;

Jmod=Gauss (a l f a , 2) ∗Gauss (beta , 2) ∗det (J) ;

%Find the B matrix
Btemp=dR_dx ;
B=zeros (3 , nen ∗2) ;
i =2:2:2∗ nen ;
j =1:2:2∗nen−1;
B(1 , j)=Btemp (1 , :) ;
B(2 , i)=Btemp (2 , :) ;
B(3 , j)=Btemp (2 , :) ;
B(3 , i)=Btemp (1 , :) ;

%Computing D∗B in the gauss po in t s
DBGausspt (: , indexGP , k)=D∗B;
indexGP=indexGP+2∗nen∗ones (1 ,2∗ nen) ;

%Compute the e lement s t i f f n e s s matrix by gauss ian
quadrature

A.3.4 Computations 99

Ak=Ak+B’∗D∗B∗Jmod ;

%Find the mass matrix
Mtemp=zeros (nen , nen) ;
for i =1:nen

for j =1:nen
Mtemp(i , j)=R(i)∗R(j)∗Jmod ;

end
end
M=ExpandMatrix (Mtemp) ;
Mk=Mk+M;

end
%%%

%Find con t r i b u t i on from t r a c t i o n ;
eta_boundary=1;%=parameter (knot_eta , 1 , nj) ;
for i =1: length (t ract ionboundary)

tktemp=zeros (nen , 2) ;
i f t ract ionboundary (i)==1

gamma=0;
for j =1:2∗nen

for l =1: length (boundary_west)
i f g loba lnodes (j)==boundary_west (l)
gamma=gamma+1;
end

end
end
i f gamma==Support_element_boundary_west

[Rtrb1 dR_dxtrb1 Jtrb1]=Shape_function (ni , nj
, xi , eta_boundary , knot_xi , knot_eta ,
ContrPts , p_xi , p_eta , nen) ;

for j =0:nen−1
tkt=Rtrb1 (j +1) ;
tktemp(1+2∗ j , 1)=tkt ;
tktemp(2+2∗ j , 2)=tkt ;

end
LengthJTrb1=sqrt (Jtrb1 (1 , 1)^2+Jtrb1 (2 , 1) ^2) ;
%%%%%%%%%%%
x1=−4;
y1=0;
r i =1;
for b=0:p_eta

for a=0:p_xi
y1=y1+Rtrb1 (r i)∗ContrPts (ni−a , nj−b

, 2) ;
r i=r i +1;

100 A.3 Computations

end
end
s t r e s s 1=g_neumann(x1 , y1 , [− 1 ; 0]) ;
tk=tk+tktemp∗ s t r e s s 1 ∗Gauss (a l f a , 2) ∗

LengthJTrb1 ;
%%%%%%%%%%%

end
e l s e i f t ract ionboundary (i)==2

gamma=0;
for j =1:2∗nen

for l =1: length (boundary_north)
i f g loba lnodes (j)==boundary_north (l)
gamma=gamma+1;
end

end
end
i f gamma==Support_element_boundary_north

[Rtrb2 dR_dxtrb2 Jtrb2]=Shape_function (ni , nj
, xi , eta_boundary , knot_xi , knot_eta ,
ContrPts , p_xi , p_eta , nen) ;

for j =0:nen−1
tkt=Rtrb2 (j +1) ;
tktemp(1+2∗ j , 1)=tkt ;
tktemp(2+2∗ j , 2)=tkt ;

end
LengthJTrb2=sqrt (Jtrb2 (1 , 1)^2+Jtrb2 (2 , 1) ^2) ;
%%%%%%%%%%%
x2=0;
y2=4;
r i =1;
for b=0:p_eta

for a=0:p_xi
x2=x2+Rtrb2 (r i)∗ContrPts (ni−a , nj−b

, 1) ;
r i=r i +1;

end
end
s t r e s s 2=g_neumann(x2 , y2 , [0 ; 1]) ;
tk=tk+tktemp∗ s t r e s s 2 ∗Gauss (a l f a , 2) ∗

LengthJTrb2 ;
%%%%%%%%%%%

end
end

end
end

FEtract ion=tk ;

A.3.4 Computations 101

%%%
%Find the c on t r i b u t i on to F and A from element k

Fk=−Ak∗(ud(g loba lnodes))+Mk∗FEbody+FEtract ion ;
for a l f a =1:2∗nen
i=dof (g loba lnodes (a l f a)) ;
i f i >0

F(i)=F(i)+Fk(a l f a) ;
for beta=1:2∗nen

j=dof (g loba lnodes (beta)) ;
i f j >0

A(i , j)=A(i , j)+Ak(a l f a , beta) ;
Mass (i , j)=Mass (i , j)+Mk(a l f a , beta) ;

end
end
end

end
end %end loop element k
A=(A+A’) /2 ;

end

%%%
%Ca l cu l a t e p r e s c r i b e d t r a c t i o n
%−−−

function ret_val = g_neumann(x , y , n)

e p s i l o n = 1e−10;
grad_u = grad_u_exact (x , y) ;
n = n/norm(n) ;

i f abs (n (1)+1)<eps i l on , % gamma1
ret_val = [grad_u (1) ∗n (1) ; grad_u (3) ∗n (2)] ; % s_xx∗n(1) ;

s_xy∗n(2)
e l s e i f abs (n (2)−1)<eps i l on , % gamma2

ret_val = [grad_u (3) ∗n (1) ; grad_u (2) ∗n (2)] ; % s_yx∗n(1) ;
s_yy∗n(2)

else
ret_val = [0 ; 0] ;

end

function grad_u = grad_u_exact (x , y)
T =10.0;
r2 = x.^2+y . ^ 2 ;
theta = atan2 (y , x) ;
R2 = 1 ;%=R^2 , where R i s the rad ius o f the ho l e

102 A.4 Post-processor

sigma_dxdx = T∗(1 −R2./ r2 .∗ (3/2∗ cos (2∗ theta)+cos (4∗ theta)) +
3/2∗(R2 . / r2) . ^ 2 .∗ cos (4∗ theta)) ;

sigma_dydy = T∗(−R2./ r2 .∗ (1/2∗ cos (2∗ theta)−cos (4∗ theta)) − 3/2∗(
R2 . / r2) . ^ 2 .∗ cos (4∗ theta)) ;

sigma_dxdy = T∗(−R2./ r2 .∗ (1/2∗ sin (2∗ theta)+sin (4∗ theta)) + 3/2∗(
R2 . / r2) . ^ 2 .∗ sin (4∗ theta)) ;

i f length (x)==1 && length (y)==1,
grad_u = [sigma_dxdx ; sigma_dydy ; sigma_dxdy] ;

else
[width bredth] = s ize (x) ; % == s i z e (y)
grad_u = zeros (width , bredth , 3) ;
grad_u (: , : , 1) = sigma_dxdx ;
grad_u (: , : , 2) = sigma_dydy ;
grad_u (: , : , 3) = sigma_dxdy ;

end
end

A.4 Post-processor

function po s tp ro c e s s o r (D, so lu t i on , IEN , nen , nel , nnp , DBGausspt ,
ContrPts , n ,m, p_xi , p_eta , knot_xi , knot_eta)

nnpxy=nnp ∗2 ;
sx =1:2 : nnpxy−1;
sy =2:2 : nnpxy ;
s o l x=zeros (length (knot_xi)−p_xi−1, length (knot_eta)−p_eta−1) ;
s o l y=zeros (length (knot_xi)−p_xi−1, length (knot_eta)−p_eta−1) ;
index=1;

for j =1:m
for i =1:n

so l x (i , j)=s o l u t i o n (sx (index)) ;
s o l y (i , j)=s o l u t i o n (sy (index)) ;
index=index+1;

end
end

%v i s u a l i z a t i o n po in t s
xi_eval = [0 : 0 . 0 5 : 1] ;
eta_eval = [0 : 0 . 0 5 : 1] ;

u=zeros (length (x i_eval) , length (eta_eval) , 2) ;
xy=zeros (length (x i_eval) , length (eta_eval) , 2) ;
R_eval=zeros (length (x i_eval) , length (eta_eval) ,n ,m) ;

103

dR_dx_eval=zeros (length (x i_eval) , length (eta_eval) ,n ,m, 2) ;
To ta l S t r e s s e va l=zeros (length (x i_eval) , length (eta_eval) , 3) ;

for a l f a =1: length (x i_eval)% loop through e va l ua t i on po in t s
for beta=1: length (eta_eval)

dR_dxi=zeros (1 , nnp) ;
[N_xi dN_xi]= ge tBas i sandDer iva t ive s (p_xi , x i_eval (

a l f a) , knot_xi , 1) ;
[N_eta dN_eta]= getBas i s andDer iva t i ve s (p_eta ,

eta_eval (beta) , knot_eta , 1) ;
W=N_xi ’∗ ContrPts (: , : , 3) ∗N_eta ;

dW_dxi=dN_xi ’∗ ContrPts (: , : , 3) ∗N_eta ;
dR_deta=zeros (1 , nnp) ;
dx_dxi=zeros (2 , 2) ;
dR_dx=zeros (2 , nnp) ;

dW_deta=N_xi ’∗ ContrPts (: , : , 3) ∗dN_eta ;
index_R=1;
for j =1:m

for i =1:n
R=(N_xi(i)∗N_eta (j)∗ContrPts (i , j , 3)) /W;
R_eval (a l f a , beta , i , j)=R;
u(a l f a , beta , 1)=u(a l f a , beta , 1)+R∗ s o l x (i , j) ;
u (a l f a , beta , 2)=u(a l f a , beta , 2)+R∗ s o l y (i , j) ;
dR_dxi (index_R)=ContrPts (i , j , 3) ∗(dN_xi (i)∗N_eta (

j)∗W−dW_dxi∗N_xi(i)∗N_eta (j)) /(W^2) ;
dR_deta (index_R)=ContrPts (i , j , 3) ∗(N_xi (i)∗dN_eta

(j)∗W−dW_deta∗N_xi(i)∗N_eta (j)) /(W^2) ;
xy (a l f a , beta , 1)=xy (a l f a , beta , 1)+R∗ContrPts (i , j

, 1) ;
xy (a l f a , beta , 2)=xy (a l f a , beta , 2)+R∗ContrPts (i , j

, 2) ;
index_R=index_R+1;

end
end
dR_dxiv=[dR_dxi ; dR_deta] ;

%Gradient mapping from parameter space to p h y s i c a l space
loc_num=0;
for j =1:m

for i =1:n
loc_num=loc_num+1;
for a=1:2

for b=1:2
dx_dxi (a , b)=dx_dxi (a , b)+ContrPts (i , j , a)∗

dR_dxiv (b , loc_num) ;

104 A.4 Post-processor

end
end

end
end

%Compute in v e r s e o f g rad i en t
dxi_dx=inv (dx_dxi) ;

%Compute d e r i v a t i v e s o f b a s i s f unc t i on s wrt p h y s i c a l
coord

dR_dx=dxi_dx ’∗ dR_dxiv ;

index=1;
for j =1:m

for i =1:n
dR_dx_eval (a l f a , beta , i , j , 1)=dR_dx(1 , index) ;
dR_dx_eval (a l f a , beta , i , j , 2)=dR_dx(2 , index) ;
index=index+1;

end
end

%Find the B matrix
Btempeval=dR_dx ;
Beval=zeros (3 , nnp∗2) ;
i =2:2:2∗nnp ;
j =1:2:2∗nnp−1;
Beval (1 , j)=Btempeval (1 , :) ;
Beval (2 , i)=Btempeval (2 , :) ;
Beval (3 , j)=Btempeval (2 , :) ;
Beval (3 , i)=Btempeval (1 , :) ;

To t a l S t r e s s e va l (a l f a , beta , :)=D∗Beval∗ s o l u t i o n ;

end
end

%%%
%Ca l cu l a t i n g s t r e s s in Gauss po in t s
%%%
ke=2∗nen∗ones (2∗nen , 1) ;
g loba lnodes = [] ;
index=1;

for k=1: ne l
j e =[1:2∗ nen] ’ ;
g lobalnodestemp=IEN (: , k) ;

105

for i =1:nen
g loba lnodes (i ∗2)=globalnodestemp (i) ∗2 ;
g loba lnodes (2∗ i −1)=globalnodestemp (i) ∗2−1;

end
h=s ize (DBGausspt (: , : , k)) ;

while j e (2∗nen)<h (2)+1
Tota lS t r e s s (: , index)=DBGausspt (: , je , k)∗ s o l u t i o n (

g loba lnodes) ;
j e=j e+ke ;
index=index+1;

end
end
max_stress=max(Tota lS t r e s s (1 , :))
min_stress=min(Tota lS t r e s s (1 , :))
%%%
%Vi sua l i z a t i o n
%%%

f igure (1)
plot (ContrPts (: , : , 1) , ContrPts (: , : , 2) , ’ bo− ’) ;
hold on
plot (ContrPts (: , : , 1) ’ , ContrPts (: , : , 2) ’ , ’ bo− ’) ;
hold o f f

t i t l e (’ Control ␣ net ’ , ’ f o n t s i z e ’ , 14)
xlabel (’ x ’ , ’ f o n t s i z e ’ , 14)
ylabel (’ y ’ , ’ f o n t s i z e ’ , 14)

f igure (2)
plot (xy (: , : , 1) , xy (: , : , 2) , ’ bo− ’) ;
hold on
plot (xy (: , : , 1) ’ , xy (: , : , 2) ’ , ’ bo− ’) ;
hold o f f

t i t l e (’ Phys i ca l ␣mapping ’ , ’ f o n t s i z e ’ , 14)
xlabel (’ x ’ , ’ f o n t s i z e ’ , 14)
ylabel (’ y ’ , ’ f o n t s i z e ’ , 14)

f igure (3)
surf (xy (: , : , 1) , xy (: , : , 2) ,u (: , : , 1))
colormap jet
shading i n t e rp
colorbar
t i t l e (’ Displacement ␣ in ␣x−d i r e c t i o n ’ , ’ f o n t s i z e ’ , 14)
xlabel (’ x ’ , ’ f o n t s i z e ’ , 14)
ylabel (’ y ’ , ’ f o n t s i z e ’ , 14)

106 A.4 Post-processor

f igure (4)
surf (xy (: , : , 1) , xy (: , : , 2) ,u (: , : , 2))
colormap jet
shading i n t e rp
colorbar
t i t l e (’ Displacement ␣ in ␣y−d i r e c t i o n ’ , ’ f o n t s i z e ’ , 14)
xlabel (’ x ’ , ’ f o n t s i z e ’ , 14)
ylabel (’ y ’ , ’ f o n t s i z e ’ , 14)

f igure (5)
surf (xy (: , : , 1) , xy (: , : , 2) , To t a l S t r e s s e va l (: , : , 1))
colormap jet
shading i n t e rp
colorbar
t i t l e (’ S t r e s s ␣xx ’ , ’ f o n t s i z e ’ , 14)
xlabel (’ x ’ , ’ f o n t s i z e ’ , 14)
ylabel (’ y ’ , ’ f o n t s i z e ’ , 14)

f igure (6)
surf (xy (: , : , 1) , xy (: , : , 2) , To t a l S t r e s s e va l (: , : , 2))
colormap jet
shading i n t e rp
colorbar
t i t l e (’ S t r e s s ␣yy ’ , ’ f o n t s i z e ’ , 14)
xlabel (’ x ’ , ’ f o n t s i z e ’ , 14)
ylabel (’ y ’ , ’ f o n t s i z e ’ , 14)

f igure (7)
surf (xy (: , : , 1) , xy (: , : , 2) , To t a l S t r e s s e va l (: , : , 3))
colormap jet
shading i n t e rp
colorbar
t i t l e (’ S t r e s s ␣xy ’ , ’ f o n t s i z e ’ , 14)
xlabel (’ x ’ , ’ f o n t s i z e ’ , 14)
ylabel (’ y ’ , ’ f o n t s i z e ’ , 14)

f i g =10;
for f igm=m
for f i g n =1:n
f igure (10+ f i g)
surf (xy (: , : , 1) , xy (: , : , 2) ,R_eval (: , : , f i gn , f igm))
colormap jet
shading i n t e rp
colorbar
t i t l e ([’R(’ ,num2str(f i g n) , ’ , ’ ,num2str(f igm) , ’) ’] , ’ f o n t s i z e ’ ,

14)
xlabel (’ x ’ , ’ f o n t s i z e ’ , 14)

107

ylabel (’ y ’ , ’ f o n t s i z e ’ , 14)
f i g=f i g +1;

end
end

f i g =30;
for f igm=m

for f i g n =1:n
f igure (30+ f i g)
surf (xy (: , : , 1) , xy (: , : , 2) , dR_dx_eval (: , : , f i gn , figm , 1))
colormap jet
shading i n t e rp
colorbar
grid on
t i t l e ([’dRdx(’ ,num2str(f i g n) , ’ , ’ ,num2str(f igm) , ’) ’] , ’ f o n t s i z e ’ ,

14)
xlabel (’ x ’ , ’ f o n t s i z e ’ , 14)
ylabel (’ y ’ , ’ f o n t s i z e ’ , 14)
f i g=f i g +1;

end
end
end

	Title Page
	Problem Description
	masteroppgave.pdf

