
INVADE H2020 project – Grant agreement nº. 731148 

 

This project has received funding from the European Union’s Horizon 2020 
Research and Innovation programme under Grant Agreement No 731148. 

 

 
 

 
Smart system of renewable energy storage based on INtegrated EVs and 
bAtteries to empower mobile, Distributed and centralised Energy storage 

in the distribution grid 

 

 

 

Deliverable nº: D5.3 
Deliverable name: Simplified Battery operation and control algorithm 
Version: 1.0 

Release date: 20/12/2017 

Dissemination level: Public     (Public, Confidential) 
Status: Submitted    (Draft, Peer-reviewed, Submitted, Approved) 
Author:  Stig Ødegaard Ottesen – eSmart 

  Pol Olivella-Rosell, Pau Lloret – UPC 

  Ari Hentunen - VTT 

  Pedro Crespo del Granado, Sigurd Bjarghov, Venkatachalam 
Lakshmanan, Jamshid Aghaei, Magnus Korpås and Hossein 
Farahmand – NTNU  

 

 

 



INVADE H2020 project – Grant agreement nº. 731148 

D5.3 Simplified Battery operation and control algorithm  Page 2 of 4 

Document history 

Version Date of issue Content and changes Edited by 

0.1  30/11/2017 Executive summary H. Farahmand and V. 
Lakshmanan  

0.2 05/12/2017 Final editing   P. Crespo del Granado 

1.0 20/12/2018 Revision 
H. Farahmand and V. 
Lakshmanan 

 

Peer reviewed by: 

Partner Reviewer 

SIN Jayaprakash Rajasekharan 

GreenFlux Michel Bayings 

 

 

 

Deliverable beneficiaries: 

WP / Task 

WP5 / Task 5.3 and 5.4 

WP8 / Task T8.3 

WP10 

 

  



INVADE H2020 project – Grant agreement nº. 731148 

D5.3 Simplified Battery operation and control algorithm  Page 3 of 4 

Executive summary 

 

The main objective of the INVADE project is to study possibilities to increase RES 

penetration and integration in the power system by adding more storage, i.e., batteries. 

The analysis centres on the flexibility services that different types of storages can 

provide, namely: centralized, distributed and mobile (EVs). The focus of the work 

package 5 (WP5) is to assess flexibility and perform analysis in order to investigate the 

optimal deployment of flexibility sources. Solutions to reduce the challenges brought by 

variable RES and EV charging include both the added flexibility on the supply and load 

side. Combining the different characteristics of these resources is essential in assessing 

the value of distributed energy resources in the power system and in the energy market. 

The main objective of this WP is to study how to achieve optimal deployment of flexible 

energy storage in distribution systems. This would lead to an improved use of existing 

power system infrastructure and reduce issues caused by variable renewable energy 

sources in the physical electricity systems and at the electricity markets. 

Deliverable D5.3 provides a simple model for flexibility operation and planning to serve 

distribution system operators (DSO), balance responsible parties (BRPs) and 

Prosumers. This is a simplified model that will be initially implemented in the INVADE 

Platform. This report contains the first version of flexibility management allocation and 

operation algorithms. The focus is to develop an optimisation method for the operation 

of stationary and EV batteries as energy storage assets in the distribution grid. The 

motivation is that storage applications could help to improve the flexibility of the demand 

side, which again enables a more efficient integration of supply from renewable energy 

sources. To cope with the intermittent output of RES production, the 

charging/discharging scheduling of battery storage systems will be carried out with 

respect to the load and supply variations. The reaction of batteries to net-load variation 

provides a fast response to imbalances in the system before other frequency control 

activation. This can effectively help the frequency quality of a RES dominated power 

system. Moreover, we include the optimal siting and sizing of batteries from the use case, 

application and grid operation point of view. This is important to ensure that the batteries 

can effectively contribute to the network management and mitigation of operating 

challenges. 
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Deliverable 5.3 is split in two main documents, i.e., 1) “Flexibility operation algorithms – 

phase 1” and 2) “Placement and Sizing of Batteries in Low and Medium Voltage Grids”. 

The first document details the modelling framework for the flexibility operation algorithm. 

It provides an outline of the background and the purpose of flexibility services to three 

entities (DSO, BRP and Prosumer) and describes the flexibility services associated with 

the different INVADE pilots. In the modelling chapter, the document describes the 

different flexibility services associated with the three entities in detail and describes the 

meaning of flexibility for generation units, storage units and loads.  Then the scope of 

the INVADE flexibility services are linked to the operational models for generation, 

storage and flexible loads. Since the 5 pilots will demonstrate certain use case(s) of these 

flexibility services, their roles, resources, interrelations and constraints are presented. 

This is followed by a chapter that details the information and planning horizon structure 

of the flexibility resources and the methods for implementation. In the last chapter, the 

mathematical formulation to model the flexibilities of different units for a specific service 

are provided. 

The second document deals with the optimal sizing and sitting of batteries in an electric 

network. A detailed discussion is presented about the impacts on battery size and the 

benefits for the user (i.e., sizing problem for DSO, BRP and prosumer). This is explained 

along with the complications associated with the siting problem. A bi-level optimization 

approach is proposed to address the sitting-sizing decisions. Moreover, the document 

discusses methods to analyse capacity and investment planning for batteries. Then, an 

illustrative chapter applies simple sizing methods to two prosumer pilot cases. 

Deliverable 5.3 presents the necessary methods and models for the development of task 

T8.3: initial INVADE flexibility cloud platform to serve 5 pilots based on the framework 

described in D4.2. In the future, further work will be done to expand these models in the 

“Advanced Battery techno-economic model” task, developed in T6.3. 



INVADE H2020 project – Grant agreement nº. 731148 

 

This project has received funding from the European Union’s Horizon 2020 
Research and Innovation programme under Grant Agreement No 731148. 

 

 
 

 
Smart system of renewable energy storage based on INtegrated EVs and 
bAtteries to empower mobile, Distributed and centralised Energy storage 

in the distribution grid 

 

 

 

Deliverable nº: D5.3_part 1 of 2 
Deliverable name: Flexibility operation algorithms – phase 1 
Version: 1.0 

Release date: 20/12/2017 

Dissemination level: Public     (Public, Confidential) 
Status: Submitted    (Draft, Peer-reviewed, Submitted, Approved) 
Author:  Stig Ødegaard Ottesen – eSmart 

  Pol Olivella-Rosell, Pau Lloret – UPC 

  Sigurd Bjarghov, Pedro Crespo del Granado, Venkatachalam  

  Lakshmanan – NTNU  

  Ari Hentunen – VTT 

 

 



INVADE H2020 project – Grant agreement nº. 731148 

D5.3 Flexibility operation algorithms – phase 1  Page 2 of 110 

Document history 

Version Date of issue Content and changes Edited by 

0.1 31/10/2017 First draft, proposing outline and 
structure of the document 

S. Ø. Ottesen 

0.2 01/11/2017 
Updated after meeting with Pedro, 
Hossein and Magnus  S. Ø. Ottesen 

0.3 10/11/2017 Integrated with contributions from Pol 
P. Olivella-Rosell, S. Ø. 
Ottesen 

0.4 17/11/2017 
New updates from Venkat (thermal 
loads) and Stig (pilots and objective 
functions) 

V. Lakshmanan, S. Ø. 
Ottesen 

0.5 23/11/2017 

The document is restructured to make it 
easier for non-mathematicians to read 
it. Problem descriptions are added, 
flexibility from batteries and EVs are 
updated, thermal load modelling is 
updated, mathematical formulations 
are updated 

V. Lakshmanan, P. 
Olivella-Rosell, S. Ø. 
Ottesen 

0.6 01/12/2017 

Abstract added, illustrative example 
added,  battery and EV models 
updated, pilot information updated, 
chapter 4 filled out, model formulations 
updated 

V. Lakshmanan, P. 
Olivella-Rosell, S. Ø. 
Ottesen, A. Hentunen, P 
Crespo del Granado 

0.9 05/12/2017 Version ready for review.  

S. Ø. Ottesen, P. Olivella-
Rosell, P. Lloret, P. 
Crespo del Granado, S. 
Bjarghov, V. 
Lakshmanan, A. 
Hentunen 

1.0 20/12/2017 
Version ready for approval, updated 
with comments from peer-reviewers 
and an improved Chapter 4 

S. Ø. Ottesen, P. Olivella-
Rosell, S. Bjarghov, V. 
Lakshmanan 

 

 

 

 

 
 



INVADE H2020 project – Grant agreement nº. 731148 

D5.3 Flexibility operation algorithms – phase 1  Page 3 of 110 

 

Peer reviewed by: 

Partner Reviewer 

SIN Jayaprakash Rajasekharan 

GreenFlux Michel Bayings 

 

Deliverable beneficiaries: 

WP / Task 

WP5 / Task 5.3 and 5.4 

WP8 / Task T8.3 

 
 

  



INVADE H2020 project – Grant agreement nº. 731148 

D5.3 Flexibility operation algorithms – phase 1  Page 4 of 110 

Table of contents 

Executive summary ....................................................................................................... 9	

1	 Introduction ........................................................................................................... 10	

2	 Problem description and modelling concepts ................................................... 11	
2.1	 An illustrative example 11	
2.2	 Flexibility services for the DSO 15	
2.3	 Flexibility services for Prosumers 16	
2.4	 Prosumer and site 17	
2.5	 Flexibility 18	

2.5.1	Flexibility from batteries 19	

2.5.2	Flexibility from loads 24	

2.5.3	Flexibility from EVs 30	

2.5.4	Flexibility from generation units 33	

2.5.5	Flexibility from aggregated resources 34	

2.6	 EV flexibility models 37	

2.6.1	EV flexibility in households 39	

2.6.2	EV flexibility in multiple charging points 39	

2.6.3	EV flexibility in public charging sites 40	

2.6.4	EV flexibility in V2X charging stations 40	

3	 Pilot sites ............................................................................................................... 41	
3.1	 Norway 41	

3.1.1	 Introduction 41	

3.1.2	Roles and their interrelations 41	

3.1.3	Resources and their interrelations and constraints 42	

3.1.4	Contracts and prices 44	

3.2	 The Netherlands 47	

3.2.1	 Introduction 47	

3.2.2	Roles and their interrelations 48	

3.2.3	Resources and their interrelations and constraints 52	

3.2.4	Contracts and prices 59	

3.2.5	Objectives 61	

3.3	 Spain 62	

3.3.5	Objective 65	



INVADE H2020 project – Grant agreement nº. 731148 

D5.3 Flexibility operation algorithms – phase 1  Page 5 of 110 

3.4	 Germany 65	

4	 Uncertainty, information structure and the planning process ......................... 66	
4.1	 Problem description 66	
4.2	 Uncertainty and information revelation 67	

4.2.1	Solar PV production 67	

4.2.2	Consumption at load limits 69	

4.2.3	Aggregated consumption of load units 70	

4.2.4	Consumption at a site 70	

4.2.5	Consumption at a charging point 71	

4.2.6	Prices 73	

4.2.7	Flexibility request from a DSO 74	

4.3	 Possible planning approaches 74	

4.3.1	Robust optimization technique 75	

4.3.2	Stochastic programming 76	

4.3.3	Rolling horizon deterministic planning 76	

4.3.4	Rule-based method 78	

4.4	 The information structure 78	
4.5	 Length of the planning horizon 80	
4.6	 Time resolution 82	

4.6.1	Prosumer 83	

4.6.2	DSO 83	

4.6.3	BRP 84	

4.7	 Overall operational scheduling optimization process 84	

5	 Mathematical formulations .................................................................................. 85	
5.1	 Overview of sets, parameters and variables 85	

5.1.1	Sets 85	

5.1.2	Parameters 86	

5.1.3	Variables 89	

5.2	 Common/general constraints 90	

5.2.1	Battery models 90	

5.2.2	Load models 92	

5.2.3	EV models 96	

5.2.4	Generator models 102	

5.2.5	Aggregated flexibility models 102	



INVADE H2020 project – Grant agreement nº. 731148 

D5.3 Flexibility operation algorithms – phase 1  Page 6 of 110 

5.3	 Specific models for DSO services 103	

5.3.1	Objective function 103	

5.3.2	DSO services specific constraints 103	

5.4	 Specific models for Prosumer services 105	

5.4.1	Objective function(s) and pilot specific constraints for 
prosumer services 105	

5.4.2	Prosumer services specific constraints 107	

References ................................................................................................................. 109	
 
 

  



INVADE H2020 project – Grant agreement nº. 731148 

D5.3 Flexibility operation algorithms – phase 1  Page 7 of 110 

 

Abbreviations and Acronyms 

Acronym Description 

AHES AMI Head End system 

API Application programming interface 

BMS Battery Management System 

BRP Balance Responsible Party 

BS Balance Scheduling 

CEM Customer energy management system 

CPO Charge point operator 

DER Distributed Energy Resources 

DMS Distribution management system 

DSO Distribution System Operator 

EMG Energy Management Gateway 

EV Electric Vehicle 

EVSE Electric Vehicle Supply Equipment 

FEP Front End Processor 

FO Flexibility Operator 

IEC International Electrotechnical Commission 

IED Intelligent Electronic Device 

IIP Integrated INVADE Platform 

LV Low Voltage 

MDC Meter Data Concentrator 

MDM Meter data management 

MR Meter Reader 

MV Medium Voltage 

NA Not Applicable 

OCHP Open Clearing House Protocol 

OCPI Open Charge Point Interface 

OCPP Open Charge Point Protocol  

OM Operation meter 

OSCP Open Smart Charging Protocol  

PRIME PoweRline Intelligent Metering Evolution 

PV Photovoltaic 



INVADE H2020 project – Grant agreement nº. 731148 

D5.3 Flexibility operation algorithms – phase 1  Page 8 of 110 

Acronym Description 

RTU Remote Terminal Unit 

SCADA Supervisory control and data acquisition 

SDC Smart device controller 

SGAM Smart Grid Architecture Model 

SM Smart Meter 

TBD To Be Determined 

ToU Time-of-Use 

TSO Transmission System Operator 

USEF Universal Smart Energy Framework 

V2G Vehicle to Grid 

WP Work Package 

  



INVADE H2020 project – Grant agreement nº. 731148 

D5.3 Flexibility operation algorithms – phase 1  Page 9 of 110 

Executive summary 

A central deliverable in the INVADE project is the Integrated INVADE platform, which will 
be developed in WP8. The platform will support many different functional areas, but the 
main development in the INVADE project is the cloud based flexibility management 
system, which will be used in the daily operations of the different flexibility services. A 
first, simplified version of this system will be delivered to the pilots in June 2018. 

This document contains a description of the algorithms that will be used in the daily 
operations. First, the problem is described, and basic modelling concepts are proposed 
and discussed with regards to flexibility from stationary batteries, loads, EVs and 
generation. Then the pilots are described with the target to analyse of how their technical 
and commercial setup will influence the design of the flexibility algorithms. This is 
followed by a discussion of possible approaches for handling uncertainty, including the 
length of the planning horizon and how detailed the time resolution should be. Finally, 
the first version of the mathematical formulations is given. 

A key finding in the document is that the way to model flexibility and how much value 
that can be extracted from the flexible sources, are tightly connected to the amount of 
information that is available. This challenge must be addressed in other WPs and tasks.  
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1 Introduction 

According to the DoA the deliverable D5.3 Simplified Battery operation and control 
algorithm contains the first version of flexibility management allocation and operation 
algorithms worked out in two tasks: T5.3 Energy storage units allocation/positioning and 
sizing algorithm and T5.4 Design and program the flexibility management operation 
algorithm. The current document covers the part connected to T5.4, whereas D5.3 
Optimal Placement and Sizing of Batteries in Low Voltage Grids covers the part 
connected to T5.3. 

The work in this document is built upon the content in several other deliverables in 
different work packages: D4.1, D4.2, D5.1, D5.2 and D10.1.  

The main purpose with this document is to define the flexibility algorithms that will be 
implemented in the Integrated INVADE platform through the task T8.3. 

The different flexibility services and how they will be implemented in the different pilots 
are defined in D4.2 (downloaded 09/11/2017), see Table 1: 

Table 1: Flexibility services to be used in each pilot (Y: yes; N: no). 

Flexibility	
customer	 Flexibility	services	INVADE	 Norwegian	

pilot	
Dutch	
pilots	

Bulgarian	
pilot	

German	
pilot	

Spanish	
pilot	

DSO	
Congestion	management	 N	 Y	 N	 Y	 Y	
Voltage	/	Reactive	power	control	 N	 Y	 N	 Y	 Y	
Controlled	islanding	 N	 N	 N	 TBD	 Y	

BRP	
Day–ahead	portfolio	optimization	 N	 Y	 TBD	 N	 TBD	
Intraday	portfolio	optimization	 N	 Y	 TBD	 N	 Y	
Self-balancing	portfolio	optimization	 N	 Y	 TBD	 TBD	 Y	

Prosumer	

ToU	optimization	 Y	 Y	 Y	 Y	 TBD	
(phase	2)	

kWmax	control	 Y	 Y	 Y	 Y	 TBD	
(phase	2)	

Self-balancing	 Y	 Y	 Y	 Y	 TBD	
(phase	2)	

Controlled	islanding	 TBD	 N	 TBD	 Y	 N	

 

It is, however, not finally decided which services that will be in phase 1 and 2. A working 
assumption is that the prosumer services for ToU optimization, kWmax control and Self-
balancing plus the DSO service Congestion management will be in phase 1. These are 
the only services that will be covered in this document.  

The rest of this document is organized as follows: Chapter 2 contains the problem 
description and the basic modelling concepts. A description of the INVADE pilots are 
described in Chapter 3, with emphasis on flexibility algorithm specific issues. Chapter 4 
outlines and discusses issues related to the information structure and the decision 
process. The mathematical model formulations are given in Chapter 5.  
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2 Problem description and modelling concepts 

2.1 An illustrative example 

This section contains a specific and simplified example aiming at giving the reader an 
overall idea about the problems that this document address.  

Consider a household with the following resources: 

§ A PV panel 

§ A set of inflexible loads 

§ Two EV charging points 

§ A stationary battery 

§ A main meter that meters the net exchange with the grid, i.e. the purchase and the 
sales 

§ Separate meters for the PV panel, for each of the charging points and for the 
battery 

Since the household both produces and consumes electricity, it is a prosumer.  

 

 
Figure 1. The prosumer with resources (circles) and meters (squares) 

The prosumer has three flexible resources: 

§ The EV charging points, where the power levels can be controlled continuously 
between 0 and 4 kW 

§ The battery, which can be charged and discharged with power levels between 0 
and 4 kW. The energy levels can be between 0 and 10 kWh 

Further, assume that the prosumer has a contract with an electricity supplier, also 
denoted a retailer, with prices that vary hour by hour (ToU) according to prices at the 
Day-ahead market. We consider one given day, where the prices fluctuate according to 
Figure 2. 
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Figure 2. Example of ToU prices 

In addition, the prosumer has a grid contract with the local DSO. This contract contains 
a price element for kWmax: For every kWh that is bought above 7 kWh/h, the prosumer 
must pay a price equal to twice the ToU price. 

Finally, when the prosumer sells surplus electricity back to the grid, he/she is 
compensated to the price equal to half of the ToU price. Figure 3 shows the net exchange 
for a sample day in the case where no flexibility is used. The kWmax limit is also 
illustrated. 

 
Figure 3. Net exchange for a day in the case where no flexibility is used 

Observe that the prosumer will sell in the middle of the day, in the hours 11 to 14, and 
purchase for the rest of the day. The purchase varies considerably during the day, with 
a peak in hour 20, and with 7 hours where the purchase is above the kWmax limit. Finally, 
notice that the high purchase in the evening coincide with the high ToU prices. 

The ToU contract with fluctuating prices, the kWmax which doubles the cost when the 
purchase is above 7 kW and the fact that selling back surplus electricity is compensated 
to low prices, are all incentives to utilize the available flexibility. The overall objective for 
the prosumer is to select a strategy with decisions to control the battery 
charging/discharging and the EV charging in such a way that the total costs are 
minimized. This task will be performed by the Flexibility Operator (FO). 

The best thing to do is to: 
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§ Shift as much purchase as possible from high price hours to low price hours, which 
means to shift from morning and evening to night and mid-day. This corresponds 
to the prosumer service ToU 

§ Reduce as much as possible the purchase above 7 kW. This corresponds to the 
prosumer service kWmax control 

§ Reduce as much as possible the surplus sales. This corresponds to the prosumer 
service Self-balancing 

Notice that some of these objectives are contradictory. One example is hour number 1, 
where the net exchange is above 7 kW and hence the high kWmax price kicks in. This 
gives an incentive to reduce the purchase. At the same time, the ToU price is low, which 
gives an incentive to increase the purchase. 

How much it is possible to reduce the costs is highly dependent on how much flexibility 
that is available. If we look only at using the stationary battery, we see that due to the 
limitations both in power level (max 4 kW) and in energy (max 10 kWh), it will only be 
able to reduce the purchase above 7 kW, not eliminate it. 

A possible strategy for the battery is shown in Figure 4. By this strategy the kWmax is 
avoided in hour 1, all the sales is avoided and the high cost ToU purchase and kWmax 
is reduced in the hours 18 to 21. However, we do not know if this is the best possible 
strategy, i.e. the strategy that gives the minimum total cost. 

 
Figure 4. Net exchange with use of flexibility from the battery 

If we also take the control of the EV charging into account, we may reduce the costs 
further, for instance by eliminating the kWmax purchase totally. However, this is again 
dependent on how much the EVs are charging and at what times.   

The example above is a nice story that illustrates a subset of the problems that this 
document handles. However, the story has a major shortcoming: It does not reflect a 
real-life situation. The assumption that we know with certainty what is going to happen 
over the complete day does not hold in real life. For instance, we will not know what the 
PV production will be, nor the load profile. We will not know when the EVs will connect 
and disconnect or how much charging they need. Consequently, we do not know the net 
exchange. Then it is a fundamentally difficult task to make the right decisions. A risk is 
that we empty the battery for some hours, and later it turns out that the battery could 
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have provided higher value if it was fully charged. So, the best strategy would have been 
to wait with the discharging. 

One way of dealing with information we do not have, is to make predictions and to make 
decision based on these. For production and consumption, the nature of the predictions 
will be so that they may be quite good for the coming minutes or hours, but the further 
out into the future we get, the larger the prediction errors will be. This might be handled 
by repeatedly updating the predictions and rerunning the decision model. For instance, 
we could update the predictions each hour, we could make new decisions each hour, 
and each time we only implement the decisions for the nearest hour. However, when 
making the decisions, we look at the whole day, to reduce the risk of making “wrong” 
decisions. 

To be able to do this, we need a suitable decision support model. In this document we 
use mathematical programming, also called optimization, which deals with problems 
where one seeks to maximize or minimize a real function by choosing the values of 
variables from an allowed set. In our small example, we seek to minimize the total cost. 
This is the objective, formulated in the objective function. An applicable model must also 
reflect all the technical constraints, for example the battery’s limitation in maximum 
charging and discharging power of 4 kW, and the maximum capacity of 10 kWh. 

In order to update predictions and correspondingly update the decisions, the optimization 
model will be integrated into the Integrated INVADE Platform. The process needed to 
run the optimization model is illustrated in Figure 5. 

 
Figure 5. Illustration of the optimization model in an integrated environment 

The output from the model, the decisions, is how to charge and discharge the battery 
and when and how much to charge the EVs. Examples are shown in Figure 6. 
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Figure 6. Examples of decisions for battery and EV1 for one day 

As we saw in the example, one issue is how to detect the need for flexibility usage, since 
the net exchange is the basis for the decisions. Another issue is how to know how much 
flexibility that is available. For the battery it is quite easy, since we have full control of 
charging and probably have access to meter values for the energy level. For the EVs it 
is a bit more complicated. First of all, we most likely do not know in advance when they 
will connect and disconnect, or how much charging they need. However, apps might be 
used to increase the level of information. Perhaps other information channels can be 
used in addition to predictions. Anyway, it is clear that the more information we have 
available, the smarter decisions we can make. 

2.2 Flexibility services for the DSO 

In this document, the flexibility service congestion management is included as the only 
service for the DSO. According to D4.1 Overall INVADE architecture, congestion 
management is defined as follows: 

Congestion management refers to avoiding the thermal overload of system components 
by reducing peak loads where failure due to overloading may occur. The conventional 
solution is grid reinforcement (e.g., cables, transformers). The alternative (load flexibility) 
may defer or even avoid the necessity of grid investments.  

The congestion management service in the INVADE project is based on the EMPOWER-
concept as described in [1]. The DSO requests activation of flexibility when needed, for 
instance in cases where a substation is overloaded. The Flexibility Operator (FO) 
delivers the requested flexibility provided by a portfolio of prosumers with flexible 
resources, see Figure 7. 
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Figure 7. Congestion management services delivered to the DSO 

The FO’s problem is to generate a plan for when and how much to activate the different 
flexibility resources in such a way that: 

• The request from the DSO is met 

• No constraint is violated 

• The activation is done to the minimum cost 

2.3 Flexibility services for Prosumers 

According to D4.1 Overall INVADE architecture, the prosumer services covered in this 
document are defined as: 

ToU optimization is based on load shifting from high-price intervals to low-price intervals 
or even complete load shedding during periods with high prices. This optimization 
requires that tariff schedules are known in advance (e.g., day-ahead) and will lower the 
Prosumer’s energy bill. 

kWmax control is based on reducing the maximum load (peak shaving) that the 
Prosumer consumes within a predefined duration (e.g., month, year), either through load 
shifting or shedding. Current tariff schemes, especially for C&I customers, often include 
a tariff component that is based on the Prosumer’s maximum load (kWmax). By reducing 
this maximum load, the Prosumer can save on tariff costs. For the DSO, this kWmax 
component is a rudimentary form of demand-side management. 

Self-balancing is typical for Prosumers who also generate electricity (for example, 
through solar PV or CHP systems). Value is created through the difference in the prices 
of buying, generating, and selling electricity (including taxation if applicable). Note that 
solar PV self-balancing is not meaningful where national regulations allow for 
administrative balancing of net load and net generation. 

Which roles that are involved in the prosumer services, will vary from case to case. The 
incentives for ToU, kWmax and self-balancing can come from a combination of terms in 
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the prosumer’s contracts with the DSO and the retailer, in addition to physical conditions. 
The flexibility management is taken care of by the FO. 

 
Figure 8. Possible role setup for prosumer services 

In contrast to flexibility services for the DSO, that are initiated based on an occasional 
signal from the DSO in some given situations, the flexibility services for the prosumer 
must be planned continuously and without an external request. Furthermore, a 
combination of two or three of the prosumer flexibility services may exist simultaneously. 
Then, the model must take into account costs and constraints for all the involved services 
when making the decisions. A typical objective is to minimize the total costs. 

Another complicating issue, compared to the DSO services where the requested amount 
is externally and clearly defined, is that the flexibility need is not unambiguously given in 
advance. For instance, an unexpected increase in consumption may require additional 
use of flexibility in order not to violate a kWmax constraint. In general, uncertainty related 
to production and consumption levels are more important for prosumer services. These 
issues are described in more detail in Chapter 4. 

Notice that each of the services may have multiple interpretations: 

• ToU optimization. The definition covers cases where prices vary over a given 
time period, for instance a day. However, in the Bulgarian pilot ToU optimization 
is used in a bit different context. Here, the prices are flat, but changing the load 
profile by shifting load from peak to off-peak periods gives Albena a stronger 
position to negotiate reduced future prices. 

• kWmax control. This service can be linked to a tariff structure that implies a 
penalty for maximum purchase. Or it can be linked to a physical limitation, for 
instance at a main fuse. 

• Self-balancing. The definition covers cases where the value of consuming self-
generated electricity is higher than selling back. However, there might also be 
situations where selling back surplus generation is not allowed.  

2.4 Prosumer and site 

The starting point for the INVADE concept is the prosumer and site model as defined in 
the EMPOWER project. A site is a location with a main meter. A site can represent a 
dwelling, a house, a commercial building, an industrial facility, a charging station and 
probably other types. A prosumer (consumer that also produces electricity and/or that 
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provides flexibility) is a legal entity (person or business), and a site must have one 
prosumer connected to it. Prosumers can move in and out from a site, but at a specific 
time only one prosumer can be active.  

As stated above, each site will have a main meter, which is the basis for the grid contract 
with the DSO and the retail contract with the chosen retailer. In addition, a site can have 
one or several resources, where each resource is categorized in one and only one out 
of four types: 

§ Generator resources 

§ Load resources 

§ Electric vehicles (EVs) 

§ Storages  

Each resource can be a single appliance or a virtual collection of several appliances or 
circuits. Furthermore, each resource can be metered or not and controllable or not. Meter 
values from the main meter (net energy in and out) and from the sub meters (at the 
resource level) will be collected in real time with fine time granulation (currently each 10 
seconds in the EMPOWER project). Which control options that exist will depend both on 
the technical characteristics of each resource/control equipment and on the agreement 
with the prosumer. All registered resources will be linked to one and only one site, to 
which a main meter is connected. The model is illustrated in Figure 9. 

 
Figure 9. Prosumer model 

The model is easily interpreted in cases where each controllable resource is one single 
device. However, in some cases one resource is a collection of devices. A typical 
example is when an EV resource consists of several charging points.  

2.5 Flexibility 

As described above, some of the resources may be controllable. Then, they can provide 
flexibility, defined as the modification of generation injection and/or consumption patterns 
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in reaction to an external price or activation signal in order to provide a service within the 
electrical system [2]. 

Our objective is to utilize the flexibility to meet different objectives without violating 
constraints. Below, a description of possible flexibility characteristics is described for 
each resource type. Later, in Chapter 4.1, the different characteristics are formulated 
mathematically. 

The starting point for the flexibility descriptions are from [3], which are further developed 
in the EMPOWER project [1]. However, it is expected that the descriptions will be refined 
and adapted through the work in INVADE. 

Since flexibility is defined as “a modification”, it must be compared to some baseline, 
which for instance can be an original schedule or a prediction. The flexibility is then the 
difference between the baseline and the revised plan, see Figure 10. 

Assume the blue bars represent a baseline consumption and that the orange line 
represents the revised plan. Then, we have flexibility provision in period 4 and 8, equal 
to 5 kW. 

The provision of flexibility is called regulation, which can come in two directions: Up and 
down. Up-regulation means increased production or decreased consumption, while 
down-regulation means decreased production or increased consumption. 

 
Figure 10. Original and revised schedule and the provision of flexibility 

Focus on flexibility provision directly is important in cases where flexibility is sold and 
bought as a service, for instance to the DSO.  

2.5.1 Flexibility from batteries 

Batteries provide high flexibility as they are fully dedicated to this task. An example is 
shown in Figure 11, where a battery provides energy and stores energy in different time 
periods to offer some requested service by a prosumer or a FO. The battery has a certain 
energy capacity storage limit and a charge and discharge power limit. 
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Figure 11. Battery flexibility example 

Batteries are electrochemical energy storages with complex nonlinear characteristics 
and interdependencies. The most important characteristics are the capacity, open-circuit 
voltage (OCV), and internal impedance, which also dictate the energy capacity, efficiency 
and power capability. Moreover, batteries are very sensitive to temperature. Too low 
temperature results in poor performance and low efficiency, while too high temperature 
results in increased rate of degradation and even decomposition and safety risks. All 
these characteristics cause constraints and limitations for the usage in order to achieve 
safe operation and long lifetime. The battery characteristics are explained in more detail 
in D6.1 Storage system dimensioning and design tool.  

Each battery chemistry has a unique OCV curve and a voltage window. The specified 
maximum and minimum voltages should not be exceeded in any case as it may cause 
increased rate of degradation and even cell decomposition and permanent damage. 
Therefore, high and low cutoff voltage are specified for each cell to ensure safe operation 
and long lifetime. The controller algorithm must be capable to prevent the voltage to 
reach these cutoff voltages during use. This can be implemented by setting limitations 
for the usable SOC (state-of-charge) window as well as discharge power when 
approaching fully discharged state and charge power when approaching fully charged 
state.  

During loading, polarization losses occur when a load current passes through the 
electrodes. These polarization losses consist of ohmic polarization, activation 
polarization and concentration polarization. The presence of these losses can be seen 
as a difference between the OCV and the terminal voltage during loading. As the 
polarization effects increase with increasing current, the low cutoff voltage is reached 
earlier when discharging with higher rates. This is known as the rate effect. However, the 
capacity is not lost, but is usable once the voltage has recovered. Full relaxation takes 
hours to complete. Rate effect is illustrated in Figure 12 , which shows an A123 lithium-
ion cell performance under different power extractions. The area below the curve is the 
total energy extracted, and it is smaller as the power extracted increases. 
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Figure 12. Power vs round-trip efficiency relation from A123  

nanophosphate high power lithium ion cell data sheet 

The battery model must reflect the technical characteristics of the combination of battery 
type and battery management system. We assume that we are able both to control 
whether the battery is going to be charged and discharged and the power levels. In 
addition, restrictions may be given by the owner/operator of the battery, for instance 
related to different times that the battery can be used, a limitation of the number of 
charging/recharging cycles (to prevent aging) and potentially also limited bandwidths, in 
cases where the battery is also used for other purposes. 

The subsections below describe the main battery parameters to be used in the INVADE 
model. 

2.5.1.1 Battery energy storage capacity 

Battery energy storage capacity is the total energy capacity of a battery, which is 
specified in the data sheet of a battery. Capacity is normally modelled in kilowatt-hours 
(kWh), which is preferred over ampere-hours (Ah).  

2.5.1.2 Maximum charge and discharge power 

Maximum charge and discharge power are the maximum power that the battery can 
handle. These are limited by the inverter, the transformer and the cross section area of 
the charging wire. Whereas an EV can potentially deliver a power of more than a hundred 
kW, this would normally not be the case in a V2X situation due to thermal limitations on 
inverters and cables. Although lithium ion batteries can have a relatively high maximum 
charge and discharge power, the battery often has thermal constraints meaning that the 
maximum charging power can only be utilized for a certain amount of time. Therefore, 
batteries can be modelled with both a maximum and a continuous charge and discharge 
power, in order to avoid creating operation decisions that are not in line with real 
constraints. 
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2.5.1.3 Charge and discharge power resolution 

Depending on the equipment specifications, the charge and discharge power has a 
limited resolution. Whereas a model can handle a linear high resolution charging power, 
the real charging device could have discrete steps, for example one step per ampere. 
Higher resolution could also potentially increase the calculation time of the optimization. 
It is in general assumed that continuous charging current and therefore power can be 
configured. 

2.5.1.4 Charge and discharge efficiency 

The instantaneous efficiency of a battery is dictated by the current, the internal 
resistance, and the OCV, as follows:  

𝜂 = 1 −
𝑅
𝑈'(

𝐼 

where Uoc is the open-circuit voltage (OCV), R is the internal resistance, and I is the 
discharge current. However, because the OCV cannot be measured directly during 
loading, roundtrip energy efficiency is used in determining efficiency. The roundtrip 
energy efficiency is defined as the ratio of the discharged energy to the charged energy. 
Because of the complex and nonlinear impedance and OCV characteristics of Li-ion 
batteries, the actual energy efficiency depends on the rate and duration of the loading, 
the SOC, the temperature, and the ageing of the battery.  

In general, the rate has a high impact on the efficiency. Typically, the roundtrip energy 
efficiency of a full discharge–charge cycle of a large Li-ion battery at room temperature 
is higher than or equal to 97% for low rates less than or equal to C/3. Here, C is the 
charge/discharge speed, i.e. C/3 means full charge or discharge in 3 hours. 

Impedance curves are typically almost flat in the mid-SOC area from 20-80%. Therefore, 
in that area, the SOC affects the efficiency mostly via the OCV slope, which is dependent 
on the battery chemistry. As the OCV decreases with decreasing SOC, the efficiency 
decreases with decreasing SOC as well. Outside the mid-SOC range, especially below 
20% SOC, the impedance characteristics rise significantly, which reduces the efficiency 
directly. Furthermore, efficiency decreases as the ageing increases. This is a 
consequence of the tendency of the impedance to increase due to ageing.  

The internal impedance of a battery changes as a function of temperature. Nominal or 
rated values are typically given at room temperature. At colder temperatures, the 
impedance increases and the efficiency decreases, and at higher temperatures, the 
impedance decreases and the efficiency increases. 

When determining the energy efficiency of a storage system, one must take into account 
also the losses that occur in the power electronic converters and grid interface. The 
efficiency of the power electronic converters depends on the operating point. In ref. 
Schimpe et al. [4] the efficiency of a grid-connected inverter including a grid connection 
was modelled and measured. The efficiency was low (<80%) at very low power (<5% 
rated power) and high (>95%) for the most of the operating range (>20% system power).  

A constant storage system efficiency is used in the INVADE controller algorithm in the 
first phase. In [4] a storage system of 192 kWh with LFP batteries was modelled and 
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simulated for several different use strategies and scenarios. The optimum roundtrip 
energy efficiency of 87% was obtained under constant cycling with partial load, while 
most of the scenarios resulted in 70–80% roundtrip efficiencies. In INVADE pilots, the 
base scenario is that a low rate is typically used, which results in high efficiency for the 
battery and the inverter. Based on these findings, 85% will be used as the starting point 
for the storage system roundtrip efficiency. This equals to the discharge and charge 
efficiency of 92%. However, the efficiency parameter can be adapted to each pilot. Low 
power operation (less than 10% of system power) should be avoided due to relatively 
low efficiency of the power electronics. 

The pilot adaptations as well as more advanced methods to implement the efficiency 
characteristics will be investigated in WP6, and the results will be adapted to the 
controller algorithm in a later phase. One possibility is to set the efficiency parameters 
outside the optimization algorithm before executing the algorithm. 

2.5.1.5 Cost of degradation 

Battery performance degrades as a result of ageing. The performance degradation can 
be divided into capacity fading and power fading. Degradation happens to all batteries 
regardless of whether they are used or not. Cycle ageing happens during discharging 
and charging, while calendar ageing happens when the battery is not used. The rate of 
degradation depends on the use profile, storage SOC and ambient conditions. 

The models presented in this deliverable have no degradation cost taken into account. 
However, this is implementable, and will be taken into account in a later phase. The 
degradation mechanisms are very complex and dependent on the use profile and 
ambient conditions. These stress factors and their modelling methods are studied in 
WP6, and the results will be included in the final controller algorithm.  

2.5.1.6 Self-discharge coefficient 

Self-discharge is not included in present models, but could easily be implemented. Self-
discharge is basically a battery losing state of charge slowly when not being used, where 
all batteries have an own self-discharge coefficient depending on technology. Because 
most batteries in the pilots are intended for daily or at least weekly use, self-discharge is 
not the most important factor, but could in theory be included if considered to be relevant. 

2.5.1.7 Capacity utilization factor 

In power systems the control variable is typically power instead of current. At CV 
(constant voltage) regions close to the cutoff voltages, maximum available power values 
can be reduced to mimic CV operation.  

During charging, the boundary between the normal operation and the voltage-limited 
operation depends on the rate, the internal impedance, and the OCV characteristics. 
Typical SOC values for the boundary at C/3, 1C, and 2C rates are 95%, 90%, 80%. 
However, these numbers vary and depend especially on the cell chemistry.  

During discharging, the actual boundary between the constant-current or constant-power 
operation and the cutoff or CV operation is typically close to 0% SOC for discharging 
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with rates of less than 3C. Nevertheless, the power limiting region should start at around 
10% SOC to prevent abrupt ending of the discharge due to accidentally reaching the 
cutoff voltage. Also the efficiency starts to reduce significantly already before that, and 
the heat generation rate increases rapidly as the SOC approaches 0%.  

For full utilization of the battery performance without voltage-based limitations, a SOC 
range that allows full-power operation can be defined. Moreover, this region can be 
further reduced in order to take into account other aspects such as increased rate of 
aging at high SOC and lower efficiency at low SOC. 

2.5.2 Flexibility from loads 

A load unit is an appliance or a virtual collection of appliances that consume electricity. 
We split load units into three main classes: Inflexible, curtailable and shiftable. Inflexible 
load units are devices that can not be controlled, for instance TVs or food cooking 
appliances.  

Curtailable load units can be disconnectable if the only options are to be on or completely 
switched off. Or they can be reducible if the power levels can be controlled. Figure 13 
shows a possible baseline consumption for load unit. If the load unit is inflexible, the 
schedule will be equal to the baseline. 

 
Figure 13. Baseline consumption for a load unit 

If the load unit is disconnectable, a possible schedule is illustrated in Figure 14, where 
the unit is disconnected in periods 4 and 5. 

 

 
Figure 14. Up-regulation provided from consumption disconnection 
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A corresponding example for reducible load unit is illustrated in Figure 15, where the 
consumption level is reduced down to 2 kW in periods 4 and 5. 

 
Figure 15. Consumption reduction in hours 4 and 5 

While for curtailable load units, the consumption that is reduced will not be delivered 
later, shiftable load units have the flexibility to deliver the consumption at other times. 
Some shiftable load units fall into the category of shiftable profile, where the complete 
profile is delayed (or forwarded) without changing the power levels. A typical example is 
a washing process.  

Figure 16 shows an example of an original consumption profile (still Figure 13) is delayed 
three periods.  

 
Figure 16. Consumption in case with shifting three periods 

For some load units there exists a possibility to control the power levels, which means 
that the consumption can be shifted in time, but in addition, the profile can be changed. 
We denote this type shiftable volume, since the volume must be met. Some also call this 
type for storable loads. Freezing rooms are examples of consumption that can be 
shiftable volume, if there is a possibility to control the power levels directly or indirectly 
through changing the temperature setpoints. 

Figure 17 shows an example where the baseline consumption is shifted one period and 
also reshaped totally. 
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Figure 17. Consumption in case with shifting and shaping 

In order not to induce to large disadvantages for the prosumers and to keep inside 
physical limits, it must be possible to limit the controllability of the different load units. 
These constraints will be different between the different categories of flexibility: 

Curtailable disconnectable: Curtailment is allowed only for certain periods. A curtailment 
can have a maximum duration before it must be reconnected. After a reconnection, the 
load unit must have a minimum rest time before the next disconnection. 

Curtailable reducible: The limitations will be the same as for curtailable disconnectable. 
In addition, the reduction must be within specified limits. 

Shiftable profile: There must be limitations related to how much a consumption can be 
shifted forward or backward, or in other words: earliest start and latest finish period. 

Shiftable volume: Same limitations as shiftable profile. In addition, minimum and 
maximum power levels must be defined. 

Utilizing flexibility from load resources may induce added costs or discomfort for the 
prosumers.  

For curtailable load units, we have the foundational issue that we can not meter how 
much we have curtailed. One approach is to estimate the volume curtailed and then 
compensate according to prices per curtailed kWh. Another, more straightforward 
approach, is to compensate based on the number of periods curtailed. In the EMPOWER 
project the latter is chosen.  

For shiftable load units, a natural approach is to compensate according to the length of 
the delay, or in general: how long the consumption is moved away from the baseline. For 
shiftable profile load units this is a straightforward strategy: You just count the number of 
periods the start or the end is shifted and multiply with a price per period. For shiftable 
volume load units, it is a bit more complicated. In the example in Figure 17 both the start 
and the end is delayed with one period, so the delay is easy to handle here. However, 
we also see that some of the consumption is shifted to earlier periods, so on average, 
the volume is not delayed with one whole period. Other examples could be even more 
complicated, see Figure 18 that illustrates two possible new profiles where both the start 
and end periods are the same (and hence, no delay), but where most of the consumption 
is met earlier and later, respectively. 
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Figure 18. Original consumption profile (left) and two possible reshaped profiles (middle and right) 

To handle all these situations in a uniform way, we introduce the term weighted average 
delay (wad), which indicates how much later or earlier the energy volume is delivered on 
average. Since the wad also is an expression in number of periods, the strategy to 
compensate based on number of periods shifted, can be used also for this category of 
load units. 

The load units described above are modelled based on time constraints. For some load 
types, defining these constraints properly may require some preprocessing. For thermal 
loads, a different approach is to model the temperature behaviour directly instead of the 
time constraints. 

The detailed modelling of thermal loads requires more measurements and physical 
parameters specific to every particular thermal load. For example, the detailed modelling 
of electric water heater (EWH), requires measurement of water inflow, outflow, hot water 
temperature and ambient temperature. The parameters specific to the water heaters are 
hot water tank capacity, thermal insulation properties of the tank, power rating of the 
heating element. For smart grid energy applications, simple data models based on 
historic measurement are sufficient. The temperature and power consumption profile of 
EWH is shown in Figure 19. The EWH generally has one or two duty cycle in 1 hour 
during normal operation.  

 
Figure 19. Temperature and power consumption of EWH [5] 

Lu et al [6], present a simple state queue model (SQ model) of thermal loads, which 
considers the temperature profiles of the thermal loads are linear between the upper (T+) 
and lower (T-) threshold points at which the thermostat changes its switching state from 
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ON to OFF or vice versa due to the hysteresis of the thermostat. Figure 20 shows the 
temperature profile of a EWH and the SQ model representation. 

  
Figure 20. SQ model representation of EWH temperature [6] 

The two temperature profiles between the upper and lower temperature threshold limits 
are divided in to may states. When the EWH is switched OFF, its temperature state is 
moved from one temperature profile to the state in the other temperature profile 
corresponding to the same temperatures. Thus the flexibility duration can be predicted 
from the number of states in the temperature profiles. 

The SQ model considers the temperature profiles as a linear one. In real life they are not 
linear. Venkat et al [7] developed a black box model for another thermal load refrigerator, 
which considers the temperature profile as a piecewise linear. The slopes of the 
temperature profiles are derived from the previous temperature cycles. When the thermal 
load’s state is changed, the model calculates the duration for which the thermal load can 
be switched ON or OFF by reconstructing the temperature profile from the slopes of 
temperature profile in the previous temperature cycle. Figure 21 shows the temperature 
and OFF time prediction for a refrigerator using the black box model technique. 

 
Figure 21 Temperature and OFF time prediction method in black box model for refrigerators [7] 

Both the SQ model and black box model do not consider the physical properties like 
thermal insulation, thermal mass, ambient temperature and mass flowrate etc.  Both the 
models use only two measurements namely the temperature and the power consumption 
of the thermal loads. 
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By considering the measurement constraints in the pilot tests, the thermal loads, for 
example EWH can be modelled with linear temperature profile between T- and T+ as 
shown in the Figure 20 with two different temperature slopes for heating and cooling 
segments. With the assumption of no external disturbances like change in ambient 
temperature and change in mass flowrate of thermal mass (in this case inflow and outflow 
of water), the objective function for prosumer cost minimization is  

min 𝐸(,) ∗ 𝐶𝑒𝑙(,)
2

,
 

where  

Cel(t) is cost of electricity at time period (t) 

E(t) is energy consumption by the EWH at time period (t) which is defined as 

E(t) = (∆τON (t) * τON) * P(EWT)   

where  

P(EWT) is power rating of the EWH 

τON the duration for which the EWH stays ON during normal operation 

∆τON (t) is the fraction of ON time calculated for the period (t) such that 

0 < ∆τON(t) < 1  

The temperature constraints are defined as follows 

T(t) = T(t-1) + (TSLON * ∆τON (t)) - (TSLOFF * (1-∆τON (t))) 

where  

T(t) is the temperature of water in EWH at time (t) 

T(t-1) is the temperature of water in EWH at time (t-1) 

TSLON = ∆T / τON 

TSLOFF = ∆T / τOFF 

∆T is the difference between upper (T+) and lower (T-) threshold temperature of 
EWT as shown in the Figure 20. 

This model is very similar to battery model where T- and T+ replaces the SOCmin and 
SOCmax respectively, and the changing energy of the battery is replaced by the heating 
energy. Unlike the battery, the EWH do not deliver energy back to the network. It can be 
considered as self-discharge of a battery. 

Real-time implementation issues: 

At (T+) the thermostat disconnects the EWT from the mains power. This disconnection 
remains until the temperature reaches (T-) due to the hysteresis of the thermostat. 
Therefore, any external control will not be possible at and above (T+). This constraint 
restricts preheating above (T+). By considering a new upper threshold temperature a few 
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degrees lower than the actual upper threshold temperature (T+) during control, full 
control can be provided over all time. As for as the user is concerned, the temperature 
has to be within the set temperature band. 

Another issue related to real-time implementation is delivering the calculated energy in 
the sub periods of the duration (t). If the (∆τON (t) * τON) calculated as the result of 

optimization, is above 50% of τON and the T(t-1) is also above 50% of the temperature 
band, then the total energy for the time period (t) cannot be delivered at once 
continuously. The reason is that the temperature T(t) will reach the upper threshold (T+) 
sooner than (∆τON(t) * τON), the ON time calculated, consequently the internal thermostat 
of the EWH will disconnect the heater from the mains power. One of the simple ways to 
avoid such situations, is by delivering the energy in 2 or 4 parts within the sub periods of 
the duration (t). For example, if the length of the period (t) is 60 minutes, the EWH can 
be activated for half of (∆τON(t) * τON) duration in every 30 minutes.    

2.5.3 Flexibility from EVs 

The EV model must reflect technical characteristics of the charging point in combination 
with the car. First, we must distinguish between the ones that support V2X, (Vehicle to 
Grid, Vehicle to Home, Vehicle to Building), i.e. where electricity can be retrieved from 
the EV battery, and the ones that purely can be charged. The latter category is partly 
similar to a load. Furthermore, we must distinguish between the control options that may 
exist at the charging point. Some cannot be controlled at all, and are hence inflexible. As 
an illustrative example, assume that an EV has a charging profile according to Figure 
22. Here, the x-axis shows the general term period, which may be an hour, 15 minutes 
or some other time span. A non-controllable EV will contribute with this load. 

 
Figure 22. Baseline charging schedule 

Some charging points provide possibility to delay the charging, similar to introducing a 
timer. Then the whole charging profile is shifted a number of periods. This is illustrated 
in Figure 23, where the profile from Figure 22 is shifted 4 periods. 
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Figure 23. Shiftable charging 

Since flexibility is defined as the difference between the baseline and the new schedule, 
this shifting means up-regulation for some periods and down-regulation for others, see 
Figure 24. Hence, time shifting can be done both in cases where up-regulation is needed 
and in cases where down-regulation is needed. However, it is important to realize that a 
shifting will represent both, so decisions must be taken with care. 

 
Figure 24. Flexibility provision from shifting charging 

Other charging points have the possibility to shift and to interrupt. Then the charging 
profile will be kept, but each original will be shifted different number of periods, as shown 
in Figure 25. 

 
Figure 25. Shiftable and interruptible charging 

A more advanced option is when also the power level can be controlled, probably 
between a minimum and a maximum power level. An example is shown in Figure 26, 
where the total charged energy volume is the same as in Figure 22. 
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Figure 26. Controllable power level charging 

It should be mentioned that if the IEC 61851-1 standard is followed, every EV can be 
controlled. However, not every charge point supports control commands from a platform 
nor does every charging point have the ability to locally manage the load of the EV. If we 
include the possibility to discharge the battery (V2X), we can control both the charging 
and the discharging power levels. An example is given in Figure 27, where a discharging 
is performed in periods 3 and 4, while charging is done in all the others. In the end, the 
total net energy charged to the battery is equal to the case in Figure 22. 

 
Figure 27. Charging with V2X capabilities 

Notice that in the V2X case, the amount of flexibility provided can be high, see Figure 
28, which shows the flexibility provided when baseline is according to Figure 22 and 
schedule is as presented in Figure 27.  

 

 

Figure 28. Flexibility provision with V2X capabilities 
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All the cases illustrated above have the same sum net charging energy. In an operational 
setting, the possibility to obtain this is dependent on what information that is available. 
Key parameters are: 

• The connection and disconnection periods 

• The battery state of charge when connecting, or eventually the charging 
demand/preferences 

Section 2.6 discusses about EV modelling options depending on available data. 

2.5.4 Flexibility from generation units  

A generation unit is a technology that produces electricity. In this document, we focus on 
local, renewable generation units like wind turbines and solar panels. Which flexibility 
options that exist will be dependent on the technology at hand, but basically we divide 
into inflexible and curtailable generation units. The latter is again divided into two 
groups: disconnectable, i.e. that either must be on or completely off, and reducible, 
where the power level can be controlled. 

 
Figure 29. Baseline production for a solar panel 

For illustration, assume that a solar panel has a baseline production profile according to 
Figure 29. If it is of type curtailable disconnectable, a possible revised profile is shown in 
Figure 30, where it is disconnected in period 6 and 7. Hence, the production is 0 in these 
periods. 

 
Figure 30. Schedule for disconnectable generation unit 

If the solar panel is in the category of curtailable reducible a possible revised profile is 
shown in Figure 31, where production is reduced to 2 in the periods 6, 7 and 8. 
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Figure 31. Schedule for reduceble generation unit 

In this document we assume that there are no timing constraints related to when 
regulations can be performed, meaning that curtailment can be done at any time and 
with any duration. However, constraints can be introduced according to the ones 
described under curtailable load units. 

Also recall that we only treat wind mills and solar panels in this document. Other 
generation technologies like hydro power plants and thermal units, will have different 
properties and constraints. 

2.5.5 Flexibility from aggregated resources 

The cases described in the previous section regarding batteries, EVs, loads and 
generation units are explained in case of having information of each single device. For 
instance one load appliance or one charging point. In some cases, this might not be the 
situation. A typical example is when there are several charging points below one 
charging site, and our model is not able to control each of them. Another example is if a 
household is modelled as one single resource without having detailed information about 
the internal appliances. 

In cases where the expected output is an aggregated flexibility curve, some 
considerations are necessary.  

First of all, in case of having all possible information from flexible assets, the problem 
should be handled as previously. Therefore, the aggregated curve from the Integrated 
INVADE platform optimization algorithm is composed by all flexible devices and the local 
platform can change that scheduling if needed. 

2.5.5.1 Flexibility from aggregated resources with partial information at device level 

If the information available is just an aggregated curve with different flexibility sources, it 
makes flexibility decision problems very complicated as there are no constraints limiting 
the feasible flexibility. Therefore, even if the final individual schedule plan is taken by a 
local controller or central system, aggregated decision should be taking all devices into 
account.   

One possibility is that the optimization algorithm suggests a feasible schedule plan at 
device level minimizing the cost. Then, the result of this scheduling problem is sent to 
the local controller who takes the final decision based on their priorities.   
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Figure 32. Baseline charging schedule 

Figure 33. Optimized and final decision schedules 

Notice that both solutions consumes the same energy aggregated but the EV 2 starts 
charging at the 5th period instead of 4th period. 

2.5.5.2 Flexibility from aggregated resources without information at the device level 

In case of not knowing which resources that form the flexibility portfolio, a more generic, 
high level model must be defined. One possible approach is to introduce a new resource 
type which represents a virtual, flexibility resource. 

Assume we have a site (a building or a charging site) with an expected load profile. The 
site also has a virtual flexibility resource, see illustration in Figure 34. 
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Figure 34. Site with virtual flexibility resource 

The virtual flexibility resource is characterized with the following properties: For each 
period of the day it has a given amount of available flexibility for load reduction (i.e. 
flexibility up) and down (i.e. load increase). Furthermore, the flexibility comes to a cost 
that also can vary over the day. The figure below illustrates a load and the capabilities 
for up and down regulation. 

 

 
Figure 35. Predicted aggregated load curve and available aggregated flexibility 

By adding the possible load reduction and increase to the load profile, we get a band 
width which defines the possibility space for the resulting net load profile. This is 
illustrated in Figure 36. 
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Figure 36. Aggregated flexibility band width 

Notice that this approach probably will require that the flexibility availability must be 
calculated outside the Integrated INVADE Platform. Moreover, compared to 
representation at lower level, with this model we lose the connection to the physical 
limitations and the interdependencies between the periods (timing constraints, energy 
levels and so forth), and hence, smaller amounts of flexibility are expected to be 
harvested compared to a detailed model. 

2.6 EV flexibility models 

There are two approaches to model EV flexibility: to model an EV as a load or as a 
battery. Each approach can be more suitable depending on the available EV data. 
Additionally, load- or battery-based approaches can have different control capabilities. 
This section is focused on exposing pros and cons of each approach.  

The first approach is using the flexible load models for EVs (see section 2.5.2). This is a 
suitable approach in case of very low available information. For example, in case of not 
knowing the EV model or its departure time, it could be a way to model EV flexibility. 
However, this approach relies on EV energy demand forecasting and this approach could 
be not useful in cases with high consumption volatility. 

Additionally, the load approach has the following limitations:  

1) Load-based models do not include minimum SOC before departure 
requirements. It may cause suboptimal solutions. 

2) Power reductions at high SOC levels could be not considered and the model 
could consider the battery fully charged when it is not. 

3) Including discharging energy capability from V2G stations could be complicated. 

In contrast to the load-based approach, a battery-based EV flexibility model (see section 
2.5.1) offers additional advantages. However, the battery-based model requires to know 
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the EV SOC. This information can come from the vehicle directly, through the EV driver 
app, or be estimated using forecasting algorithms. 

The following list exposes the input parameters necessary to implement a battery-based 
EV flexibility model and Figure 37 shows their relation: 

1) EV field data: 

a. EVSE control: fullflex, on-off, inflex 

b. EV user ID 

c. Battery state of charge1.  

d. Arrival and departure time  

e. Expected battery SOC 

2) EV data hub: 

a. EV battery capacity and control capabilities 

b. Flexibility fee 

c. Flexibility periods 

However, depending on pilot specifications, information some of these could not be 
collected. 

 
Figure 37. EV data flow diagram 

In order to provide some recommendations about EV flexibility modelling for 
implementation project stages, the following list exposes three main cases and their 

                                                

1 It can come from forecasting tools or from the EVSE directly. 
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modelling options. Depending on available data and the flexibility service, the EV 
flexibility modelling can follow one of the following options:  

1. In case of having full information, including SOC, and connection/disconnection 
times2, the battery-based model is recommended. In this case, the FO can send 
control signals to each EV individually or an aggregated value for all charging 
points. The second option requires having local intelligence in the charging 
station to distribute flexibility between EVs. 

2. In contrast, if some information is not known, it is necessary to forecast this data 
to estimate the EV flexibility. In this case, EV flexibility can be modelled as a 
battery or as a load, depending on the available information. 

3. Finally, if the FO does not know which EV is connected to each charging point, 
the forecast reliability is much lower than in the second modelling option. If the 
energy needs and departure times are quite uncertain, flexibility decisions should 
be more conservative. Therefore, the flexibility obtained from an EV could be very 
limited. This case can only use load-based models. 

Subsections below expose EV flexibility model characteristics in each case. EV model 
mathematical formulation is included in section 5.2.3. Sections 5.2.3.5 and 5.2.3.4 
describe the battery-based models and their mathematical formulation. The first model 
includes V2X capabilities and the second model is a simplified battery model adapted to 
EVs. 

2.6.1 EV flexibility in households 

In case of EV in households, each EV charger will be usually linked to a single EV with 
its characteristics and its owner. Households with 2 electric vehicles will most probably 
have their corresponding charging points. 

The most probable situation in this case is having partial information (the second 
modelling option described above), knowing the EV characteristics but without knowing 
its SOC or departure time. Therefore, EV flexibility can be modelled as a load or as a 
battery, depending on available information. 

In case of EV owners highly engaged and willing to share their SOC and departure times, 
the EV can be modelled as a battery following the modelling option 1. 

2.6.2 EV flexibility in multiple charging points 

In cases of multiple charging points within the same installation like office buildings, 
shopping centres or similar, the information available can be different and the EV 
flexibility model must include their specificities. 

                                                

2 It includes expected arrival and departure times, in case of EV drivers booking 
charging stations, and real arrival and departure times coming from the charging 
station once the driver arrives or leaves. 



INVADE H2020 project – Grant agreement nº. 731148 

D5.3 Flexibility operation algorithms – phase 1  Page 40 of 110 

In this situation, very limited information may be available. In offices with EV charging 
stations for dedicated workers, EV characteristics can be known if the building manager 
collects information. Additionally, it could be necessary to include priorities between EVs. 
For example, office visitors could be charged first in case of coming from far away and 
leaving early when their meeting ends. Therefore, the second modelling option can be 
applied offering better flexibility decisions. 

In contrast, if there is no information available, the third option should be applied. 

2.6.3 EV flexibility in public charging sites 

Public charging sites for any EV driver can be difficult to manage due to the lack of 
available information. However, in some cities or towns, drivers use mobile apps for 
paying parking fees. Drivers have to define their departure times in an app. This would 
be a very relevant information for the algorithm in case of accessing to the corresponding 
database. This has to be explored in each pilot. 

Additionally, their energy needs could be complex to forecast because any car type at 
any moment with any energy need can be plugged. Nevertheless, the aggregated 
forecasting errors in large charging stations could be lower than in households due to 
the large number of connections and EVs. For that reason, the second and the third 
modelling options could be applied depending on each case. 

2.6.4 EV flexibility in V2X charging stations 

Finally, all information possible including SOC is desired for managing EVs connected 
to a V2X charging station. In such case, the EV can be modelled as a battery following 
the modelling option 1. Therefore, very simple rules can be applied like discharging EV 
batteries between 100% and 85% of their capacity. 

In addition, it is necessary to mention the need of analysing the pros and cons of allowing 
or not the EV charge by default. For example, it could be an authorization command 
under request at the EV connection instant. In contrast, the EV could be disconnected 
after some minutes charging the EV once the Charge Service Operator3 takes decision. 
However, this issue is out of the scope of this report and this is an input for other project 
tasks. 

 

  

                                                

3 Charge Service Operator, defined by the OCSP protocol v1.0, is the party that 
operates a network of charge points and has contracts with CSPs to allow their 
customers to use the charging facilities. The CSP is the Charge Service Provider who 
pays the electricity with which the EV is charged 

 



INVADE H2020 project – Grant agreement nº. 731148 

D5.3 Flexibility operation algorithms – phase 1  Page 41 of 110 

3 Pilot sites 

This chapter describes each of the pilot sites from the perspective of the optimization 
model. The description is included here to ensure that the optimization models takes into 
account every possible case at the pilot sites. On the other side, this is also about making 
the pilots conscious about what they need to discuss and clarify. Since the pilot sites for 
the time being are not clearly and in detail defined for all pilots, this chapter will be 
updated along with the pilot developments. 

3.1 Norway 

3.1.1 Introduction 

According to D4.2 the focus with the Norwegian pilots will be the Prosumer and the 
following flexibility services: 

• ToU optimization 

• kWmax control 

• Self-balancing 

There will be three types of Prosumers in the Norwegian pilot:  

• A number of private households 

• A number of housing cooperatives 

• Charging site connected to an office building 

3.1.2 Roles and their interrelations 

In the Norwegian electricity market, each consumer and prosumer must have two 
different contracts: one with the DSO that they are physically connected to and one with 
a free of choice retailer. In our context the FO will perform the control actions. 

 
Figure 38. Relations between prosumer, flexibility operator, DSO and Retailer 

Notice that the different pilot customers (prosumers) can have different retailers with 
different contracts and prices. 



INVADE H2020 project – Grant agreement nº. 731148 

D5.3 Flexibility operation algorithms – phase 1  Page 42 of 110 

3.1.3 Resources and their interrelations and constraints 

3.1.3.1 Private households 

The private households are divided into the following types/profiles: 

• Profile A: PV panels and control of water heater + space heating to improve 
utilization of local generation. 10 customers 

• Profile B: Control of EV charging in low-price periods. 5 private customers 

• Profile C: Battery management for peak shaving. 10 private customers 

• Profile D: PV plus battery management to improve utilization of local generation. 
5 customers 

• Profile E: PV plus battery and EV charging management for peak shaving. 6 
private customers 

• Profile G: PV plus management of EV charging and water heater to improve 
utilization of local generation 

A generalized setup is illustrated in the figure below, but must be specified for each single 
household: 

 
Figure 39. Principle illustration of a household in the Norwegian pilot 

3.1.3.2 Housing cooperatives 

According to Lyse’s setup this covers Profile F: EV charging management for peak 
shaving. This section is still to be worked with, since the cooperatives have not been 
selected yet. Loads, generation and batteries may be included at a later stage. 

The setup with only charging points is illustrated in the figure below, but must be specified 
for each single cooperative: 



INVADE H2020 project – Grant agreement nº. 731148 

D5.3 Flexibility operation algorithms – phase 1  Page 43 of 110 

 
Figure 40. Principle illustration of a cooperative in the Norwegian pilot 

3.1.3.3 Charging site connected to an office building 

The office building in the Lyse pilot is the head quarter of the Lyse company. This is 
according to Profile H: PV, battery and EV charging. Notice that the load in the building 
itself is not part of the pilot, only the charging site, including a PV panel and a battery. 
From the flexibility algorithm point of view, it consists of the following resources: 

• A PV panel with installed capacity 7 kWp 

• An EV system with chargers and control system delivered by Zaptec, with 11 
charging points 

• A battery with capacity 10 kWh 
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Figure 41. Illustration of the office building in the Norwegian pilot 

 

3.1.4 Contracts and prices  

Each prosumer will have two contracts: A grid contract and a retail contract. Lyse Elnett 
will be the grid company (DSO) and Lyse Energisalg or other companies will be the 
retailer.  

The grid contract will consist of the following elements, prices given for 20174: 

  

                                                

4 
https://www.lysenett.no/getfile.php/reslysenettno/Bilder%20nye%20lysenett.no/nyhetsb
ilder/Prishefte%20nettleie%20jan2017%20%2802%29.pdf 
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Table 2. Grid contract parameters 

Type of fee Price 

Fixed fee (not relevant for the 
optimization problem) 

For private customers: 2.100 NOK/year 

For commercial customers: 3.100 NOK/year 

Energy fee purchase  For private customers: 42,4 øre/kWh incl. VAT and 
taxes.  

For commercial customers: 51,0 øre/kWh incl. 
taxes 

Energy fee sell  -4 øre/kWh 

Demand charge winter* For private customers: 0 

For commercial customers: 75,00 NOK/kW/month 

Demand charge summer 0 

Energy taxes 17,32 øre/kWh (Consumption tax and energy fund 
tax). NB! These are included in the energy fee 

* Winter defined as the months November, December, January, February, March (to be 
confirmed by Lyse).  

In addition, 25 % VAT will be added to all elements for purchase. This is only valid for 
households. 

AMI, advanced metering infrastructure including smart meters, are currently being 
deployed for all Norwegian consumers and prosumers. A result is that hourly values then 
will be available for all consumers (outtake) and prosumer (outtake and feed in). The 
Norwegian regulator currently evaluates new grid tariff structures, where one target is to 
avoid costly grid reinforcements by introducing tariffs that gives incentives to flatten the 
profile. One option is to introduce demand charge for all consumers and prosumers. 
Norgesnett, a Norwegian DSO, has introduced a slightly different version of the tariff 
described above. Here, the demand charge is based on the average of the three highest 
monthly values, where the three values must be at different days. 

Another option, that seems more likely for the time being, is a model based on the 
principle called “subscribed power”. Here, the consumer/prosumer is placed into a power 
level, let us say 4 kW. Then, a fixed monthly fee must be paid, based on the power level 
(higher cost the higher level). Next, an energy fee must be paid, with one (low) price for 
all consumption lower than the subscribed level, and another (much higher) price must 
be paid for consumption above the subscribed level. The regulator indicates that the high 
price may be in the magnitude of 10 times the low price. 

The retail contract with Lyse Energisalg will consist of the following elements: 
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Table 3. Retail contract parameters 

Type of fee Price 

Fixed fee (not relevant for the 
optimization problem) 

47 NOK/month 

Price for buying For private customers: Elspot price from Nord Pool 
Spot for the area NO2/Bergen5 + a mark-up 3,9 
øre/kWh 

For commercial customers: Elspot price from Nord 
Pool Spot for the area NO2/Bergen + a mark-up 
4,6 øre/kWh 

Price for selling 2*Elspot price from Nord Pool Spot, see price for 
buying6 

 

For other retailers, the contracts will be different. The model must cover different types, 
for instance fixed prices for longer time intervals and other types where the price varies 
according to Elspot price, but with other mark-ups. 

For prosumers, the sales of surplus electricity is regulated through the retail contract. 
Also here, different models exist. The most usual model currently, is that the surplus 
electricity is compensated with the same price as the deficit. In other words, the buying 
and selling price are the same. However, it must be commented that although the retail 
prices are equal, the cost of one kWh used is much higher than the revenue from one 
kWh sold. The reason for this is the grid tariff and the taxes.  

In order to make it easier for consumers to turn into prosumers, the Norwegian regulator 
has introduced what they call the “plus-customer arrangement”. Traditionally, a 
consumer must enter an agreement with the DSO for outtake, while a producer must 
enter an agreement for feed in. Through the plus-customer arrangement the prosumer 
can only have one agreement. However, a prerequisite for participating in this 
arrangement is that the net feed in never is more than 100 kWh/h. For small prosumers, 
this is not a problem, but for larger buildings and industries it might be a challenge. 
Flexibility, for instance represented by batteries, may then be used to avoid breaking this 
constraint. 

 

                                                

5 http://nordpoolspot.com/historical-market-data/ 
6 https://sol.lyse.no/stromavtale/ 
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3.2 The Netherlands 

3.2.1 Introduction 

According to D4.2 the focus with the pilots in the Netherlands will cover the following 
flexibility services: 

• DSO 

o Congestion management 

o Voltage/Reactive power control 

• Prosumer 

o ToU optimization 

o kWmax control 

o S elf-balancing 

In addition, the BRP services are listed as TBD, but will not be covered in this document. 

BRP services can be based on balancing needs considering the current (im)balance 
positions and commercial changes on short term energy markets of BRPs. BRPs can 
develop services based on: 

• Position and possibilities on day-ahead market (short-term wholesale market) 

• Position and possibilities on intra-day market (short-term wholesale market) 

• Possibilities on ancillary markets (FCR, aFRR, mFRR is not considered suitable 
for EVs). FCR is now (as means of pilots open for other parties than BRPs. There 
are plans to experiment with aFRR as well)  

• Possibilities and changes regarding own imbalance position (towards TSO or 
ISO). This is called passive imbalance management and is the difference 
between the nomination and current position. This is internal within the BRP and 
focus is to limit imbalance fines to gain commercial value on (one of the above) 
markets. This position is also nit public. 

 

Furthermore, the pilots will be in 4 different pilot cases (email from Lennart Verheijen 
27/11/2017): 

• Pilot 1. Private charging case 1. Private charging at home 

• Pilot 2a. Semi-public charging case 1. Semi-public charging at a parking lot 
with roof-mounted solar panels 

• Pilot 2b. Semi-public charging case 2. Semi public/private charging at parking 
lot of a company building. 

• Pilot 3. Elaad office. Charging at Elaad premises, incl. storage 

• Pilot 4. Public charging. Charging at public places where each charger has its 
own connection to the grid.  
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For pilot 1 and 2 GreenFlux is responsible, for pilot 3 and 4 Elaad is responsible 

3.2.2 Roles and their interrelations 

3.2.2.1 Pilot 1 

This pilot is a private home situation with one charge point directly connected to the main 
meter in the home. The home owner has a contract with the DSO (this cannot be chosen) 
and with a retailer/energy supplier. There can be small variations where the owner has 
2 charging points, but both for own private usage. A PV system can be connected to the 
home, when placed on the roof of the home. GreenFlux is the FO.  

 
Figure 42. Illustration of the roles in the Dutch pilot 1 

 

3.2.2.2 Pilot 2a 

This pilot is a parking lot with a charging site connected to a commercial building. The 
building owner/renter has a contract with the local DSO and a retailer. In addition, the 
building owner sells charging services to EVs for visitors. GreenFlux is the FO.  

 
Figure 43. Illustration of the roles in the Dutch pilot 2 
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3.2.2.3 Pilot 2b 

In this pilot GreenFlux will be the FO that controls the charging below specified limits. No 
other roles are involved. 

3.2.2.4 Pilot 3: Small scale office 

 

 
Figure 44. Pilot 3 

At this pilot site we consider 3 optimization levels: 

• Locally behind the connection point (done by CPMS Elaad). We will construct 
the system / architecture that we can work here with different (optimization) 
algorithms. 

• Locally in agreement with the local DSO. DSO contracts flexibility for local 
congestion challenges (done by us and the resp. DSO first based on meter 
values in later stage based on de facto standard OSCP) 

• National level; flexibility is provided to BRP (portfolio-optimization) and TSO 
(frequency mgt , ancillary markets) and higher level (MV) DSO grids 
(congestion); (this we can provide to eSmart / Invade platform) 

 

We can offer from the large scale office site an aggregated profile of tomorrows load with 
bandwidths, an aggregated forecast which is already locally optimised. The bandwith 
consists of the (expected) flexibilities of the ev-drivers+the storage unit+building. Local 
optimisation first, then local congestion mgt to local DSO. Then the flex which is left is 
sent to the aggregated platform.  
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Figure 45. Bandwith	

 

The invade platform can send us and aggregated flexibility request (see yellow), but the 
Aggregated system has to respect the bandwith. It cannot claim more flex than locally 
offered. 

 
Figure 46. Flexibility request and bandwidth 

3.2.2.5 Pilot 4: Large scale public 

At the public charge stations of ElaadNL we want to test/demonstrate the combination of 
short term congestion management through the use of ‘variable capacity (contracts)’ and 
the combination of smart charging from the perspective of BRP.  

Partly real-life with the BRP connected to our stations and partly through simulation. 

This BRP wants to combine ‘self-balancing portfolio optimization’ and use the 
opportunities on the Dutch imbalance market, the automated Frequency Restoration 
Reserve (aFRR). Behind the ‘self-balancing’ of the BRP’s portfolio lies the positions and 
the existing commodity prices on the intraday and day-ahead market (and the LT-
market). Which considerations (algorithm) the BRP has to decide to ask for smart 
charging (to the aggregator and the aggregator to ElaadNL; see graph below) is out of 
scope. As given before the BRP sents request to the back-office managing the different 
charge stations, but needs to combine this with ‘congestion mgt-requests from the DSO. 

In most parts of the country there is no congestion situation yet. So we decided to 
generate a simple variable capacity profile resembling the opposite of the general 
electricity profile for households in the Netherlands. This more or less standardised 
profile is provided to the aggregator which has to combine this profile with the BRPs 
needs/wishes. 

This leads to the following profile. Which can be applied only for customers (customer-
centric approach) which are contracted to be part of this pilot. 
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Figure 47. Capacity profile 

In the large scale public pilots we, as said want to combine this with BRP services. We 
want to consider the variable capacity profile as the boundaries for BRP services / smart 
charging, leading to the following: 

 
Figure 48. Flexible capacity profile 
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Stations in the field are single or duo-socket stations all managed by ElaadNL. Grid 
connection is 3x25A or 3x35A. the ElaadNL system will receive input from BRP and 
effectuates the charging profile within the given DSO limits. 

3.2.3 Resources and their interrelations and constraints 

3.2.3.1 Pilot 1 

In this case a home has 1 private charge point. The charge point is connected to the 
main meter in the home, however for monitoring and control issues, each station has its 
own meter as well and is connected to a charge point management system. The home 
is using an average consumption of 4000 kW per year. The charge point can deliver max 
11kW. In the situations where PV is available on the roof of the homes, it delivers 
on2000kW per year on average.  

The purpose of smart charging is to optimize the business case for the combination of 
the PV-system and the EV charger. The secondary goal is to charge the EV as fast as 
possible. This means that: 

• The EV will increase its charge rate if the real time solar production increases 

• The EV will decrease its charge if: 

o The real time solar production decreases 

o The other consumption in the household significantly increases. The total 
grid connection of the household is 3x25A, this should never be 
overloaded7.  

 
Figure 49. Illustration of pilot 1 in the Dutch pilot 

                                                

7 Theoretically it is possible to charge at higher rates than 3x25A with the EV. E.g. if the 
household consumes nothing and the solar panels produce 3x10A, then the EV could 
charge at 3x35A. This is however not allowed by the Dutch grid operator. Maximum 
charging speed of the EV may never be higher than the grid connection: 3x25A.  



INVADE H2020 project – Grant agreement nº. 731148 

D5.3 Flexibility operation algorithms – phase 1  Page 53 of 110 

3.2.3.2 Pilot 2a 

This case is a parking lot that consists of 20 charge stations, each with 2 charge points, 
meaning that up to 40 EVs can be connected simultaneously. Each charge point can 
deliver up to 22 kW. In the coming years, this pilot will be expanded to 150 charge points. 
EV drivers might get the possibility to select priority charging. Finally, the parking lot has 
a PV panel with capacity 450 kWp. 

 

 
Figure 50. Illustration of pilot 2a in the Dutch pilot 

There is a capacity limitation for the charging, which cannot be larger than 346 kW. 

3.2.3.3 Pilot 2b 

This is a charging site in a parking lot in the basement of an office building. The rest of 
the building load is not flexible. The charging points can deliver up to 22 kW.  
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Figure 51. Illustration of pilot 2b in the Dutch pilot 

There are two levels of capacity limitation: 

• Each of the three charging point groups must be below 173 kW 

• The total consumption (building load + EV) must be below 436 kW 

3.2.3.4 Small scale office 

This site was recently extracted. The following situation exists. 
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Figure 52. Small scale office 

• Numbers 1 - 19: charging stations (single or dual socket) 
• Number 20: dc charging station 
• Numbers 21 - 22: locations for experimental charging stations 
• Number 23: charging site 

At the site there is installed 

• 4 kWp solar system 
• Local server and network (that communicate with cloud services and can 

perform smart charging based on different optimization algorithms) 

 

The ‘technical situation’ is: 
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Figure 53. Technical solution 

• Main cables have power quality meters  
• Numbers 1 - 6 have power quality meters 
• Numbers 7 - 19 have normal meters 

 

3.2.3.5 Large scale public 

The basic charging network of ElaadNL / EVnetNL is given below: 
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Figure 54. Charging network of ElaadNL/EVnetNL 

The installed base consisted of approximately 1750 station throughout the Netherlands 
offering a total of 3000 sockets, all 11 kW (3x16A) per socket. Since the transfer of 
charging stations to local communities the installed base will contain 820 stations: 

 
Figure 55. Installed base 

The average daily usage of the installed base: 
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Figure 56. Daily average use of the installed base 

The percentage of charging sessions is given below. The graph shows the hour within 
the charging session is started. This graph (although consisting of averages) shows the 
fact that EV charging is increasing the already existing peak demand at peak times. 

 

 
Figure 57. Percentage of charging sessions starting up 
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At the same time, we see that there is quite a lot of flexibility present during the charge 
sessions. When we compare the ‘connection time’ with the ‘charging time’ we get the 
following result; 

 
Figure 58. Flexibility from charge sessions 

We see a lot of flexibility potential at the evening and night. 

3.2.4 Contracts and prices 

3.2.4.1 Pilot 1 

There are two contracts that are involved in this pilot: The grid contract and the 
supply/retail contract.  

The grid contract is based on a peak demand charge for the year. This means that it is 
an incentive to reduce this peak (hourly value) as much as possible.  

The supply contract for buying electricity is normally an average fixed price for a full 
period (1 or 2 years). This pilot is using contract where energy retail prices are based on 
hourly prices at EPEX Spot8 without any mark-up or other fees that are relevant for the 
flexibility algorithm. This contract also regulates the price for sales of surplus electricity 
sales. This price is 0,18 €/kWh on average. The price change per hour. The home owner 
pays the average price and get a refund or surplus at the end of a period depending on 
the real prices and usage. 

                                                

8 https://www.apxgroup.com/market-results/apx-power-nl/dashboard/ 
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3.2.4.2 Pilot 2 

There are three contracts that are involved in this pilot: The grid contract, the supply/retail 
contract and the “contract” with the EV to deliver charging energy. 

The grid contract is based on a peak demand charge for the year. This means that it is 
an incentive to reduce this peak (hourly value) as much as possible.  

The supply contract for buying electricity is based on hourly prices at EPEX Spot9 without 
any mark-up or other fees that are relevant for the flexibility algorithm. This contract also 
regulates the price for sales of surplus electricity sales. This price is 0,05 €/kWh on 
average, but it is not known whether this is fixed or varying over the day. 

Finally, there is an income from selling charging energy to the EVs. This is a fixed price 
of 0,29 €/kWh and goes is paid by the EV-driver, via its service provider and charge point 
operator, to the owner of the charging station. 

3.2.4.3 Pilot 3 Small scale office 

As given before at this pilot site we consider 3 optimization levels: 

• Locally behind the connection point  
• Locally congestion mgt in agreement with the local DSO.  
• National level; flexibility is provided to BRP and TSO  

 

Control on the first level will be done based on self-balancing needs. Since this is a single 
site where ElaadNL performs this local load mgt within the site there are no external 
parties involved at this level. the technical capacity is 630 KVA, contracted capacity 
is…..X 

 On the second level there is no price / product / tariff in place at the DSOs (yet). This is 
part of the R&D work within the DSO’s 

 At the third level flexibility can be priced as the combination of the prices on the potential 
markets given before ((short term) wholesale; day-ahead and intra-day (like EPEX) and 
ancillary markets FCR and aFRR) and the own current (im)balance position of the BRP. 

3.2.4.4 Pilot 4 Large scale public 

Connections are 3x25A or 3x35A, yearly connection prices are: 225 incl VAT and 816 
incl VAT. There are no volumetric price drivers. Nor is there (yet) a contracted capacity 
component in place. 

 

 

                                                

9 https://www.apxgroup.com/market-results/apx-power-nl/dashboard/ 
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3.2.5 Objectives 

3.2.5.1 Pilot 1 

The objective is to minimize the total costs for the home owner by controlling  the EV 
charging. These costs include: 

• Grid contract based on maximum outtake (kWh/h) over the year 

• Retail contract with revenues for sales of surplus electricity 

o The more locally produced ‘own’ energy is used, the lower the amount 
that needs to be paid to the retailer.  

3.2.5.2 Pilot 2 

The objective is to minimize the total costs for the building owner/renter (prosumers?) by 
controlling EV charging. These costs include: 

• Grid contract based on maximum outtake (kW) over the year 

• Retail contract with costs for purchase based on hourly EPEX Spot price 

• Retail contract with revenues for sales of surplus electricity 

o The more locally produced ‘own’ energy is used, the lower the amount 
that needs to be paid to the retailer.  

• Revenues for selling charging services to the EVs 

 

The objective is to maximize the total delivered charging  by controlling and balancing 
charging in such a way that none of the capacity limitations are violated. This way cost 
of energy consumption can be reduced and extension of the grid connection can be 
prevented.  

3.2.5.3 Pilot 3 

The objective of the Small scale Office pilot is local capacity management on EVSE while 
gathering real-time information on the energy use of both the other EVSEs and other 
loads on the local site. Controlling a single site is in many ways a faster way to achieve 
the monitoring and control possibilities that are not yet available on the public 
infrastructure at large. 

3.2.5.4 Pilot 4 

This pilot focusses on the function of controlling EVSEs and their energy supply to EVs, 
connected to a management system of the CPO. We experiment with large scale public 
charging in the Netherlands, using grid congestion management and BRP services 
(possibly containing frequency containment reserve support).  More specifically, this pilot 
will follow the steps researching the extent to which charging stations are capable of 
providing BRP support using by central control. 
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Current pricing regime is based on flat, fixed prices dependent on fuse size (grid 
contract?). However, new tariff regimes will be tested in the project.  

A new grid tariff type is the “Dynamic capacity” which works like this: 

• The customer has a given main fuse size, e.g. 3X35 A. Normal tariff rate is a fixed 
fee, e.g. 800 €/year  

• If the customer can guarantee that he/she will not surge above 3X25 A in certain 
peak hours, he/she will pay a reduced rate, e.g. 200 €/year. Which hour that are 
included in the definition of peak hours are dynamic, but will be known in advance 

Figure 59 illustrates the principle. Here, up to 24 kW can be bought in the non-peak hours 
defined by the hours 8 – 10 and 17 – 21. For the peak hours 8 – 10 and 17 – 21, the 
capacity is reduced to 17 kW. 

 
Figure 59. Illustration of the tariff type “Dynamic capacity” 

A central question to clarify is what happens if the customer goes above the capacity 
limit for the peak hours: 

• Black-out? 

• It is allowed, but then the higher fee must be paid? 

• It is allowed, but only a limited number of times each month/week 

Another question is whether the limit is instant (kW) or per hour (kWh/h)? 

 

3.3 Spain 

3.3.1 Introduction 

According to D4.2, the focus in the Spanish pilot will be the following flexibility services 
to the DSO and BRP: 

• DSO: 
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o Congestion management 

o Voltage / Reactive power control 

o Controlled islanding 

• BRP: 

o Intraday portfolio optimization 

o Self-balancing portfolio optimization 

Services to the BRP will be developed in the second implementation phase of the project, 
so they are not covered in this document and will be described in D5.4. In addition, 
services for prosumers will not be tested in this pilot. 

There will be one pilot site, consisting of one secondary substation and its area of 
influence, which includes the EPESA headquarter. 

3.3.2 Roles and their interrelations 

The FO role is played in this pilot by the retailer company Mercator, which is also owned 
by EPESA. Flexibility is obtained from the centralized battery owned by Mercator and it 
is used to offer services to the DSO (EPESA) and the BRP/retailer (Mercator). As it can 
be seen in Figure 60, some of the different roles will be played by the same actor. In 
addition, EPESA is one among the prosumers inside the area of influence of the affected 
secondary substation, so it will be also benefited by the controlled islanding service. 

 
Figure 60. Relations between prosumer, flexibility operator, DSO and Retailer/BRP 

3.3.3 Resources and their interrelations and constraints 

According to the pilot proposal, the pilot consists on a unique centralized battery with a 
capacity of 200 kWh and a limited charge and discharge power of 100 kVA. It can be 
connected in one of the following parts of the low voltage grid: at the low voltage bus 
between the transformer and the low voltage cabinet, at the low voltage cabinet on the 
consumption side, or in an intermediate point of the low voltage grid. The final decision 
will depend on the preference of the electrical department inside the DSO. 

Part of the battery capacity has to be reserved to provide supply to the controlled 
islanding. The rest of the capacity can then be used to provide other services to the DSO 
and BRP indistinctly. 
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The battery will have a smart meter to monitor and invoice its energy exchanges with the 
grid. The control capabilities will be fully integrated into the SCADA and the distribution 
management system. 

3.3.4 Contracts and prices 

According to the current regulation applied in Spain, the battery cannot be considered 
as a generator, so its discharges cannot be reimbursed and only its charges will be 
invoiced.  

Regarding the invoice of energy, the electric tariff present in the Spanish pilot includes 
two main components, a per kW charge (contracted power) and a per kWh charge 
(energy consumption). It has the following general structure: 

𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐	𝐵𝑖𝑙𝑙 = [ 𝜒;,,,=
>?@AB@CDE?,×𝑃;,,,=

>?@AB@CDE?, + 𝐶𝑃×𝑃𝑇×𝑇𝑖𝑚𝑒 ×𝑇𝑜𝐸 + 𝑅𝐸𝑀×𝑇𝑖𝑚𝑒]×𝑉𝐴𝑇 

where: 

§ Energy term (𝑃;,,,=
>?@AB@CDE?,): it multiplies the energy consumption (𝜒;,,,=

>?@AB@CDE?,) 
recorded between the dates of the reading for the price of kWh. 

§ Power term (PT): it multiplies the contracted power (CP) by actual days of billing 
and the unit price for kW. The contracted power is a fixed value and can be only 
changed once a year. In households, if this power is exceed, the smart meter cuts 
the supply and it needs to be rearmed manually.   

§ Tax on electricity (ToE): it is a tax regulated by the National Tax Agency. It is 
calculated by multiplying the sum of the terms of power and energy by a fixed 
amount of 1.0511269. 

§ Rental of equipment of measure (REM): price that the DSO charges if the client 
does not own the meter (which is usually the most common case). 

§ VAT quota: application of the percentage of current VAT (21%). 

In addition, tariffs can have several periods with different energy prices. In bigger 
consumers (>15 kW), there is a penalization if the monthly maximum power exceeds 
105% of the CP, and a discount of 15% is applied if the monthly maximum power is 
below 85% of the CP. In addition, customers pay a significant penalty each month if their 
PF is below 0.95. Available tariffs for CP>15kW are: 

§ 3.0 A with 3 energy time periods and 3 power time periods. This tariff has three 
periods. These periods are peak (P1), shoulder (P2) and off-peak (P3), in which 
shoulder rates usually apply in between peak and off-peak periods. 

Table 4 shows the schedule of the time periods for the 3.0 A tariff, and Table 5 gives an 
example of yearly-fixed rates for the tariff 3.0A with more than 15 kW contracted power 
offered by Mercator. 
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Table 4. Schedule of the time periods of 3.0 A tariff. 

Tariff	
name	 Periods	 Winter	 Summer	

3.0A	
(CP>15	
kW)	

P1	(Peak)	 12h	to	15h	 19h	to	22h	

P2	(shoulder)	 9h	to	18h	and	
23h	to	24h	

9h	to	11h	and	
16h	to	24h	

P3	(Off-peak)	 0h	to	8h	 0h	to	8h	

 

Table 5. Example of yearly-fixed rates for 3.0 A tariffs10. 

Tariff	
name	 Periods	 Power	term	(PT)	

Energy	term	
(𝑃;,,,=

>?@AB@CDE?,)	
3.0A	

(CP>15	
kW)	

P1	(Peak)	 0,113818	€/kW/day	 0,115625	€/kWh	
P2	(shoulder)	 0,068291	€/kW/day	 0,099795	€/kWh	
P3	(Off-peak)	 0,045527	€/kW/day	 0,071165	€/kWh	

 

3.3.5 Objective 

The flexibility for the DSO in the Spanish pilot will be used for multiple purposes: island 
creation and to reduce the medium voltage grid congestions. A combination of the 
following actions will be utilized to obtain these objectives: 

§ To charge or discharge the battery during congestion hours according to DSO 
requests. 

§ To ensure that enough capacity is available in the battery to provide these services 
to the DSO, prioritizing the charge of the battery during off-peak hours and the 
discharge the battery during peak periods. 

3.4 Germany 

Since the German pilot is not completely defined yet, it is left out in this document. 

  

                                                

10 Tariffs given for 2017. www.estabanell.cat/serveis/tarifes 
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4 Uncertainty, information structure and the planning 
process 

4.1 Problem description 

Optimized operational scheduling of different types loads (shiftable, controllable and 

curtailable) and battery charging / discharging with the maximum utilization of RES 

generation is the key for providing flexibility services. The optimization process uses the 

models of the generation, storage and load units and the other input parameters to 

produce the best possible operation schedules of the units for future periods. At the time 

of scheduling of the operation, many of the input parameters are not known certainly. 

The accuracy of these input parameters decide the quality of the flexibility services.  The 

optimization process can show significant sensitivity to the uncertainties in the input 

parameters, and produces suboptimal solution or even end up in infeasible solution. 

Thus, the process of optimization becomes potentially worthless [1]. 

The dependency of the input parameter and the impact due to their uncertainty varies 

for different services defined in the INVADE as per D4.2. 

Some of the examples of uncertain input parameters are listed below 

1. Total solar energy production from PV units and their power generation at every 
instant or in a time period. 

2. Energy consumption of different load units, their load profile and time of operation. 

3. EV charging consumption, their availability for charging, arrival and departure time. 

4. Energy prices at different hours of the day. 

5. The time of service request from the DSO to provide flexibility service, start time of 
service delivery and duration of service. 

The different optimization methods handle these uncertainties with different approaches. 

They have their own advantages and disadvantages in terms of computational time, 

degree of closeness to the global optimal values and the level of complexity to implement 

as an automatic software service. 

Further sections in this chapter will detail the uncertainties associated with different input 

parameters, the different methods followed to produce optimum operational scheduling 

under such circumstances, information structure for handing input parameters to produce 

scheduling decisions, the planning time horizon for their effective utilization and the time 

resolution of the control actions. Finally, an overview of the operational scheduling 

optimization process is presented. 
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4.2 Uncertainty and information revelation 

4.2.1 Solar PV production 

PV production reflects how much power is injected into the system as a result of solar 

irradiation on the PV panels. Though weather forecasting can predict PV production in 

near future, the exact production is not known before real time. In general, the certainty 

of predictions decrease as the forecast is further away from the time of forecast.  

 

Figure 61. Forecasting of wind power production 

Figure 61 shows how forecasting is done for wind power production [8]. As forecasting 

horizon increases, the uncertainty increases. The grey shades indicates the probability 

of future power production within the described limits. 

For PV production, forecasting is different compared to wind production. For example, 

as one can with certainty know that there will be no PV production during night. Sunrise 

and sunset time varies from day to day and are known for all days of the year. The exact 

sun path is also known for every day of the year, which means that also maximum 

production is also known for all days. Ramakrishna et al [9] shows how uncertainty 

changes depending on type of weather. When clouds are not expected, the production 

follows a very clear pattern which can be predicted with high certainty as seen in Figure 

64. With cloudy weather as shown in Figure 62, the certainty is reduced. For mixed 

weather shown in Figure 63, uncertainty varies. In other words, the earlier statement that 

certainty increases the closer we are to real-time, is only partially true. The PV production 

forecast for a cloudy tomorrow is more uncertain than the forecast for the day after which 

is a clear and sunny day. 
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Figure 62. PV forecasting on a cloudy day 

 

 

Figure 63. PV forecasting on a day with mixed weather 
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Figure 64. PV forecasting on a sunny day. 

4.2.2 Consumption at load limits 

Load unit consumption uncertainty differs greatly from device to device. Some load units 

like freezers have a fairly predictable load consumption as they are rarely opened, are 

well isolated and are in a constant ambient temperature location. Other load units are 

less predictable and can only be predicted with very high uncertainty such as water 

boilers or TVs. 

Load predictions can be made for the future, but certainty does not necessarily increase 

greatly the closer to the presence the forecast time horizon is. Some things are known: 

• The load will be between 0 and the installed capacity of the electrical device 

• Devices have different characteristics 

o Some devices are either on or off 

§ Water heaters, water boilers, lights (mostly), TVs 

o Some devices can be configured to different power levels 

§ Heat  pumps, stoves    

Depending on type of load, it is possible to make some predictions. The possible time of 

operation of those loads that are used when people are home are forecasted to get 

activate at hours when the resident is at home. If we assume a normal working schedule, 

appliances such as stoves, TVs, lights and speakers can be assumed to mainly be used 

from 4 pm until midnight and from 6 am to 9 am in the morning. In other words, there is 

high certainty in the load forecast from midnight to 6 am and from 9 am to 4 pm compared 
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to the other hours of a day. The certainty of these loads prediction is close to 100% at 4 

am every day of the year, but can only be predicted with lower certainty at 8 pm. In other 

words, uncertainty does not necessarily increase the close to real-time we get for these 

loads. However, the historical data can reveal consumer behaviour patterns which can 

be used to make decent predictions. 

Space heating loads normally correlate well with ambient temperature, and can therefore 

be forecasted fairly well. However, uncertainty varies depending on what kind of heating 

device it is. Some heating devices switch ON and OFF and are automatically regulated 

by a control device which has a temperature sensor. This means that by knowing ambient 

temperature, consumption over a longer time period (e.g. 24 hours) can be predicted 

with low uncertainty, compared to the prediction of their real-time duty cycle. Other space 

heating devices are not automatically regulated, but are controlled by end users 

manually. 

4.2.3 Aggregated consumption of load units 

Though it is difficult to predict the individual, real time consumption of thermostatically 

controlled devices like floor heaters and electric water heaters, their aggregated 

consumption can be predicted with more certainty. In the case of an FO controlling 

hundreds or thousands of floor heaters or water tank heaters, forecasting with high 

certainty is realizable, as heating demand is easier to predict over a longer time, both for 

space heating and hot water demand.  

4.2.4 Consumption at a site 

Let us assume a site (a building, a residence) with a certain amount of load units, 

uncertainty in demand prediction decreases as the number of devices increases. In other 

words, it is easier to predict the aggregated load profile of several loads than the exact 

load profile of individual loads. It is known for a site, the load will be between 0 and the 

rated power of the main fuse or any other given power limitation. Figure 65 shows the 

average consumption (kWh/h) of a large Norwegian residence divided by hour of the day 

and weekday. Although the figure indicates that load on average increases from 14-15 

to 15-16, this does not necessarily depend on the activities of the residents. For an 

arbitrary residence, the probabilities of load change (from hour 15 to hour 16) could be 

the following: 

• 85 %: residents arrive, load increases with 1-2 kWh/h 

• 10 %: later arrival, load stays the same but increases in a few hours 
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• 5 %: travelling, load remains at background11 load level 

 

Figure 65. Load heatmap of a residence. 

Such predictions can be made more precise by machine learning. Still, there will always 

be some uncertainty. If the forecasting tool makes a decision based on the most likely 

outcome, optimal results can be achieved when the decision matches real life events. 

However, the consequences of unlikely outcome are unknown. If the appearance of 

unlikely outcome is high, a weighted decision could be more optimal. A simple approach 

is to assume the expected load, where the probability of the different scenarios is 

multiplied with their resulting load change. 

4.2.5 Consumption at a charging point 

The charging point power consumption depends on many factors. The actual 

consumption is not known with certainty until real time. The certainty of the consumption 

at the charging point may increases with level of details known about the EVs, charging 

point technical specification etc. This subsection discusses the associated information 

which decides the certainty of the charging point consumption. 

The charging point consumption has to be between zero and the maximum installed 

capacity of the charging station. However, how much power is withdrawn between these 

two limits are dependent on the following: 

1. Number of cars connected 

                                                

11	Background	load	in	this	case	is	the	load	when	nobody	is	home.	This	load	represents	the	load	
consumption	of	space	heating,	water	heating,	refrigerators	etc. 
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2. Charging power of each cars 

In addition, the certainty of demand at the charging point depends on the following 

details: 

1) The EVs availability at the charging point (arrival time and duration for charging) 

2) The SOC of the EVs at the time of arrival (in % or kWh or can it be derived for 

the EV model information) 

3) The amount of energy required for charging  

4) Type of the EV connected (normally have a given capacity span 12 and charging 

power limitation) 

In general, the more information known, the higher the certainty will be. Depending on 

type of charging point, the above list could change. 

For an individual charging point at a domestic household, the historical load data may 

reveal some of the information listed above. Apart from the information available at the 

individual charging points, more information can be collected in addition to improve the 

demand prediction certainty at the charging point through alternative methods. For 

example, the EV drivers can be asked to provide some of the information through a 

Smart phone application interface. 

For the charging station at neighbourhood level, it is more difficult to have an overview 

of the type of EVs connected. Also, if only the aggregated load profile of multiple charge 

points is available for a neighbourhood level, the individual EVs charging characteristics 

cannot be derived from that. 

For the charging stations at office buildings, the case is similar to neighbourhood 

charging stations. Detailed information about cars is less likely to be known, but number 

of charging points dampens uncertainty. For both work place and neighbourhood 

charging stations, charging patterns should be easy to predict by machine learning.  

Apart from the direct information, the indirect information like weather and drive patterns 

will improve the certainty of the EV availability, SOC and charging energy demand 

prediction. For example, cold or rainy weather will increase the probability EV usage 

compared to the warm dry days. Similarly, the EV usage on weekdays and in weekends 

have distinct patterns. 

                                                

12 Nissan	Leaf	currently	has	24	or	30	kWh,	Tesla	Model	S	has	60	to	100	kWh	etc. 
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For a public charging station, it is unlikely to have very specific information about each 

EVs that connects (unless this is standardized). Again, the uncertainty on the aggregated 

demand for charging decreases with the increased number of charging points inside a 

given charging site. It is also likely that there is a correlation between charging and traffic 

around the charging station, meaning that traffic forecasts could be utilized to predict 

charging. 

4.2.6 Prices 

The electricity price will often be the most deciding decision factor to avail the flexibility 

from the demand side and is therefore very important to know. The electricity price has 

more than one component which influences the energy price. Some of the components 

of the price changes more frequently and some changes lese frequently.  

Grid tariffs: 

Grid tariffs prices are fixed price the consumer pays as connecting charge to the grid for 

their load capacity The grid tariff does not change every day or in hourly basis. Therefore, 

the change in grid tariff affects the investment planning rather than the day today 

operational optimization and planning. 

Taxes: 

Similar to the taxation on electricity usage changes very less frequently and therefore 
affects the investment planning rather than the day today operational optimization and 
planning  

Spot price: 

The electricity market spot price is the most uncertain type of price. Day-ahead prices 

are normally published at noon, and contain hourly prices for the next day. This means 

that if the optimization algorithm is run at 11.59 am, spot prices are only known for the 

next 12 hours. However, if run 1 minute later at noon, day-ahead prices are published 

and available for the entire next day, i.e 36 hours ahead. Small prosumer batteries can 

normally do a full charging cycle in approximately 4 hours. In other words, decisions are 

mostly decided by the price development in the next 4 hours of operation. Thus, the worst 

case scenario where spot price is only known for the next 12 hours should not be a 

problem. If it for some reason is required to know spot prices for more than the 12-36 

hours that are available, some kind of spot price forecasting is required.  

Figure 66. shows how the knowledge of future spot prices is depending on which hour 

of the day we are in. The top example shows the scenario where we are running the 

optimization at noon, just after day-ahead prices are released. The bottom example 
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shows the case where we run the optimization just before prices are released, and prices 

are only known for the next 12 hours. In other words, the “deterministic horizon” is 

dependent on which hour we are in.  

 

 

Figure 66. Spot price availability in intraday 

4.2.7 Flexibility request from a DSO 

The uncertainty regarding the flexibility request from a DSO is depending on the 

communication structure between the DSO and FO. What kind of time resolution is being 

used, and long before activation must the request be submitted? The longer ahead the 

request is being made, the higher the certainty for the given request period we have. If 

flexibility requests work like the balancing energy markets, a request would have to be 

handed in approximately 30-45 minutes before activation. Still, there is some uncertainty 

connected to the next time period, unless the DSO has made it clear that a certain 

amount of flexibility will be needed for a given time period. In other words, the uncertainty 

varies depending on how the contract between the FO and the DSO is shaped, and what 

time resolutions are being used. 

4.3 Possible planning approaches 

The uncertainties associated with the input parameters are unavoidable. The result of 

optimization is highly depend on the values of input parameters. A small error in the value 

of one of the input parameters can make the optimum solution infeasible and 

computationally intractable [10]. Different optimization approaches treat this uncertainty 

in a different manner [11]. In the following text gives a brief idea about three different 

optimization approaches. 
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Figure 67. Representation of expected value the three different optimization approaches. 

4.3.1 Robust optimization technique 

Robust Optimization (RO) technique assumes a model for the uncertainties in the input 

parameter which is deterministic and set based [11]. RO method optimizes the objective 

over these set of robustly feasible solutions. By making a set of feasible solution, the RO 

method can make the problem computationally tractable [10]. The set of robustly feasible 
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solutions guarantee to remain feasible for all uncertainty in the input parameters within 

the set. 

Thus, an optimal solution is available for all permissible values of input parameters within 

the set. The solution obtained by RO method is not absolute optimal solution (global 

optimum) for the given objective function [11]. This is the price paid for the robustness of 

the solution for all possible inputs values. For example, the expected values of RO for a 

PV plant to of certain installed capacity for the next 24 hours will be similar to Figure 67 

(a). RO is best suited for the problems in which uncertainty matters, computational time 

is valuable, estimation of probability distribution is difficult, and the decision should not 

be risky. 

4.3.2 Stochastic programming 

In stochastic optimization, the assumption is that the uncertainties in the input 

parameters have a probabilistic distribution.  Within the probability distribution of the 

uncertain input parameters, the objective function produces a collection of random 

variables. The optimization process selects the best in these results, which satisfies the 

objective function’s criterion. The stochastic optimization method tries to immunize the 

solution in some probabilistic sense to this stochastic uncertainty. However, the 

stochastic optimization always makes it feasible to achieve the solution, but the solution 

obtained is only expected to be optimal for the given scenario. For example, the expected 

values of stochastic programming for a PV plant of certain installed capacity for the next 

24 hours will be similar to Figure 67 (b). The different expected value curves represents 

different scenarios. The solution approach is based on the scenarios that are complex to 

generate. This makes the stochastic optimization method to formulate the optimization 

problem as a huge one with substantial data requirements [10]. 

4.3.3 Rolling horizon deterministic planning 

The stochastic optimization assumes that there is random noise in the input parameters 

and/or the choice is random to select the search direction when the algorithm starts to 

iterate towards the solution (Monte Carlo) [11]. In contradictory, the deterministic method 

assumes that a perfect information is available about the input parameters [11]. For 

example, the expected values of deterministic programming for a PV plant to of certain 

installed capacity for the next 24 hours will be similar to Figure 67 (c). With the available 

information on the future values of the input parameters, the optimization process can 



INVADE H2020 project – Grant agreement nº. 731148 

D5.3 Flexibility operation algorithms – phase 1  Page 77 of 110 

schedule the flexible and inflexible units (generation, load and storage) to certain time 

horizon called planning horizon with multiple periods as shown in the Figure 68 (a).  

 

Figure 68. Deterministic programming with rolling and receding methods. 

The assumption is that the input parameters are more certain in these periods. Based 

on the optimization decision, the control actions take place only for the immediate next 

period or few nearest periods depends. In model predictive control (MPC) approaches, 

it is always customary to make control decision for one time step and wait for the system 

response to decide further control decisions (next time steps) [12], [13]. During the 

present control execution period, the new update on some of the input parameters will 

be available with more certainty than the previously available values. The new 

optimization process will include the latest update on the input parameters and makes a 
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new schedule. During this optimization process, the length of time horizon may be 

extended based on the available input data as shown in Figure 68 (b). This method of 

extending the planning horizon on the new optimization process is called rolling horizon 

method. If the new information for the input parameters does not provide update for the 

time periods beyond present on the planning horizon, the optimization process will 

maintain the same horizon with shorter length as shown in the Figure 68 (c). This method 

is called receding horizon method. 

4.3.4 Rule-based method 

The above three methods optimize the operation schedule of different units (load, 

generation and storage) based on the available information about the input parameters 

for the future periods. They have different methods to handle the uncertainty associated 

with forecasted or predicted input parameters. Rule-based method does not consider the 

future periods. The decisions are made for present period only with the input parameter 

values for the present period, which are certain. Therefore, it is easy to implement. The 

rules-based method selects the most flexible resource first from the available list of 

resources to fulfil the flexibility service. If the first resource is not available or the flexibility 

offered by that resource is not sufficiently large to fulfil the service request, the flexibility 

from the second resource is activated to fulfil the residue and this selection process 

continues until the flexibility service request is fulfilled. The rule-based method repeats 

the whole process from the beginning for the second period based on the available 

resources at that point of time. 

4.4 The information structure 

In real-time, the operational scheduling has to include the updated values available for 

the input parameters in the optimization process. The method to include every newly 

available values for the input parameters and to produce new set of optimized decision 

variables is called information structure. The long optimization horizon will be divided into 

equal multiple short periods. The length of one period is constrained by many parameters 

which is discussed in detail later in this chapter in section 4.6. The optimization process 

is executed with the latest input parameter values and the decisions are made for the 

whole planning horizon to produce operational plan to get the best possible value for the 

flexibility. In some cases, the flexibility can have better value in the later periods than 

availing it in the nearer periods or vice versa. Although the scheduling is done for the 
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whole horizon, the actual decision implementation is done only for the first period as 

shown in the Figure 69 (a). 

 

Figure 69. Operational information structure and first period decision implementation 

 
Figure 70. Operational information structure and first period decision implementation for day 

ahead market. 

It should be noted that the actual time of the first period is application dependent. For 

example, if the flexibility is traded in the day ahead market, in reality, the actual first 
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period appears in the next day as shown in the Figure 70. The optimization process is 

iterated whenever there is an update about the input parameter value and the new 

schedule is produced and the process continues with first period decision implementation 

structure as shown in the Figure 69 (b). 

4.5 Length of the planning horizon 

The optimization process is executed after every time a new information received and 

the decisions are made for a number of periods in the planning horizon as shown in the 

Figure 71. Many parameters have their influence on the length of planning horizon. It 

depends on application, information availability and validity, error tolerance level of the 

system, computation complexity of the optimization problem and length of the sub 

periods within the planning horizon. Table 6 illustrates various applications with different 

planning horizons and forecast methodologies. 
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Table 6. Example of existing approaches with different planning horizons and use cases 

 Problem 
setting 
and use 

 

Proposed planning horizon 
methodology   

Features 

• Planning horizon (PL) 
• Resolution (R) 
• Flexibility service (FS) 
• Case/customer (user) 

 

Forecasting tools  

Congestion 
and 
voltage 
manageme
nt with 
battery 
storage 
[14] 

Battery used to mitigate the voltage problem 
associated congestion management due to 
high share of solar PV. Distributed-receding 
horizon optimization method for battery 
operation is proposed for congestion 
management and adaptive receding horizon 
optimization method for battery operation is 
proposed for voltage management.  

PL: 24 hours 

R: 15 minutes 

FS: Voltage control 
and congestion 
management 

User: DSO 

 

Solar and demand forecast 
are generated from the 
historical data incorporating 
random, normally distributed 
fluctuations. 

Micro grid 
energy 
manageme
nt with 
storage 
[15] 

A rolling horizon based energy 
management for a micro grid with multiple 
RES (wind and solar) and battery storage is 
proposed. The overall strategy is to prepare 
the control schedule for 15min intervals 
based on 48 hours prediction. Then, move 
to the next interval. 

PL: 48 hours 

R: 15 minutes 

FS: Self-balancing 

User: Large prosumer 

 

Load forecast is neural 
network based. Solar and 
wind production is forecasted 
phenomenological models 
with weather forecast using 
Global Forecast System. 

Frequency 
regulation 
with 
storage 
[12] 

Stochastic Model Predictive Control (MPC) 
for frequency regulation with battery storage 
is proposed and compared with the 
deterministic MPC.  

PL: 720 hours 

R: 1 hour 

FS: Frequency 
regulation 

User: TSO 

The forecast of demand, 
energy price and frequency 
regulation signal are done 
with Ledoit-Wolf covariance 
estimation method. (The 
forecast is for only 1 hour) 

Grid-
connected 
Micro grid 
energy 
manageme
nt [14] 

 

A mixed integer linear program optimization 
method for energy management in a grid 
connected micro grid with RES (solar and 
wind) and battery storage is proposed. The 
battery extreme uses are penalized to avoid 
such usages.  

PL: 96 hours 

R: Variable 30 
minutes – 12 hours 

FS: KW max and self-
balancing 

User: Large prosumer 

The RES production forecast 
depends on the weather 
forecast data from external 
agencies. A variable time 
step ranging from 30 minutes 
in nearer and 12 hours near 
horizon is adapted to reduce 
the computational load. 

Energy 
storage 
sizing [16] 

A two-stage MPC optimization considering 
the sizing scenario at primary level and 
operational scenario at the secondary level 
is presented.  

PL: 24 hours 

R: 10 minutes 

FS: Self balancing 

User: Large prosumer 

The wind forecast is from the 
historic data added with wind 
forecast error as a random 
variable with a Gaussian 
probability distribution. 

RES 
coupled to 
storages 
with 
probabilisti
c forecasts 
[17] 

The battery operation is optimized for the 
maximum utilization of RES with 2 level 
control. The offline scheduling is done with 
optimization and the online hourly control is 
done with MPC 

PL: 48 hours 

R: 1 hour 

FS: self balancing 

User: Large prosumer 

 

Data driven regression model 
of order 3 is used to forecast 
demand and RES 
generations. 
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The planning horizon should be long enough to avoid suboptimal decisions. For example, 

If a curtailable load is allowed to be disconnected only once in a day or if the shiftable 

load is constrained to operate at least once in a day, then the planning horizon should 

cover at least all hours of a day. Similarly, if an EV is connected to the charging point 

between 1600 pm of a day and 0700 am of the day after, all periods till 0700 am of the 

day after should be included.  

 

Figure 71. Planning horizon for optimal operation. 

As the length of the planning horizon increases, the optimization process takes longer 

time to compute due to more number of periods and more scenarios under consideration. 

If the optimization results are not available before the time of their actual implementation, 

they are useless. Therefore, the planning horizon should be short enough to avoid such 

scenarios. The number of periods within the planning horizon may vary, every time the 

when the system executes the optimization process to make new decisions. This 

depends on the available information, their time resolution and system sensitivity. 

4.6 Time resolution 

The time resolution of the optimization will be different from case to case, depending on 

what kind of objective function we are looking at. In general, higher resolution increases 

the precision of the optimization and allows for a greater optimum. The longer the 

duration, the less of physics can be taken into account, as fluctuations in real life 

surroundings could potentially violate constraints on a short time basis, which are not 

violated when resolution is lower. This also means that the longer the duration is, the 

more decisions and responsibilities have to be handled by the local system. On the 

contrary, the higher the time resolution, the more data must be handled. This kind of data 

can be new and different forecasts/predictions like a weather update, the connection of 

new EVs, local decisions made due to fluctuations or unforeseen events etc. 
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Market rules play a role because they decide important factors such as spot price. For a 

prosumer case, resolution can not be lower than the time resolution of the prize; 1 hour. 

One could also change the time resolution depending on where in the time horizon it is. 

For example, a 15 minute time resolution could be used for the next 6 hours, whereas 1 

hour is used from 6 to 48 hours ahead as fine tuning is less relevant in the future where 

uncertainty is greater. Such an approach would ensure optimal decisions in close time 

horizon while still giving an indication of operation in a longer time perspective without 

increasing the computational time too much. 

4.6.1 Prosumer 

In general, the time resolution should be equal to the factor that requires the highest 

resolution. However, this is not always realizable. For example, an objective function 

maximizing the profit (savings) of a prosumer, will need to take load, PV production and 

price into account when deciding how to operate a battery, EV battery or other flexibility 

services. Although the price is updated on an hourly basis, the PV and load can change 

in a matter of seconds. What happens if an EV connects just after a new periods has 

started? With a high time resolution, the EV can be integrated into the decisions quickly, 

whereas a low time resolution the EV will not be taken into account before a new time 

period starts. For some cases (e.g. home charging), this might not be a problem because 

the car might be connected for a long time, whereas public charging stations would have 

to provide some power to the EV right away. Still, it is not possible to make a new 

optimization every minute. In other words, time resolution should be chosen to be a 

reasonable value after analysing the benefits and drawbacks of different resolutions, and 

if a time resolution is chosen which can’t handle specific real life events, some rule based 

or simplified solution has to be made until a new period starts. 

4.6.2 DSO 

Congestion management services can only be provided within the same time resolution 

of the model, meaning that if a 15 minute resolution is used, a request to provide flexibility 

at 15:55 is not possible. For the DSO case, a time resolution of 15 minutes was used in 

EMPOWER. 

Congestion management and voltage control are problems mainly based on one factor: 

consumer demand. In other words, the time resolution should be as high as the demand 

changes, which due to the continuity of real life demand is impossible. The platform 

needs to have a reasonable time resolution which can handle most of the problems 
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connected to congestion management and voltage fluctuations while still having a longer 

time resolution than the computational time of the optimization. 

4.6.3 BRP 

For a BRP case, resolution would have to be minimum the resolution of the market. In 

Norway, this is 1 hour, whereas it is 15 minutes in Germany. Minimum time resolution 

would have to be changed accordingly. 

4.7 Overall operational scheduling optimization process 

Figure 72 shows the overview of the operational scheduling optimization process. The 

optimization model receives input parameter values for consumption, generation and 

available flexibility. These values are dynamic, depend of external factors and have 

uncertainties associated with them. These values are derived from their historical data 

and external information like electricity prices, weather forecast and booking information 

of EV charge posts etc. The other fixed data structure, for example the installed 

capacities of PV generation and battery storage, maximum charge/discharge powers 

and network physical constraints are also fed to the optimization model. The result of 

optimization is control decisions for the planning horizon. The results formatted to meet 

the local generation, load and battery units’ communication protocol requirements and 

communicated in a way to activate only the first period decisions. If the optimization 

model complaints that the problem is infeasible, default control decisions will be followed. 

 

Figure 72. Overview of the operational scheduling optimization process 
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5  Mathematical formulations 

5.1 Overview of sets, parameters and variables 

5.1.1 Sets 

𝑇 Set of periods/time slots in the planning horizon 

𝑇P 	 Subset of periods where curtailment is allowed 

𝐵 Set of battery units 

𝑉  Set of electric vehicles 

𝑉@ Subset of electric vehicles that are inflexible 

𝑉= Subset of electric vehicles that are shiftable 

𝑉A Subset of electric vehicles that are disconnectable (shiftable interruptible) 

𝑉P Subset of electric vehicles that are reducible (fully controllable) 

𝑉Q Subset of electric vehicles that can be discharged (V2X) 

𝐼 Set of load shift intervals 

𝐿  Set of load units 

𝐿@ Subset of load units that are inflexible  

𝐿? Subset of load units that are curtailable reducible 

𝐿A Subset of load units that are curtailable disconnectable 

𝐿D Subset of load units that are shiftable profile 

𝐿S Subset of load units that are shiftable volume 

𝐺 Set of generation units 

𝐺@ Subset of generation units that are inflexible 

𝐺? Subset of generation units that are curtailable reducible 

𝐺A Subset of generation units that are curtailable disconnectable 
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5.1.2 Parameters 

𝑃,
?U,V@WBXY; Price at energy part of retail contract for buying electricity in period t 

[€/kWh] 

𝑃,
>?@ABXY; Price at energy part of grid contract for buying electricity in period t 

[€/kWh] 

𝑃,
>?@ABXY;BWEZ Price at energy part of grid contract for buying electricity in cases with 

subscribed power in period in period t if bought electricity is below 
subscribed level [€/kWh]  

𝑃,
>?@ABXY;B[@>[ Price at energy part of grid contract for buying electricity in cases with 

subscribed power in period in period t if bought electricity is above 
subscribed level [€/kWh]  

𝑃,V\ Sum price for all taxes that are related to buying electricity in period t 
[€/kWh] 

𝑃]^_ Parameter that adds VAT to the amount bought [fraction] 

𝑃,?U,V@WB=UWW Price at energy part of retail contract for selling electricity in period t 
[€/kWh] 

𝑃,
>?@AB=UWW Price at energy part of grid contract for selling electricity in period t 

[€/kWh] 

𝑃DUV` Price at grid contract for peak fee [€/kW/month] 

𝑋@CDBPVD Maximum import capacity [average kW] 

𝑋U\DBPVD Maximum export capacity [average kW] 

𝑀 Limitation of basis for peak fee [kW] 

𝑂𝑏
𝑚𝑖𝑛 Minimum state of charge allowed for battery b [kWh] 

𝑂𝑏
𝑚𝑎𝑥 Maximum state of charge allowed for battery b [kWh] 

𝑂𝑣𝐸𝑉,𝑚𝑖𝑛 Minimum state of charge allowed for EV unit v [kWh] 

𝑂𝑣𝐸𝑉,𝑚𝑎𝑥 Maximum state of charge allowed for EV unit v [kWh] 

𝑂S,,
h],C@i,, Minimum state of charge allowed for EV unit v at period t [kWh] 

𝑂Sjk Total charging demand for EV unit v [kWh] 
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𝑂S
jk,C@i Minimum charging demand supplied during the charging process of 

EV unit v [kWh] 

𝑄𝑏
P[ Maximum charging power allowed for battery b [kW] 

𝑄𝑏
A@= Maximum discharging power allowed for battery b [kW] 

𝑄S
𝐸𝑉,𝑐ℎ Maximum charging power allowed for EV unit b [kW] 

𝑄S
𝐸𝑉,𝑑𝑖𝑠 Maximum discharging power allowed for EV unit b [kW] 

𝐴XP[ Efficiency parameter for charging storage unit b [#] 

𝐴XA@= Efficiency parameter for discharging storage unit b [#] 

𝐴S
h],P[ Efficiency parameter for charging EV unit v [p.u.] 

𝐴S
h],A@= Efficiency parameter for discharging EV unit v [p.u.] 

𝑆XP[ Threshold in battery unit b charging process [p.u.] 

𝑆XA@= Threshold in battery unit b discharging process [p.u.] 

𝑆XUiA Threshold in battery unit b of stored energy at the end of the planning 
horizon [p.u.] 

𝑃X,,
q,P[ Price for charging battery unit b at period t [€/kWh] 

𝑃X,,
q,A@=P Price for discharging battery unit b at period t [€/kWh] 

𝑆S
h],P[ Threshold in EV unit v charging process [p.u.] 

𝑆S
h],A@= Threshold in EV unit v discharging process [p.u.] 

𝑊S,,
h] Baseline charging schedule for EV v in period t [kWh] 

𝐸𝑣𝑚𝑖𝑛 Minimum charging power allowed for vehicle v [kWh] 

𝐸𝑣𝑚𝑎𝑥 Maximum charging power allowed for vehicle v [kWh] 

𝐸𝑣𝑠𝑡𝑎𝑟𝑡 Remaining battery energy of EV unit v at the arrival period [kWh] 

𝑃S,,h] Price for shifting charging for EV unit v with 1 kWh [€/kWh] 

𝑃S,,
h],]Qs Price for discharging 1 kWh from EV unit v [€/kWh] 
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𝑃S
h],2t Price for non-supplying 1 kWh of the expected charging demand of 

EV unit v [€/kWh] 

𝑇@
=,V?, First period in load shift interval i [#]  

𝑇@
UiA Last period in load shift interval i [#] 

𝑇S
h],=,V?, First period for EV control of unit v [#] 

𝑇S
h],UiA Last period for EV control of unit v [#] 

𝑉@
=,V?, First period in load shift interval i where the load unit has a baseline 

consumption [#] 

𝑉@
UiA Last period in load shift interval i where the load unit has a baseline 

consumption [#] 

𝑊W,,
WEVA Baseline consumption at load unit l in period t [#] 

𝑃W,,P  Price for reducing consumption for curtailable load unit l in period t [€] 

𝑃W,,=  Price for shifting consumption for shiftable load unit l with 1 period in 
period t [€/period] 

𝐷WCV\ Maximum duration of a regulation for load unit l [#] 

𝐷WC@i Minimum rest time between two regulations for load unit l [#] 

𝑁WCV\ Maximum number of regulations for load unit l in planning horizon [#] 

𝑊>,,
D?EA Baseline production from generation unit g in period t [kWh] 

𝑃>,,s  Price for reducing production for generator unit g in period t [€] 

𝑁[EY? Periods per hour [#] 
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5.1.3 Variables 

𝜒,
XY; Amount of electricity bought in period t [kWh] 

𝜒,=UWW Amount of electricity sold in period t [kWh] 

𝜒DUV` Basis for calculation of peak fee in cases where this is a part of the grid 
contract [kW] 

𝜓>,, Amount of electricity produced from generating unit g in period t [kWh] 

𝜁>Ui Total cost for utilizing generation flexibility [€] 

𝜔W,, Amount of electricity consumed from load unit l in period t [kWh] 

𝜑S,,P[  Amount of electricity charged to EV unit v in period t [kWh] 

𝜑S,,A@= Amount of electricity discharged from EV unit v in period t [kWh] 

𝜎X,,P[ Amount of electricity charged to battery unit b in period t [kWh] 

𝜎X,,A@= Amount of electricity discharged from battery unit b in period t [kWh] 

𝜎S,,
h],P[ Amount of electricity charged to EV unit v in period t [kWh] 

𝜎S,,
h],A@= Amount of electricity discharged from EV unit v in period t [kWh] 

𝜎S,,
jk,P[ Amount of electricity charged to EV unit v in period t [kWh] 

𝜁|WU\@X@W@,; Total cost for utilizing internal flexibility [€] 

𝛿,
XY; Binary variable = 1 if site is importing/buying electricity in period t, else 0 

𝛿,=UWW Binary variable = 1 if site is exporting/selling electricity in period t, else 0 

𝜎X,,=EP Amount of electricity stored in battery unit b in period t [kWh] 

𝜎S,,
h],=EP Amount of electricity stored in EV unit v in period t [kWh] 

𝜎S,,jk Amount of electricity stored to EV unit V in period t [kWh] 

𝛾S,@,P
h]  Binary variable equal to 1 if consumption for EV unit v is shifted c periods 

for load shift interval i, else 0 

𝜏S,@
h] Weighted average delay for controllable EV unit v in interval i 
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𝜌S,@
h] Help variable to handle positive and negative values of 𝜏S,@h] 

𝜁h],=[@|, Cost for shifting EV charging [€] 

𝜁h],PEi,?EW Cost for controlling EV charging [€] 

𝜁h],]Q� Cost for controlling EV charging and discharging [€] 

𝛿W,,=,V?, Binary variable equal to 1 if regulation of load unit l starts in the beginning 
of period t, else 0 

𝛿W,,?Yi Binary variable equal to 1 if regulation of load unit l is running in period t, 
else 0 

𝛿W,,UiA Binary variable equal to 1 if regulation of load unit l ends in the beginning 
of period t, else 0 

𝛾W,@,P
WEVA Binary variable equal to 1 if consumption for load unit l is shifted c periods 

for load shift interval i, else 0 

𝜏W,@
WEVA Weighted average delay for shiftable load unit l in interval i 

𝜌W,@
WEVA Help variable to handle positive and negative values of 𝜏W,@WEVA 

𝜁WEVAPY?,V@W Cost for curtailing load [€] 

𝜁WEVA=[@|, Cost for shifting load [€] 

𝛿>,,
>Ui Binary variable equal to 0 if generating unit g is disconnected in period t, 

else 1 

 

 

5.2 Common/general constraints 

5.2.1 Battery models 

Each battery unit b has efficiency factors for charging 𝐴XP[	and discharging 𝐴XA@=, 
respectively. The battery state of charge, i.e. the storage content, 𝜎X,,=EP for battery unit b 
in period t depends on the state of charge in the previous period, and charging 𝜎X,,P[ or 
discharging 𝜎X,,A@= in current period.  

𝜎𝑏,𝑡𝑠𝑜𝑐 = 𝜎𝑏,𝑡−1𝑠𝑜𝑐 + 𝜎𝑏,𝑡𝑐ℎ ∗ 𝐴𝑏
𝑐ℎ −

𝜎𝑏,𝑡𝑑𝑖𝑠

𝐴𝑏𝑑𝑖𝑠
, ∀	𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇 (Eq. 1) 



INVADE H2020 project – Grant agreement nº. 731148 

D5.3 Flexibility operation algorithms – phase 1  Page 91 of 110 

The state of charge must be within minimum and maximum limits: 

 

Charging and discharging must be below maximum charging levels: 

 

Previous constraints assume that the batteries are completely adjustable in terms of 
power input and output up to the maximum power specified 𝑄XP[ and 𝑄XA@=.  

However, the following constraint ensures that the energy charged 𝜎X,,P[ to the battery b 
is linearly decreased from 𝑆XP[ state-of-charge, typically 0.8 (80%), until zero at 100% 
SOC. 

 

 
Figure 73. Battery state of charge as a function of maximum charging power 

The same for discharging power 𝜎X,,,=EY,  of battery unit b during period t. The lower 
threshold to limit the energy output is 𝑆XA@=, typically 0.1 (10% SOC), until zero power 
output at 0% SOC.  
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constraint	16	
Mouli2017
Maximum	charging	
power

𝑂𝑏𝑚𝑖𝑛 ≤ 𝜎𝑏,𝑡
𝑠𝑜𝑐

≤ 𝑂𝑏𝑚𝑎𝑥, ∀	𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇 (Eq. 2) 

𝜎𝑏,𝑡𝑐ℎ ≤
𝑄𝑏
𝑐ℎ

𝑁ℎ𝑜𝑢𝑟
, ∀	𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇 (Eq. 3) 

𝜎𝑏,𝑡𝑑𝑖𝑠 ≤
𝑄𝑏
𝑑𝑖𝑠

𝑁ℎ𝑜𝑢𝑟
, ∀	𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇 (Eq. 4) 

𝜎X,,P[ ≤
−𝑄XP[

𝑁[EY?

1 −	𝑆XP[
𝜎X,,=EP

𝑂XCV\
− 1  

(Eq. 5) 
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Finally, the battery SOC at the end of the planning horizon must be a certain level. 
Parameter 𝑆XUiA can be tuned depending on the planning horizon, storage services and 
case details. 

 

 
Figure 74. Battery state of charge as a function of maximum discharging power 

5.2.2 Load models 

As described in Section 2.5.2 the load unit models can be split into the following classes: 

§ Inflexible load units 

§ Curtailable disconnectable load units 

§ Curtailable reducible load units 

§ Shiftable volume (storable) load units 

§ Shiftable profile load units 

5.2.2.1 Inflexible 

For inflexible load units the scheduled load 𝜔W,, must be equal to the baseline (predicted) 
load 𝑊W,,

WEVA. 
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constraint	17	Mouli	
2017

Maximum	discharging	
power

𝜎X,,EY, ≤
𝑄XA@=

𝑁[EY?

	𝑆XA@=
𝜎X,,=EP

𝑂XCV\
 

(Eq. 6) 

𝜎𝑏,𝑡𝑠𝑜𝑐 = 𝑆𝑏𝑒𝑛𝑑 · 𝑂𝑏𝑚𝑎𝑥, ∀	𝑏 ∈ 𝐵, 𝑡 = 𝑇 (Eq. 7) 

𝜔W,, = 𝑊W,,
WEVA, ∀	𝑙 ∈ 𝐿@, 𝑡 ∈ 𝑇 (Eq. 8) 
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5.2.2.2 Curtailable 

We introduce binary variables 𝛿W,,=,V?,equal to 1 if load unit l starts regulation in the 
beginning of period t, 𝛿W,,?Yi equal to 1 in periods where regulation runs after the starting 
period and finally, 𝛿W,,UiA equal to 1 in the first period after a regulation is stopped.  

A curtailment can start or run only in permitted periods: 

A curtailment can not start, run and end in the same period: 

A curtailment that starts or runs in one period, must either continue to run or end in the 
consecutive period: 

A load unit can not be curtailed any longer than 𝐷WCV\periods: 

 

A minimum duration 𝐷WC@i	must exist between two load curtailments: 

The maximum number of curtailments in the planning horizon must not be greater than 
𝑁W,@
CV\:  

 

We illustrate the constraints with a small example. A load unit is curtailed in periods 1 to 
4 and 7 to 8. The values of the binary variables are then as shown in the table below. 

  

𝛿W,,=,V?, + 𝛿W,,?Yi = 0			∀	𝑙 ∈ 𝐿P, 𝑡 ∉ 𝑇P (Eq. 9) 

 

 

𝛿W,,=,V?, + 𝛿W,,?Yi	+	𝛿W,,UiA ≤ 1			∀	𝑙 ∈ 𝐿P, 𝑡 ∈ 𝑇 (Eq. 10) 

 

 

𝛿W,,B�=,V?, + 𝛿W,,B�?Yi = 𝛿W,,?Yi + 𝛿W,,UiA  ∀	𝑙 ∈ 𝐿P, 𝑡 ∈ 𝑇 (Eq. 11) 

𝛿W,@UiA
,�k�

���

@�,

≥ 𝛿W,@=,V?,		∀	𝑙 ∈ 𝐿P, 𝑡 ∈ 𝑇 (Eq. 12) 

  

𝛿W,,UiA + 𝛿W,@=,V?,
,�k�

���B�

@�,

≤ 1		∀	𝑙 ∈ 𝐿P, 𝑡 ∈ 𝑇 (Eq. 13) 

𝛿W,,=,V?,

,∈_

≤ 𝑁WCV\		∀	𝑙 ∈ 𝐿P, 𝑡 ∈ 𝑇 (Eq. 14) 
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Table 7. Example of binary variables for curtailable load units 

 1 2 3 4 5 6 7 8 9 

          

𝛿W,,=,V?, 1 0 0 0 0 0 1 0 0 

𝛿W,,?Yi 0 1 1 1 0 0 0 1 0 

𝛿W,,UiA 0 0 0 0 1 0 0 0 1 

 

The first curtailment starts in period 1, hence 𝛿W,�=,V?,  is set to 1. The curtailment continues 
in periods 2, 3 and 4, and the 𝛿W,,?Yi are set to 1. The curtailment stops in the beginning 
of period 5 (or actually, in the end of period 4) so 𝛿W,�UiA = 1. 

For reducible load units, the load schedule 𝜒W,, must be smaller than the consumption 
forecast 𝑊W,,

WEVA: 

For disconnectable load units, the load schedule must either be 0 or equal to the 
consumption forecast: 

Curtailable load units will have a cost equal to the curtailment price multiplied with the 
number of periods curtailed: 

 

5.2.2.3 Shiftable 

For shiftable load units we introduce load shift intervals l similar to the charging sessions 
for the EVs. 

For shiftable profile load units we introduce the variable 𝛾W,@,i which is set to 1 if 
consumption for load unit l is shifted n periods for load shift interval i. Exactly one load 
shifting option must selected for each shiftable profile load unit in each load shift interval: 

𝜒W,, ≤ 𝛿W,,=,V?, + 𝛿W,,?Yi ∗ 𝑊W,,
WEVA, 	∀	𝑙 ∈ 𝐿P, 𝑡 ∈ 𝑇 

 
(Eq. 15) 

𝜒W,, = 𝛿W,,=,V?, + 𝛿W,,?Yi ∗ 𝑊W,,
WEVA, 	∀	𝑙 ∈ 𝐿P, 𝑡 ∈ 𝑇 (Eq. 16) 

𝜁WEVAPY?,V@W = 𝑃W,,WEVA

W∈W�
𝛿W,,=,V?, + 𝛿W,,?Yi

,∈_

 (Eq. 17) 
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The consumption forecasts must be allocated to the correct periods according to the 
decided load shifting option: 

 

 

For shiftable profile load units, the cost for regulation is the product of the delay cost and 
the number of periods delayed. We calculate this cost according to the equation below: 

 

Contrary to shiftable profile load units, for shiftable volume load units we can control the 
power levels between a minimum 𝐸WC@i and a maximum 𝐸WCV\	value.   

In some cases, similar to charging of EVs, 𝜔W,, may be semi-continuous, which means 
that it must be according to Eq. 36 or 0. 

For each load shift interval i the sum energy volume delivered to the load unit must equal 
the sum baseline forecast. 

 

For shiftable volume load units, we introduce the concept of weighted average delay, 
which has number of periods as unit. This also takes into account not only when you 
meet the finale volume, but also how you do it (penalizes more if large volumes are 
shifted to the end). The weighted average delay for shiftable load unit l and load shift 
interval i is defined like as: 

	𝛾W,@,i

_�
���B]�

���

i�_�
�����B]�

�����

= 1		∀	𝑙 ∈ 𝐿D, 𝑖 ∈ 𝐼(𝑙) (Eq. 18) 

𝜔W,,� 	𝛾W,@,(,B_�,������Bi)𝑊W,(_�,�
������i)

_�
���B_�

�����

i��

		∀	𝑡 ∈ 𝑇@=,V?,, 𝑇@UiA , 𝑖 ∈ 𝐼(𝑙) 
(Eq. 19) 

𝜁WEVAD?E|@WU = 𝑃A= 𝛾W,@,iWEVA

_�
���B]�

���

i��

𝑛
@∈�W∈��

	 (Eq. 20) 

𝐸WC@i ≤ 𝜔W,, ≤ 𝐸WCV\, 	∀	𝑙 ∈ 𝐿S, 𝑡 ∈ 𝑇(𝑖) (Eq. 21) 

	𝜔W,,

_�
���

,�_�
�����

= 𝑊W,,
WEVA	

_�
���

,�_�
�����

		∀	𝑙 ∈ 𝐿S, 𝑡 ∈ 𝑇 𝑖 , 𝑖 ∈ 𝐼(𝑙) (Eq. 22) 
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Since this weighted average delay also may be negative (by shifting volume backwards), 
we introduce a new variable 𝜌W,@WEVA defined as: 

 

The total costs for shifting volume load is then: 

5.2.3 EV models 

The present EV model has been developed with the purpose of finding the optimal 
dispatch for charging the EV in a private charging station to provide flexibility services to 
prosumer, DOS or BRP. 

the constraints given both by the EV owner or external agents like DSO or BRP at private 
stations, typically at home. Public installations could require a different approach. 

Similar to generation units and load units the EV charging process may also have 
different degrees and types of flexibility:  

§ Inflexible EVs 

§ Shiftable 

§ Controllable 

§ Controllable and interruptible 

§ V2X 

5.2.3.1 Inflexible EVs 

For inflexible EVs (𝑣 ∈ 𝑉@), i.e. EVs where the charging process cannot be controlled, 
the charging 𝜑S,,P[  scheduled to be delivered to EV v in period t is equal to the predicted 
charging demand 𝑊S,,

h]. 

5.2.3.2 Shiftable 

For shiftable EV units 𝑣 ∈ 𝑉= we introduce the term charging session 𝑖 ∈ 𝐼(𝑣), defined by 
connection 𝑇@=,V?, and disconnection 𝑇@UiA periods, respectively. Furthermore, we define 
the first 𝑉@=,V?, and last 𝑉@UiA period where the EV has a charging demand, given that it 

𝜏𝑙,𝑖WEVA =
((𝜔𝑙,𝑡 −𝑊𝑙,𝑡

WEVA𝑇𝑙,𝑖
𝑒𝑛𝑑

𝑡=𝑇�,�
𝑠𝑡𝑎𝑟𝑡 )𝑡)

𝑊𝑙,𝑡
WEVA𝑇�,�

𝑒𝑛𝑑

𝑡=𝑇𝑙,𝑖
𝑠𝑡𝑎𝑟𝑡

, 			∀		𝑙 ∈ 𝐿𝑣, 𝑖 ∈ 𝐼(𝑙) (Eq. 23) 

𝜌𝑙,𝑖
𝑙𝑜𝑎𝑑 	≥ 𝜏𝑙,𝑖𝑙𝑜𝑎𝑑, 			∀		𝑙 ∈ 𝐿𝑣, 𝑡 ∈ 𝑇𝑖𝑠𝑡𝑎𝑟𝑡. . 𝑇𝑖𝑒𝑛𝑑 , 	𝑖 ∈ 𝐼(𝑙) (Eq. 24) 

𝜌𝑙,𝑖
𝑙𝑜𝑎𝑑 	≥ −𝜏𝑙,𝑖𝑙𝑜𝑎𝑑, 			∀		𝑙 ∈ 𝐿𝑣, 𝑡 ∈ 𝑇𝑖𝑠𝑡𝑎𝑟𝑡. . 𝑇𝑖𝑒𝑛𝑑 , 	𝑖 ∈ 𝐼(𝑙) (Eq. 25) 

 

 

𝜁W,S = 𝑃W=𝜓W,@
@∈�W∈� 

	 (Eq. 26) 

𝜑S,,P[ = 𝑊S,,
h], ∀	𝑣 ∈ 𝑉@, 𝑡 ∈ 𝑇 (Eq. 27) 
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is not shifted. We introduce the variable 𝛾S,@,i which is a binary variable set to 1 if 
consumption for EV unit v is shifted n periods for charging session i. Exactly one shifting 
option must selected for each shiftable EV unit in each charging session: 

 

The predicted charging demand must be allocated to the correct periods according to 
the decided shifting option: 

 

 

The model is illustrated in Table 8.  

Table 8. Illustrative example shiftable EV charging 

 1 2 3 4 5 6 7 8 

         

𝑊S,,
h] 3 3 2      

𝜑S,,P[    3 3 2    

 

The EV at hand connects in period 1 and disconnects in period 7, so we have: 𝑇@=,V?, =
1, 𝑇@

UiA = 7. If no shifting of the charging is performed, it will start in period 1 and end in 
period 3: 𝑉@=,V?, = 1. 	𝑉@

UiA = 3. There are 5 shifting options: To shift 0, 1, 2, 3, or 4 
periods. It is not possible to shift more than 4 periods and still meet the charging demand. 
In the example, the optimization algorithm has decided to shift the charging 2 periods, 
so 𝛾S,@,� = 0, 𝛾S,@,Q = 0, 𝛾S,@,Q = 1, 𝛾S,@,£ = 0, 𝛾S,@,¤ = 0	 

For shiftable EV units, the cost for regulation is the product of the delay cost and the 
number of periods delayed. We calculate this cost according to the equation below: 

Model limitations: 

	𝛾S,@,i

_�
���B]�

���

i�_�
�����B]�

�����

= 1		∀	𝑣 ∈ 𝑉=, 𝑖 ∈ 𝐼(𝑣) (Eq. 28) 

𝜑S,,P[ = 	𝛾S,@,(,B_ ,������Bi)𝑊W,(_ ,�
������i)

_�
���B_�

�����

i��

		∀	𝑡 ∈ 𝑇@=,V?,, 𝑇@UiA , 𝑖 ∈ 𝐼 𝑣 , 𝑣

∈ 𝑉=	 

(Eq. 29) 

𝜁h]=[@|, = 𝑃S= 𝛾S,@,i

_�
���B]�

���

i��

𝑛
@∈�S∈]�

	 (Eq. 30) 
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§ The EV charging cannot be interrupted 

§ The predicted EV consumption profile must be completed.  

 

5.2.3.3 Controllable 

With controllable EVs (𝑣 ∈ 𝑉P) we both can delay the charging process, but also control 
the power levels. In other word we can shape the charging profile. An example is given 
in Table 9. 

Table 9. Illustrative example controllable EV charging 

 1 2 3 4 5 6 7 8 

         

𝑊S,,
h] 3 3 2      

𝜑S,,P[   2 1 3 2    

 

The starting point is the same as the illustration for shiftable EV charging (Table 8). The 
optimization model now decides to start the charging in period 2 with a reduced level and 
end in period 5. Notice that the profile/shape is different, although the total energy 
delivered is the same.  

For controllable EVs we can control the power levels so they must be between a 
minimum 𝐸SC@i and a maximum 𝐸SCV\	value or 0. This can be formulated as: 

For each charging session interval i the sum energy volume delivered to the EV must 
equal the sum baseline forecast. 

For controllable EV units, we introduce the concept of weighted average delay, which 
has number of periods as unit. This also takes into account not only when you meet the 
finale volume, but also how you do it (penalizes more if large volumes are shifted to the 
end). The weighted average delay for controllable EV unit v and load shift interval i is 
defined like as: 

𝐸SC@i ≤ 𝜑S,,P[ ≤ 𝐸SCV\	𝑜𝑟	𝜑S,,P[ = 0, 	∀	𝑣 ∈ 𝑉P, 𝑡 ∈ 𝑇(𝑖) (Eq. 31) 

	𝜑S,,P[
_�
���

,�_�
�����

= 	𝑊S,,
h]

_�
���

,�_�
�����

		∀	𝑣 ∈ 𝑉P, 𝑖 ∈ 𝐼(𝑙) (Eq. 32) 

𝜏𝑣,𝑖𝐸𝑉 =
((𝜑𝑣,𝑡

𝑐ℎ −𝑊𝑣,𝑡
𝐸𝑉𝑇𝑣,𝑖

𝑒𝑛𝑑

𝑡=𝑇 ,�
𝑠𝑡𝑎𝑟𝑡 )𝑡)

𝑊𝑣,𝑡
𝐸𝑉𝑇 ,�

𝑒𝑛𝑑

𝑡=𝑇𝑣,𝑖
𝑠𝑡𝑎𝑟𝑡

, 			∀		𝑣 ∈ 𝑉𝑐, 𝑖 ∈ 𝐼(𝑣) (Eq. 33) 
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Since this weighted average delay also may be negative (by shifting volume backwards), 
we introduce a new variable 𝜌S,@h] defined as: 

The total costs for shifting charging is then: 

Model limitations: 

§ The EV charging cannot be interrupted 

§ The predicted EV consumption profile must be completed.  

 

5.2.3.4 Controllable and interruptible 

For controllable and interruptible EV units (𝑣 ∈ 𝑉A) we can delay, interrupt and 
reschedule the EV charging process. An example is given in Table 9. 

Table 10. Illustrative example controllable EV charging 

 1 2 3 4 5 6 7 8 

         

𝑊S,,
h] 3 3 2      

𝜑S,,P[   2 1 0 2 2 1  

 

An alternative approach for the previously explained controllable EV model (𝑣 ∈ 𝑉P) is 
presented in this section and it uses some battery model equations previously presented. 
This is a charging demand model which manages the needed energy by an EV between 
its arrival (𝑇S

h],=,V?,) and departure (𝑇S
h],UiA) times. 

The energy forecasted 𝑊S,,
h] is used for creating the following charging demand 

parameters: 

 

𝜌𝑣,𝑖
𝐸𝑉 ≥ 𝜏𝑣,𝑖, 			∀		𝑣 ∈ 𝑉𝑐, 𝑡 ∈ 𝑇𝑖𝑠𝑡𝑎𝑟𝑡. . 𝑇𝑖𝑒𝑛𝑑 , 	𝑖 ∈ 𝐼(𝑣) (Eq. 34) 

𝜌𝑣,𝑖
𝐸𝑉 ≥ −𝜏𝑣,𝑖, 			∀		𝑣 ∈ 𝑉𝑐, 𝑡 ∈ 𝑇𝑖𝑠𝑡𝑎𝑟𝑡. . 𝑇𝑖𝑒𝑛𝑑 , 	𝑖 ∈ 𝐼(𝑣) (Eq. 35) 

 

 

𝜁h]PEi,?EW = 𝑃S=𝜌S,@h]

@∈�S∈]�
	 (Eq. 36) 

𝑊𝑣,𝑡
𝐸𝑉

𝑡

= 𝑂𝑣𝐶𝐷, ∀𝑣 ∈ 𝑉𝑐, 𝑡 ∈ [𝑇𝑣𝐸𝑉,𝑠𝑡𝑎𝑟𝑡, 𝑇𝑣𝐸𝑉,𝑒𝑛𝑑] (Eq. 37) 

𝜎S,,jk = 0, ∀𝑣 ∈ 𝑉P, 𝑡 = 𝑇S
h],=,V?, − 1	 (Eq. 38) 
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The state-of-charge equations are: 

Notice in (Eq. 39) there is no charging efficiency parameter included because it is not 
necessary to be considered. Additionally, (Eq. 40) ensures that a minimum energy level 
(𝑂S

jk,C@i) is supplied to the EV unit v at the end of the charging process (t=T). It can be 
exactly the charging demand  

The maximum charging demand per period is semi-positive and it is the EV charging 
station power limit: 

 

The following cost function compensates for the difference between the expected EV 
charging demand estimated by the FO (𝑊S,,

h]) and the result of applying the set-points 
(𝜎S,,jk). Additionally, this difference is relative to the total charging demand expected 
(𝑂Sjk). Notice that an EV could be rewarded even in cases that the EV is not fully charged 
when it leaves. This is included in the compensation fee (𝑃S

h],2t) for every kWh not 
supplied 

Model assumptions and limitations: 

1) Charging power: The power input from the EV charger is assumed to be independent 
of the state of charge. This assumption holds true for chargers with a small power-
rate which typical in residential installations. As this model is meant for mainstream 
and cheap charging technologies, the charger is assumed to have a small to medium 
power available. Typically, 3.3 kW and up to 11 kW. 

2) Flexibility contracts: The information from flexibility contracts for EV and loads are 
the same. Therefore, the EV owner declares the periods when the EV can be shifted 
forward. 

3) Information from EV users: This model assumes to not have information from EV 
SOC or departure time. 

Input data: 

This model relies on the forecasting tools capable to create the input data requested to 
execute the EV flexibility model for scheduling purposes. 

1) 𝑊S,,
h]: The expected EV energy consumption without external signals of each EV 

v at time period t [kWh]. 

𝜎S,,jk = 𝜎S,,B�jk + 𝜎S,,
jk,P[, ∀𝑣 ∈ 𝑉P, 𝑡 ∈ [𝑇S

h],=,V?,, 𝑇S
h],UiA] (Eq. 39) 

𝜎S,,jk = 𝑂S
jk,C@i, ∀𝑣 ∈ 𝑉P, 𝑡 = 𝑇S

h],UiA (Eq. 40) 

𝜎S,,
h],P[ ≤

𝑄S
h],P[

𝑁[EY? , ∀𝑣 ∈ 𝑉P, 𝑡 ∈ 𝑇 (Eq. 41) 

𝜁h],PEi,?EW = 	 𝑃S,,h]
𝑊S,,

h] − 𝜎S,,jk

𝑂Sjk,∈_	S∈]�
+ 	𝑃S

h],2t(𝑂Sjk − 𝜎S,_ ¥¦,���
jk ) (Eq. 42) 
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Model limitations: 

§ It requires an accurate forecasting system for knowing the EV energy consumption 
and departure times in case of not having this information. 

 

5.2.3.5 V2X 

The state-of-charge equations are: 

 

Constraint (Eq. 44) ensures a certain EV SOC (𝜎S,,
h],t§j) at a particular instant (𝑇∗) if it is 

required.  

 

The following constraint ensures that the battery is not discharged below the state-of-
charge level when the EV arrived to the charging station: 

 

The maximum energy charged and discharged to batteries per period is semi-positive 
and follows: 

 

The total cost for managing V2X charging stations is composed by two terms: 
discharging cost (𝑃S,,

h],]Q�) and the non-supplied energy cost (𝑃S
h],2t). Discharging cost 

is proportional to the energy discharging from the EV battery each period (𝜎S,,
h],A@=). 

Charging penalty fee is proportional to the non-supplied energy to the EV (𝑂Sjk − 𝜎S,_jk). 

𝜎S,,
h],t§j = 𝜎S,,B�

h],t§j + 𝜎S,,
h],P[ · 𝐴S

h],P[ −
𝜎S,,
h],A@=

𝐴S
h],A@= 	 ,

∀𝑣 ∈ 𝑉Q, 𝑡 ∈ [𝑇S
h],=,V?,, 𝑇S

h],UiA] 

(Eq. 43) 

𝜎S,,
h],t§j = 𝑂S,,

h],C@i,,, ∀𝑣 ∈ 𝑉Q, 𝑡 = 𝑇S
h],=,V?, (Eq. 44) 

𝐸S=,V?, = 𝜎S,,
h],t§j, ∀𝑣 ∈ 𝑉Q, 𝑡 = 𝑇S=,V?, (Eq. 45) 

𝜎S,,
h],t§j ≥ 𝐸S=,V?,, ∀𝑣 ∈ 𝑉Q, 𝑡 = [𝑇S

h],=,V?,, 𝑇S
h],UiA] (Eq. 46) 

𝜎S,,
h],P[ ≤

𝑄S
h],P[

𝑁[EY? , ∀𝑣 ∈ 𝑉Q, 𝑡 ∈ 𝑇 (Eq. 47) 

𝜎S,,
h],P[ ≤

B¨ 
¥¦,�©

2©ª«�
�B	t 

¥¦,�©
¬ ,�
¥¦,®¯

§ 
¥¦,��� − 1 ,					∀𝑣 ∈ 𝑉Q, 𝑡 ∈ 𝑇  (Eq. 48) 

𝜎𝑣,𝑡
𝐸𝑉,𝑑𝑖𝑠 ≤ 𝑄𝑣

𝐸𝑉,𝑑𝑖𝑠, ∀	𝑣 ∈ 𝑉2, 𝑡 ∈ 𝑇 (Eq. 49) 

𝜎S,,
h],A@= ≤

𝑄S
h],EY,

𝑁[EY?

	𝑆S
h],A@=

𝜎S,,
h],=EP

𝑂Sh]CV\
, ∀	𝑣 ∈ 𝑉Q, 𝑡 ∈ 𝑇 (Eq. 50) 
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5.2.4 Generator models 

As described in Section 2.5.4 the generation unit models can be split into the following 
classes: 

§ Inflexible generation units 

§ Curtailable disconnectable generation units 

§ Curtailable reducible generation units 

5.2.4.1 Inflexible 

For inflexible generation units the scheduled production 𝜓>,, must be equal to the 
baseline (predicted) production 𝑊>,,

D?EA. 

 

5.2.4.2 Curtailable 

For curtailable reducible generation units, scheduled production must be between 0 and 
predicted production. 

 

 

For disconnectable generation units, scheduled production must be either 0 or equal to 
predicted production. 

 

The total costs for reducing generation volume is then: 

 

5.2.5 Aggregated flexibility models 

Models at aggregated levels will be formulated at a later stage. 

𝜁h],]Q� = 	 𝑃S,,
h],]Q�𝜎S,,

h],A@= + 𝑃S
h],2t(𝑂Sjk − 𝜎S,_jk)

,∈_	S∈]±
 

 

(Eq. 51) 

𝜓>,, = 𝑊>,,
D?EA, ∀	𝑔 ∈ 𝐺@, 𝑡 ∈ 𝑇 (Eq. 52) 

0 ≤ 𝜓>,, ≤ 𝑊>,,
D?EA, ∀	𝑔 ∈ 𝐺?, 𝑡 ∈ 𝑇 (Eq. 53) 

𝜓>,, = 𝛿>,,𝑊>,,
D?EA, ∀	𝑔 ∈ 𝐺A, 𝑡 ∈ 𝑇 (Eq. 54) 

𝜁>Ui = 𝑃>,,s 𝑊>,,
D?EA − 𝜓>,,

	,∈_>∈s�
, ∀	𝑔 ∈ 𝐺A, 𝑡 ∈ 𝑇 (Eq. 55) 
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5.3 Specific models for DSO services 

This section exposes the mathematical formulation of the DSO service. This service will 
be tested in the Spanish pilot. Following the description included in the Section 2.2, the 
following equations represent the system formed by the DSO, requesting flexibility, the 
FO, aggregating flexible assets and flexible assets, capable to supply flexibility. 

5.3.1 Objective function 

The following objective function is the total cost for the FO for activating flexibility to meet 
the DSO request. 

This function reflects the reimbursed cost to flexible asset owners. 

5.3.2 DSO services specific constraints 

The total flexibility given by the portfolio is equal to the summation of all the individual 
flexibilities. Positive flexibility means upward regulation. This would be: 

the DSO can define for each hour a minimum and a maximum threshold for the flexible 
profile. The maximum and minimum level allows the DSO, in case of needed, to avoid a 
rebound effect after meeting DSO requests. This effect is shown in Figure 75. 

min 𝑧 = 𝑃>,,s 𝑊>,,
D?EA − 𝜓>,,

>∈s

+ 𝑃X,,
q,P[𝜎X,,P[ + 𝑃X,,

q,A@=P

X∈q

𝜎X,,A@=

,∈_

+ 𝑃W,,WEVA

W∈W�
𝛿W,,=,V?, + 𝛿W,,?Yi + 	 𝑃W=𝜓W,@

@∈�W∈� 

+ 𝑃S,,h]
𝑊S,,

h] − 𝜎S,,jk

𝑂Sjk,∈_	

+ 	𝑃S
h],2t(𝑂Sjk − 𝜎S,_ ¥¦,���

jk )
S∈]�

 

 

(Eq. 56) 

𝐹𝑙𝑒𝑥, = (𝜎X,,A@= − 𝜎X,,P[)
X∈q

+ 𝜓>,, − 𝑊>,,
D?EA

>∈s

+ 𝑊W,,
WEVA(𝛿W,,=,V?, + 𝛿W,,?Yi)

W∈��

+ 𝑊W,,
WEVA − 𝜔W,, 	

��
+ 𝑊W,,

WEVA − 𝜔W,, 	
� 

+ 𝑊S,,
h] − 𝜑S,,P[

S∈]�

+ 𝑊S,,
h] − 𝜎S,,jk

S∈]�
 

 

(Eq. 57) 
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Figure 75. Example of flexibility activation and the rebound effect 

This DSO will calculate this request based on the analysis of the network and the 
detection of congestion problems. The following equation shows how the constraints are 
set by the DSO. 

Note that in this framework, the DSO does not necessarily require a maximum and 
minimum regulation simultaneously. An additional advantage of this approach is that in 
cases in which neither an up or down regulation is required the DSO can anyway give a 
limit to the flexibility demand [18]. 

The following figure shows one example case with double side request and the 
corresponding flexibility activated. 

 
Figure 76. DSO max and min request and activated flexibility [18] 

𝐷,
kt§,C@i ≤ 𝐹𝑙𝑒𝑥, ≤ 𝐷,

kt§,CV\ (Eq. 58) 



INVADE H2020 project – Grant agreement nº. 731148 

D5.3 Flexibility operation algorithms – phase 1  Page 105 of 110 

5.4 Specific models for Prosumer services 

5.4.1 Objective function(s) and pilot specific constraints for prosumer services 

5.4.1.1 Norwegian pilot 

According to the description of the Norwegian tariff structure in Section 3.1.4, the 
prosumer objective function is as follows. 

The objective is to minimize the total expected costs, consisting of costs for the electricity 
retail contract (energy related fee), electricity taxes, grid contract (energy and peak 
demand charge), and minus revenues from selling surplus electricity back to the grid. 
Finally, the costs for activating flexibility are included. The objective function is formulated 
in Equation (59): 

 

Here, 𝑡 ∈ 𝑇 include all periods (time slots) within the planning horizon. The first 
parenthesis includes the costs related directly to the amount bought 𝜒,

XY;, i.e. imported 
to the site in period t. This decision variable is multiplied with the prices for the energy 
part of the retail contract, the grid contract and the taxes, respectively. Recall that the 
grid contract might have different prices for different energy levels. In such cases, the 
price will be a function of the energy level, 𝑃,

>?@ABXY; 𝜒,
XY; . The taxes consist of the 

following elements: 

• Electricity tax, also named consumption tax. For 2017, the price is 0.1632 
NOK/kWh13 

• Energy fund tax, also named Enova-tax. For 2017, the price is 0.01 NOK/kWh 

In addition, value added tax, VAT, must be included. This is a tax that is treated differently 
from the other taxes, since it comes on top of the other costs, including the peak fee. 
Currently the VAT is 25%, so we will have 𝑃]^_ = 1.25. 

The second parenthesis covers the revenues from selling surplus electricity. 

The third term covers the peak cost at the grid contract, which will be 0 in cases without 
a peak fee. An issue here is that the planning horizon probably will be a few hours or a 
day or two, while the peak fee is based on a month. More on this issue in the next section. 

                                                

13 https://www.energinorge.no/fagomrader/skatt-og-okonomi/nyheter-
gammelt/2016/konsesjonskraftpris-og-skatte--og-avgiftssatser-2017/ 

𝑚𝑖𝑛 z = 𝑃,
?U,V@WBXY; + 𝑃,

>?@ABXY; + 𝑃,,V\		 𝜒,
XY;𝑃]^_

,∈_
− 𝑃,?U,V@WB=UWW + 𝑃,

>?@AB=UWW 𝜒,=UWW + 𝑃DUV`𝜒DUV`𝑃]^_

+ 𝜁|WU\@X@W@,; 

(Eq. 59) 
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The last part of the objective function is the cost for utilizing the flexibility from the internal 
resources. This cost may cover a wide variety of costs that must be further discussed, 
but some examples are: 

• Loss of comfort from shifting or curtailing loads 

• Disutility from delaying EV charging or even from not meeting the charging 
demand 

• Battery aging 

The contribution to 𝜁|WU\@X@W@,; has been described under each section for the different 
resource types. 

5.4.1.2 Dutch pilot 

The objective functions for the different Dutch pilot sites will be formulated at a later 
stage, after further discussions with Elaad and GreenFlux. 

5.4.1.3 Bulgarian pilot 

According to the pilot specification in section ¡Error! No se encuentra el origen de la 
referencia., the main objective is to shift as much as possible of the load from the peak-
load hours to the off-peak load hors. This can be formulated as: 

An alternative formulation is to maximize the up-regulation in the peak load hours: 

Notice that this formulation only covers batteries and flexible loads. Also notice that it 
presupposes that the battery has no baseline schedule. If other resource types, like EV 
charging points are added, or batteries have a baseline schedule, the formulation must 
be changed. 

5.4.1.4 Spanish pilot 

Not applicable in phase 1. 

 

𝑚𝑖𝑛 zqYW>� = 𝜒,
XY;

Q�

,�º

 (Eq. 60) 

𝑚𝑎𝑥 zqYW>Q = 𝜎X,,
q,EY,

X∈q

− 𝜎X,,
q,@i

X∈q

+ 	𝑊W,, − 𝜔W,,	
W∈�

Q�

,�º

 (Eq. 61) 
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5.4.2 Prosumer services specific constraints 

5.4.2.1 Electricity balances behind the meter 

The internal energy balance behind the meter allows of distinguishing the different value 
of energy self-generated, stored, imported or exported. To ease the explanation of the 
model, Figure 77 illustrates some key relations between the different types of resources 
and some decision variables. 

 

 

 
Figure 77. Illustration of model with some central decision variables. 

The total import from or export to the grid must balance production from generation units, 
consumption in load units, charging and discharging of EVs and charging and 
discharging of batteries for each period: 

 

We introduce binary variables 𝛿,
XY;, 𝛿,=UWW which are 1 of the site is buying (importing) or 

selling (exporting), respectively, else 0. The site can not buy and sell in the same period: 

 

Electricity bought or sold must be below capacity limits: 

	 𝜓>,, +
>∈s

𝜑S,,A@= +
S∈]

𝜎X,,A@= +
X∈q

𝜒,
XY;

= 𝜒,=UWW + 𝜔W,, +
W∈�

	 𝜑S,,P[ +
S∈]

𝜎X,,P[,
X∈q

∀	𝑡 ∈ 𝑇 
(Eq. 62) 

𝛿,
XY; + 𝛿,=UWW ≤ 1, ∀	𝑡 ∈ 𝑇 (Eq. 63) 

𝜒,
XY; ≤ 𝛿,

XY;𝑋@CDBPVD, ∀	𝑡 ∈ 𝑇 (Eq. 64) 

𝜒,=UWW ≤ 𝛿,=UWW𝑋U\DBPVD, ∀	𝑡 ∈ 𝑇 (Eq. 65) 
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Notice that in cases with a kWmax value that is physical, 𝑋@CDBPVD must be set to this 
value. In some cases this value might be dynamic (?). Then we need to introduce a time 
index. 

Also notice that in some cases 𝑋U\DBPVD will be a physical limit, while in others it might 
be a commercial or regulatory limit. The last is the case with the plus-customer 
arrangement in Norway. Then we will have 𝑋U\DBPVD = 100 kW. In Bulgaria, where there 
is no arrangement for selling electricity back to the grid, we will have 𝑋U\DBPVD = 0 kW. 

In cases with subscribed power, the cost of the energy part of the grid fee 	𝑃,
>?@ABXY;  will 

be dependent on the consumption level 𝜒,
XY;. Assume that there will be two prices, 

	𝑃,
>?@ABXY;BWEZ  and 	𝑃,

>?@ABXY;B[@>[, where the low price is valid for periods where the 
bought volume is below a threshold value. This can be formulated: 

 

  

	𝑃,
>?@ABXY; = 	𝑃,

>?@ABXY;BWEZ, 𝑖𝑓	𝜒,
XY; ≤ 𝑋=YX=P?@XUA (Eq. 66) 

	𝑃,
>?@ABXY; = 	𝑃,

>?@ABXY;B[@>[, 𝑖𝑓	𝜒,
XY; > 𝑋=YX=P?@XUA (Eq. 67) 



INVADE H2020 project – Grant agreement nº. 731148 

D5.3 Flexibility operation algorithms – phase 1  Page 109 of 110 

References 

[1] P. Olivella-Rosell et al., “Optimization problem for meeting distribution system 
operator requests in local flexibility markets with distributed energy resources,” Appl. 
Energy, vol. 210, no. Supplement C, pp. 881–895, Jan. 2018. 

[2] Eurelectric, “Flexibility and Aggregation Requirements for their interaction in the 
market,” Eurelectric, 2014. 

[3] S. O. Ottesen and A. Tomasgard, “A stochastic model for scheduling energy flexibility 
in buildings,” Energy, vol. 88, pp. 364–376, Aug. 2015. 

[4] M. Schimpe et al., “Energy efficiency evaluation of a stationary lithium-ion battery 
container storage system via electro-thermal modeling and detailed component 
analysis,” Appl. Energy, vol. 210, no. Supplement C, pp. 211–229, Jan. 2018. 

[5] J. Wang, Y. Shi, K. Fang, Y. Zhou, and Y. Li, “A Robust Optimization Strategy for 
Domestic Electric Water Heater Load Scheduling under Uncertainties,” Appl. Sci., 
vol. 7, no. 11, p. 1136, Nov. 2017. 

[6] N. Lu, D. P. Chassin, and S. E. Widergren, “Modeling uncertainties in aggregated 
thermostatically controlled loads using a State queueing model,” IEEE Trans. Power 
Syst., vol. 20, no. 2, pp. 725–733, May 2005. 

[7] V. Lakshmanan, M. Marinelli, A. M. Kosek, P. B. Nørgård, and H. W. Bindner, “Impact 
of thermostatically controlled loads’ demand response activation on aggregated 
power: A field experiment,” Energy, vol. 94, no. Supplement C, pp. 705–714, Jan. 
2016. 

[8] P. Pinson, H. Madsen, H. A. Nielsen, G. Papaefthymiou, and B. Klöckl, “From 
probabilistic forecasts to statistical scenarios of short-term wind power production,” 
Wind Energy, vol. 12, no. 1, pp. 51–62, Jan. 2009. 

[9] R. Ramakrishna, A. Scaglione, and V. Vittal, “A Stochastic Model for Short-Term 
Probabilistic Forecast of Solar Photo-Voltaic Power,” ArXiv170605445 Stat, Jun. 
2017. 

[10] D. Bertsimas, D. Brown, and C. Caramanis, “Theory and Applications of Robust 
Optimization,” SIAM Rev., vol. 53, no. 3, pp. 464–501, Jan. 2011. 

[11] A. Hussain, V.-H. Bui, and H.-M. Kim, “Robust Optimization-Based Scheduling of 
Multi-Microgrids Considering Uncertainties,” Energies, vol. 9, no. 4, p. 278, Apr. 
2016. 

[12] “Optimization Online - A Stochastic MPC Framework for Stationary Battery 
Systems.” [Online]. Available: http://www.optimization-
online.org/DB_HTML/2017/05/6044.html. [Accessed: 05-Dec-2017]. 

[13] P. Malysz, S. Sirouspour, and A. Emadi, “An Optimal Energy Storage Control 
Strategy for Grid-connected Microgrids,” IEEE Trans. Smart Grid, vol. 5, no. 4, pp. 
1785–1796, Jul. 2014. 

[14] E. L. Ratnam and S. R. Weller, “Receding horizon optimization-based approaches 
to managing supply voltages and power flows in a distribution grid with battery 
storage co-located with solar PV,” Appl. Energy, Sep. 2017. 

[15] R. Palma-Behnke et al., “A Microgrid Energy Management System Based on the 
Rolling Horizon Strategy,” IEEE Trans. Smart Grid, vol. 4, no. 2, pp. 996–1006, Jun. 
2013. 



INVADE H2020 project – Grant agreement nº. 731148 

D5.3 Flexibility operation algorithms – phase 1  Page 110 of 110 

[16] K. Baker, G. Hug, and X. Li, “Energy Storage Sizing Taking Into Account Forecast 
Uncertainties and Receding Horizon Operation,” IEEE Trans. Sustain. Energy, vol. 
8, no. 1, pp. 331–340, Jan. 2017. 

[17] P. Malysz, S. Sirouspour, and A. Emadi, “MILP-based rolling horizon control for 
microgrids with battery storage,” in IECON 2013 - 39th Annual Conference of the 
IEEE Industrial Electronics Society, 2013, pp. 2099–2104. 

[18] D. Fraizzoli, “Methodology to estimate the flexibility potential of an aggregator’s 
portfolio in a residential distribution grid,” Sep. 2017. 

 

 



INVADE H2020 project – Grant nº 731148 

This project has received funding from the European Union’s Horizon 2020 
Research and Innovation programme under Grant Agreement No 731148. 

 

 
 
 

Smart system of renewable energy storage based on INtegrated EVs and 

bAtteries to empower mobile, Distributed and centralised Energy storage 

in the distribution grid 

 

 

Deliverable nº: D5.3_part 2 of 2 
Deliverable name: Placement and Sizing of Batteries in Low and Medium 

Voltage Grids 
Version: 1.0 

Release date: 20/12/2017 

Dissemination level: Public     (Public, Confidential)   
Status: Submitted    (Draft, Peer-reviewed, Submitted, Approved) 
Authors: Pedro Crespo del Granado, Sigurd Bjarghov, Venkatachalam 

Lakshmanan, Jamshid Aghaei, Magnus Korpås and Hossein 
Farahmand – NTNU 

  Pol Olivella-Rosell – UPC 

 

 

  

 



INVADE H2020 project – Grant nº 731148 

D5.3- Placement and Sizing of Batteries in Low and Medium Voltage Grids Page 2 of 40 

Document history:  

Version Date of issue Content and changes Edited by 

0.1 26/10/2017 First outline draft version P. Crespo del Granado 

0.2 03/11/2017 Updated outline 

V. Lakshmanan, P. 
Crespo del Granado, S. 
Bjarghov, J. Aghaei and 
H. Farahmand 

0.3 23/11/2017 Introduction description and 
Chapter 3 

V. Lakshmanan, J. 
Aghaei and H. 
Farahmand 

0.4 17/11/2017 Removed battery chapter (now in 
first document) 

P. Crespo del Granado 
and H. Farahmand 

0.5 23/11/2017 Introduction description and 
Chapter 3 

V. Lakshmanan, J. 
Aghaei and H. 
Farahmand 

0.6 27/11/2017 

Completed all chapters except ch. 
2 and sec 3.3.1-2; Updates in 
Simplified model in Sizing and 
Siting problems 

P. Crespo del Granado, 
J. Aghaei and H. 
Farahmand 

0.7 30/11/2017 Comments on quality check M. Korpås 

0.8 1/12/2017 

New updates in all chapters, sub-
chapter 1.2 is added, planning 
model for DSO is updated, Chapter 
3 is updated, sub-chapter 3.3.1 is 
completed 

V. Lakshmanan, P. 
Crespo del Granado, S. 
Bjarghov, J. Aghaei and 
H. Farahmand 

0.9 5/12/2017 Final edit  

V. Lakshmanan, P. 
Crespo del Granado, S. 
Bjarghov, J. Aghaei and 
H. Farahmand 

1.0 20/12/2017 
Version ready for approval, 
updated with comments from peer-
reviewers 

V. Lakshmanan, P. 
Crespo del Granado, S. 
Bjarghov, J. Aghaei and 
H. Farahmand 

  

Peer reviewed by: 

Partner Reviewer 

SmartIO Jayaprakash Rajasekharan 

GreenFlux Michel Bayings 

 



INVADE H2020 project – Grant nº 731148 

D5.3- Placement and Sizing of Batteries in Low and Medium Voltage Grids Page 3 of 40 

Deliverable beneficiaries: 

WP / Task 

WP5 / Task 5.3 and 5.4 

WP8 / Task T8.3 

WP10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



INVADE H2020 project – Grant nº 731148 

D5.3- Placement and Sizing of Batteries in Low and Medium Voltage Grids Page 4 of 40 

Table of contents 

Executive summary ....................................................................................................... 7	

	 Introduction ............................................................................................................. 8	

1.1	 INVADE Flexibility Services: siting and sizing considerations 8	

1.2	 Siting and sizing consideration for pilots 10	

	 Simplified planning model in Sizing and Siting problems ................................ 11	

2.1	 A planning algorithm from the prosumer perspective (Sizing problem) 12	

2.2	 A planning algorithm from the DSO perspective ( Sizing and Siting problem) 13	

2.3	 Bi-level Optimization Model 14	

2.4	 Simple investment model from the prosumer point of view 15	

2.4.1	Master Problem 18	

2.4.2	Sequential Sub-problem 18	

2.5	 Simple investment model from DSO point of view 19	

2.5.1	Representation of multi-period AC optimal power flows 

constraints 21	

	 Pilots and illustrative sizing examples for prosumers ...................................... 24	

3.1	 Flexibility needed due to kWmax and self-balancing 25	

3.2	 INVADE pilots data collection for simplified model 26	

3.2.1	 INVADE pilot: Homes in the Netherlands 26	

3.2.2	 INVADE pilot: Hotel in Albena, Bulgaria 28	

3.2.3	 Data sets used, assumptions and limitations 29	

3.3	 Implementation and illustrative preliminary results 30	

3.3.1	Battery-PV sizing for houses in Netherlands 30	

3.3.2	Battery-PV sizing for Albena 34	

	 Concluding Remarks ............................................................................................ 35	



INVADE H2020 project – Grant nº 731148 

D5.3- Placement and Sizing of Batteries in Low and Medium Voltage Grids Page 5 of 40 

References ................................................................................................................... 36	

Appendix I 38	

The Mixed Integer Linear Programing (MILP) Model 38	

 

  



INVADE H2020 project – Grant nº 731148 

D5.3- Placement and Sizing of Batteries in Low and Medium Voltage Grids Page 6 of 40 

Abbreviations and Acronyms 

Acronym Description 

AC  Alternating Current  

BD  Benders Decomposition  

BRP  Balancing Responsible Party  

DER  Distributed Energy Resources  

DG  Distributed Generation  

DR  Demand Response  

DSM  Demand Side Management  

DSO  Distribution System Operator  

EV  Electric Vehicle  

FO  Flexibility Operator 

FR  Flexibility Reserve  

LV  Low voltage  

MIP Mixed Integer Problem 

MILP Mixed Integer Linear Programing 

NLP  Nonlinear Programming  

NPV  Net Present Value  

OPF Optimal Power Flow  

PV Photovoltaics 

RES  Renewable Energy Sources  

SOC  State Of Charge  

ToU  Time of Use  
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Executive summary 

The deployment of batteries in the distribution network can provide an array of flexibility 

services to integrate renewable energy sources (RES) and improve grid operation in 

general.  Capturing and quantifying the value of storage for different flexibility services 

require models that can represent the technological detail of battery-RES-load 

interactions to provide scheduling strategies for real-time operations. For this purpose, 

deliverable 5.3 focuses on models and algorithms for: 1) battery capacity and location 

planning, 2) daily operations and 3) real-time control. 

Battery sizing has different implications and benefits for distribution system operators 

(DSO), balance responsible parties (BRPs) and prosumers, respectively. In this 

document, the issues and approaches related to siting, capacity planning and investment 

analysis are discussed. A simplified planning strategy that leverages the control 

strategies of battery charging and discharging to find the optimal location and size of 

batteries in distribution system is presented. A general planning algorithm from both 

prosumer and DSO perspectives are presented. This is complemented with illustrative 

examples on battery-PV sizing analyses for prosumers. The simplified sizing methods 

are tested for the pilots in Albena Hotel (Bulgaria) and small houses in the Netherlands. 

According to D 4.2 [1], in order to implement flexibility services progressively, the 

INVADE implementation has been divided in two phases. Here, phase 1 includes the 

implementation of prosumer services for ToU optimization, kWmax control and Self-

balancing plus the DSO service congestion management. Note that in a separate 

document (D5.3-Flexibility operations algorithms-phase 1), the details of the simplified 

model intended for phase 1 are fully described. This model will be implemented in the 

platform of the INVADE flexibility cloud as part of T8.3. 
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 Introduction 

INVADE deliverable D5.3 “Simplified Battery operation and control algorithm” is divided 

into two documents: 5.3-first part and 5.3-second part. D5.3-first part presents design 

and program the flexibility management operation algorithm as part of 5.4, whereas the 

D5.3-second part presents energy storage units allocation/positioning and sizing 

algorithm as part of task 5.3. This document describes simplified models and methods 

for siting and sizing of batteries. In this deliverable, a simplified model means that the 

representation of batteries are assumed to have linear charging and discharging power 

characteristics, which is irrespective of its state of charge (SOC). The charge/discharge 

efficiency of the battery are assumed to be constant and not depend of their SOC, cell 

operating temperature and charging/discharge power. The battery and EV models will 

be extended in WP6 (T6.4 “Advanced Battery techno-economic model”) by including 

more technical parameters and economics of second life batteries. Another example of 

simplification is that adjustable loads like thermal loads are modelled with an assumption 

of linear relation between their energy consumption and temperature.     

1.1 INVADE Flexibility Services: siting and sizing considerations 

Proper sizing of the flexibility resource (i.e. batteries) is important for investment planning 

decisions and siting is key for its effective operation. The siting and sizing decision differs 

based on the flexibility services required and the user cases (mobile, distributed, 

centralized and hybrid). INVADE defined possible flexibility services for prosumers, 

DSOs and BRPs. In this document, we focus on the prosumer and DSO perspectives.  

There are three flexibility services in consideration for prosumers. First, the Time of Use 

(ToU) flexibility service uses a battery for the effective utilization of local RES production 

and to avoid high tariffs by managing high peak demand. That is, the prosumer demand 

is adjusted in such a way (due to battery presence) that the consumption from the grid 

at peak hours will be moved to off-peak hours. In this case, the battery sizing algorithm 

will decide the battery capacity by considering the demand and local RES production. 

The second flexibility service from the prosumer perspective is kWmax control. This 

service limits the maximum amount of power imported or exported to the grid at any time 

at the prosumer level. If the kWmax is linked to a physical limitation, it becomes an 

additional constraint for optimization problem on both battery sizing and load shifting on 

day-to-day operation. However, if it is linked to a tariff structure, it can model as a penalty 
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for maximum purchase. The third flexibility service is self-balancing in which the battery 

supports possible zero import and export of energy from the grid. A proper battery size 

would allow to optimally balancing demand and local RES production. The detailed 

operation strategy for day-to-day operation for prosumer services are given in the 5.3 

first document. In D5.3 second document, through a simplified operational model, we 

illustrate and test how different battery sizes affects the integration of PV capacity under 

kWmax control restrictions. This illustrative example is applied to the pilots in The 

Netherlands and Bulgaria (see chapter 3). Note that for prosumers, only the sizing part 

of the problem is relevant there is usually one single location: the prosumer and its on-

site RES.  

 Regarding the DSO perspective, there are three flexibility services considered: 1) 

congestion management, 2) voltage/reactive power control and 3) controlled islanding. 

D5.3 focuses on congestion management since it has be considered as a DSO service 

included in phase 1 of the INVADE implementation. For this flexibility service, the DSO 

sends requests to a flexibility operator (FO) to activate or call for available flexibility 

sources. Then, the FO schedules the batteries charge/discharge operations at the 

neighbourhood and prosumer levels to meet the requirement of the DSO. For example, 

the storage at the neighbourhood level could be one large array of battery bank located 

near the substation or multiple arrays of battery banks located at different nodes. In this 

situation, battery siting and sizing plays an important role specially to increase RES 

penetration in the distribution network without violating the network power flow limits. The 

siting of batteries might be constrained by the electric distribution network topology and 

their power flow capacities. Poor siting of batteries may bring underutilization of the 

resources as well as they could create new voltage and congestion problems in the 

distribution network. Therefore conducting optimal power flow (OPF) analyses for the 

different siting options in the distribution network is essential to determine the most 

beneficial locations. The Optimal Power Flow (OPF) problem for alternating current (AC) 

circuits concerns the problem of determining the voltage magnitude, the voltage angle, 

the real power injection, the reactive power injection at each given grid node to minimize 

a cost function. Typical objective functions used in OPF problems are the total 

generation. The constraints for OPF include (i) the AC power flow constraints, (ii) bounds 

on power generation, (iii) bounds on bus voltage magnitudes, (iv) bounds on thermal 

losses, and (v) limits on power transfer on lines. Unlike the transmission systems, the 

nodal voltages of the distribution systems are influenced by the active and reactive power 

flows and their directions. Moreover, it is the responsibility of the distribution system 

operator to maintain the voltages within the allowable limits. On the other hand, if the 
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battery storage is included due to the multi-period time dimension introduced by the 

battery storage, a few consecutive and coupled optimal power flows are needed to 

simulate the charge/discharge battery cycle over given operating horizon [2]. 

The siting problem, using multi-period OPF is a mixed nonlinear integer program due to 

nonlinearity of AC power flow equations, which might become computationally 

intractable for large-scale optimization problems [3-6]. 

1.2 Siting and sizing consideration for pilots 

There are five pilots planned in the project INVADE as described in D4.2[1]. The details 

of the different pilots and their association with the different DSO and Prosumer services 

are detailed here.  

1) Norwegian pilot:  The Norwegian pilot will demonstrate 3 different prosumer 

service. They are ToU optimization, kWmax control and Self-balancing. For 

Norwegian pilot, the problem is more focused around the sizing of storage rather 

than siting. 

2) Dutch pilot: The Dutch pilot has both DSO and prosumer service in their 

demonstration. This pilot will demonstrate congestion management and voltage 

/ reactive control as DSO services and ToU optimization, kWmax control and 

Self-balancing as prosumer services. Both DSO and prosumer services of this 

pilot are provided from the prosumer flexibility and mobile batteries of EV. 

Therefore, sizing is the primary problem and siting problem will focus on OPF for 

providing DSO services. 

3) Bulgarian pilot: The Bulgarian pilot is a large prosumer case to demonstrate 3 

prosumer services and the 4th prosumer service “Controlled islanding” maybe 

included based on the feasibility at the time of implementation. Therefore, the 

Bulgarian pilot exposes the sizing problem only. 

4) German pilot: The 3 prosumer services ToU optimization, kWmax control and 

Self-balancing and the DSO service congestion management are planned for the 

German pilot. The source of flexibility for this pilot is from both distributed and 

centralized storage. Therefore, both siting and sizing are equally important for 

German pilot.  

5)  Spanish pilot: The Spanish pilot primarily demonstrate the DSO services namely 

congestion management with centralized storage. Therefore, the siting problem 

is as important as the sizing problem.  
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 Simplified planning model in Sizing and Siting 
problems  

The main objective of this section is to develop a simplified planning strategy that 

leverages the control strategies of battery charging and discharging acting on control 

horizons to find the optimal location and size of batteries in distribution system. The 

planning strategy links the operational domain with the planning domain to find an 

optimal investment decision.  

The methods to be used is based on calculating the Net Present Value (NPV) of a battery 

investment, which is the difference between the present value of cash inflows and the 

present value of cash outflows. For a battery investment (and installation) at the start of 

the analysis period is cash outflows and operational net benefits are deemed as cash 

inflow. Hence, the NPV is in its simplest form given as Eq. (2.1) [7]. 

𝑁𝑃𝑉 𝑃$%&, 𝐸$%& = [ + ,-./,0-./,1 23(,-./,0-./,1)
(67$)8

] − 𝐶(𝑃$%&, 𝐸$%&)<
1=6                                (Eq. 2.1) 

Where, R is the annual revenue, O is the annual operational costs and C is the equivalent 

annual installation cost, which is dependent of the rated power and energy storage 

capacity of the battery. By assuming that each year is equal and neglecting maintenance 

costs of the battery, we obtain 

𝑁𝑃𝑉 𝑃$%&, 𝐸$%& = [𝑅 𝑃$%&, 𝐸$%& − 𝑂 𝑃$%&, 𝐸$%&, 𝑛 ] − 𝛼<,$ ∙ 𝐶 𝑃$%&, 𝐸$%&               (Eq. 2.2)  

Where, α is the annuity factor1. The annual revenue can be expressed as Eq. (2.3). 

𝑅 𝑃$%&, 𝐸$%& = 𝑅CD(𝑃$%&, 𝐸$%&, 𝑡)F
&=6 + 𝑅HIJKL 𝑃$%&, 𝐸$%&                                       (Eq. 2.3) 

The resolution of the time step t depends on the market conditions and technical 

requirements for activation of services. The time step size t can, e.g., be one minute, 15 

minutes or 1 hour. In this document, we use several terminologies about planning 

horizon, and we have explain them in the following bullets:   

• The shortest planning horizon is the operational planning horizon represented by 

T in Eq. (2.3), e.g. 6 hours, 12 hours, or 24 hours 

                                                

1 𝛼1,$ =
$

62(67$)M8
  where, r is discount rate 
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• The medium planning horizon is related to how many operational situations we 

will base our investment decision on. This can be one year (or more, depending 

on long-term uncertainties regarding spot prices, load development etc). Usually 

we use “one representative year”, but a realistic model should cover more 

• The long-term planning horizon is at least as long as the economic lifetime of the 

investment option, i.e. the battery in our case represented by N in Eq. (2.1) 

In general, the economic optimal size of the battery is the size that maximizes the NPV, 

taking into account all technical constraints and market possibilities. This is a trade-off 

between operational benefit – given the battery’s technical capabilities - and investment 

cost. 

2.1 A planning algorithm from the prosumer perspective (Sizing 
problem) 

We introduce a planning algorithm from different grid user perspectives. First, we focus 

on the prosumer perspective, where the operating objective function refers to the 

electricity bill minimization problem. In this problem, the primary objective is to find the 

optimal sizing of the battery that maximizes the NPV. Hence, R is operational cost 

savings due to flexibility that the battery will provide to the prosumer compared to a 

system without the battery.  The annual revenue is the sum of revenues obtained from 

prosumer services. The prosumer model is similar to the model illustrated in D5.3-first 

part, “Design and program the flexibility management operation algorithm”. The 

prosumer is equipped with the main meter, which is placed at the border of connection 

point to the network, and may have sub meters (at the resource level). The prosumer 

can have one or several flexibility resources as following: 

• Generator resources 

• Load resources 

• Electric vehicles (EVs) 

The detailed model of the above flexibility sources is presented in D5.3-first part. The 

model is shown in Figure 1. 

 

Figure 1 
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Figure 1. Prosumer model 

2.2 A planning algorithm from the DSO perspective ( Sizing and Siting 
problem) 

In contrast, one of the planning objectives of the DSO is to maximize the distributed 

generation (DG) hosting capacity at the lowest cost with minimal grid congestion and 

overvoltage. From DSO point of view, the conventional way of integrating considerable 

amounts of DGs and electric vehicles would require significant investments for the 

network reinforcement and expansion. The installation of battery storage in the 

low/medium voltage level is an interesting alternative for solving the aforementioned 

technical problems and could therefore avoid or at least reduce or postpone the need for 

extensive conventional network reinforcements. Hence, the planning strategy includes 

both an optimal placement and sizing problem complying with grid constraints and 

storage constraints. In order to reach this goal, we need to implement multi-period OPF 

problem to solve an optimal placement and sizing problem for an infinite operating 

horizon. The objective of this optimization problem is to calculate revenues from 

activation of the battery and find a break-even point in battery investment.  

The low/medium voltage grid model included in this algorithm is shown in Figure 2. The 

grid consists of a group of prosumers that might have DG, e.g., PV generators and 

flexible/inflexible load.  Each prosumer has a meter placed at the connection point to the 

network. Moreover, it is assumed that each bus is a candidate to install battery shown 

with dotted red circle in Figure 2.  

 

Main Meter 

G L EV B 
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Figure 2: low/medium voltage grid 

2.3 Bi-level Optimization Model 

As we have already discussed, the optimal sizing and placement of battery requires the 

resolution of a temporal and spatial problem. The temporal problem implies a coupling 

of multiple time steps to ensure coherence of the battery state of charge (SOC) between 

each consecutive time step, which is typically one hour. One the other hand, in order to 

find the investment decision that is economic viable we need to compare annual benefit 

with equivalent annual investment costs. The long planning horizons and intertemporal 

coupling (storage) lead to an intractable planning problem. Hence, in this sub-chapter 

we will explain how we can solve this issue. A typical solution is to decompose the 

problem with respect to time. The decoupling for battery management algorithm could 

be chosen to be done on different operational time horizons, e.g., 6 hours, 24 hours, and 

the time granularity for the battery management model can range from 15 minutes to one 

hour. These timing horizons are shown in Figure 3. The coupled time steps of the battery 

management algorithm is then simulated for each planning horizon in order to 

successfully complete an annual analysis. Hence, the problem is split into a bi-level 

optimization problem [8] .  
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Figure 3. The different time horizons in planning model of battery sizing and siting 

Bi-level optimization is characterized as a mathematical program with two levels of 

optimization, i.e., master and slave optimization problems. The master is commonly 

referred to as the upper level optimization problem and the slave problem is commonly 

referred to as the lower level optimization problem.  

In this respect, the sizing and siting problem can be split into a storage planning master 

problem, where we decide about economic viable of battery investment, i.e., NPV 

maximisation, and sequentially-solvable sub-problems reflecting the operational 

strategy. Further process of splitting the problem will be explained in the following sub-

chapters. 

2.4 Simple investment model from the prosumer point of view 

As we have already explained, the primarily objective for planning algorithm from 

prosumer perspective is to find the optimal sizing of the battery. The sizing algorithm 

focuses on evaluating the ideal battery size, i.e. maximum charging /discharging power 

and energy capacity, at prosumer side in order to maximize the NPV, while satisfying 

technical constraints.  

The optimal battery size is obtained such that a battery with minimum size is able to store 

surplus energy produced by the prosumer. The term surplus energy refers to the amount 

of energy that has to be curtailed or stored, and used later in order to minimise 

prosumer’s operating cost. In principle, we can formulate the objective function as the 

sum of operating cost over one year plus the equivalent annual battery installation cost. 

The algorithm then minimizes the objective function such that all technical constraints 

are meet. The inputs to the algorithm consist of the technical parameters of flexibility 

sources at prosumer side, i.e., load, generator, EV, and the equivalent annual battery 

installation cost per kWh. The output is the optimal size of the battery. 
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A comprehensive formulation of flexibility operation algorithm has been presented in the 

first document of this deliverable, i.e., “Flexibility operation algorithms – phase 1”. In the 

first document, the objective function of flexibility operation has been presented from 

different pilot perspectives. Typically, the objective for the prosumer is to minimize the 

total expected operating costs, which in return may result in minimizing the peak load. 

This can be presented by the Eq. (2.4). 
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                                                                                               (Eq. 2.4) 

Where tc represents the amount of electricity bought/sold in the period t [kWh] or a basis 

for calculation of the peak fee depending on the grid tariff structure.  ty is representing 

control variables of available flexibility services.Aeq  and Ain are matrices representing 

technical constraints of procuring flexibility from the flexibility sources. sA is an 

intertemporal battery coupling matrix, and w  is a battery energy capacity. In principle, 

this constraint (Eq. 2.4-c) represents the coupling between the SOC on battery.   

In order to find the economic optimal investment of the battery, the sizing algorithm can 

be written in Eq. (2.5), where the battery is assume to be optimised over 24-h operational 

horizon. 
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                                                                   (Eq. 2.5) 

Where, D is a total number of days in one year, and sc is the equivalent annual battery 

installation cost. Consequently, the first term represents the sum of operating cost over 

one year. The objective function consists of two terms representing: 
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• Operational cost 

• Battery investment cost 

As we have already discussed, this problem can be decomposed with respect to time in 

order to solve the optimization algorithm in a reasonable computational time. Hence, we 

can decompose the problem using Benders Decomposition (BD); accordingly, the sizing 

problem is split into a tractable master problem and sub-problems. The outline of the 

proposed algorithm is shown in Figure 6. 

Master	Problem:
Storage	sizing	

Benders	
Decomposition

Subproblem:
Operation	planning

Information	(Solutions):
e.g.	Storage	size

Feedback	(Benders	Cut)

 

Figure 4. Using BD to find the optimal sizing of the battery from prosumer perspective 

BD is a popular optimization technique. J. F. Benders initially introduced the BD algorithm 

for solving large-scale MIP problems [9]. The basic idea is to separate integer variables 

and real variables or relax the tough constraints in the optimization model and treat larger 

optimization problem via decomposition in order to accelerate the calculation speed. The 

BD algorithm has been successfully used in different ways to take the advantage of 

underlying problem structures for various optimization problems, such as network 

design, optimal transportation problem, plant location and stochastic optimization.  

 In applying the BD algorithm, the original problem will be decomposed into a master 

problem and several sub-problems, based on the LP duality theory. The sub-problems 

are the LP problems. The process of solution of the master problem begins with only a 

few or no constraints. The sub-problems are used to determine if optimal solutions can 

be obtained under the remaining constraints based on this solution to the master 

problem. If feasible, we will get an upper bound solution of the original problem, while 

forming a new objective function (feasibility cut) for the next calculation of the master 

problem. If infeasible, a corresponding constraint (infeasibility cut), which is most 

unsatisfied, will be introduced to the master problem. Then, a lower bound solution of 

the original problem is obtained by re-solving the master problem with more constraints. 
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The final solution based on the BD algorithm may require iterations between the master 

problem and the sub-problems. When the upper bound and the lower bound are 

sufficiently close, the optimal solution of the original problem is achieved. We use the 

same decomposition procedure and notation as recently published by Fortenbacher, 

Ulbig and Andersson in [10]. 

 

2.4.1 Master Problem 

 The problem formulated in Eq. (2.5) can be split into a storage planning master problem 

and sequentially-solvable sub-problems reflecting the operational strategy. The master 

problem is presented in Eq. (2.6) [11]. 
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                                                                                 (Eq. 2.6) 

Where l  denotes the iteration of the master problem, a   is a proxy for the sub-problem 

costs, and the vector sl   is the weighted sum of the dual variables from the sub-problems 

that are associated with the equalities in w (see Eq. (2.7)). The variable subJ  denotes 

the sum of the sub-problem objective values. Constraint (2.6a) represents the Benders 

cut at stage l  and constraints (2.6c) specify the bounds of the optimization variables. 

2.4.2 Sequential Sub-problem 

Following up the master problem the resulting sub-problem using BD can be written in 

Eq. (2.7), which is the sum of sequential optimal operation model over the planning 

horizon. 
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( )l
sl  is a dual variable associated with the equality constraint of Eq. (2.7d). Note that 

battery degradation impact has been neglected in this formulation. We expect that it has 

an impact on the overall battery profitability, since the battery revenue decreases over 

time due to the capacity loss [reference]. It is planned that this effect will be considered 

based on inputs from WP6 in advanced version of the sizing algorithm of the battery.   

In this algorithm, if the proposed problem has not converged a e³ , (where e  is BD 

convergence tolerance), the Benders cut is added to the master problem which is 

reformulated as Eq. (2.6a). This process is continued until the problem has converged  

( a e£ ). The flowchart of implementing BD for the proposed problem is shown in Figure 

5. 

 Solve the initial master problem, i.e., 
Eq. (2.6) without (a) 

 

Solve the master problem with cuts 
  

Solve the sub-problem, i.e., Eq. (2.7) 
  

a e£  

Add a Benders cut to the master problem, i.e., Eq. (2.6) 
  

No  

Converged 
solution (stop) 

 

Yes 

 
Figure 5. BD algorithm to solve proposed problem 

2.5 Simple investment model from DSO point of view 

As described in D 4.2 [2], congestion management and voltage control are dominated 

services that can be implemented in Dutch pilot, Spanish pilot and most probably in the 
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German pilot. The appropriate size and placement of the battery system and expected 

operational strategy are important aspects to make economic investment decision to 

procure these flexibility services. The optimal location and size of the batteries can be 

obtained using multi-period Optimal Power Flow (OPF) over finite planning horizon. In 

this respect optimal sizing and placement of storage can be found by considering the 

investment cost of batteries weighted against the operational benefit. The inputs to the 

algorithm is similar to the previous planning algorithm for the prosumer in addition to the 

parameters of the distribution grid. Here, the outputs consist both the location and 

optimal sizing of the batteries. 

The same framework as an investment model for prosumer, i.e., a bi-level optimisation 

problem can be adapted for this purpose. The decision variables for battery capacity in 

the master problem are now changed to W , which is a decision vector for battery 

capacities at each or subset of distribution nodes. W  is a vector including the energy 

capacity of the batteries installed at each given nodes, max
bw .The objective function for the 

sub-problem should be adapted to DSO perspective identified in D5.2 section 2.2.2.  

The constraints identified in Eqs (2.7a-c) are adapted to include model multi-period AC 

OPF in a distribution system. Therefore, we can re-write Eq. (2.7) in a general form as 

Eq. (2.8): 
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                                                                     (Eq. 2.8) 

Where tc represents activated flexibility including battery in the period t [kWh]. ty is 

representing state variables of the distribution grid, e.g., voltage magnitude and angle at 

each bus.Aeq  and Ain are matrices representing multi-period AC OPF equations. sA is an 

intertemporal battery coupling matrix, and max
bw  is a battery energy capacity at bus b. The 

mathematical formulation of multi-period AC OPF is explained in the subsequent chapter. 
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2.5.1 Representation of multi-period AC optimal power flows constraints  

NOMENCLATURE 

1) Indices and Sets: 

(b,j), t,l, k Indices of bus, time, linearization segments of voltage magnitude term and circular 

constraint   

jb, jt, jl, jk  Sets of bus, time, linearization segments of voltage magnitude term and circular 

constraint   

2) Parameters: 

A Bus incidence matrix (if line existed between buses b and j, Ab,j is equal to 

1,otherwise zero) 

g, b, y Line conductance, susceptance, admittance in pu 

PG, QG Active and reactive power generation in pu 

PD, QD Active and reactive load in pu 

max
,b jSL   Maximum loading of distribution line 

T Operating horizon, i.e., 6 hours, 12 hours, 24 hours or 48 hours  

Vmax, Vmin, Vref Maximum and minimum voltage and voltage magnitude for reference bus in pu 

Y The network admittance matrix in pu  

max min,w w  Maximum and minimum boundary of batteries state of charge in pu 
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,ch disη η  Efficiency parameter for charging and discharging battery, respectively 

3) Variables: All variables are in per unit (pu) 

ID, IE, IG, IL Load, parking lot, station and line current 

PL, QL line active and reactive power, respectively 

V, DV, q Magnitude, deviation and angle of voltage  

tSOC  Batteries State of charge at time t 

,ch disP P  Amount of electricity charged and discharged from battery, respectively 

 

In this sub-chapter we present a methodology to linearize AC power flow for radial low 

voltage grid based on [12]. These equations can represent the constraints represented 

in general sub-problem illustrated in Eqs. (2.8 a-c). Here, we extend our proposed 

methodology to account for linear approximations for voltage and branch flow as well as 

temporal operation constraints of batteries. The Eq. (2.9) to Eq. (2.13) represent the load 

flow equations that include active power balance Eq. (2.9), reactive power balance  Eq. 

(2-10), active and reactive power flow of lines Eq. (2.11) and Eq. (2.12), and the value of 

the voltage angle in the reference bus Eq. (2.13) [13]. 

DGs are considered as PQ buses2 in different nodes. However, if DGs are involved in 

the control voltage strategy, they should be adopted as PV buses [14]. 

( ), , , , , , , ,
b

dis ch
b t b j b j t b t b t b t

j
PG A PL P P PD b t

jÎ
- + - = "å                                                         (Eq. 2.9) 

, , , , , ,
b

b t b j b j t b t
j

QG A QL QD b t
jÎ

- = "å                                                                             (Eq. 2.10) 

( )2
, , , ,1 , ,1 , ,1 , ,1 , ,1 , , , ,1 , ,( ) cos( ) sin( ) , ,b j t b j b t b t j t b j b t j t b j b t j tPL g V V V g b b j tq q q q= - - + - "           (Eq. 2.11) 

( )2
, , , ,1 , ,1 , ,1 , ,1 , ,1 , , , ,1 , ,( ) cos( ) sin( ) , ,b j t b j b t b t j t b j b t j t b j b t j tQL b V V V b g b j tq q q q= - + - - - "            (Eq. 2.12) 

                                                

2 In PQ buses, the real power |P| and reactive power |Q| are specified. It is also known as a 
Load Bus. 
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, 0 ,b t b referencebus tq = " =                                                                               (Eq. 2.13) 

System operation limits:   

Here, the system operation limits including bus voltage, and line power flow included in 

Eqs. (2.14) and (2.15) [13].The Eqs. (2.14) refers to avoiding the thermal overload of 

distribution lines, where failure due to overloading may occur. Voltage control is typically 

requested when solar PV systems generate significant amounts of electricity. This will 

“push up” the voltage level in the grid. However, in high load situations, there is a risk 

that the voltage might drop below the permissible level, which has a negative 

consequence on safeguard of operating the system; therefore, Eq. (2.15) ensures that 

the voltage levels are maintained within the voltage permissible limits. 

2 2 max 2
, , , , ,( ) ( ) ( ) , ,b j t b j t b jPL QL SL b j t+ £ "                                                               (Eq. 2.14) 

min max
, ,1 ,b tV V V b t£ £ "                                                                                      (Eq. 2.15) 

Temporal operation constraints of operating batteries:  

The temporal constraints of operating batteries are presented in Eqs. (2.17) to (2.19). 

The temporal problem implies a coupling of multiple time steps to ensure coherence of 

the battery SOC between each consecutive time step. The spatial problem implies the 

consideration of all nodes as possible placement locations for storage devices. 

As we have already discussed that, the operating time horizon can range from 6 hours 

to two days. The time steps of T are then coupled in order to successfully complete an 

annual analysis. 

, , 1 , ,
1 ch dis

b t b t b t dis b t
ch

SOC SOC P η P
η-= + × - ×                                                                  (Eq. 2.16) 

ch max
,0 -£ £ch
b t bP P                                                                                                 (Eq. 2.17) 

dis max
,0 -£ £dis
b t bP P                                                                                              (Eq. 2-18) 

min max
,£ £b b t bSOCw w                                                                                             (Eq. 2.19)  

,0 ,Tb bSOC SOC=                                                                                                  (Eq. 

2.20) 

The battery state of charge, i.e. the storage content, for battery unit in period t depends 

on the state of charge in the previous period, and charging or discharging in current 

period. These impacts are replicated by Eq. (2.16). The charging and discharging and 
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the SOC must be within minimum and maximum limits as expressed in Eqs. (2.17) to 

Eq. (2.19). An additional constraint is added to avoid daily (if T is 24 hours) accumulation 

effects by forcing the SOC of the first and last time step of the operating time horizon be 

equal as stated in equation (2-20). 

The proposed problem is a nonlinear programming (NLP) model due to non-linear Eq.  

(2.11), Eq. (2.12), and circular inequality of Constraint (2.15). Moreover, NLP problems 

are intrinsically more difficult to solve compared to linear problems, and there is no 

guarantee to reach optimal solution [13]. Hence, we need to develop a linearized OPF 

method for redial distribution grid to reduce the computational time. This process is 

explained in the appendix.  

 Pilots and illustrative sizing examples for prosumers  

INVADE deliverable 5.2 [7] outlined the capabilities of different models to capture the 

value of flexibility services. In short, D5.2 report discussed flexibility analysis 

methodologies, approaches for cost-benefit analysis and the value of flexibility services 

for prosumers with batteries and EVs. As noted earlier, for this deliverable, the objective 

is to describe sizing and siting approaches. In this section, we present illustrative 

examples for the sizing problem based on simplified prosumer models. The aim is to 

illustrate the effect of flexibility services on sizing decisions for the prosumer’s battery. 

Recall that we defined three services: 1) Time of use (ToU) price, 2) kWmax control, and 

3) self-balancing. For these services, the battery smooths and integrates local PV 

production, manages peak demand and handles imports/exports to the grid under a 

kWmax constraint.  

 

Figure 6. Example of a prosumer (house) exposed to hourly ToU price variations 

For example, with ToU the prosumer is exposed to tariffs that vary in time dynamically 

(hourly) or in pre-defined periods (night vs day). Figure 6 depicts an example in which 
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the battery operations determine an optimal consumption pattern for a house in Great 

Britain based on expected inter-temporal price variations throughout the day. Basically, 

at the beginning of the day (Figure 6i), the battery is being charged in the morning (when 

demand and prices are low) and discharged in peak times to reduce grid consumption. 

In Figure 6ii, the dotted blue line represents the house actual consumption pattern 

whereas the solid red line shows the new demand pattern (seen by the grid) created by 

charging the battery in off-peak times and discharging the battery in the morning and 

evening peak times. Hence, the sizing problem for ToU flexibility service will be a function 

on quantifying the energy arbitrage gains. In this house (annual demand of electricity: 

3.8 MWh, no PV considered), three battery sizes were tested: 1.4kWh, 2.9kWh, and 

4.3kWh which produced cost savings (reduction to the annual electricity bill) in the 

magnitude of 7%, 11% and 15% compared to not having the battery in the house. 

However, if other flexibility services are included for battery operations the value will 

increase and hence affect the battery size. In this chapter, we look at the kWmax service 

and self-balancing services impact on the prosumers PV-battery sizing decisions. 

3.1 Flexibility needed due to kWmax and self-balancing 

In the next sections, we discuss the prosumer sizing problem by considering the effects 

of flexibility services for kWmax control and self-balancing. On one hand, kWmax 

constraints RES exports (also grid imports) and therefore might limit installation of 

additional RES capacity for the prosumer. In this case, the battery provides the flexibility 

to manage kWmax limitations, which allows installing more solar capacity. On the other 

hand, flexibility for self-balancing maximizes RES utilization by better matching supply-

demand operations. In short, given the limitations of kWmax, how much PV is installable 

based on the size of the battery? If we increase on-site solar capacity, what battery size 

will be required to support this deployment? These questions are discussed by simulating 

the installation of a battery in two INVADE pilots (following section). This preliminary 

analysis employs available simplified operational models previously developed by 

NTNU.  The scope of the analysis is to show battery-solar size combinations for the 

prosumer and estimate the operational value of the battery. For this purpose, a sensitivity 

analysis on different sizes for batteries and PV is performed as follows: 

1. Show PV installation subjected to a kWmax  

  First case: No storage considered or present in the prosumer system 

2. Battery supports solar PV deployment (increase capacity) 
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1. Battery presence increases RES capacity 

2. Through the simplified operational model illustrate the operational value 

of having a battery showing the benefits  

3. Different storage capacities tested (sizing problem) along with increased solar PV 

capacity 

3.2  INVADE pilots data collection for simplified model 

To implement the simplified operational models in the INVADE pilots, we attempted to 

collect data from the different partners involved in the INVADE project. At the moment, 

most of the pilots are being set up and consequently data is not yet available. However, 

we were able to gather some applicable information from the house pilots in the 

Netherlands and from the Albena hotel in Bulgaria. Based on this limited data, we 

illustrate and discuss the sizing problem for different battery and solar PV sizes. The 

details regarding data collection, assumptions and model implementation are explained 

in the next subsections.  

3.2.1 INVADE pilot: Homes in the Netherlands 

The pilot in Netherlands is split in several categories with the main goal to include as 

much as renewable energy possible by using on-site batteries and electrical vehicles.  

The pilot is divided in: 1) Small scale homes with smart charging, 2) large scale offices 

and parking lots containing several charge points for EVs, and 3) a large public case with 

thousands charge points. From these three cases, small scale homes have been chosen 

to illustrate the sensibility of battery sizes on PV integration and kWmax control. This is 

due to the availability of data provided by Elaad (Dutch INVADE partner) as well as to 

show the sizing problem for small prosumers (houses) while the Bulgarian case (Albena, 

following section) shows the case of large prosumer (a hotel). Hence, in this way, we can 

present and discuss two different prosumer perspectives. 

3.2.1.1 Data sets used, assumptions and limitations 

For the small scale home simulation of Arnhem, Elaad recommended to this deliverable 

the usage of some basic data sources. For example, home load data were taken from a 

standardized profile for Dutch houses. Actual demand data from the home pilot is not yet 

available or cannot be shared due to privacy limitations. In summary, the following data 

sets were collected: 
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- Load data was obtained from the Dutch organization NEDU3. It provides standard 

consumption profiles of small consumers. These profiles are used by grid 

operators to estimate the allocation of energy to small consumers on a daily 

basis. Therefore, a profile is typically used to estimate for a certain period what 

the consumption will be. There are ten profiles for electricity. The dataset consists 

of 15 min demand time-steps spread over a year that together contain the entire 

annual consumption. The sum of all profile fractions is one. In order to represent 

a typical Dutch house, the sum of the profile fractions is multiplied by the annual 

consumption. For our illustrative sizing example, we have used two profiles: 1) 

the “E3A” profile in which we assume a 3.5MWh annual consumption and 2) the 

E1C profile in which we assume a 4MW annual consumption under ToU price 

regime throughout the day (7am to 9pm). 

- Solar potentials: Temperature and irradiation data were downloaded from the 

national weather service station closest to Arnhem. Then, this dataset was 

converted to PV production. We used the methodology conversion noted in  [15] 

. 

- Electricity prices: spot market electricity price was taken from the APEX website 

and other sources. Also NEDU publishes typical electricity prices for households 

under different profiles. The electricity price is asset under a fix retail price of 41 

€/MWh. 

3.2.1.2 Model description 

The simplified operational model implemented for the Dutch houses was based on the 

multi-period optimization model initially developed and implemented in Crespo del 

Granado et. al (2014) [15]. It is a model with emphasis on electricity storage presence in 

houses. The model minimizes the marginal cost of supplying energy to the house in 

hourly basis within the day. Wholesale spot price or day ahead market electricity prices 

are used as inputs for the cost of electricity (i.e. BRP application). The model objective 

is to minimize the total energy grid consumption cost over a finite horizon (one day 

discretized in hourly or finer time steps) by employing electricity storage for peak shaving 

and smoothing renewable generation. Therefore, the model optimizes battery operations 

to: 1) charge when energy spot prices are low and discharge when prices are high, and 

2) saving local solar surplus. In a nutshell, the house model contains the following 

                                                

3 http://www.nedu.nl/portfolio/verbruiksprofielen/ 
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features: the objective function (minimizes grid consumption), a supply demand balance 

equation, and the storage inter-temporality equilibrium constraint along with the limits on 

the battery charging/discharging flow rates and capacity. 

3.2.2 INVADE pilot: Hotel in Albena, Bulgaria 

The five-star-hotel Flamingo Grand is an end-user with a high energy consumption, 

resulting in high savings potential by installation of a smart energy system. Their demand 

profile is ideal for a PV installation due to high consumption during daytime [16]. In 

addition, grid utility tariffs are calculated from the monthly peak load, making high peak 

loads very costly for the hotel. Thus, self-balancing through installation of a battery could 

reduce these peaks. The load profile of the hotel is season dependent, where the 

summer is the most power intensive period due to a high number of guests. However, if 

a high PV production day occurs in a day with a low amount of guests, the net load could 

turn negative.  According to D10.1 [16], prosumers are not compensated economically 

for injecting power into the grid. On the contrary, it could potentially become a problem 

as Bulgarian DSOs are not used to prosumers. Therefore, the battery is also important 

in order to avoid a negative net load where power is injected into the grid. 

Season use: 

1. Summer – In the summer there is high PV production and high demand due to 

many guests. High PV production will take care of the high peak loads in the 

middle of the day, but the potential high evening load described in D10.1 [16] 

can be partially covered by the battery. 

2. Autumn / Spring – Although hotel activity is reduced in the autumn and spring, 

high PV production could still occur. In the instance of high PV production and 

low consumption, the battery can be used for self-balancing to avoid injecting 

power into the grid.  

3.    Winter – Both energy consumption and PV production is low, and the battery 

can be operated freely in order to reduce own costs. In low activity periods, self-

balancing is not as necessary as in the high season. During these periods, there 

is greater potential for the battery to work as a flexible resource on the day-

ahead and intraday market for a FO or BRP. Note that FO/BRP perspective is 

not included in phase 1, and therefore not described further. 
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3.2.3 Data sets used, assumptions and limitations 

The data used to run simulations for the hotel are load, temperature, irradiation and 

energy price data. In the results presented in this deliverable, load data from July to 

September 2017 provided by Albena was used. However, the PV data, which were 

provided, were from January to July 2017, which makes it hard to create correct results 

because the data don’t correlate. Therefore, an open source satellite based service was 

used to find PV data for the relevant months. However, the data used is then from 2014, 

and correlation could therefore potentially be weak. As explained by Dimitar Stanev in 

Albena, the electricity price is set to 42 €/MWh (flat rate).  

 

Because the energy bill structure in Bulgaria is a bit different, some assumptions were 

made. The energy price is negotiated as a result of the customer’s load profile. The more 

load the customer is able to shift from peak load hours (8 am to 8 pm), to low load hours 

(8 pm to 8 am), the lower prices can be negotiated. In the summer of 2017, the peak 

load of the hotel was approximately 600 kWh/h. By setting a virtual upper kW max bound 

of 500 kW, and a lower bound of 0 kW (meaning that no energy is exported to the grid), 

the self-balancing optimization can be run for different PV and battery sizes to see how 

increasing battery size allows for higher PV installations. This virtual limit (or soft 

constraint) can be changed. The lower the limit is the more flexibility is needed to handle 

the limit. 

3.2.3.1 Model description 

The model by Bjarghov et. al. 2017 [17] was used to simulate the hourly operations of 

the battery in Albena. The model represents load, some PV production and a grid. The 

two first are considered known (deterministic model), whereas the grid is considered stiff 

and supplies whatever demand the system has. In addition, there is a battery which is 

modelled as a flexible load that can be both positive and negative, depending on whether 

the battery is being charged or discharged. This is shown in Figure 7. 
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Figure 7.  Model overview 

The model used for this pilot employed the mentioned load, irradiation, temperature and 

pricing data in order to optimize costs and load profile based on a dynamic programming 

optimization algorithm. By defining a set of constraints, the algorithm calculates the cost 

of every charge and discharge decision for every time step. By calculating every single 

possible legal operation of the battery for every time step, a global optimum can be 

determined by navigating through the resulting transition cost matrix. 

3.3 Implementation and illustrative preliminary results  

3.3.1 Battery-PV sizing for houses in Netherlands 

The simulations for the small houses in Netherlands are in one-hour resolution. The data 

collected allowed simulating one year. The model horizon performs this simulation for 

each day separately. Hence, the model is run 365 times as it assumes that is rather 

unrealistic to have perfect knowledge on solar-load patterns beyond 24hours (for a 

discussion on planning horizon, see chapter 4 in D5.3 “Flexibility operations algorithms”). 

Figure 8 depicts typical results on simulating supply-demand operations and taking into 

account the decisions for battery charge/discharge levels. In Figure 8a, observe that the 

battery at the begging of the day (dotted red-lines) has a low energy content. The 

reasoning is to have at is lowest in order to be ready for the solar surplus happening at 

the middle of the day (Figure 8b and Figure 8c). In this period, the battery tries to charge 

as much as possible, but this is still not enough for self-balancing and the surplus is 

exported to the grid. For this particular example, we arbitrarily set a kWmax limit of 1kWh. 

Throughout the year, demand exceeds this limit only in 6 days and hence the battery use 

for this flexibility service was not significant. However, for larger PV sizes, the solar 

surplus (exports) exceed 1kWh more frequently. 
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Figure 8.  Three-day (in summer) example of supply-demand dynamics in the house 
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Figure 9.  Example of testing different PV sizes related to battery capacity 

As described and noted in Figure 8, the battery shifts some of the solar surplus to the 

evening peak (or to other periods) in which PV leaves unfulfilled demand (i.e. discharge 

the battery to avoid grid consumption). This shifting of PV surplus is limited to the battery 

capacity. Therefore, if a small house wants to increase its PV capacity, it will be up to 

how much the battery helps circumvent exceeding the kWmax export limitation. Figure 

9 illustrates this premise by testing different PV sizes against battery capacities, the main 

insights are as follows: 

-  How much PV does the house consumes? The area chart presents different PV 

sizes. Note that for smaller PV sizes the closer to 100% on-site PV consumption 

is, the easier is to be able to install bigger PV capacities. For example, the PV 

case of 1kW (top light blue area), solar production is almost fully consumed by 

the end-user and hence not violating kWmax exports (below 1kW). The same 

applies for the 1.25kW solar PV case, which makes the two cases “needless of 

battery flexibility”. That is, the house can handle these capacities. 

- When does battery flexibility facilitate installing larger PV sizes? As the PV size 

increases, the harder it becomes to integrate PV into the system (violating 
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kWmax). This is illustrated in the chart area “Battery Flexibility”. Consider the 1.5 

PV size (grey area), here the solar production is exceeding the pretended 1kW 

control limit, hence PV this size could not be installed in the house. This is the 

case when there is no battery presence (kWh=0). However, once the battery size 

is 1kW, there is enough flexibility in the system and hence the solar PV can be 

increased. Similar trend occurs for larger PV sizes based on the increase of 

battery size.  

- How kWmax and self-balancing limit greater PV capacities? Under the kWmax 

limitation area in the chart, we observe that for larger PV capacities (>1.5), it 

becomes increasingly difficult to self-balance PV. Despite of having a battery, the 

PV surplys overcomes the possible flexibility provided by the battery. For 

instance, a 1kWh battery along with a 1.75kWh solar PV will be charged in couple 

of time steps and hence the solar surplus will start exceeding the kWmax 

limitations. Therefore, this PV size is not suitable for installation in the house. 

However, as the battery size increases, observe that the possibilities to increase 

PV capacity improves.  

Based on Figure 9, we calculate the savings on installing the possible PV-battery combo 

sizes. That is, the value of having a battery compared to not having the battery installed. 

This is calculated as savings (in %) on the energy bill. Figure 10 shows these results in 

which the values with greater PV size produce the larger savings. The size of the battery 

plays a major role since, as more PV surplus will occur, the more the battery will support 

self-balancing the additional PV capacity.  Hence, the higher the savings. 
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Figure 10. Cost savings for different Batter-PV six combinations 

3.3.2 Battery-PV sizing for Albena 

As we know that the energy tariff in Bulgaria is flat and by moving the demand from peak 

hour to off-peak hours, a new lower flat energy tariff can be negotiated with the 

retailer.  The value of flexibility is calculated by simulation with the load data available 

from 08th June 2017 till 18th September 2017. The hotel base load is 344 kWh/h on 

average and peaks at 595 kWh/h. It is to be noted that this period of the year has 

maximum demand compared to the rest of the periods of the year.  For the given load 

data, to respect the 500 kW grid import limit a 250 kWh battery is needed without any 

local PV generation. The minimum PV generation capacity required to minimize the 

investment cost of battery is 100 kW and the corresponding battery capacity is 75 kWh. 

Further addition of battery capacity will not add any value to the flexibility as shown in 

the figure. The value of this additional flexibility can be calculated only if the relation 

between the normal and reduced tariff are known. As there is a strong correlation 

between the PV generation and the demand, the electricity bill can be further reduced 

by adding more PV generation capacity.  The maximum PV capacity the 75 kWh battery 

can handle is 425 kWp. Further addition of PV is possible with additional battery capacity. 

Otherwise, part of the PV production has to be curtailed in real time to avoid the energy 

export to the grid, as the grid code in Bulgaria might not support (and certainly does not 

promote) RES injection from the consumers. The battery capacity required to support 

500 kWp PV installation is 250 kWh without curtailment of PV generation. Figure 11 

shows the associated energy cost for the grid import for every installed capacity of PV 
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generation from 25 to 475 kWp.  The maximum saving is 34% (~8000 €) for the period 

of 10 weeks with 475 kWp PV installation. It is to be noted that the additional battery 

capacity beyond the minimum battery capacity (75 kWh) for every installed kWp of PV 

generation do not add any value for its flexibility. This scenario may change for the rest 

of the period of the year, as the demand will be low and the excess PV generation with 

the 475 kWp generation capacity may balance the lower demand with this additional 

battery capacity without any energy import for the grid. 

. 

 

Figure 11. Energy costs (08. July – 18. September) for different PV-Battery sizes 

 Concluding Remarks 

This part of the report focusses on placement and sizing of batteries in low voltage grids. 

The initial sections of the report explains the importance of siting and sizing of batteries 

for delivering flexibility by considering OPF. The present approach focusses only on 

prosumer and DSO perspective. The simplified planning model presents the method to 

calculate net present value (NPV) and explains the trade-off in maximizing NPV. The 

difference between prosumer’s perspective and DSO’s perspective are detailed. Further 

sections explains the solution to the siting and sizing problem considering it as a bi-level 

problem. The method of separating the siting and sizing problem as a master and sub 
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problem, the iterative approach by adding benders cut to the master problem to achieve 

optimal solution are detailed in the next section. Next section details the problem in DSO 

perspective, the nonlinearity associated with the OPF problem and the method of mixed 

linear programing approach to solve the problem with piece-vise linearization. Further 

section describes investment analyses for storage and RES with illustrative examples 

showing analysis for two pilot sites at Bulgaria and The Netherlands. The Bulgarian 

example shows the battery sizing, PV sizing and the savings related to energy import 

from the grid for different combination of batteries and PVs for a large prosumer. The 

Netherlands example shows similar calculations for small homes.  

The focus of the next deliverable D5.4 will be on extended operational model with an 

elaborate battery and flexible load models to deliver flexibility services. 
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Appendix I 

The Mixed Integer Linear Programing (MILP) Model       

1) Linear approximation of power balance equations: constraints (2.11) and (2.12) in 

the model are non-linear equations. For linear approximation of these constraints, this 

paper considers the following assumptions [13]: 

• The difference of voltage angle between two buses (across a line) is less than 

0.105 radian. 

• The voltage magnitude at the fundamental frequency can be written as 
min

l

l
l

V V
jÎ

+ Då  based on the piecewise linearization method in [18] and Figure 12, 

wherein DV << 1.  

It is expressed that the difference of voltage angle across a line is less than 0.105 radian 

based on power flow results of different distribution networks [19, 20] that is shown in 

Table 1. Therefore, based on the first assumption, sin (qb-qj) and cos (qb-qj) are equal to 

(qb-qj) and 1, respectively. In addition, based on the second assumption, V2 and VbVj are 

respectively equal to: 

( )22 min

l

l l
l

V V m V
jÎ

= + Då                                                                                        (Eq. 2.21) 

( )2min min min
, ,

l l

b j b l j l
l l

V V V V V V V
j jÎ Î

= + D + Då å                                                              (Eq. 2.22) 

Where, m is the line slope. It is noted that DV2, DV×(qb-qj) and (qb-qj)2 are negligible, and 

these terms are considered to be zero in this paper. Therefore, the linear approximation 

of Eqs. (2.11) and (2-12) are as follows:  

 

Table 1. Maximum difference of voltage angle across a line 

Network 33-Bus 69-Bus 123-Bus 

Maximum value of (qi-qj) -0.004 -0.006 -0.009 

 



INVADE H2020 project – Grant nº 731148 

D5.3- Placement and Sizing of Batteries in Low and Medium Voltage Grids Page 39 of 40 

 

Figure 12. The piecewise linearization method [18] 

( ) ( )2min min min
, , , ,1 , ,1, , ,1, , ,1 , ,( ) , ,

l

b j t b j l b t l j t l b j b t j t
l
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q q
Î

æ ö
ç ÷= - D - D - - "
ç ÷
è ø
å            (Eq. 2.23) 

( ) ( )2min min min
, , , ,1 , ,1, , ,1, , ,1 , ,( ) , ,

l

b j t b j l b t l j t l b j b t j t
l

QL b m V V V V V g b j t
j

q q
Î

æ ö
ç ÷= - - D - D - - "
ç ÷
è ø
å                (Eq. 2.24) 

Linear approximation of voltage limits, i.e., constraint (2.14) is re-written as Eq. (2.25). 

max
, , , ,D £ D "b t lV V b t l                                                                                      (Eq. 2.25) 

Where, DV is positive variable based on Figure 12, and DVmax is equal to (Vmax-Vmin)/Nl, 

where Nl is the number of linearization segments of the voltage magnitude term. The 

constraints (2.15) is a circular inequality. Based on idea presented in Figure 13, the linear 

approximation equations of these constraints are written as follows: 

max
, , , , ,cos( ) cos( ) , , ,D ´ + D ´ £ "b j t b j t b jk PL k QL SL b j t ka a                                               (Eq. 2.26) 

 

max
, ,cos( ) cos( ) , ,D ´ + D ´ £ "b t b t bk PG k QG SG b t ka a                                                 (Eq. 2.27) 

Based on the above equations, the circular constraint is approximated by a polygon. 

Each edge of the polygon is a straight line and their equations are obtained from the 

tangents to the circle at different points depicted in Figure 13 [21]. In other words, these 

equations linearized based on the method presented in Figure 13, but it should be noted 

that we need enough piece-wise linear sections, in order to avoid high error. Therefore, 
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the number of piece-wise linear sections with different angles from horizontal axis should 

be increased to reduce the linearization error. Hence, the 360 degrees of circle perimeter 

are divided into equal parts Dα. Then, the line equation is linearized for each kDα, where 

k is the linearization segments index. Finally, the calculated line equation is integrated 

into a circle with a radius less than or equal to S.  

 

 

Figure 13. Linearization of circular constraint 
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