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Abstract 
 

To more rapidly predicting the integrity of components weakened by sharp notches, notch stress 

intensity factors (NSIFs) are usually evaluated. Many methods have been proposed evaluating 

NSIFs, ranging from the stress gradient based formulation to methods evaluating strain energy 

density averaged over a control region. Here, we compare different numerical and approximate 

methods applied to a square plate with a 45° tilted crack, positioned at the center of the plate. 

Hence, approximate methods need to FE solutions, obtained from models discretized with fine 

mesh or, alternatively, with coarse mesh, having to consider the mean value of the local Strain 

Energy Density (SED) to calculate NSIFs. Furthermore, 2D and 3D numerical simulations have 

been carried out to investigate the solutions provided by these analytical methods. For this aim, two 

software based on the Finite Element Method (FEM) and on the Dual Boundary Element Method 

(DBEM), respectively, have been adopted to solve the proposed study case of the square plate with 

a 45° tilted crack. These methods can supply accurate predictions of SIFs by means of J-integral 

calculation. Then, the NSIFs have been calculated at the intersection between the crack front and 

the free surface of the plate and, to assess the thickness effect on the provided solutions, they have 

also been calculated at half the thickness along the crack front and for increasing thickness values. 

Finally, the NSIFs obtained from the analytical and numerical methods have been compared each 

other to evaluate the level of agreement. 
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Nomenclature   

ASED                

a 

Ca, Cb                                                             

DBEM 

DSED 

Da, Db 

E 

ERR                 

FEM  

 

Averaged strain energy density 

Crack length 

Constants of Wa,FE and Wb,FE 

Dual boundary element method 

Deviatoric strain energy density 

Constants of Wa,FE and Wb,FE 

Young’s modulus 

Energy release rate 

Finite element method 

Integrals of the angular stress 

R 

Ra, Rb 

R0 

SB 

SED 

SIF 

Wa,FE 

Wb,FE 

r, θ 

 

Control radius 

Outer and inner control radii 

Radius of the control volume  

Standard Block 

Strain Energy density 

Stress Intensity Factors 

SED component  

SED component  

Polar system coordinates  
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I1, I2  

 

J 

KI, KII 

K1, K2 

 

LB 

LEFM 

NSIF 

  

functions 

J-integral 

Mode I, II stress intensity factors 

Normalised mode I, II of stress 

intensity factors 

Large Block 

Linear Elastic Fracture Mechanics 

Notch Stress Intensity Factor 

 

t 

2α 

γ 

υ 

λ1, λ2  
 

   ,  r  

Ω 

Thickness of the plate 

Notch opening angle 

Notch bisector angle 

Poisson’s ratio 

Mode I, II first eigenvalues in 

William’s equations 

Notch tip stress components 

Volume control 

1. Introduction 
 

NSIFs play an essential role in static strength assessments of components made of brittle or quasi-

brittle materials, weakened by sharp notches [1]. This holds true also for components made of 

structural materials undergoing high cycle fatigue loading [2] as well as for welded joints [3,4]. In 

recent years, some approximate methods based on the evaluation of the Averaged Strain Energy 

Density (ASED) were proposed. One of the first and most significant models available in the 

Literature was proposed by Lazzarin et al., based on the calculation of the Strain Energy Density 

(SED) averaged in two different control volumes centered at the notch tip [5,6]. More recently, 

another approximate method has been presented by Treifi and Oyadiji that takes advantage of the 

strain energy density averaged within two control volumes (semi-circular sector) centered at the 

notch tip [7]. Furthermore, a new method based on the evaluation of the total and deviatoric strain 

energy density averaged over a control volume was proposed [8,27]. The new method and a 

modified version were compared to the methods of Lazzarin et al. and Treifi and Oyadiji showing 

higher accuracy [27]. A comparison between different failure criteria for V-shaped notches has been 

done by Lazzarin et al. [29]. The finite fracture mechanics criteria by Leguillon [30] and Carpinteri 

[31] were compared to SED, both analytically and by use of finite element for calculating NSIF. All 

the methods gave good agreement with experiment results.  

In this work, the SED based methods described above were applied to a square plate weakened by a 

45° tilted crack positioned at the center of the plate. When the opening angle of a v-shaped notch 

being zero, the v-notch turns into a crack. Hence, NSIFs are firstly calculated according to the 

Gross and Mendelson equations [9], by means of FE refined mesh, and then approximate methods 

with coarse mesh were used to calculate NSIFs by means of the ASED. Furthermore, two numerical 

analyses of the notched plate were performed using the Dual Boundary Element Method (DBEM) 

both considering 2D and 3D cases. After that, a numerical analysis was carried out with a FEM-

based software for the one 3D case. The normalised SIFs, obtained by the overall numerical 

investigations, were compared with each other and with normalised SIFs obtained from the 
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approximate methods. The thickness effect on normalised SIFs was inferred by means of three-

dimensional FE analyses, varying the thickness from 1.0 mm up to 3.0 mm on the same geometrical 

model. 

 

2. Methods 
 

 

2.1.   Model geometry, boundary and loading conditions 

The special case of a square plate weakened by a 45 tilted crack is studied. The geometry is shown 

in Fig. 1, the notched square plate subjected to mixed mode I+II loading. The geometry of the plate 

is characterized by equal width and height, 2 = =10 mm. The tilted crack in the plate of finite 

extension (Fig. 6) can be described by a projected crack length 2  = 2 mm and a crack inclination 

angle   = 45°. For the numerical calculations, FEM and DBEM simulations were employed to 

model the plate and obtain SIFs. The boundary conditions and loads are shown in Fig. 1b.  

 

 
 

Figure 1. Loaded square plate with the 45° tilted crack (a) and loads and boundary conditions applied in FEA 

(b). 

2.2.  Background 

In plane problems, the mode I and mode II NSIFs for sharp V-notches, which quantify the intensity 

of the asymptotic stress distributions in the close neighborhood of the notch tip, is expressed by 

means of the Gross and Mendelson’s [9] equations: 

 

                        
                

 (1) 
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 (2) 

 

where ( ,  ) are the component of the polar coordinate system centered at the notch tip (Fig. 1),     

and     are the stress components according to the coordinate system; λ1 and λ2 are respectively the 

mode I and mode II first eigenvalues in William’s equations [10]. The main practical disadvantage 

in the application of the NSIF-based approach is that very refined meshes are needed to calculate 

the NSIFs by means of equations (1) and (2). Refined meshes are not necessary when the aim of the 

finite element analysis is to assess the mean value of the local strain energy density on a control 

volume surrounding the stress singularity. In fact, SED can be derived directly from nodal 

displacements, so that also coarse meshes are able to give accurate values. Recently, some 

approximate methods for the rapid calculation of the NSIFs, based on the averaged strain energy 

density (ASED) have been proposed [5]. The total elastic strain energy density averaged over a 

sector of radius  0 has been widely used in the Literature also for static [11-15] and fatigue strength 

assessments [6,16]. In the case of mixed mode loading, these methods require the solution of a 

system of two equations in two unknowns ( 1 and  2). Furthermore, a method based on the 

evaluation of the total and deviatoric SED (DSED), averaged in a single control volume, has been 

considered. Also, in this case, two independent equations can be obtained, one linked to the total 

SED and the other to the deviatoric one: in this way it is possible to evaluate the SIFs,    and    , of 

cracks under mixed mode loading. 

 

 

Figure 2. Polar coordinate system centered at the notch tip [27]. 
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Figure 3. Control volumes in the Lazzarin et al. approach (a) and in the Treifi and Oyadiji approach (b) [27]. 

2.3. Approximate methods 

2.3.1. Lazzarin et al. approach  
 

This method has been proposed by Lazzarin et al. [4]. and it is based on the evaluation of the ASED 

on two different control volumes (circular sectors), centered at the notch tip and characterized by 

the radii    and    (Fig. 3a). Known the SED values (   and   ), by means of a FE analysis, and 

defined the control radii (   and   ), it is possible to obtain a system of two equations in two 

unknowns ( 1 and  2):  
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where   is the Young’s modulus of the material whilst I1 and I2 are the integrals of the angular 

stress functions, which depend on the notch opening angle, 2  = 2 −2 , and the Poisson's ratio  . 

This method cannot be applied to a crack subjected to mixed mode loading, since an indeterminate 

system of equations would be obtained. Solving the system of equations, the values of the NSIFs 

can be determined as follows:  

    
                 

           
          (4) 

    
           

 

  
           (5) 

 

2.3.2. Treifi and Oyadiji approach 
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The method has been proposed by Treifi and Oyadiji [7] and it is based on the evaluation of the 

averaged SED on two different control volumes (semi-circular sectors with a central angle equal to 

 ) centered at the notch tip and characterized by a radius   (Fig. 3b). Known the SED values (   

and   ) by means of a FE analysis, and defined the control radius ( ), it is possible to obtain a 

system of two equations in two unknowns ( 1 and  2):  
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where I1,s , I2,s and I12,s are the integrals of the angular stress functions, which depend on the notch 

opening angle, 2α, the angle defined by the semi-circular sector, γ, and the Poisson's ratio ν. In this 

case the contribution of the mixed term (K1 ∙ K2) is present because the integration for the strain 

energy evaluation is not performed on a control volume symmetrical with respect to the notch 

bisector line (Fig. 3b). Due to the presence of the mixed term, it is possible to decouple the 

contributions of the loading modes, obtaining a solution of the system even in the crack case. 

Solving the system of equations, the values of the NSIFs can be determined:  
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           (8) 

2.3.3. Approach based on the deviatoric SED 

 

This approach has been presented for the first time in Ref. [5]. It is based on the evaluation of the 

total and deviatoric SED averaged in a single control volume (circular sector) centered at the notch 

tip and characterized by a radius   (Fig. 4a). Two independent equations can be obtained: one 

linked to the total SED and the other to the deviatoric one. In this way, it is possible to obtain a 

solution of the system even in the crack case. 
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Figure 4. Control volumes in the approach based on the deviatoric SED (a) and in the modified version of the 

approach based on the deviatoric SED (b) [27]. 

 

As previously, knowing the SED values (  and   ev), by means of a FE analysis, and defining the 

control radius (R), it is possible to obtain a system of two equations in two unknowns ( 1 and  2): 
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where  1, ev and  2, ev are the integrals of the angular stress functions related to the deviatoric strain 

energy density, which depend on the notch opening angle, 2 , and the Poisson's ratio  . Solving the 

system of equations, the values of the NSIFs can be determined: 

    
               

             
          (10) 

    
               

 

    
          (11) 

As discussed earlier, the total SED can be derived directly from nodal displacements, so that also 

coarse meshes are able to give accurate values for it. However, the calculation of the deviatoric 

SED, by a FE code, is based on the von Mises equivalent stress averaged within the element. This 

quantity is more sensitive to the refinement level of the adopted mesh, so that the new proposed 

method could not be mesh-insensitive. With the aim to improve the results obtained from the 

application of the new method (based on the deviatoric SED) in the case of coarse meshes, a 

modified version has been proposed. This approach is similar to the previous one, but it is applied 

to a control volume consisting of a circular ring (Fig. 4a). The calculation of the deviatoric SED, by 

a FE code, is based on the von Mises equivalent stress averaged within the element that is a 

parameter sensitive to the refinement level of the adopted mesh. In case of coarse meshes it could 

be useful to exclude from the calculation the area characterized by the highest stress gradient (i.e. 
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the region close to the notch tip). The control volume results to be constituted by a circular ring 

characterized by an outer radius    and by an inner radius    (Fig. 4b). As before, knowing the 

SED values (  and  dev), by means of a FE analysis, and defining the control radii (Ra and Rb), it 

is possible to obtain a system of two equations in two unknowns ( 1 and  2):  

 
 
 

 
     

 

      
    

  
 
     

 

   
  

 

  
    

 
 

 
 
    

  
     

 

   
  

 

  
    

 
 

 
 
    

  

        
   

      
    

  
 
         

 

   
  

 

  
    

 
 

 
 
    

  
         

 

   
  

 

  
    

 
 

 
 
    

  

    (12) 

Solving this system of equations, as already shown in the previous cases, the values of the NSIFs 

can be determined. 

 

 

2.3.4. SIFs normalization 

 

Methods described in section 2 have been applied to the case of study of a notched plate subjected 

to mixed mode I+II loading. Normalised SIFs,  1 and  2, are calculated according to the Gross and 

Mendelson equations (1) and (2), by means of several FE analyses and adopting very refined 

meshes in the close neighborhood of the notch tip (the size of the smallest element is of the order of 

10
-5

 mm). Afterwards, the approximate methods have been applied taking into consideration three 

different values of the control radius  0 (0.1, 0.01 and 0.001 mm) and by using of a coarse FE 

meshes. Hence, the FE mesh has been made of 8-node elements (PLANE 183) generated by means 

of the FE code ANSYS® 14.5. In the FE analyses, a Poisson’s ratio   equal to 0.3 and a Young’s 

modulus E equal to 206 GPa have been adopted. The NSIFs have been reported in table 1, 

according to the following definition: 

              
  

          
           (13) 

2.3.5. Numerical methods to calculate NSIFs 

For the previous case of study of the notched plate, the 2D and 3D numerical analyses have been 

performed using FEM and DBEM approaches, respectively, and to compare the NSIFs calculated 

by different methods. Thus, the NSIFs have been computed where the crack front intersecting the 

free surface of the plate. In addition, using the DBEM-based approach (Beasy), the same problem 

for the 2D and 3D analyses has been solved while, using FEM-based approach (Abaqus and 
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Zencrack software) only 3D analysis has been solved because Zencrack has the limit of only work 

in a 3D environment.”. Then, the stress scenario obtained from the several simulations has been 

compared. A similar comparison of the normalised SIFs, calculated at different distances from the 

crack front, has been carried out. Furthermore, the FEM-based analysis has been solved considering 

both standard (SB) and large (LB) cracked blocks to model the crack front with different j-path 

radii. Then, if SBs have been employed, the j-path radius is equal to 0.002 mm whilst, if LBs have 

been employed, the j-path radius is equal to 0.1 mm (table 2). For the DBEM-based analyses, two j-

path radii have been considered, that is, R=0.07 for the 2D case and R=0.1 for the 3D case, 

respectively. 

 

 

 

 

2.3.6. Methods for calculating fracture parameters 

 

Zencrack [17] is a fracture mechanics tool designed to interact with FEM-based software like Ansys 

or Abaqus [18]. By means of a Graphic User Interface (GUI), Zencrack allows to easily insert a 

single crack or multiple cracks through the substitution of hexahedral elements of the uncracked 

model, that contain a part of the crack front, with hexahedral elements belonging to special crack 

blocks for modelling the crack front [17]. Moreover, this substitution implies an adaptation of the 

surrounding mesh through a controlled and gradual deformation of neighboring elements carried out 

by means of a remeshing algorithm. It is worth noting that crack modelling is only possible if the 

mesh of the uncracked starting model is made of hexahedral elements [17]. In this work, the 

interaction between Zencrack and Abaqus allows inserting the crack in the uncracked model and 

simulating the behaviour of the cracked model under the action of the tensile load. Furthermore, 

Zencrack allows processing fracture parameters carried out from the FE simulation directly in the 

GUI.  

Each crack is modelled by means of a set of collapsed blocks that are distinct in two groups: the 

first, consisting of collapsed facing elements used for modelling the crack front; the second, 

consisting of a pair of facing blocks whose adjacent nodes are separated each other to model the 

crack faces. Each cracked block is a set of 3D elements positioned inside a cube to hold each part of 

the crack front; each crack face has been modelled with only one block or multiple adjacent blocks 

depending on the crack extension. Moreover, each cracked block is stored in a Zencrack library in 

the form of families. In the cracked blocks library, two macro families of collapsed blocks are 
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distinct: the first, containing "standard" blocks; the second, containing the "large" blocks. The FE 

simulations shown in this work use "standard" and “large” blocks, respectively. Zencrack calculates 

the Energy Release Rate (ERR) for each node of the crack front by the correponding value of the J-

Integral provided from Abaqus.  

 

2.3.7.      FE analysis using collapsed standard blocks 

 

Using the SBs family SB04 [17] is useful to generate J-paths with a small radius for J-integral 

calculation. Generally, using SBs needs a bigger computational time for crack insertion and crack 

solution than the needed of LBs. In this study, the choice of the best approach depends essentially 

by the model and crack geometry. Fig.5 shows the FE model of a square plate with highlight of the 

strategy used to model the central area where an inclined 45° crack will take place. Abaqus tie 

constraints are not employed in this case, then the model geometry is continuous everywhere as 

well as the mesh generated to discretize the model. 

 

Figure 5. Assembly of the square plate with highlight of the adopted geometry and boundary conditions. 

 

2.3.8. FE analysis using collapsed large blocks 

 

The use of LBs imposes to model the square plate geometry with two distinct solid parts, as shown 

in fig.5. The adopted strategy of modelling introduces a discontinuity in the body geometry that is 

between the external surfaces of the Part 2, where the 45° tilted crack will take place, and the 

internal surface of the Part 1 (fig.6). Thus, also the mesh adopted to discretize these two parts will 

be discontinuous at the interface between the two parts. However, Abaqus allows introducing “tie 

constraints” conditions on the interfaces between the two parts that solves the problem of the mesh 
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discontinuity [18]. Furthermore, because the Part 1 is defined as master whilst the Part 2 is defined 

as slave, the Part 2 should be discretized with a finer mesh than the Part 1. In general, the nodes on 

interface of each part will not coincident each other, thus the results in terms of nodal displacements 

and nodal stresses will be inaccurate. Refining the mesh on these interfaces could be a good 

modelling strategy to solve this problem; in this way, the interpolated values of nodal stresses and 

nodal displacements will describe accurately the respective fields of stress and displacement, 

producing a solution that correctly predicts the behavior of the loaded plate. Furthermore, the use of 

LBs is very useful when it is needed to propagate a crack, because it is avoided an undesirable and 

excessive distortion of the elements ahead of the crack front that normally occurs in cases where 

SBs are used, especially for complex model and crack geometry [28]. 

 

Figure 6. Highlighting of the Part 1 and Part 2 of the assembly. Tie constraint conditions have been applied 
at interfaces between the two parts. 

 

3. Results and discussion 
 

3.1. Case study: results 

The analytical results and the comparison between different approaches have been reported in Table 

1. 
 

  
  Coarse mesh (64 finite elements) 

 

R
0
 [mm] 

 

Method 

 

K
1
 

 

K
2
 

 

ΔK
1
 (%) 

 

ΔK
2
 (%) 

 
Gross and Mendelson 0.655 0.638 

  
0.1 Treifi and Oyadiji 0.636 0.642 -2.90 0.63 

0.1 Method based on DSED 0.697 0.620 6.41 -2.82 

0.1 DSED modified method  0.639 0.645 -2.44 1.10 

      

0.01 Treifi and Oyadiji 0.613 0.654 -6.41 2.51 

0.01 Method based on DSED 0.708 0.616 8.09 -3.45 

0.01 DSED modified method 0.653 0.640 -0.31 0.31 
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0.001 Treifi and Oyadiji 0.624 0.651 -4.73 2.04 

0.001 Method based on DSED 0.712 0.615 8.70 -3.61 

0.001 DSED modified method 0.657 0.639 0.31 0.16 

Table 1. Comparison between approximate methods for NSIFs evaluation of central tilted crack (2α = 0°) in 
a plate of finite extension [27].  

 

3.2. FEM and DBEM analyses  

 

Numerical models corresponding to the geometric model shown in fig.1 were created by means of a 

FEM-based and a DBEM-based software, respectively. Then, two commercial codes FEM and 

DBEM-based namely Abaqus [18] and Beasy [19], have been employed respectively to model the 

square plate of a unit thickness for both 2D and 3D cases. Later, the 45° tilted crack have been 

inserted in the square plate for both 2D and 3D cases. Moreover, the Young’s modulus and the 

Poisson’s ratio chosen to model the square plate have been placed equal to 206000 MPa and 0.3, 

respectively. Then, boundary conditions have been applied to the numerical model for reproducing 

the case of a plate uniaxially loaded along the Y direction of the global reference system. 

Geometrical dimensions, loading and boundary conditions have been reported in fig.7 for the 2D 

Beasy model. These crack modelling techniques have been already extensively used in the past in 

several works [20-24,32]. Especially, the combination of the FEM-DBEM methods has proven the 

importance of this approach in the study of fatigue crack propagation [25,26]. 

 

3.2.1. DBEM analysis 

A first evaluation of stress field and SIFs has been performed in a bi-dimensional environment 

using the DBEM code (Beasy) [19]. The square plate has been modelled with four lines 

subsequently meshed with quadratic elements. Later, an embedded crack tilted of an angle   = 45°, 

compared to the X-axis, is inserted meshed in the center of the square plate. The projection of the 

tilted crack along the X-axis provides a crack length equal to 2a=2 mm. Then, tractions equal to 1.0 

MPa and -1.0 MPa and directed along the Y-axis have been applied on the upper and lower surfaces 

of the plate, respectively. Springs of stiffness equal to 10 N/mm have been introduced in the model 

as boundary conditions (Fig.7) to eliminate the degrees of freedom of rigid body. The whole model 

has been meshed with 320 and 340 quadratic elements for the uncracked and cracked 

configurations, respectively. 
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Figure 7. Highlight of the mesh adopted for the square plate with the 45° tilted crack with boundary 

conditions. 

For the cracked plate in the undeformed and deformed configurations, two plots of the stress field 

have been reported in fig.8 (a and b), respectively. 

 

(a)              (b) 

Figure 8. Principal stresses σ22 on the undeformed plot (a) and on the deformed plot (b). 

In the 3D case, the numerical solution was carried out by means of a model with the same geometry 

of the 2D model and on which the same load and boundary conditions, used for solving the 2D 

problem (fig.9), have been applied. In this case, the thickness of the body, equal to 1 mm, was 

explicitly modelled. Hence, the adopted mesh was made of total 1913 quadratic elements with 

42015 nodes whilst, for the embedded crack only 104 quadratic elements have been used. The KI 

and KII, subsequently normalised, have been calculated using the most external J-path with a radius 

equal to 0.025 mm. Furthermore, a second DBEM analysis was carried out to obtain SIFs from a 

smaller J-path radius. In the latter case, the global mesh was made of 3042 quadratic elements and 
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66285 nodes whilst, for the embedded crack, 212 quadratic elements with a J-path radius equal to 

0.01 mm have been used. Then, the contour plots of the principal stress, σyy, on deformed scale has 

been shown in fig. 9 with highlight of the refined mesh on the crack fronts. 

 

Figure 9. Contour plot of principal stresses, σyy, on deformed plot with highlight of the crack front. 

In fig. 10 more details of the 3D crack, for the case with refined mesh, are shown. 

 

Figure 10. Contour plot of σyy with highlight of a crack front. 

3.2.2.    Three-dimensional FEM analysis 

Calculations of stresses and SIFs are carried out by means of the interaction between Abaqus, as 

FEM modeler and solver, and Zencrack as fracture mechanics tool [17]. This latter is necessary to 

insert the embedded crack and to evaluate the SIFs on the free surface or along the crack front. 

Hence, Zencrack generates a crack front starting from of a meshed uncracked model and 
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substituting each original element, where the crack front will take place, with a unit block of 

cracked elements taken from a library where they are stored in form of families [17]. Each unit 

block differs from each other for the number of contained elements. To have more or less refined 

meshes on the crack front the user can select a cracked block with more or less elements, 

respectively. In this work, three kinds of unit blocks are employed to model the crack. The first is a 

SB belonging to the SB04 family, which provides the maximum accuracy for that family. The 

second and third are LBs belonging to LB02 and LB06 families, respectively, which provide the 

maximum accuracy for those families. Then, three analyses are carried out using three different 

approaches as shown in figs. 12, 14 and 16. Furthermore, several J-paths with different radius are 

disposed along the crack fronts.  

 

3.2.2.1.  Standard blocks belonging to SB04 family  

The FE model was meshed with SB04 that contains a total of 121980 fully quadratic elements with 

532514 nodes. The KI and KII have been calculated in agreement of the third J-path (third ring), 

where the distance from the crack front is 0.002 mm (J-path radius). Similarly, to the DBEM model, 

nodal constraints have been applied on four nodes in the plane at half the thickness of the square 

plate, to remove the degrees of freedom of rigid body (fig.11). Hence, the principal stresses, σ22, 

have been plotted for the undeformed and deformed configurations, respectively (fig.11). The 

maximum value of the stress scale was the same adopted for the corresponding DBEM analysis 

whilst, the minimum scale value was set to -1 MPa to better evidence the stress field in the plate. 

However, the stress distribution is substantially the same previously calculated in the DBEM 

analysis and the symmetry of the square plate permits to consider only the SIFs calculated on a 

crack front.  
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Figure 11. Contour plots of the principal stresses, σ22, for the undeformed and deformed configurations, 

respectively, with highlight of the stress scenario for a single cracked zone. 

In fig. 12, the previous stress scenario has been shown for the 45° cut model to highlight the surface 

containing the two crack fronts. J-paths have been highlighted for only one crack front. 

 

Figure 12. Contour plot of the principal stress, σ22, for the 45° cut square plate with highlight of the J-paths 
along a crack front. 

 

3.2.2.2.   Large blocks belonging to LB02 family 

In this case, a hexagonal volume containing the tilted crack has been meshed with LBs of family 

LB02. The model was meshed with a total of 123024 fully quadratic elements with 537704 nodes. 

The KI and KII have been calculated in agreement of the second ring (second J-path) where the 

distance from the crack front was equal to 0.1 mm (J-path radius). In fig. 13 and 14, the principal 

stress field, σ22, has been shown with highlight of a crack front on the deformed plot. Moreover, the 

mesh on the cracked surfaces has been highlighted as well as the j-paths along the crack front (fig. 

14). 
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Figure 13. Contour plots of the principal stress, σ22, for the undeformed and deformed configurations, 

respectively, with highlight of the stress scenario for a single cracked zone. 

 

Figure 14. Contour plot of the principal stress, σ22, for the 45° cut square plate with highlight of J-paths along 
the crack front. 

3.2.2.3.   Large blocks belonging to LB06 family 

This model contains a hexagonal volume meshed with LBs of family LB06. In this case, the model 

has been meshed with a total 134288 fully quadratic elements with 586952 nodes. The KI and KII 

have been calculated in agreement of the second ring where the distance from the crack front is 

equal to 0.1 mm (J-path radius). The part 1 of this model is meshed with the same number of 

quadrilateral elements as in the previous case whilst, to model the crack, the part 2 is meshed by 

using LBs more enriched of elements and belonging to family LB06. Also, in this case the principal 

stress, σ22, and some details of the crack front as well as the j-paths have been highlighted. 
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Comparing figures 13,14 and 15,16, respectively, it is worth noting that the stress field slightly 

changes. The stress scenario reported in figs. 15 and 16 shows a more accurate evaluation of the 

stress field because a greater number of elements has been used for modelling the crack. Therefore, 

the result of the latter analysis can be considered as the convergence result. The same occurs for the 

SIFs values. 

 

Figure 15. Contour plots of principal stress, σ22, for the undeformed and deformed configurations, 

respectively, with highlight of the stress scenario for a single cracked area. 

 

Figure 16. Contour plot of principal stress, σ22, for the 45° cut square plate with highlight of J-paths along the 

crack front. 

3.2.2.4. Comparison of normalised SIFs  

The SIFs, KI and KII, obtained from the numerical analyses and distributed along the crack front 

have been reported in normalised form in figs. 17 and 18. Hence, in table 2, all the calculated values 
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of the K1 and K2, related to the analytical and numerical analyses, have been reported. Similarly, in 

table 3, the K1 and K2 values, calculated at the intersection of the crack front with the free surface, 

have been reported. Then, the K1 and K2 values calculated at the midside position of the crack front 

have been shown in table 4.  

Each cracked block of family LB06 has about 86000 quadrilateral elements while each cracked 

block of family LB02 holds about 63500 quadrilateral elements. Moreover, each cracked block of 

family SB04 holds only 35 quadrilateral elements. Hence, the LB06 can have up to 8 contours for j-

integral calculation, the LB02 can have up to 12 contours for J-integral calculation while the SB04 

can have up to 6 contours for j-integral calculation. Despite the different peculiarities of each 

cracked block, in this case the three different families of cracked blocks have been used only to 

study the convergence of results because they allow to mesh the crack with a very different number 

of elements. 

 

Figure 17. 3D Beasy and Zencrack normalised KI comparison. 
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Figure 18. 3D Beasy and Zencrack normalized K2 comparison.  

In figs., 17 and 18 the normalised KI (K1) and normalised KII (K2), obtained from the numerical 

FEM and DBEM-based analyses versus the dimensionless length of the crack fronts have been 

reported. The trends of different K1 show a good agreement along the crack front except for that 

values calculated on the free surfaces, where they converge in pairs. Hence, the K1 produced by 

DBEM and FEM-based (SB04) analyses converge to the same value (0.61 MPa) whilst the second 

pairs, that have been produced by the two FEM-based analyses (with LB06 and LB02) converge to 

the value of 0.64 MPa. The trends of the K2 values, obtained from the FEM-based analyses, show a 

good agreement along the whole crack front and then in correspondence of the intersection between 

the crack front and the free surfaces. On the other hand, the K2 values, obtained from the DBEM-

based analysis, show a good agreement in correspondence of the breakthrough points but not along 

the whole crack front, where the maximum percentage difference located at the midside position is 

equal to 7.1%. 
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Gross and Mendelson 0.655 0.638 

  
 

    
0.1 Treifi et al. 0.636 0.642 -2.90 0.63  0.660 0.637 0.76 0.16 

0.1 Method based on DSED 0.697 0.620 6.41 -2.82  0.639 0.645 2.44 1.10 

0.1 DSED modified method  0.639 0.645 -2.44 1.10  
    

0.1 FEM LB06 
    

 0.646 0.794 0 0 
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0.07 DBEM 2D 
    

 0.654 0.639 0 0 

0.1 FEM LB02 
    

 0.642 0.798 0 0 

0.1 DBEM 3D      0.608 0.779 0 0 

0.01 Treifi et al. 0.613 0.654 -6.41 2.51  0.635 0.647 3.05 1.41 

0.01 Method based on DSED 0.708 0.616 8.09 -3.45  0.653 0.640 0.31 0.31 

0.01 DSED modified method 0.653 0.640 -0.31 0.31  
    

0.002 FEM SB04 
    

 0.610 0.754 0 0 

0.001 Treifi et al. 0.624 0.651 -4.73 2.04  0.644 0.644 -1.68 0.94 

0.001 Method based on DSED 0.712 0.615 8.70 -3.61  0.662 0.636 1.07 -0.31 

0.001 DSED modified method 0.657 0.639 0.31 0.16  
    

Table 2. Comparison between the K1 and K2 calculated with the approximate methods for NSIFs evaluation 

and the corresponding calculated by 2D and 3D numerical analyses by DBEM (red) and FEM (green) 

approaches. 

 

 

3.2.2.5.   Thickness effect on normalised SIFs 

A study to evaluate the effect produced by the increasing of the thickness on normalized SIFs has 

been also carried out. Starting from a square plate of unit thickness, four increments in the 

thickness, each one equal to 0.5 mm, have been assessed. In table 3 and 4, results of these 

calculations have been reported whilst, in figs. 19,20 and figs. 21,22, a comparison among these 

results have been shown in more details. These results have been evaluated both where the crack 

front intersects the free surfaces of the plate and at the deepest point of the crack front. In this case, 

all the FEM and DBEM-based numerical analyses have been carried out considering only 3D 

models with elements distribution on the external surfaces as for the previous cases, except for the 

distribution of elements along the thickness direction that has been changed. 
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Figure 19. Comparison of the normalized KI at free surface and with increasing thickness.  

From fig.19, it is worth noting that normalised KI, obtained from the FEM-based analyses that use 

LBs of family LB02 and LB06 are quite insensitive as the thickness increases. Moreover, the 

maximum percentage difference between the starting values for t=1.0 mm and assessed on the free 

surface is equal to 0.62%. The explanation is that, within the LB, the mesh is distributed in such a 

way that the rings constructed for the J-contour calculation allow to obtain more accurate SIF than 

those obtained with the use of SB. "Hence, percentage differences are greater if SBs have been used 

in the FE analysis. In the latter case the maximum difference for t=1.0 mm was equal to 5.6%. On 

the other hand, the DBEM based solution provides an intermediate value of normalised KI showing 

a maximum percentage difference, with respect to the corresponding FEM based analysis with 

LB06, equal to 4%. It is worth noting that, all the normalised KI values tend to decrease as the 

thickness increases up to 2.0 mm, after that normalised KI values tend to increase as the thickness 

increases up to the final value equal to 3.0 mm. 
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Figure 20. Comparison between the K2 values, obtained from the FEM-DBEM based analyses, calculated at 

the free surfaces and with increasing thickness.  

On the other hand, observing the results shown in fig. 20, it is worth noting that trend of K2 values 

obtained from the FEM-based analyses by using of LB02 and LB06 change as the thickness 

increases. Moreover, the maximum percentage difference between the starting values of K2 (t=1.0 

mm) and evaluated on the free surfaces of the plate is equal to 0.5%. As in the previous case for 

t=1.0 mm, the percentage differences are greater if in the FE analysis SBs have been used. In the 

latter case, the maximum percentage difference calculated for t=1.0 mm is equal to 5.5%. The 

DBEM based solution returns intermediate value of K2 with respect to the FEM-based solution by 

using LB02 and LB06, showing a maximum percentage difference equal to 2.4% for t=1.0 mm. It is 

interesting to observe that K2 values, related to the case where LBs have been used, tend to decrease 

as the thickness increases up to the final value equal to 3.0 mm. On the contrary, the K2 values 

obtained from the FEM based analysis, in which SBs have been used, and the K2 values obtained 

from the DBEM-based solution tend to increase as the thickness increases until the value of 2.0 

mm, respectively. Furthermore, the K2 values tend to decrease as the thickness increases until the 

final thickness (3.0 mm) has been reached. In the latter case, a convergence value of K2 can be 

obtained considering a comparison between the FEM-DBEM based solutions that corresponds to 

about 0.773 MPa (Table 3). 

 

 

 
SB04 Free LB02  LB06 Free Beasy Free 
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surface Free surface surface surface 

 
R=0.002 R=0.1 R=0.1 R=0.1 

Thickness K1 K2 K1 K2 K1 K2 K1 K2 

1.0 0.610 0.754 0.642 0.798 0.646 0.794 0.620 0.779 

1.5 0.604 0.774 0.638 0.796 0.642 0.792 0.616 0.792 

2.0 0.605 0.778 0.639 0.792 0.643 0.787 0.615 0.801 

2.5 0.605 0.783 0.641 0.785 0.645 0.780 0.625 0.785 

3.0 0.608 0.774 0.644 0.778 0.648 0.773 0.632 0.773 

Table 3. Comparison among the normalised SIFs calculated by 3D numerical analyses (FEM, DBEM) on the 

free surface. 

The K1 obtained from the FEM-based analyses that use LB02, LB06 or SB04, and the 

corresponding K1 values, obtained from the DBEM based analyses, have been all evaluated at 

midside position of the crack front and have been shown in fig.21. It is worth noting that, K1 values 

change as the thickness increases. In this case, the maximum difference among all the calculated K1 

values for t=1.0 mm is equal to 0.72%. Hence, the DBEM based solution returns intermediate 

values of the K1, calculated along the crack front, up to the final thickness (3.0 mm). It is interesting 

to observe that, all the K1 values tend to decrease as the thickness increases, namely from the initial 

thickness (1.0 mm) to the final thickness (3.0 mm). However, these results have shown a certain 

insensitivity to the variation of K1 as the thickness increases. 

 

Figure 21. Comparison of the K1 values calculated at midside position of the crack front and with increasing 

thickness.  



  

25 
 

 

Figure 22. Comparison of the K2 calculated at midside position of the crack front and with increasing 

thickness.  

On the other hand, observing fig. 22, it is worth noting that K2 values obtained from the FEM-based 

analyses that use LB02 and LB06, respectively, substantially do not change with increasing of 

thickness. Moreover, the maximum percentage difference between the K2 values for t=1.0 mm is 

equal to 0.5%. As for the previous case, the percentage differences have been greater if in the FE 

analyses SBs have been used. Then, in the latter case, the maximum percentage difference 

evaluable, compared to the case in which LB06 have been used, is equal to 1.7% for t=1.0 mm. The 

DBEM-based solution returns the highest value of the K2 showing a maximum percentage 

difference, compared to the K2 values obtained from a FEM based analysis with LB06, which is 

equal to 7.1%. It is worth noting that K2 values, related to the case where SBs have been used, tend 

not to change as the thickness increases. On the contrary, the K2 values obtained from the DBEM-

based solution tend to increase slightly as the thickness increases.  
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SB04  

Midside position 

LB02 

 Midside position 

LB06  

Midside position 

Beasy  

Midside position 

 
R=0.002 R=0.1 R=0.1 R=0.1 

Thickness K1 K2 K1 K2 K1 K2 K1 K2 

1.0 0.690 0.644 0.695 0.655 0.695 0.655 0.690 0.705 

1.5 0.686 0.645 0.690 0.655 0.690 0.655 0.687 0.708 

2.0 0.682 0.646 0.686 0.657 0.686 0.657 0.683 0.709 

2.5 0.678 0.646 0.682 0.658 0.682 0.657 0.679 0.711 

3.0 0.674 0.645 0.678 0.658 0.678 0.658 0.676 0.711 

Table 4. Comparison among the normalised SIFs calculated by 3D FEM and DBEM-based numerical 

analyses at the midside position of the crack front. 

 

 

4. Conclusions 

 

Results shown in Tables 1-2 have been obtained for a notched plate subjected to mixed mode I+II 

loading, by adopting coarse meshes if the approximate methods for rapid calculation of NSIFs have 

been used. Conversely, finer meshes have been used considering Gross and Mendelson’s equations 

as well as for both FEM and DBEM-based numerical simulations. It is worth noting that the 

percentage error has been found about 12% for the case of tilted cracks with Treifi and Oyadiji 

approach (Table 1).  For the method based on the evaluation of total and deviatoric SED, a 

percentage error, close to that observed in the case of Treifi and Oyadiji, has been found. However, 

the deviation remains greater than that observed in the case of Lazzarin et al., because of the 

dependence of the deviatoric SED on the mesh size. This problem has been overcome by the 

modified version of the method based on  deviatoric SED that, through a control volume consisting 

of a circular ring, has enabled to exclude the region characterized by the highest stress gradient 

making the method less sensitive to the refinement level of the adopted mesh. The method based on 

deviatoric SED, and in particular the modified version, has provided very good approximations and 

a greater applicability than the approach of Lazzarin et al. so it could be useful for rapid calculation 

of the NSIFs. Furthermore, two different numerical analyses have been carried out by using 

commercial software based on FEM and DBEM, respectively. The NSIFs have been firstly 

calculated at the intersection between the crack front and the free surface of the part under 

investigation. Then, a good level of agreement among the K1 and K2 (NSIFs), calculated 
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analytically by the methods for rapid calculation of NSIFs and those calculated by FEM and 

DBEM-based numerical analyses, has been found. Secondly, the effect produced on NSIFs 

according to the increasing thickness has been performed. Hence, starting from the unit thickness, 

four steps with increments of 0.5 mm each one, have been considered and the solutions for the K1 

and K2 have been reported. The K1 have shown greater sensitivity with increasing thickness, whilst 

the K2 have not shown significant variations with increasing thickness. 
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Highlights 

 

 

 Different numerical and approximate methods applied to a square plate with a 45° tilted 

crack and positioned at the centre of the plate have been compared; 

 2D and 3D numerical simulations have been carried out to investigate the solutions provided 

by the approximate methods; 

 FEM and DBEM based software have been adopted to solve the proposed study case of the 

square plate with a 45° tilted crack.; 

 The NSIFs have been calculated at the intersection between the crack front and the free 

surface of the plate;  

 To assess the thickness effect on the provided solutions, the NSIFs have also been calculated 

at half the thickness along the crack front and for increasing thickness values; 

 The NSIFs obtained from the analytical and numerical methods have been compared each 

other to evaluate the level of agreement. 

 


