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ABSTRACT

The relative geometric spreading along the raypath contributes
to the amplitude decay of the seismic wave propagation that
needs to be considered for amplitude variation with offset or other
seismic data processing methods that require the true amplitude
processing. Expressing the P-wave geometric spreading factor in
terms of the offset-traveltime-based parameters is a more practical
and convenient way because these parameters can be estimated
from the nonhyperbolic velocity analysis. We have developed an
anelliptic approximation for the relative geometric spreading of
P-wave in a homogeneous transversely isotropic medium with
vertical symmetry axis (VTI) and an orthorhombic (ORT) medi-
um under the acoustic anisotropy assumption. The coefficients in

our approximation are only defined within the symmetry planes
and computed from fitting with the exact parametric expression.
For an ORT model, due to the symmetric behavior in different
symmetry planes, the other coefficients in the approximation
can be easily obtained by making corresponding changes in in-
dices from the computed coefficients in one symmetry plane.
From the numerical examples, we found that for a homogeneous
VTI model, the anelliptic approximation is more accurate than
the generalized nonhyperbolic moveout approximation form
for larger offset. For a homogeneous ORT model, our anelliptic
approximation is more accurate than its traveltime-based counter-
parts. Using the Dix-type equations for the effective parameters,
our anelliptic form approximation is extended to a multilayered
VTI and ORT models and has accurate results in both models.

INTRODUCTION

Geometric spreading describes the amplitude decay of propagat-
ing waves and is one of the most fundamental subjects in seismic
data processing. It is important for prestack Kirchhoff’s migration,
amplitude variation with offset (AVO) analysis, and other seismic
data processing methods that require true amplitude processing. The
amplitude distribution along the wavefront of the reflected wave is
changed greatly if the velocity model is anisotropic. Seismic data
must be compensated for geometric spreading before AVO or am-
plitude versus angle analysis to study reflection coefficients as a
function of offset or incidence angle. Although geometric spreading
is a dynamic quantity, it is governed by the kinematic parameters of
seismic waves. When the velocity model is available, relative geo-
metric spreading can be computed by performing dynamic ray trac-
ing. However, accurate information about the anisotropic velocity
model for the whole overburden is seldom available for practice. To

avoid the use of numerical ray tracing, expressing geometric spread-
ing through traveltime of the reflection events recorded at the sur-
face using ray theory (Cerveny, 2001) is a more practical method for
seismic time processing. Therefore, it is convenient to express geo-
metric spreading in terms of the offset-traveltime parameters that
can be estimated from the nonhyperbolic velocity analysis.

Ursin (1990) proposes a geometric spreading approximation rep-
resented by traveltime parameters for a layered isotropic medium.
One of the practical contributions from the paraxial ray theory is an
expression for geometric spreading in terms of the traveltime func-
tions at the source and receiver locations (Cerven}’/, 2001). Zhou and
McMechan (2000) derive an analytical formula for the geometric
spreading of P waves in a layered transversely isotropic medium
with vertical symmetry axis (VTI) with the source and receivers in
the same layer. Ursin and Hokstad (2003) extend the method of
Ursin (1990) for multiple reflected and converted P- and SV-waves
in a layered VTI medium with the source and receivers in different
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layers. For pure reflection modes (P or SV) in layered anisotropic
media, the geometric spreading as a function of traveltime deriva-
tives was obtained by Xu et al. (2005). The geometric spreading
correction for an azimuthally anisotropic medium was later derived
by Xu and Tsvankin (2006), and it was extended for converted
waves in a VTI medium (Xu and Tsvankin, 2008). A practical ap-
plication of anisotropic geometric spreading for AVO analysis was
made by Xu and Tsvankin (2007), with the wide-azimuthal data
acquired at Rulison Field, Colorado. The traveltime-based geomet-
ric spreading approximation in transversely isotropic medium with
tilted symmetry axis (TTI) media is derived by Golikov and Stovas
(2013). All of these approximations are approximating the travel-
time and use it and its derivatives for computation of the geometric
spreading approximation. We refer to it as traveltime-based
approximation or indirect approximation. Different nonhyperbolic
moveout approximations for a homogeneous VTI model are listed
in Fowler (2003) and Golikov and Stovas (2012). Although the geo-
metric spreading factor is controlled by first- and second-order trav-
eltime derivatives, there is no guarantee that the most accurate
traveltime approximation being used in equations for geometric
spreading results in the most accurate geometric spreading equa-
tion. Different from the indirect type approximation, which is
approximating the traveltime for geometric spreading approxima-
tion, the direct-type approximation is computed by approximating
the geometric spreading term directly from the exact parametric
equations obtained from dynamic ray tracing. The first example
of this comparison between indirect and direct type approximation
is done by Stovas and Ursin (2009), who developed the rational type
of approximation in direct form. They showed that the direct ra-
tional approximation is simpler and more accurate than the indirect
counterpart for a homogeneous and multilayered VTI model. Xu
and Stovas (2017) propose a direct type approximation with the
generalized nonhyperbolic form (Fomel and Stovas, 2010) for
the relative geometric spreading for a VTI medium and compared
them with indirect ones.

The orthorhombic (ORT) model is introduced by Schoenberg and
Helbig (1997) and has gained more attention due to the need to
characterize the fractured earth. They have become a new standard
to define model parameters to cover the azimuthal dependence of
the traveltime surface. Tsvankin (1997, 2012) defines nine elastic
model parameters for an ORT model that can be reduced to six
parameters in an acoustic approximation (Alkhalifah, 2003). In the
group domain, we refer to the first-order curvature as the normal
moveout (NMO) velocity ellipses (Grechka and Tsvankin, 1999a,
1999b) and the second-order curvature as the anellipticities because
they represent the anelliptic behavior for slowness and the traveltime
surface. Stovas (2015) derives azimuthally dependent kinematic
properties of ORT media and defines the effective ORT parameters
in the Dix-type in layered ORT media that derived from the Dix
(1955) inversion. Sripanich and Fomel (2015) modify the anelliptic
functional form of Fomel (2004) and extend it to an ORT model to
approximate P-wave phase and group velocities.

In this paper, we propose an anelliptic approximation in reminis-
cent of the functional form studied by Sripanich and Fomel (2015)
for direct-type relative geometric spreading in VTI and ORT media.
The coefficients in the approximation are defined within the sym-
metry plane and obtained from fitting with exact relative geometric
spreading in the symmetry planes. Due to the symmetric behavior in
different symmetry planes by using the acoustic anisotropy assump-

tion (Alkhalifah, 1998), the computation for the coefficients in ORT
model becomes easier by applying the corresponding changes in the
forms of the coefficients that are obtained in one symmetry plane.
Subsequently, we extend our method for layered VTI and ORT
models by using the effective model parameters computed from the
Dix-type equation (Stovas, 2015). Using numerical examples, we
show that the results from our approximation are highly accurate
for homogeneous and layered VTI and ORT cases.

RELATIVE GEOMETRIC SPREADING IN A VTI
MODEL

The relative geometric spreading is given in Cerveny (2001) as

cos B¢ cos Og
L=|—"——, 1
\/ | det M| M

where 6g and 0y are the angles between the ray and the normal to
the surface measured at the source and receiver, respectively. Mea-
sured from the dynamic ray tracing, 6 and 65 are all group angle.
M is the second-order derivatives of the traveltime (7") matrix given

by
PT PT
Oxg0. Oxgdy
M= dez;fk Xd'szij ’ (2)

Oysoxg  Oysoyg

where (xg, ys) and (xg, yg) are the lateral coordinates of source and
receiver, respectively. The relative geometric spreading in a VTI
model is given by (Ursin and Hokstad, 2003)

Lde\~\2 (d*r\~1/?
=Q—-—— —_
£ (xdx) (dxz) ' ©)

where € is the radiation pattern given by Q = /cos g cos 0. In
this paper, we neglect the radiation pattern and focus only on the
term Ly that is given as

1dt d*t\~1/?
= —_—— . 4
Ln (xdxdxz) @

The relative geometric spreading term Ly given in equation 4 can
also be written as a function of horizontal slowness p in the case of
flat layer as follows (Stovas and Ursin, 2009):

x dx\1/2
Ly= (> . (&)
pdp
For a homogeneous VTI model, the offset under an acoustic

approximation can be given in terms of horizontal slowness Alkha-
lifah (1998):

ptoV2
(1=2np?V2)2\/T = (1 +29) p*V2’

x(p) = (6)

where ¢, is the vertical one-way traveltime, V,, is the NMO velocity,
and 7 is the anellipticity parameter (Alkhalifah, 1998). Substituting
equation 6 into equation 5 gives (Stovas and Ursin, 2009)
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Equations 6 and 7 give an exact parametric equation for relative
geometric spreading Ly in terms of the horizontal slowness that can
be measured from dynamic ray tracing.

Anelliptic form approximation for the relative geometric
spreading in a VTI model

In VTT medium, we define the approximation for the relative geo-
metric spreading in an anelliptic resembling that of Sripanich and
Fomel (2015) by

2(g—-1 2
cN=h<1—3>+§\/h2+M, ®)

where the hyperbolic term & = h(x) denotes the elliptic part of the
relative geometric spreading given by

h:W1X2+W3, (9)
with
Jim £V !
w, = —_— = Y,
' rme0 12 tov/ 1+ 2n
w3 = hI%EN = toV%. (10)

The functions g = g(x) and § = 5(x) are defined by

G w1x2 + g3w3

q= h )
2
§:S1W1x h+ S3W3’ (11)

where q, g3, 1, and s3 are the coefficients computed from the fitting
process with the exact geometric spreading form. Note that w; and w;
in equation 9 have different units. If we define the hyperbolic term by
h = wx* + w313V3, where V) is the vertical velocity, they will have
the same units. The reason why we do not use this form is that we do
not have vertical velocity in our list of parameters.

The offset and the depth is shown by the relation x = z tan(6),
where z is the depth and 6 is the dip group angle from the vertical
axis. We define a function r = r(6) that relates to the relative geo-
metric spreading as

L cos (0)’Ly(x = z tan(0)) '

ZZ

12)

The coefficients ¢, g3, 1, and s3 in equation 8§ can be computed by
fitting with the exact equation for Ly (see equation A-3) through the
second- (9%r/06%) and fourth-order derivatives d*r/d0* at 6 = 0’
and 90°, as noted by indices 1 and 3 for the horizontal and vertical
axes, respectively (Figure 1). The equations for g, g3, 51, and s3 are
given in Appendix A.

The coefficients ¢, g3, s1, and s3 are plotted versus anellipticity
parameter # in Figure 2. The coefficients g; and g3 are gradually
increasing with 7, whereas s; and s3 are almost independent of 7.

When setting # = 0 corresponding to elliptical anisotropy, they be-
come equivalent to each other with ¢ =¢3=1 and s; =s3=9/13.

To test the accuracy of the anelliptic approximation, we use a
homogeneous VTI model with parameters: ty = 1 s, V,, = 2 km/s,
and = 0.2. We show the relative error in relative geometric spread-
ing versus normalized offset computed from our method and the
approximation in generalized nonhyperbolic moveout approximation
(GMA) form approximation computed from infinite offset limit (Xu
et al., 2016) in Figure 3. Note that the approximations are compared
with the exact parametric expression shown in equations 6 and 7 that
are computed from dynamic ray tracing. One can see that comparing
with GMA form approximation in a homogeneous VTI model, the
anelliptic approximation is less accurate at a short offset, whereas
when approaching a larger offset, it becomes more accurate since the
fixed elliptical background is used. Subsequently, we introduce a

41
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Figure 1. The location of fitting indices ¢, g3, s;, and s3 in a
homogeneous VTI model.
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Figure 2. The sensitivity of coefficients ¢, g3, 51, and s3 versus
anellipticity 7.
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multilayered VTI model using the parameters in Table 1 and show the
relative error versus offset-depth ratio in Figure 4. The effective
model parameters are computed from Dix-type equations shown
in Appendix B. One can see that the errors are all increasing with
7, and the error from the anelliptic approximation is always smaller
than the GMA form approximation.

RELATIVE GEOMETRIC SPREADING IN A
HOMOGENEOUS ORT MODEL

For a homogeneous ORT model, we introduce two lateral offset
projections:

X = Xg — Xg,
Y=Yr—)s- (13)
The matrix M in equation 2 takes the form:
dL{ 2T
_ ox 0xay
M= 2r 2T |- (14)
dyox  0y?

In the phase domain, the relative geometric spreading £y can be
given by Stovas (2017):

ox dy dy ox\/2
EN:(_x_y__y_X) ‘ (15)
op,dp, 0p,dp,
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Figure 3. The relative error for anelliptic (solid) and GMA form
(dashed) approximation for the relative geometric spreading in a
homogeneous VTI medium.

Table 1. The model parameters in a multilayered VTI model.

Layer Vertical velocity NMO velocity Anellipicity

Layer thickness (km) (km/s) (km/s) parameter
1 0.3 1.5 1.8 0.1

2 0.7 1.8 2 0.15

3 1 2 22 0.18

To compute the geometric spreading for a homogeneous ORT
model, we use exact parametric offset equations (Stovas, 2015):

V2 o
X(Pys Py) = poF3 1/21 3/2°
1 J2
V2,10
¥(Px, py) = PyF1 1/;2 3/2° (16)
1 J2

where x(p,, p,) and y(p,. p,) are the corresponding offset projec-
tions, and

Fy=1=piVi (2 —1lyy),
Fy=1=piVay (2 —11y),
fi=1=+2p)p2V:i - (1 ‘*‘2’12)1’3‘/32
+((14+2m1) (14 212) = (1 +1)2) P23V Vo
f2=1=2mpiViy = 2mp3Vis + (dmmy =1z ) PP Var Vaos
(17)

where V,; and V,, are the corresponding NMO velocities defined
in [X, Z] and [Y, Z] planes, respectively. Anellipticity parameters 7,
and 7, are defined in corresponding two vertical symmetry [X, Z]
and [Y, Z] planes, respectively. Note that the definition of indices is
different with the one defined in standard Tsvankin (1997) indices.
The cross-term anellipticity parameter 7,, is defined as (Stovas,
2015)

(1+2n;)(1 +2n,)
= -1 1
o= G2

where anellipticity parameter 73 is defined in the [X, Y] plane (Vas-
concelos and Tsvankin, 2006).

The relative geometric spreading for ORT medium is given by
Stovas (2017)

Relative error (%)
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Figure 4. The relative error for anelliptic (solid) and GMA form
(dashed) approximation for the relative geometric spreading in a
multilayered VTI medium.
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where

Fo =140 p2V2 + 4y p3V2, — 6, (1 + 20y piV,
—6ny(1 4 27,) pyViy
+2(81m1712 = 12y (3 + 51y ) 2PV Vi
—6(1 + 21) (4nymy = 13y ) PAP3 Vi Via = 6(1 + 2113)
X (4mimy = 13 ) P3Py Va Vi
FI((1+2) (1 +272) = (14 17)*) (4mima = 11zy)
X Dy p‘y‘Vﬁ1 V4 (20)

Anelliptic approximation for the relative geometric
spreading in an ORT model

In ORT medium, we define the approximation for relative geo-
metric spreading in an anelliptic form similar to Sripanich and Fo-
mel (2015)

-8+ SVH?+F, @21

EN(ORT) = H(l
with
F=F(x,y)

:2((Q1 —1)W2W3y2+(Q2—1A)W1W3x2+(Q3—1)W1W2)
S

(22)

where the hyperbolic term H = H(x, y) denotes the elliptic part of
the relative geometric spreading given by

H=Wx?+ Wyy> + W, (23)
with
. Ly (orT (1 + 1)V

W= lim <2 ) — i %/2

x—o0y—0 X to(1+2m,)°2V

L + 1,

W= fim NORn (Vi &

x—0y=e0 Y to(142m,)*2V,5
W3 = lim ,CN(ORT) tOV,ﬂV,lz. (24)

x—0,y—0

The functions Q; = Q;(x.y). (i = 1,2,3) are defined as

P O Wyt 4 05 W,
Ql(x’ y) - 2
Wzy + W;
Or(x,y) = QW x? +Q32W3’
Wlx + W3
W, x? + w
Os(x,y) = 013w, 03 Wry? 25)
Wlx + Wzy

The function § = S(x,y) is given by

S1(x, )Wix? 4 8, (x, ) Woy? + Ss(x, y) W5

S(x.y) = = 7
(26)
where
$ S Woy? + 81 W
() = 2 e,
S - S23W1x2 + 521W3
Sy (x,y) = W W,
$5(xy) = SuWix? + S5 Woy? @7
Wlx + Wzy

Similar to the VTI case, we define a relative geometric spreading
related function by

R:cos(ﬁ)zﬁN(x:ztan(@)cozs((ﬁ),y:ztan(&)sin(g{)))’ 28)
z

and define the dip angle € and the azimuth ¢ in Figure 5, with the
relations

Z

o) )
0 = arctan (x——i—y) ,

¢ = arctan (X) 29)
X

The Twelve  coefficients Qi (i#j=12.3) and
S;j. (i # j = 1,2,3) in equations 25 and 27, respectively, are com-
puted by fitting with the exact relative geometric spreading (see
equation C-2) through the second- and fourth-order derivatives with
respect to the dip and azimuth angles by

Figure 5. The location of fitting indices Q;;, (i # j = 1,2,3) and
S;j. (i # j =1,2,3) in a homogeneous OR model
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*R(¢p=0
#(9 0,90") = (03, 012);
FR(p=0 o o
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00
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The symmetry of the anelliptic approximation

To calculate 12 coefficients Q;;, (i#j=1,2,3)and S;;,(i#j=
1, 2, 3) required for Oy (x, y) and S, (x, y) given in equations 25 and
27, respectively, we focus on each individual symmetry plane sep-

S5
>

h

,73“‘\4

123

4

Y

Figure 6. Rotation from [X, Z] symmetry plane to [X, Y] symmetry
plane.

Table 2. The corresponding transformation for the model parameters. The
anellipticity parameter 73 can be computed from 7, 7, and 7,,, as

arately. When we compute the coefficients in one symmetry plane,
similar coefficients for other two symmetry planes can be easily
computed by making corresponding changes in indices.

In the [X, Z] symmetry plane, when setting y = 0, the anelliptic
approximation in equation 21 is similar to the one computed for
VTI model. In this symmetry plane, we need to define four coef-
ficients: Qz,, Q1s, S35, and S;,. By taking the second- and fourth-
order derivatives of R(¢ = 0°) with respect to the dip angle € at 0°
and 90°, the coefficients Q3,, Q12, S3,, and S}, are computed, as it is
shown in Appendix C.

The advantage of anelliptic approximation is its symmetric behav-
ior in different symmetry planes. All required coefficients are com-
puted within one plane and lead to corresponding expressions in the
others. The notations for indices in coefficients Q,; and S;; are shown
in Figure 5, and changing of indices can be obtained by clockwise
rotation of the symmetry frame, as shown in Figure 6.

When we have calculated the coefficients in the [X, Z] symmetry
plane, the coefficients in the [Y, Z] and [X, Y] symmetry planes can
be easily computed using the transformation rule shown in Table 2.
Note that the cross-term anellipticity parameter ;1({} defined in the
[Y, Z] symmetry plane is the same as r]xy ?) defined in the [X, Z] sym-
metry plane.

NUMERICAL EXAMPLES

To illustrate the accuracy of our anelliptic approximation, we select
a homogeneous ORT model with the following parameters: f, =1 s,
Vii=2km/s, V,,=22km/s, n; = 0.1, 7, = 0.12, and 5,,, = 0.2.
We show the relative error from the approximation in Xu et al. (2005)
(Figure 7a), indirect rational type approximation (Appendix D; Fig-
ure 7b), and our anelliptic approximation (Figure 7c). The form used
in Xu et al. (2005) is from the traveltime derivation based on the
rational form moveout approximation (Tsvankin and Thomsen,
1994). One can tell from the comparison that our approximation per-
forms better accuracy, especially along the x- and y-axes, and reaches
the maximal error of 0.7% approximately 45° azimuth at the normal-
ized offset x = y ~ 1.

We define a multilayered ORT model with the parameters shown
in Table 3 and show the relative error from the approximation in Xu
et al. (2005) (Figure 8a), indirect rational type approximation (Ap-
pendix D; Figure 8b), and our anellipic approximation (Figure 8c).
The effective model properties for the multilayered ORT model are
computed from the Dix-type equations shown in Appendix C. The
error surface of the approximation from Xu et al. (2005) and the indi-
rect rational form approximation are more compli-
cated, and their maximal error is larger than our
anelliptic approximation. Note that the value of
the anisotropy parameters in our paper is much

1425) (142
M =3 L +(1"_',_),§ y-)'-z 2] 1) larger than the ones obtained from the field data
to make the error from the approximation more
. . L visible. In practice, the result from our approxima-
Plane  Vertical NMO Anellipticity Cross-term anellipticity L . .
: : tion is more accurate because the anisotropy in
velocity velocity parameter parameter . S
practical applicability is weaker.
12
(X, Z] Vo Vi m ny? = ( (1+271+)§;173+2ﬂ2) - l)
DISCUSSION
2.1 _ (1421,) (1+20;)
[¥.Z] Vo Vi (P My = = ( 712;73 - 1> For a multilayered case, the expressions for the
relative geometric spreading approximation that
VT2, 13
[X.Y] V.av/T + 211 % n n? = ( %_ 1) we use are compute.d from the homogeneous
& model with the effective model parameters com-
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Figure 7. The relative error of the relative geometric spreading for a
homegeneous ORT model by using the (a) traveltime-based
approximation Xu et al. (2005), (b) indirect rational approximation,
and (c) anelliptic approximation.

puted from Dix-type equations (Stovas, 2015). Selecting a horizontal
ray for calculation is impossible for ray tracing, which means the
assumption for infinite offset limit is not valid anymore, whereas
we still using the expression computed from the homogeneous case
derived from the infinite offset assumption that explains the lower
accuracy compared with homogeneous case. When there is azimuthal
variation between the multilayered ORT model, the effective param-
eters with different azimuthal orientation of the layers are listed in
Ravve and Koren (2017) and Koren and Ravve (2017).

Our anelliptic form resembling equations in Sripanich and Fomel
(2015) are defined for the group velocity inverse for VTI and ORT
models. The difference is that they define the anelliptic form for group
velocity inverse first, computing the coefficients from fitting, then con-
vert it to the traveltime approximation, whereas our anelliptic form
approximation is defined for relative geometric spreading, then by using
the converted relation to obtain the coefficients. The converted relation
is needed for the anelliptic form traveltime and geometric spreading
approximation because there is no asymptotic behavior for traveltime
or geometric spreading at infinite offset that can be used for fitting.

The tricky part of our approximation is that we use the relative
geometric spreading related functions r (VTI) and R (ORT) to de-
rive the coefficients used in approximation. This function has no
physical meaning but is used for a fitting technique. There is a sim-
ple relation between the function r (or R) and corresponding term
L. The form of this function is similar to the group velocity inverse
in VTI and ORT models.

For example, in the VTI case, function r is very similar to
1/V(6)?, where V is the group velocity and @ is the group angle.
The traveltime and offset are given as

<

= W, X =2 tan(G). (31)

The converted relation applied for traveltime and relative geometric
spreading is shown by

1 cos (0)?
View — (x=zan(9)),
9 2
= COS(Z ) Ly(x =z tan(0)), (32)
Ve

where z represents the depth. We do not have the value for depth
because the offset x in the geometric spreading approximation Ly is
represented by x = z tan(6), which cancels the depth factor z in the
denominator, keeping only the variable 6 used for fitting.

The relative geometric spreading Ly is shown by the form of
traveltime derivative with respect to the offset in equation 4. Sub-
stituting the traveltime form in equation 31 and taking the derivative
with respect to the offset x gives

Table 3. The model parameters in a multilayered ORT model.

z Vo Vi Voo
Layer (km) (km/s) (km/s) (km/s) 7 Ny My
1 0.25 15 1.65 1.8 0.05 0.08 02
2 0.75 1.8 2 22 0.1 01 0.18

3 1 2 22 215 0.08 0.12 022
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Figure 8. The relative error of the relative geometric spreading for a
multilayered ORT model by using the (a) traveltime-based approxi-
mation Xu et al. (2005), (b) indirect rational approximation, and
(c) anelliptic approximation.

The function r can be represented in the group velocity and its
derivatives with respect to the group angle

Ly cos(6)?
y=—

22

W v
T\ V=Vt (@) 2VE+ V(V=V"))

(34)

For anelliptic form traveltime approximation (Sripanich and Fo-
mel, 2015), 1/V?(#) is the one used for fitting process at § = 0" and
90°. However, for our anellipitic form geometric spreading, the func-
tion r (combination of group velocity and its derivatives) given in
equation 34 is the one used for the fitting process, which is much
more complete compared with the traveltime case (1/V?(6)).

The beauty of the anelliptic approximation is that we use the prop-
erties only on the three symmetry planes; therefore, the behaviors in
three planes are all symmetric. It is convenient to get the coefficients
in other planes by proper rotation on the index after obtaining the
coefficients in one symmetry plane.

For anelliptic traveltime approximation for an ORT model (Sri-
panich and Fomel, 2015), when we focus on one symmetry plane,
the approximation converges to the one defined for a VTI model.
For anelliptic relative geometric spreading approximation, the sit-
uation is different, and the approximation does not converge to the
VTI counterpart (Appendix A) or any of symmetry planes due to the
different number of parameters. This happens due to the mixed
derivatives entering the equation for geometric spreading (equa-
tion 4). The NMO velocities V1, V,, and cross-term anellipticity
parameters are presented in all equations defined either in [X, Z] or
[Y, Z] symmetry planes.

To reduce the relative geometric spreading from ORT to VTI
cases, the following reduction in parameters is required:

Vo=V =V,

m=m=n,

Ny = 21,

n; = 0. (35)

CONCLUSION

We propose an anelliptic form approximation for the relative geo-
metric spreading in a homogeneous VTI and ORT media under the
acoustic anisotropy assumption. All the coefficients in the approxi-
mation are calculated by fitting with the exact parametric solution
within the symmetry planes. Compared with the GMA form approxi-
mation, our anelliptic approximation is more accurate for larger offset
in a homogeneous VTI model. Due to symmetric behavior, the co-
efficients of the approximation in ORT model can be easily obtained
after computing the coefficients in one symmetry plane and applying
the required rotation for the other. The form of the anelliptic approxi-
mation is simpler, whereas the traveltime-based counterparts are alge-
braically complicated. In the numerical examples, one can see that
compared with the traveltime-based approximations, our anelliptic
form approximation is more accurate for homogeneous and multilay-
ered ORT models.
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APPENDIX A

THE COEFFICIENTS ¢, g3, s;, AND s; OF THE
ANELLIPTIC APPROXIMATION FOR A
TRANSVERSELY ISOTROPIC MEDIUM
WITH A VERTICAL SYMMETRY AXIS

The function r in VTI model is defined in equation 12, the deriv-
atives of r with respect to the group angle 6 at zero offset are

o*r _ q3 tOV,Zi

0P 0=0) to/T+2n 22

dr 255((1+2) Vi — VI 20g565V 32" +3v/T+2 (1 q1-243)z%)=3(q3 —1)%2*
90 (6=0) 6(1+2n)s;3V32*

(A-1)

The derivatives of r with respect to the group angle 6 at infinite
offset are

& _ 1 +f1)V541
0P =) to/T+27 2
o 3122V (L +q3 —2(1+ g3)s1 =24, (1-251)) =2(1420)q, 5,83 Vaz> +2/T+2ns, 2*
00 (9=r/2) 6(1+2n)s,152* ’

(A-2)

By fitting with the exact form, the coefficients ¢, g3, s;, and s3 are
given by

=/ 1+27(1+8n+125%),
g3=+/1+25(1+8n),
Sl:(l+71(9+417(15+271(23+317(11+6)))))—\/1+2}1(1+211)(1+611)
(14+95(1+2n) (1+411))—\/1+2n(1+87](1+311))
(14+9n+487 +6413) —/T+25(1+8n)
(14+9n+5477 +7203) —/T+2n(1 +8n—121%)

(A-3)

s3=

In the elliptical case (n = 0, ¢; = g3 = 1, and s; = 53 = 9/13), the
function r becomes

cos(0)t, V2 sin(6)?
3 + .

Z o

(A-4)

r =

APPENDIX B

THE EFFECTIVE MODEL PARAMETERS FOR THE
MULTILAYERED TRANSVERSELY ISOTROPIC
AND ORTHORHOMBIC MEDIA

The effective model parameters from the multilayered model are
computed from traveltime parameters (high frequency) and from

s

upscaling (low frequency). The computation in our paper is com-
puted from dynamic ray tracing, so the traveltime parameters are
used. The Dix-type equation is derived from the Dix (1955) inver-
sion that is estimating the individual layer parameters from the re-
corded reflections on seismic seismogram for the horizontally
layered medium.

To apply approximation in equation § computed from the homo-
geneous model for a multilayered VTI medium, the effective param-
eters by using the Dix-type equations are shown by

m
j=1

Vo= Z;‘n:lvijtw'
to ’
1 (Z}n1(1+8’7j)vﬁjf0j

= ==
Vo

5 —1), m=1,....3. (B-1)

The exact form of relative geometric spreading in a multilayered
VTI case is computed from the summation as shown below:

X(p) =Y PiojViy
= (1=20;p° V7,12 [1=(1420;) p* V7,
. m zojVﬁj\/1+4njp2Vﬁj—6nj(l+211/) Vo s
= , m=1,...3.
N =1 (1_znjpzvij)z(l_(l+277j)p2v%j)
(B-2)

It is computed by summing for each individual layers (equa-
tion B-2) that explains why the relative error does not go to zero
for large offset-depth ratio.

Similar to the multilayered VTI case, the effective properties used
in multilayered ORT model are computed from Dix-type equations
(Stovas, 2015):

m
o= Zl()j»
=1

m 2
O >0 Vinjito)

nl —

lo
- S0 Viajtog
V= T,
- 1 (Z;"l(l +811)) Vit 1)
1== =~ - 3
8 Vi
L2 (14 8my) Vit
M=y -1,
8 Vit
(227 (L4400 ) Vi Vit
ﬁxy:_<21_1( 2’7 i) 2j°0j 1), m=1,...,3
4 Vi V2 il

(B-3)
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The exact relative geometric spreading in multilayered ORT is com-
puted by summation for individual layers by parametric equa-
tions 15, 16, and 17 as shown below:

m
17
I’I]/ 0j
x(pxpy) = Z /1/2 B2’
= 1>
& nZJtOJ
Y(px: py) Z /1/2 /3/2’
F{F)
Ly = Zto_jvnljvnz_j% fmr m=1,....3, (B4
j=1 f2 fl
where

Fi=1=pV3,(2mj=ty;),

Fézl—ngﬁZi@nz,—nm)

Fi=1=(4201) PV = (142n0;) p3V g + (14 21y)
X (1422)) = (1414 ) PEPIV21 V20

fa=1-2n,,;p? nlj—anjpyV,,z,-+(4111ﬂ72j—'7§”)l7xl7\Vfu,vflz/v

fm—1+4m,mVn1,+4nz,p) ;= 6m1;(1+2,;)
XV 6’72/(1+2’72])py n2j
+2(8’7|j’72j—’7xyj(3+5’7xy‘))17xpyvfl1/‘/§2,
_6(1+2’111)(4’71ﬂ72j—Wiyj)PxPZVﬁUVﬁzj 6(1+2’72j)
X (4171125 =12, PAPY V1 Vina
FOT+2071) (14 2m35) = (111y7)%) (4 i = 13,)
Xpipyva, v

nlj

(B-5)

n2j-

APPENDIX C

THE COEFFICIENTS OF THE ANELLIPTIC
APPROXIMATION FOR ORTHORHOMBIC MODEL
IN [X, Z] PLANE

The coefficients of the anelliptic approximation defined in the
symmetry plane of the ORT model are not the same as those com-
puted for the VTI case (Appendix A). Due to the presence of mixed
derivatives in equation 14 or equation 15, all ORT model parameters
are entering the equations defined in any of symmetry planes. How-
ever, with the use of the cross-term anelliptic parameter 7,,, the
number of parameters can be reduced to five. For the [X, Z] sym-
metry plane, these parameters are Vo, V1, V0, 11, and 7,y.

To calculate the coefficients in the anelliptic form approximation
in the [X, Z] plane, we set y = 0 in the approximation given in equa-
tion 21. Only the [X, Z] plane coefficients Q3,, Q12, S35, and S},
remain in the approximation.

We introduce the relative geometric spreading related function R
(R = cos(0)?Ly/z%), where @ is the dip group angle to the vertical
axis and z is the depth, we get the second- and fourth-order deriv-
atives of R with respect to € as follows:

aziR o Vn2 ((1+’7X}’)Q32_V121]t(2)>

06 0=0) Vuto\ (1427 22 )

*R Voo

i " =3/ 1425, (1+7,,)?

96% (0=0)  6(142n,)" 25313V, 2> ( n{1+1s)
X(Q3—1)22*+ 285 ((1+2m,) 215V,

— (1421 )*(141,,) Q315V 5 2?
+3V/ 14201 (141, (1401, —203)z ))

R _ Vi (Vﬁﬁéle_ 1+, >

0602 (0=2/2)  Vu1to 2 (1+2n,)3/?

()4R o VnZ

00* (0=r/2)  6(1+2n;)"2S 1210V 1 2*
(1401, -2(1+03)S12+2012(281, - 1)) 1§V,
=2(142m1)3(1+1,,) 01281213 V%, 22
+2(1+’7xy>2S12Z4))' (C'l)

(=3(1+2m)

By fitting with the exact form, the coefficients: Q},, Q3,, S35, and
S, are given as

Q12 = /142 (1 + 8y + 611y,
_ (L 420)°2(1 + 6m1 + 1)
L4177y
e; +V1+2ne;
es+ 1T+ 2ne4
S :fl + T+ 21, 2.
f3+v1I+2nf,

9
Sip =

(C-2)

where

er=(1+m.) (14+11 (9460, +2m, (4+3n,,)
X (68171 431,y +6117xy)))
—(L4n2y) (141 (8+61,y)),
e3= (14+11) (149, (1+60m; +817) (1 +11,)%),
eq=—1—1 42, (=4+6n; —n,, (13 +61,,)),
Fr=1443 + (14m,)> 4301 (1+170) 3+ 1) + 2407 (11 4217,,)
6177 (10+17,, (8 +111y)) +417 (46 +17,, (20 +11,,)),
Jo==(142m) (141, (1 +61; +1y),
3= (1423 (1+4n,) + (141,,)2,
fa==(14ny) (147 +2m (44120 =1, (5+31,))).  (C-3)

By setting 7, = 5 and n,, = 27, the coefficients defined in equa-
tion C-2 become equivalent to those defined in equation A-3 for
VTI model, O, = ¢, O3 = g3, S12 = §1, and S3, = s3.

Due to the symmetric behavior in the symmetry plane in ORT
model, the other coefficients in the approximation can be easily ob-
tained by corresponding changes in indices from the computed the
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coefficients in one symmetry plane (see the transformation form in
Table 2). The coefficients (Q»;, Q3;, S»;, and S3;) defined in the
[Y, Z] plane and the coefficients (Q,3, Q13, Sp3, and S3) defined
in the [X, Y] plane are obtained from the [X, Z] plane coefficients

(O3, Qi, Sxn, and S),) by setting (7, — n7,) and (7, — 73,

Ny — 1), respectively. Note that 1., =713 = 73},

APPENDIX D

THE INDIRECT RATIONAL FORM
APPROXIMATION FOR RELATIVE GEOMETRIC
SPREADING IN AN ORT MODEL

A rational form similar to the Vasconcelos and Tsvankin (2006)
approximation for the traveltime in ORT model is defined by

Agx* + Apx®y? + Aggy*
1+ (Byox® + Bppy?)
(D-1)

Tip = Ago + Agx? + Appy? +

where the coefficients Agy, Ayg, Agp, Asggs Az, and Ay, computed
from the Taylor series at zero offset are given by

1
Ay =13,A0 = —.Ap = —,
Vi Vi
2, 2y 21y
Ay =5 Au=—F5 1 An=—>5—> 5. (D-2)
5V 5V Vi Vi

The remaining coefficients B,, and B, are computed by the infinite
offset limit shown as

1421,
Byy = ——t =
20 [%)V%l

, =——. D-3
02 t(z) Viz ( )

The indirect (traveltime-based) rational form approximation for rel-
ative geometric spreading is given by the derivatives of traveltime
approximation in equation D-1 with respect to the offsets given by

0*Tya 0°T 0*Tp 0*T 12
Ly = 1;A lzzA _ RA 0"1RA . (D-4)
0x dy 0xdy 0dyox

Note that the indirect rational form approximation in equation D-4
is algebraically complicated due to the second-order derivatives.
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