@NTNU

Norwegian University of
Science and Technology

Evaluation of snow simulations in SHyFT

Amir Nasser Katirachi

Hydropower Development

Submission date: September 2018
Supervisor: Knut Alfredsen, IBM
Co-supervisor: 0ddbjgrn Bruland, IBM

Norwegian University of Science and Technology
Department of Civil and Environmental Engineering

@ NTNU

Agreement concerning MSc theses and supervision

This Agreement confirms that the topic for the MSc thesis approved, the supervisory issues are agreed and the
parties to this Agreement (student, supervisor and department) understand and accept the guidelines for MSc
theses. This Agreement is also subject to Norwegian law, the examination regulations at NTNU, the
supplementary provisions and the regulations for the MSc Engineering Education program.

1. Personal information

Family name, first name: Date of birth
Katirachi, Amir Nasser March 21, 1979
Email address Phone
amirnk@stud.ntnu.no

2. Department and program of study

Faculty
Faculty of Engineering

Department
Department of Civil and Environmental Engineering

Program of study
Hydropower Development

3. Duration of agreement

Starting date Submission deadline*
January 16, 2018 June 12, 2018

If part-time study is approved, state
percentage:

*Including 1 week extra for Easter
All supervision must be completed within the duration of the agreement.

4. Thesis working title

|[Evaluation of snow simulations in SHyFT

5. Supervision

Supervisor
Knut Alfredsen

Co-supervisor:
Oddbjern Bruland (IBM)

Standardized supervision time is 25 hours for 30 credits (siv.ing) and 50 hours for 60 credits (MST) theses.

6. Thematic description
1 BACKGROUND

Snow is a very important component in the hydrological cycle in Norway and crucial for determining reservoir
operation during the spring flood to ensure full reservoir and as little flood spill as possible. The Statkraft
Hydrological Forecasting Toolbox (SHyFT) is a newly developed hydrological toolbox that is used for forecasting
inflow in the Statkraft system. This is a flexible system in which model can be custom designed for various
purposes. The SHyFT toolbox currently have three different methods for simulating snow accumulation and

storage, and these are not yet evaluated with snow data. The purpose of this master thesis is to evaluate the
SHyFT snow routines against observed snow data from satellite images and snow measurements in the field.

2 MAIN QUESTIONS FOR THE THESIS
The main questions for the thesis can be stated as follows:

1. Prepare the data needed to calibrate the SHyFT model for the Nea-Nidelva catchment. This includes climatic
data from observation sites in the catchment and other climatic data derived from other stations. Collect the
data needed for evaluating the snow simulations, including both satellite imagery and from measurement
campaigns in the field. Decide on the periods that should be used for calibration and evaluation based on
the available data.

2. Calibrate SHyFT for Nidelva for all three snow routines. Compare the calibrations and evaluate their
goodness based on standard parameters measuring runoff distribution and runoff volume.

3. Compare simulated snow from the three setups from 2) against each other and against observed snow data.
Perform a statistical analysis to evaluate both the temporal and spatial accuracy of the simulated snow.
Measures of goodness of fit both for temporal and spatial variation should be decided and used in this task.
Discrepancies should be quantified and evaluations should be done to try to identify reasons for any
differences between observed and simulated snow cover and water equivalent such as autumn snow start
errors or errors in snow volume over the winter.

4. Based on the findings in 3), try to improve the snow simulations in the model. In addition to parameters in
the snow routines, the temperature and precipitation distribution and gradients should be evaluated. Any
proposed changes should be evaluated using the calibrated model and the indices of goodness of fit from
3).

5. Evaluate the possibility of including snow data in the calibration of the model, and recalibrate SHyFT using
available snow data.

3 SUPERVISION, DATA AND INFORMATION INPUT

Professor Knut Alfredsen and Professor Oddbjegrn Bruland, NTNU will be advisors on the project. Dr. Yisak
Abdella and Dr. Knut Sand at Statkraft will contribute to the project based on their experience with SHyFT, snow
measurements and snow simulations. Professor Knut Alfredsen will handle the formalities related to the
supervision.

Discussion with and input from colleagues and other research or engineering staff at NTNU, SINTEF, power
companies or consultants are recommended. Significant inputs from others shall, however, be referenced in a
convenient manner.

The research and engineering work carried out by the candidate in connection with this thesis shall remain within
an educational context. The candidate and the supervisors are therefore free to introduce assumptions and
limitations, which may be considered unrealistic or inappropriate in a contract research or a professional
engineering context.

4 REPORT FORMAT AND REFERENCE STATEMENT

The thesis report shall be in the format A4. It shall be written as a manuscript ready for submission to the
journal Hydrology Research. The manuscript must therefore adhere to the length requirements, formatting
rules and standards for figures and tables given by the journal. Extra material can be submitted in the thesis as
appendixes that each should include a short introduction to the material.

The report shall have a professional structure, assuming professional senior engineers (not in teaching or
research) and decision makers as the main target group.

7. Other Agreements

Supplementary agreement

Not applicable

Approval required (REK, NSD)

Not applicable

Risk assessment (HES) done

Not applicable

Appendix (list)

8. Signatures

Conditions

Date

Signatures

| have read and accept the guidelines for MSc theses

Student
| take the responsibility for the supervision of the
student in accordance with the guidelines or MSc
theses Supervisor

| take the responsibility for the co-supervision of the
student in accordance with the guidelines for MSc
theses

Co-supervisor

Department/Faculty approves the plan for the MSc
thesis

Department/Faculty

Acknowledgment

| would first like to thank my thesis advisor professor Knut Alfredsen. | always had his prompt
email responses whenever | ran into trouble spot or had a question about my research or
writing. He supervised this project during last summer and dedicated his time to this project
even while he was on vacation.

| would like to acknowledge professor Oddbjgrn Bruland as the second advisor of this thesis,
and | am grateful for his valuable comments on this thesis.

| would also like to thank Dr. Yisak Abdella of Statkraft for providing this project with requisite
input data.

Also, my sincere gratitude goes to Andrew Mabula, MSc. Hydro power development student
at NTNU for his great support and help and Felix Nikolaus Matt, department of geoscience
university Oslo and Sigbjgrn Helset from Statkraft for their vital assistance in SHyFT.

Finally, | express my very profound gratitude to my wife and my parents who have supported
me throughout entire process. This accomplishment might not have been possible without
them.

Amir Nasser Katirachi
September 2018

Table of content

Agreement
Acknowledgement
List of Appendices
List of figures

List of Tables

List of equations

Abbreviations

1. Introduction

2. Paper: Evaluation of snow simulations in SHyFT
Abstract
1. INTRODUCTION
2. MATERIALS AND METHODS
2.1 Software application used:
2.2 Meteorological data (AROME):
2.3 Precipitation correction scale factor:
2.4 Evaporation routine:
2.5 Snow routine
2.5.1 HBV Snow routine:
2.5.2 Gamma Snow routine:
2.5.3 Skaugen Snow routine:

2.6 Response routine:

2.7 Agreement between Observed and simulated values:

2.8 Optimization methods:
2.9 Study catchment:
2.10Snow data collection:

3 RESULTS AND DISSCUSION
3.1 Calibration and validation:

3.2 Snow courses SWE calculation:

vii

viii

Vil

Xi

Xiii

00 00 0 N N N O U A N A DDA WOWWN R R

3.3 Cells terrain characteristics:
3.4 Observed and simulated SWE of interested cells:
3.5 MAE of SWE in different aspects:
3.6 Relationship of various parameters and SWEAE:
3.7 Investigations more on hydrographs, SCA and SWE graphs:
3.8 Comparing the results with satellite images:
4 SUMMARY AND CONCLUSION
5 ACKNOWLEDGMENTS
6 REFRENCES

List of Appendices
Appendix 1: Python script for Snow course calculation
Appendix 2: How does SHyFT work?
Appendix 3: YAML files
Appendix 4: Calibration codes
Appendix 5: Simulation codes
Appendix 6: Miscellaneous codes
Appendix 7: Calibration results
Appendix 8: Summary of SWE calculations
Appendix 9: Calibrated and validated Hydrographs
Appendix 10: Graphs code in Seaborn (Python)
Appendix 11: miscellaneous graphs
Appendix 12: YouTube movie

Appendix 13: Satellite images

List of figures
Figure intro.1 HBV Snow routine model
Figure intro.2 SDC in Gamma snow routine
Figure 1 Observed and simulated SWE in all measured cells in five consecutive years
Figure 2 MEA of SWE on different aspects
Figure 3 Relation of SWE to various parameters

Figure 4 comparing of PTGSK method with two other methods

viii

11
12
13
13
17
18
19

XV
XVi
10
11
15
16

Figure 5 Snow Cover Area (SCA) and Snow Water Equivalent (SWE) and Satellite images 16

Figure Ap1.1: Snow course on the catchment layout
Figure Ap1.2: Snow course over cells grid 1

Figure Ap1.3: Snow course over cells grid 2

Figure Apl.4: Snow water equivalent histogram

Figure Ap9.1: Observed and PTGSK simulated hydrographs
Figure Ap9.2: Observed and PTHSK simulated hydrographs
Figure Ap9.3: Observed and PTSSK simulated hydrographs
Figure Ap11.1: Logarithmic SWE axis in different cells
Figure AP11.2: SWE boxplot of different cells

Figure AP11.3: An example of a SWE depth profile

Figure AP11.4 SWE Real error boxplot against ranges 1
Figure AP11.5 SWE real error boxplot against ranges 2
Figure AP11.6 Snow course on the catchment layout
Figure Ap13.1: A typical satellite image during snow season

Figure Ap13.2: Changing the image Style in Qgis

List of tables

Table 1 Terrain characteristics of all measured cells

Table Ap7.1: 200 calibration results for PTSSK method

Table Ap7.2: Top 36 calibration results parameters for PTSSK method
Table Ap7.3: 200 calibration results for PTHSK method

Table Ap7.4: Top 36 calibration results parameters for PTHSK method
Table Ap7.5: Calibration results for PTGSK method

Table Ap7.6: Top 36 calibration results parameters for PTGSK method
Table Ap7.7: All parameters ranges for all methods

Table Ap8.1: Summary of SWE calculation in passed cell in PTGSK method
Table Ap8.2: Summary of SWE calculation in passed cell in PTHSK method
Table Ap8.3: Summary of SWE calculation in passed cell in PTSSK method

Appendix 1 (xiii)
Appendix 1 (xiii)
Appendix 1 (xiv)
Appendix 1 (xiv)
Appendix 9 (i)

Appendix 9 (ii)

Appendix 9 (iii)

Appendix 11 (i)
Appendix 11 (ii)
Appendix 11 (ii)
Appendix 11 (iii)
Appendix 11 (iii)
Appendix 11 (iv)
Appendix 13 (i)
Appendix 13 (ii)

9

Appendix 7 (i)
Appendix 7 (ii)
Appendix 7 (iv)
Appendix 7 (v)
Appendix 7 (vii)
Appendix 7 (viii)
Appendix 7 (xii)
Appendix 8 (i)
Appendix 8 (iii)

Appendix 8 (v)

List of equations
Equation intro.1 SDC model for a single cell
Equation (1) Priestley Taylor formula
Equation (2) SDC model for a single cell
Equation (3) Q is a function of catchment storage
Equation (4) conservation mass
Equation (5) sensitivity function

Equation (6) Nash-Shutcliffe efficiency

a oo oo o U b

Abbreviations

AP| Application Programming Interface

AROME Application of Research to Operations Mesoscale
BOBYQA Bound Optimization By Quadratic Approximation
BTK Bayesian Temperature Kriging

CDF Cumulative probability Distribution Function

cv Coefficient of Variation

DDD Distance Dynamics Model

ECMWF European Center for Medium Range Weather Forecast
ENKI Dynamic Environmental Model Framework

GPR Ground Probing Radar

GPS Global Positioning System

HBV Hydrologiska Byrans Vattenbalansavdelning

IDW Inverse Distance Weighting

KGE Kling Gupta Efficeincy

m.a.s.| meters above sea level

MAE Mean Absolute Error

MAESWE Mean Absolute Error of Snow Water Equivalent
MODIS Moderate Resolution Imaging Spectroradiometer
NetCDF Network Common Data Frame

NSE Nash Sutcliffe Efficiency

NWP Numerical Weather Prediction

PCC Pearson Correlation Coefficient

PDF Probability Density Function

PTGSK Priestley Taylor Gamma Snow Kirchner

PTHSK Priestley Taylor HBV Snow Kirchner

PTSSK Priestley Taylor Skaugen Snow Kirchner

SCA Snow Cover Area

SCE-UA Shuffled Complex Evolution method developed at the University of Arizona
SD_LN Snow Distribution Log-normal

SDC Snow Depletion Curve

SHYFT Statkrafts Hydrological Forcasting Tool Box

SWE Snow Water Equivalent

SWEAE Absolute Error of Snow Water Equivalent

UTM Universal Transverse Mercator

YAML Yet Another Markup Language

Xi

1. Introduction

Water is considered as a vital source in all countries as it has significant economic,
environmental and social values which are growing rapidly. Seasonal snow covers mountains
in high-altitude regions of the Earth and supply valuable water resources for various activities
such as; winter entertainment, irrigation, drinking water and hydropower production.

This study was done on Nea-Nidelva catchment in the center of Norway. The catchment is
mainly forested and covered with snow for more than five months of the year. The
accumulation season usually starts in November and snowmelt starts in April or May. The snow
melt season is rather long and less intense. Grid lines of 1 km interval where used with the
catchment being gridded into 3606 cells. The area of cells near the edge where less than 1 km?
while the inner ones gave 1 km?2. The total area of the catchment is 2876 km?.

There are six snow courses in the high elevation of the catchment. The snowpack data is
collected by Statkraft each year. SHyFT (Statkraft Hydrological Forecasting Toolbox) is the main
program in this study. There are three methods for snow simulation in this program. Each
routine has a different number of parameters that share specific parameters. The model is a
conceptual model which is able to use free variables for modeling. Evapotranspiration and soil
response routines are the same in three methods but different snow routines. The Priestley
Taylor equation is used for evapotranspiration which is more simple and straight forward
compare with Penman equation and Kirchner formulas which are used for soil response.
SHyYFT utilizes a C++ core which was designed for ENKI program previously. ENKI stands for
Dynamic Environmental Model Framework. The model was developed by Statkraft and later
developed and enhanced by SINTEF center. Although ENKI is a powerful hydrological tool, it is
not fast enough in operation. Due to the need for a faster application for calibration in practical
activities, SHyFT model was introduced. The SHyFT core is written in C++ but the API
(Application Program Interface) is created in Python language and many useful Python classes
are accessible in SHyFT. Due to heavy computations in SHyFT, the C++ language is used to have
more control on memory leakage since C++ is more of a low-level language compared to
Python and provides more flexible for memory management. The program can be used to
simulate distributed model as well as lumped ones. In distributed models, the data is assigned

to every single cell but in SHyFT there is no connection between cells instead there is

xiii

connection between cells and their associated outlet. Every hydrological simulation model
includes; evaporation routine, snow routine and soil response routine. SHyFT use Priestley
Taylor equations for Actual Evaporation (‘ae’ is used in SHyFT yaml file). There are three snow
routines in SHyFT; Gamma distribution Snow, HBV Snow and Skaugen Snow along with another
routine-HBV Stack which is similar to HBV Snow. The Kirchner routine is the response routine
used in SHyFT while either the Nash—Sutcliffe efficiency (NSE) or Kling—Gupta efficiency (KGE)
can be used for calibration judgment. A correction value to modify precipitation biasedly is also
provided in SHyFT.

Comparing Observed and simulated Hydrographs is the main key point to validate a simulation.
Calibration means adjusting the free parameters of a catchment to simulate a synthetic
hydrograph not exactly resembling but having a good fit within acceptable margins against the
observed values. Three methods PTGSK (Priestley Taylor Gamma Snow Kirchner), PTHSK
(Priestley Taylor HBV Snow Kirchner) and PTSSK (Priestley Taylor Skaugen Snow Kirchner) were
studied in this project.

AROME meteorological data was used for this study. Instead of using the observed stations
data and then distributing it by a given equation, the distribution AROME data was used.
AROME is a numerical convective-scale forecast operational model. This numerical weather
prediction took six years to be developed and validated before it became operational in 2008.
High grid resolution enhances regional prediction of mesoscale phenomena to 2.5 KM
resolution grid was selected for AROME. Arome data are forecast distributed data and has
good spatial coverage. Other projects with the same AROME concept and various grid
resolution are used in some European countries. AROME produces prognostic variables such
as; Temperature, moist content, wind speed and etc. French radar network systems are used
to improve the spatial and quantitative values of precipitation forecast. The model also uses
ECMWEF (European Center for Medium Range Weather Forecast) for radiation data. Arome was
evaluated with ALADIN-France forecast in 2008. (Seity, Brousseau et al. 2011). Although these
are not observed but forecasted data which have some tolerances with real values, they are
not distorted by distribution equations as they are high grid resolution distributed AROME
data. One of the main triggers in the use of AROME was the devastating flash flood in the south
of France and needs for a high grid resolution NWP (Numerical Weather Prediction). Another
benefit of Arome is that it doesn't need to distribute data based on data point stations as it is

already distributed.

Xiv

Priestley Taylor was used for Evaporation routine. Due to the need for a number of input data
for the Penman equation, Priestley Taylor was introduced in Australia in 1972 which is simple
and uses the dimensionless empirical approximation value, Priestley-Taylor coefficient, for
input data other than radiation data. This makes it suitable for places that do not have either
one or both of relative humidity and wind speed data.

There are three snow routines. First HBV snow routine, HBV is hydrological model which was
developed in Sweden. Snowmelt is computed by a degree-day method in HBV snow routine.

Figure (1) shows the HBV snow routines formulas.

Ta<Tx
Snow

Ta >Ts Snow Melt = Cx . (Ta-Ts)

Ta < Ts Snow freezing = Ta>Tx
Cx.CFR. (Ta-Ts) SW:free) Rain
water in
SN: Dry Show SHow
To Soil

Figure intro.1 HBV Snow routine model

The second snow routine is Gamma snow distribution. (Kolberg and Gottschalk 2010) assumes
that Snow Cover Area (SCA) is homogenous in all sub grid cells in Gamma snow routine. While
the boundaries of SCA is from 1to 0, the (1-SCA) is a function of accumulated snow melt depth.
Gamma Snow routine illustrates with a Snow Depletion Curve (SDC). The relationship between
mass balance of a heterogeneous snow cover and the fractional snow cover area is
represented by SDC. The equation (1) shows SDC model for a single cell, (A) for a short term of
SCA, P () the probability density function (PDF) and F () for the Cumulative probability
Distribution Function (CDF)

Equation intro.1 SDC model for a single cell

A1)
A() =40 - {1 = F(O)]} F[A(D)] :/0 }P(.r;m,chd.rZ”r(l : 'A)

cr’ev: m

A(t) is snow cover area of a cell in time t. Four variable define the snow pack state in every cells
1. m the average Snow Water Equivalent of the cell at the melt season start (mm)
2. Coefficient of variation (CV) of SWE which shows the heterogeneity of that cell
3. A(0) The Snow Cover Area of the cell at the start of season melt. (0 to 1)

4. A(t) the accumulated snow melt since snow melt start (mm)

XV

The first three variables are SDC parameters. It assumes that the SDC doesn’t change during
snow melt season so that these three variables remain static during the period but only A
changes during snow depletion. The most important variable of a SDC is the CV as it governs
the gradual reduction of SCA. Previous researches show that a CV value between 0.4 to 0.9 for
based ground terrain and 0.2 and smaller for forest and low wind speed lands are a good
estimate. The value of A equivalent to 0 means the snow-covered area fraction was not
covered with snow even in the mid-winter season as a result of either wind erosion or

avalanche activities. (Kolberg and Gottschalk 2010).

P(X<x) SCA(N)
! Melted Remaining 0
snow snow
0.81 T0.2
0.61 T0.4
A(t)
0.41 T0.6
0.29 T0.8
m,cv,
A
0 M T T 1.0
0 200 400 600 800
xor A [mm]

Figure intro.2 SDC in Gamma snow routine

The snow depletion curve (SDC) based on the Gamma distribution snow routine is illustrated
in figure (2). Snow melt sensitivity to wind and snow-rain threshold temperature are free
parameters in Gamma distribution snow routine.

The third method is Skaugen method. The main objective of developing Skaugen snow model,
also known as the Distance Dynamics Model (DDD), is to reduce the number of calibration
against observed runoff as much as possible. Reducing the number of free variables can
decrease uncertainty of the model and make it easier to diagnose it while maintaining its
accuracy as a modern hydrology model. The main parameters in this model are precipitation
and temperature. The spatial Probability Density Function (PDF) of Snow Water Equivalent
(SWE) is Snow Distribution Log-normal (SD_LN) for this model. The sum of uniform and log-
normal distribution snowfall events make the PDF and the coefficient of variation (CV) is
constant. The spatial distribution of every snowfall has a fixed shape with calibrated CV
regardless of its intensity.

In this approach nine quantiles are estimated for every snowfall and in all snowfall events the
highest SWE quantile always gets the most SWE with the second highest SWE quantile getting

the second highest and the sequence continues accordingly while the coefficient of correlation

XVi

of the sum of events remains constant. The spatial distribution of snow melting is constant and
the value of Snow Cover Area (SCA) decreases when the SWE of a quantile drops to zero. The
sum of zero quantile makes the free snow area fraction. (Skaugen and Weltzien 2016)
Concerning the response routine, the spatial heterogeneity of material properties and
complicated physical processes control the subsurface flow. The hydrology of catchments is
complicated and requires simplification to make an ideal model. In some hydrological models,
microscale physics properties are generalized to an entire catchment whilst lacking clarity on
correctness. Kirchner is a simple response routine formula which SHyFT makes use of.

The SCE-UA (Shuffled Complex Evolution method developed at the University of Arizona) is an
efficient and effective global optimization which has been used in many watershed model
calibrations. This optimization method has some unique specifications which converge globally
even in the presence of multiple regions of attraction, and is not trapped by small bumps and
pits on the objective surface. (Duan, Sorooshian et al. 1994). MIN-BOBYQA (Bound
Optimization By Quadratic Approximation) is a local deterministic algorithm. Although it is
possible to calibrate many parameters, it is not clear if it is a global response or not. In this
study MIN-BOBYQA was used.

After Completion of the calibrations based on the three methods, the results obtained did not
correlate to the observed. The PTHSK and PTSSK simulated just around 1% of the observed
snow pack necessitating check on the scripts which was conducted thoroughly. However, the
check did not identify any errors but prompted a discussion with the supervisor, Professor
Knut, and another expert researcher in Oslo, Felix Nikolaus Matt. This resulted in the
identification of a significant bug in the SHyFT program. The bug was reported to the developer
of SHyFT and it was fixed. Although this event held the project for a few weeks, it was worth it

as the program received an update.

XVii

2. Paper

Evaluation of snow

simulations in SHyFT

M.Sc. thesis: Evaluation of snow simulations in SHyFT Amir Nasser Katirachi

Evaluation of snow simulations in SHyFT

Abstract:

The main objective of this paper is to evaluate the SHyFT snow routine performance against
observed snow data obtained from snow measurements in the field. SHyFT (Statkraft
Hydrological Forecasting Toolbox) is an open source hydrological model recently developed by
Statkraft for forecasting inflow. The system of the model has been designed in a flexible
manner to allow ease of customization for various purposes. The SHyFT toolbox currently has
three different methods for simulating snow accumulation and snow depletion, which have
not previously been evaluated with snow data. These methods are Gamma snow distribution
routine, HBV snow routine and Skaugen snow routines. Each method has its own parameters
and unigue approach to model the snow accumulation and snow melt.

The case study is based on 2876 km? area of the Nea-Nidelva catchment which is located in
the center of Norway (63° N, 10° E). A grid scale of 1 km is used, dividing the catchment into
3606 cells with some of the cells, located around the edges, being less than 1km?2.

Simulated results of SWE (Snow Water Equivalent) based on the three previously mentioned
methods using data from 2012 to 2017 were compared against observed SWE from snow
course data. The snow course data, provided by Statkraft, has 6 snow courses in a period of 5
years. The SWE data were recorded using a snow radar which collected it per meter, on
average. Each snow course transect passes some cells so that these cells contain observed data
points.

200 calibrations were conducted for each method, out of which the best 36 results were
selected. An average of these was computed and used as a representative of the associated
method. Simulations with the calibrated data were conducted and the results analyzed and
discussed. The analysis was based on correlation of specific parameters; slope, elevation,
terrain roughness and number of observed points in a cell against the absolute error of SWE,
of which a discussion is provided. Further, in addition the Pearson correlation coefficient were
presented for each scatter plot and the three methods. The hydrographs, SCA (Snow Cover
Area) and SWE graphs were examined to observe similarities and dissimilarities of the different

methods. The results of PTGSK (Priestley Taylor Gamma Snow Kirchner) show a variation in SCA

M.Sc. thesis: Evaluation of snow simulations in SHyFT Amir Nasser Katirachi

as well as in SWE when compared with PTSSK (Priestley Taylor Skaugen Snow Kirchner) and
PTHSK (Priestley Taylor HBV Snow Kirchner). Further, the comparison of satellite images with
SCA images provides a good basis for identifying the method that generates a better
simulation.

KEYWORDS: SHyFT, Gamma snow distribution routine, HBV Snow routine, Skaugen snow

routine, SWE, SCA, snow pack, snow course, spatial resolution satellite images, MODIS

1. INTRODUCTION

Norway has significant snowfall each year accounting for 30% of annual precipitation. This
qualifies snow to be one of the main components of the hydrological cycle which plays a vital
role in hydropower production. It is possible to operate hydropower reservoirs with minimal
flood spill during early spring provided sufficient knowledge of spatial and temporal
distribution of snow storages is available. (Skaugen and Weltzien 2016) (Kolberg and
Gottschalk 2010). In this study, the Nea-Nidelva catchment in the center of Norway was
modeled with SHyFT (Statkraft Hydrological Forecasting Toolbox) based on three snow
routines; Gamma snow distribution, HBV snow and Skaugen snow.

SHyFT is a conceptual model. There are large number of variables in conceptual models which
are not possible to measure directly but must instead be estimated using a calibration process
of fitting the simulated outputs of the model to the observed outputs.(Duan, Sorooshian et al.
1994). Two important parameters in snow routines are SWE (Snow Water Equivalent) and SCA
(Snow Cover Area).

The flexibility and robustness of the HBV model structure as well as the simplicity of input data
make it reliable for hydrological modelling. (Al-Safi and Sarukkalige 2017). Gamma snow
distribution use SCA to model the SWE with more variables than HBV. The Skaugen snow is the
latest routine and uses log normal distribution for Probability Density Function (PDF) In SWE
and the SCA for the entire precipitation area reaches to a value of one after every snowfall
event, which means it assumes that snow covers all the ground. (Skaugen and Weltzien 2016).
It is not easy to make judge regarding their parameters as well as to find which variable(s) are
more significant than the other. Many parameters and variables control snow melting and
refreezing., It is reasonable to consider the temperature only but a study shows that albedo is

more important than air temperature in mountainous areas. (Kolberg and Gottschalk 2006).

2

M.Sc. thesis: Evaluation of snow simulations in SHyFT Amir Nasser Katirachi

Good estimate of snow reservoir and reasonable forecast of precipitation and temperature
guarantee a reliable knowledge on the discharge. Some drivers change the spatial distribution
of snow after falling. These include wind and topography which intensify on high elevations
and steep terrains. (Kolberg and Gottschalk 2010). Spatial distribution of SWE has a great effect
on snow melting pattern. A large spatial heterogeneity in snow storage accompanied with large
snowfall measurement errors make operational management difficult. (Kolberg and Gottschalk
2010). In this study, the AROME input data is used as meteorological data. In most of the
conceptual models, including this study, calibration and validation are narrowed to comparing

simulated results with observed runoffs. (Seibert 2000).

2. MATERIALS AND METHODS

2.1 Software application used:

The model is coded in SHyFT which is an integrated, sophisticated open source hydrological
model and being developed and supported by Statkraft. The core of the model is written in
C++ language which was previously used for another simulation model-ENKI. When modeling
multiple catchments for runoff calibration with NSE method, ENKI is the better option in
comparison to SHyFT (Shrestha and Aryal 2011). Distributed models such as SHyFT
compensates the heavy computational and preparatory tasks by increasing the simulation

precision using more explicit areal distributed input and processes (Rinde 1996).

2.2 Meteorological data (AROME):

AROME is a numerical convective-scale forecast operational model which stands for
Application of Research to Operations Mesoscale, developed in France. Numerical weather
prediction (NWP) were introduced more than a half century ago and have progressed due to
high processing capacity of super computers. (Seity, Brousseau et al. 2011). Hourly forecast of
precipitation, Temperature, wind-speed, relative-humidity and radiation in AROME, were

available for the period (2012-2017) by Statkraft.

M.Sc. thesis: Evaluation of snow simulations in SHyFT Amir Nasser Katirachi

2.3 Precipitation correction scale factor:

This is used to correct the accumulation precipitation for a specific region during the
calibration. The initial value is one but can be set between upper and lower boundaries for

calibration.

2.4 Evaporation routine;

The Priestley Taylor is used as the evaporation routine in SHyFT.

PET = a2 (g +1))

Equation (1) Priestley Taylor formula
s(Tg)+y

PwAv

Equation (1) shows the Priestley Taylor formula, where, PET is the potential evaporation, K,
the short wave radiation, L,, the long wave radiation, s(T,) the slope of satuaration vapor
pressure vesus the temperature curve, y is the Psychometric constant, p,, is the mass density
of water and Av is the latent heat of vaporization and the value used is 2.45 MJ kg-1. a is the
Priestley-Taylor's constant. However, it fluctuates throughout seasons and days, and average

value of 1.26 is used. (Priestley and Taylor 1972)

2.5 Snow routine

2.5.1 HBV Snow routine:

The HBV (Hydrologiska Byrans Vattenbalansavdelning) is a hydrological model that was
originally developed at the Swedish Meteorological and Hydrological Institute (SMHI) by Dr.
Sten Bergstrom for runoff simulation and hydrological forecasting. The model is a semi-
distributed conceptual model which has been subjected to a number of modifications over

time although the philosophy of the model has not changed. (Bergstrém 1997).

2.5.2 Gamma Snhow routine:

(Kolberg and Gottschalk 2010) assumes that Snow Cover Area (SCA) is homogenous in all sub

grid cells. While the boundaries of SCA is from 1 to 0, the (1-SCA) is a function of accumulated

M.Sc. thesis: Evaluation of snow simulations in SHyFT Amir Nasser Katirachi

snow melt depth and gamma Snow routine illustrates with a Snow Depletion Curve (SDC). The
relationship between mass balance of a heterogeneous snow cover and the fractional snow
cover area is represented by SDC. The equation (2) shows SDC model for a single cell and (A) is
a short term of SCA and P () is probability density function while F () is cumulative probability

distribution function (CDF)

Equation (2) SDC model for a single cell

A1)
Aty =4o- {1 =FD®]} F\2)] :fg }P(.r;m‘chd.r:”r(S 'A)

c’'ev: m

A(t) is snow cover area of a cell in time t. Four variables define the snow pack state in every
cells

1. m the average Snow Water Equivalent of the cell at the melt season start (mm)

2. Coefficient of variation (CV) of SWE which shows the heterogeneity of that cell

3. A (0) The Snow Cover Area of the cell at the start of season melt. (0 to 1)

4. \(t) the accumulated snow melt since snow melt start (mm)

2.5.3 Skaugen Snow routine:

The input data are temperature and precipitation while the major parameters are estimated
from observed data directly in Skaugen model which is also called Distance Dynamics Model
(DDD) (Skaugen and Onof 2014, Skaugen and Weltzien 2016). The model uses unique
distribution method for each catchment respect to the Geographical Information System(GlIS)
and drives the dynamics of runoff from distribution of distance from points in the water basin
to the closest stream. This model is a semi-distributed model and distributes the precipitation
in to ten equal areas with different elevation. Degree-day model is used for snow melting in

this model. (Skaugen and Onof 2014)

2.6 Response routine:

SHyYFT uses the Kirchner formulas to model soil response. The model assumes that Q is a

function of catchment storage (S).

M.Sc. thesis: Evaluation of snow simulations in SHyFT Amir Nasser Katirachi

Q=f(S) Equation (3) Q is a function of catchment storage

In some catchments large fractions of precipitation flow directly to the stream so the premise
is not correct in such a case. The model also assumes that the net ground water flow across
the catchment boundary is zero and saturated and unsaturated body masses are hydraulically

connected.

ds _

P —F — Q Equation (4) conservation mass

P, E and Q are the rates of precipitation, evaporation and discharge respectively.

The sensitivity function shows the sensitivity of the discharge to storage changes: g(Q),

dQ dQ
_de g T
9Q) = — at = —dt

s 48/, P-E-Q
If E & P << Q, then

Equation (5) sensitivity function

dQ _de
(@) = L=~ L2t S5 1n(g(Q)) = n (%

c3. (In(Q))?

PKQ&E K Q>#c1+cZ.ln(Q)+

0.0001 mm of water level is set as the minimum Q value for each step and if the supplied Q
smaller than this value, the new Q is set as the new water level to keep the stability of

algorithm. C1, C2 and C3 the Kirchner parameters model. (Kirchner 2009)

2.7 Agreement between Observed and simulated values:

Minimizing the differences between observed and simulated values is the purpose of
calibration (Iskra and Droste 2008). There are a number of methods used to compare simulated
and observed values. Nash-Shutcliffe efficiency (NSE) is highly popular in the hydrological
modeling. (Al-Safi and Sarukkalige 2017). In this study, NSE method is used. Eq. (6) shows the
Nash-Shutcliffe efficiency formula

—0.:)2
R2=1-— 2(Qobs—Qsim)

G 00ne)? Equation (6) Nash-Shutcliffe efficiency
obs—Nobs

Where Q,ps and Qi are observed and simulated runoff respectively and Q,s is the mean

value of observed runoff data. The result of NSE varies from minus infinity and 1. The value of

M.Sc. thesis: Evaluation of snow simulations in SHyFT Amir Nasser Katirachi

1 indicates a perfect fit. The further the value is lower than one, the lower the accuracy of the

results.(Nash and Sutcliffe 1970).

2.8 Optimization methods:

There are some optimization methods that can be set in SHyFT such as; MIN-BOBYQA, dream
or SCE-UA. MIN-BOBYQA was employed as the optimization method in this study as it is faster
than other in SHyFT. The Hydrological calibration consists of adjusting daily flows and water

balance for the whole period (2012-2017).

2.9 Study catchment:

The catchment is Nea-Nidelva located latitude 63° and 64° N, longitude 10° and 12° with an
area of 2876 Km?. The land elevation is between sea level and 1750 m.a.s.| which is situated in
the center of Norway. The elevation of hilly terrain increases toward the east and just 10% of
region is higher than 1000 meters. The main river, Nea-Nidelva, drains to the fjord of

Trondheim.

2.10 Snow data collection

Data of snow depth and snow density for this study were obtained from 6 permanent snow
courses in the Nea-Nidelva catchment set by Statkraft. The snow courses are located at around
1000 m.a.s.l. on the east part of the catchment. All of them are located in zones with similar
amount of low vegetation or bare ground. The layout of snow courses is distributed on high
mountain which is completely covered by snow for more than six months. The data collection
was conducted in the early weeks of April except in 2017 when it was collected in the first week
of March. It is not so easy to collect correct data during the melting period due to the need of
manual calibration to determine the snow depth and snow density. (Marchand, Bruland et al.
2001). The snow course transects are fixed by GPS (Global Positioning System) between 2.8 km
and 5 km along snow courses. The snow depths were measured at one-meter interval on
average by Ground Probing Radar (GPR) which is adopted for the analysis of thickness and

density of the snow cover. (Sand and Bruland 1998)

M.Sc. thesis: Evaluation of snow simulations in SHyFT Amir Nasser Katirachi

3. RESULTS AND DISSCUSION
3.1. Calibration and validation:

The three methods used are PTGSK (Priestley Taylor Gamma Snow Kirchner), PTHSK (Priestley
Taylor HBV Snow Kirchner) and PTSSK (Priestley Taylor Skaugen Snow Kirchner). 200
calibrations with different random initial values were conducted for each method in a three-
year period (2012-2015). There are many combination sets of free variables that would make
good fit with observed data (Duan, Sorooshian et al. 1992). The calibrated parameters were
examined after each calibration to ensure that none of them had gone beyond their limits. If
one parameter exceeded its limit all previous calibrations were discarded and the limits of that
parameter were changed and the calibration process redone. The water balance was adjusted
after each calibration by modifying the precipitation factor and rerunning the simulation with
a new parameter set. The validation process was done for a two-year period (2015-2017) and
the average of the 36 highest NSEs for each method selected as the representative of the
respective method. The NSEs of calibrations for all the methods is 77% while the validation
NSEs are 67%, 81% and 79% for PTGSK, PTHSK and PTSSK respectively. NSE is normally between
0.8 and 0.95 for high-quality input data. (Al-Safi and Sarukkalige 2017). Even though all three
methods failed to simulate some peaks, the hydrograph results showed that the calibrated

discharges are well in agreement with observed data series inclusive of validation hydrographs.

3.2. Snow courses SWE calculation:

A Python script codes was written to read the GPR logged snow data (X and Y coordinates and
SWE of all points in snow course transect) and the center points of all cells (1 km X 1km). Each
snow course line point was allocated to the cell in which it was nearest to. The snow course
line points of a cell were categorized into an individual group in which the SWE averages were
calculated and designated as observed SWE. If the number of observed points in one cell were
less than 200 points, the data was discarded. The length of 200 points in a typical snow course
transect is 200 meters in average which translates to one-fifth of a side of a cell. This procedure

was repeated for six snow courses from 2012 to 2017 for three methods.

M.Sc. thesis: Evaluation of snow simulations in SHyFT Amir Nasser Katirachi

3.3. Cells terrain characteristics:

Table (1) tabulated the

Cell No. Orientation Elevation Slope]JCell No. Orientation Elevation Slope

210 North-West & 1175 29% 765 North-East &) 970 5% . L.
terrain characteristics of all
211 North-West & 1055 | 23% 778 East = | 1218 |[21%
212 North-West & 853 25% 779 North-East) 1118 10% measured cells and these
213 North-West & = 820 5% 786 North-East & 931 3%
239 North-West & = 1393 25% 800 North A 1068 10% data were used to find the
242 North-East 2 841 6% 800 North A 1068 | 10%
243 North A 786 5% || 833 west & 85 11%| relationship between
279 West & 816 11% 855 South-West £ 965 9%) o
308 West & 98 11%|| 856 south-west # 1059 11%| Vvarious characteristics and
336 West & | 956 6% 857 West & | 1051 [11% .
337 southwest & 2007 7% || 858 northwest & 1158 l12%| Observed data. Table (1) is
359 West & 1007 [12% 864 East 1148 [15%
4 sorted based on the cell No.
378 North-West & 1064 21% 879 East = 1005 13%
744 North-East 71 | 1016 4% 893 North A 952 5% and the orientation and
745 East = 1044 9% 907 North-West & 962 3%

756 South-East 1494 31% 2627 North-West & | 1393 29% S|ope were calculated based

Table 1 Terrain characteristics of all measured cells on one Km grid net

therefore the slopes show the average elevation-gradient of each cell and the same for

orientation.

3.4. Observed and simulated SWE of interested cells:

Figure (1) illustrates observed and modeled SWE values by the three methods in all the
measured cells. The black dots show the average observed SWE in a cell and its heads and tails
are the average observed SWE plus and minus SWE standard deviation. There are great
differences between SWE observed in different points in a cell. The snow depth profile shows
high variability in the snow depth (Marchand, Bruland et al. 2001). The colorful lines depict the
SWE value for the three methods. In 2013, all the methods tend to show less SWE than what
was measured in most of the cells whilst others show more. In all the cells and the whole
period, PTGSK shows less SWE than the two other methods by 60 [mm] in average. This is
discussed in detail in the Investigations more on hydrographs, SCA and SWE graphs section.
The PTHSK and PTSSK SWE values are almost equal. Some cells show big ranges whereas some
have smaller ranges. Big ranges show big differences between points observed and shows
bigger roughness on that cell. Some phenomena are controlling the variability of the observed
points such as; slope, aspects, and wind blowing. In figure (1.a) almost all simulated SWE for

the three methods are in the range except inside the cells which their ranges are too small.

M.Sc. thesis: Evaluation of snow simulations in SHyFT Amir Nasser Katirachi

1600 a i |
(a) Year 2013 ! Methed
-
i —TGEK
e i — TR
| = o
1200 |
1000 !
oo 3
£
) s = =
m = -] = { — — | —=T1_ = o
. | 3 by —
5 !
Transeet 04 | Transect 05 Transect 06 Transect 07 Transect 08 Transect 09
CHlZ CHIe Colss GMiIN CoNdsy Cels7 GuNd3 Caldss Caigse Colss? GolBs CNgGs Cela7l eSS Cel7 CoA7ss CoN77@ Gol770 GelsI0 GeN745 Cal76s Cei78S CelZi0 Celzi GelZiZ2 Celzi3 Colza) Celaiz Cenzsa Genzer
u Method
) Year 2014 = 4 .
- -
B | — sk
=) - — sk
= o — s
500 - =T =, = - _
— 400 =5 — — oy = -
E A P s 2
£ = - - |- o, T
Bl | — = = = - -
200 ey
1o
Transect 04 Transect 05 Transect 06 Transect 07 Transect 08 Transect 09
ColZD Cel308 Gel336 Cel387 GaR3M CalST0 GeiB56 Gel0S6 GelBS7 Cwidn CoBdSA Col6T0 CeldS3 Calo7 Gel73 GN7IB Gl ColdO0 Gel746 Col765 Cel788 Gwizi0 GelZi Gel2i2 GeiZh CeN2d Gelzid Celzad | Cenzerr
(¢} Year 2015
i
200
1000
F a0
£
5
&m0 — - 2
400 = b e = ! S| == _— e - = .t
o
Transect 04 Transect 03 Iramsect 06 Transect 07 Transect 08 Transect 09
Collzm CoI308 Cell3 Cel37 CelSs Cela7a CelBS3 CalgSs Calsss CelB57 GBS ConBSt Cala7) CalSE0 Celo9S Call07 Ced7SE Cal776 CeN778 ColS0 Cal7A5 Cel76s Col78 CalZ10 CelZi Celziz N3 Celziz Cagezr
| Mol
(@) Year 2016 | e
1200 | =
1000
Fun !
s i
EH
@ san s _ g
w = s il | m= e = _ = |t |t o = } _] 1
200 |
o i
Transect 04 I Transect 03 Transeet 06 Transect 07 Transect 08 Transect 09
CoN2To Cold08 Collads Cell337 CeNdSH CeNdIB Cell83 Cell8E CoNBSS CoNBST Coll8S Cell864 CeN870 Con8aD Coll8ed CalloD? Cel T CeNTIB CoN7I0 Cal800 Cell 744 Col745 CoN786 Cel210 Celi21 CeiM2 Cek213 Cell239 Cell242 Gell2627
Wethod
(e) Year 2017 -
- — ek
— et
1000
_soo
L = i = =
400 — e = - S -~ Fe —_—y 7 . _ - —
m
3
Transeet 04 Transect 05 Transeet 06 Transect 0 Transect 08 Transect 09
Goliz Gei3 Gel®8 Geloi Gels Cela? Gelas Celohs Colde Coids Colash Col0ai Coli) CelBB0 Gl GelG07 Gol78 CoN7#1 Col7ds i’ Ge2i0 Gai2l GeNziz Cakzid G2z

Figure 1 Observed and simulated SWE in all measured cells in five consecutive years

10

M.Sc. thesis: Evaluation of snow simulations in SHyFT Amir Nasser Katirachi

figure (1.b) in 2014 illustrates the worst case when compared to the others. The ranges of all
observed SWE are smaller than other years while the terrain characteristics did not change.
The CV (Coefficient of Variation) for all cells are smaller than other years. The CV of SWE is
relatively high in the first days of accumulation and decreases during accumulation season
(Skaugen 2007). The wind redistribution driving force also changes the character of
mountainous seasonal snow pack in point SWE observation by a large variation. (Kolberg and
Gottschalk 2006). So wind redistributes the snow by filling up the pits and ditch and stripping
from regional highland. This is probably caused by less wind blowing in that year resulting in
less snow redistribution and smaller observed ranges being the outcome but it is not possible

to verify this hypothesis due to the lack of wind data.

124 [mm] 162 1 7['“"‘] 163 - 1 /2,\\4 [mm]
127 \ 119 [mm) L N
frm{ ™, S 7 tromd % 103 (mm] \ 'lé 5 _/_,.77?1 08)
% & s, z - ' /NI
\\;@& & ~ N & P & N
i o am 188 130 Lo & 167 129 < wew ¥ 5178
J L7l mm) : fmm]] [&S \ 1~
S L)
) & [8
"o \ & Q""ﬁ@ J-“I,,.,-/ ‘6%(
144 (m) 13 4[] By 126 fmm) Cill
. 182 fmm 180 mm)
(a) PTGSK (b) PTHSK (c) PTSSK

Figure 2 MEA of SWE on different aspects

3.5. MAE of SWE in different aspects

Figure (2) illustrates the Mean Absolute Error (MAE) of SWE which is the average absolute
values of the difference between the observed and simulated SWE in different orientations
and various methods in the whole period (2012-2015). There is no south orientation in the
observed data. A similar pattern from figure (1) is observed in figure 2. PTGSK is different from
PTHSK and PTSSK and the latter two methods produce similar results. The PTHSK and PTGSK
show large MAE values in the line north-west and south-east and less MAE values on north-
east and north compared to the other orientations while PTGSK has no significant difference
between various aspects except on the east orientation. The East orientation shows, in overall,
the largest MAE value in all the methods. It obvious that the PTGSK is less sensitive on different

aspects in comparison with the two other methods.

11

M.Sc. thesis: Evaluation of snow simulations in SHyFT Amir Nasser Katirachi

3.6. Relationship of various parameters and SWEAE:

Figure 3 gives a graphical illustration for the relationship between Absolute Error of SWE
(SWEAE) and various parameters for the methods. The relationship between terrain
characteristics and snow cover distribution values are studied in many papers. (Marchand and
Killingtveit 2001). Values for the Pearson Correlation Coefficient (PCC) are included to describe
the linear relationship between two variables in all figures. The first three scatter plots (a, b, c)
show positive slope of SWEAE against elevation-gradient for three methods. It also conforms
to the supposition that snow mass drift in slopes and the SWE changes with elevation. The
PCCs show a clear increase of SWEAE in graphs b) and c) but a slight increase for PTGSK
method. These three graphs show less sensitivity of PTGSK to the slope and present better
results on different slopes. Despite this study’s observations it is reported that elevation
gradient accounts for a large uncertainty in the Gamma snow routine. (Kolberg and Gottschalk
2010). In another study, the relationship between slope and snow depth was investigated and
a low correlation was reported (Marchand and Killingtveit 2001). The second row of figure 3
illustrates three scatter graphs of SWEAE and elevation. It is much similar to the elevation-
gradient and depicts less sensitivity of PTGSK to elevation in comparison to the other methods.
Even though the sensitivity of SWEAE to elevation is more when compared to the elevation-
gradient of the other methods, it is more clear for PTGSK. The third row-graphs shows the
relationship between CV (terrain roughness) and SWEAE for three methods. The CV is a
suitable mean for comparing of uncertainty of different parameters. (Iskra and Droste 2008).
It can be observed that as the wind changes the snow mass by making its top surface flat
surface, the coarser terrain shows a high SWE in different locations, therefore the CV
represents the terrain roughness. In all of the three graphs (g, h, i), the relation may be
characterized as close to linear and explain the small values of PCC for all three methods. The
last graphs-row demonstrates the relationship of SWEAE to the number of observed points in
a cell. The negative slope shows less SWEAE and high accuracy for more observed points. Once
again the PTHSK and PTSSK are more sensitive to this variable while the PTGSK method displays
more stability of SWEAE.

12

M.Sc. thesis: Evaluation of snow simulations in SHyFT Amir Nasser Katirachi

3.7. Investigations more on hydrographs, SCA and SWE graphs:

Figure 4a) display the hydrographs of three methods and differences between PTGSK and
PTSSK methods during 2014 to 2016. The hydrographs of PTSSK and PTHSK are almost the
same but PTGSK shows a different pattern. The black curve shows the differences between
PTGSK and PTSSK. This curve shows the less and more simulated discharge in this period which
must be seen in SCA and SWE in different days. Figure 4b) shows the SWE graph for three
methods and it depicts different patterns of PTGSK in comparison with two other methods. To
investigate whether the graphs (a, b) match and consonant, the graph c¢) was made. The blue
curve shows the cumulative differences of PTGSK and PTSSK hydrograph and shows the
differences in SWE. The differences in SWE influenced differences in the hydrograph. Figure
4d) shows the SCA of different methods. It shows more stability and smooth change for PTGSK
method compared to other methods during snow accumulation and melting seasons. The
PTGSK method models more the SCA value, especially in the melt season when the curves
decline to zero. All the graphs are consonant with each other and indicate the PTGSK method
having more snow in the melting season. The calculation of observed SWE of snow courses and
SWE of models show a marginal difference between the three methods. The Mean Absolute
Error of Snow Water Equivalent (MAESWE) in the whole period where found to be 133,131
and 129 mm for PTGSK, PTSSK and PTHSK respectively. The graphs show more disagreement

between these methods.

3.8. Comparing the results with satellite images:

Figure 5 illustrates SWE and SCA of all methods and satellite images on different days. Figures
(5b, 5d, 5f) show less SWE for PTHSK and PTSSK compared to PTGSK on the left part of
catchment (near outlet of catchment, lowland). The figures (5a, 5c, 5e) show that PTGSK
models more snow on the left part of catchment while the two other models show this part
free of snow. This snow pack differences on the lowland are in consonant with figure 4 graphs.
All the methods model almost the same SWE on the high mountain (where the snow courses
are located) while do not generate the same values near the outlet. In order to establish more
on which model generates results closer to the real world situation, the SCA results were

compared with spatial resolution satellite images (MODIS-Moderate Resolution Imaging

13

M.Sc. thesis: Evaluation of snow simulations in SHyFT Amir Nasser Katirachi

Spectroradiometer) accessible from optical sensors. This was done to evaluate the goodness
of SCA outputs of model. Remotely sensed SCA information may be valuable in a verification
context. (Pan, Sheffield et al. 2003). It is obvious from the figures that the PTGSK method
completely failed to generate a credible SCA figure while the two other methods show a better
SCA simulation. The satellite image confirms that there is no snow cover near the outlet on
specific dates. The images use a gray scale that generates more values between 0 to 1 to
provide more color variation except yellow (value is one) and black (value is zero). The SCA of
PTSSK method shows more color besides yellow and black and resembles more the satellite
images which suggests that the PTSSK method generates a better SCA simulation compared to
the other two methods with PTGSK showing the least accuracy. Many models for the spatial
PDF of SWE such as gamma, normal, log normal and mixed log normal are presented in a
number of literature. One of the mentioned PDF seems to be more suitable for the catchment
in consideration. Physical process (variability of precipitation, wind before and after snowfall
and topographic features) causes the diversity of distribution of SWE.(Skaugen and Weltzien
2016). It is reported that the Gamma snow routine simulates SCA better than Snow Distribution
Long Normal (SD-LN) when it comes to MODIS image comparison while the latter model
simulates SWE better and avoids the ‘snow tower’ effect as well as unrealistic positive SWE
trend. (Skaugen and Weltzien 2016). The snow course observation in many fields has shown
that the Gamma distribution shape changes continuously during accumulation and melting
season.(Skaugen 2007).

It would be worthwhile to investigate whether PTGSK can be modified using different PDF or a
time variable PDF for the accumulation and melting season to simulate the SWE and if this can

generate better results than PTSSK and PTHSK.

14

M.Sc. thesis: Evaluation of snow simulations in SHyFT

a

PTGSK

&

3

@

8

£

e

x e

]

i .

: e

&

.

Hi
« 8
.
S
030 03

PTGSK
@0
Pearsonr = 0.174
-
500 -
.
§o .
§ -
g 20
:
00
°
™o 800 200 1000 1100 1200 1300 W00 1500 1600
Elevaton
PTGSK
w0

Pearsonr = 0.01 .

SWE absolute error (PTGSK)
. g 8 8 8 g
| .
.
L]
.
. *
f' il
. .
.

m PT(!SK

Perasqpr = 0.03

SWE absolute error (PTGSK)
-
0 $.
oL
' .
.
.
. *
b . .
.
.

SWE absolute emor (PTHSK)

Pearsonr = 0.38

I

¥

SWE absolute eror (PTHSK)

100 1200 1300
Elevation

_A PTHSK

Pearsonr =0.02

%400 1500 1600

&

8 g

SWE absolule error (PTHSK)

]

E—ﬁ 1

Pearsonr = -0.16

SWE absolute efror (PTHSK)

J't‘ ".
Sery * TH . ,.'lo

00 000 1200
N\nberd‘wwﬂl

1400

Amir Nasser Katirachi

m== PTSSK
g
3
H
H
000 008 a1 "% 020 025 030 033
Elevabon_gradent
/L_\ PTSSK
00

Pearsonr = 0.38

SWE absolute error (PTSSK)

Pearsonr = 0.02

©2 00 02 04 08 08 10 12 14

SWE absolute error (PTSSK)
H H 8 H
. .
LY]
o] : L
. . =
: LR - . .
:‘. e .
b .
LN o
. ‘.
'.$ -
.

'SWE absolute error (PTSSK)

Figure 3 Relation of SWE to various parameters a,b,c) Elevation-gradient d,e,f) Elevation g,h,i) Terrain roughness j,k,)

Number of points

15

M.Sc. thesis: Evaluation of snow simulations in SHyFT Amir Nasser Katirachi

Tydrograph

Consonance between differences SWE storage methods and differences between discharge methods

s betmecn Gomers and Skougenic
¢ Bereen Gartens and Sknagen(SH

T e e \ = |
= (a) () o (' y PRAVES ;
. —"““w.; #\A&;_N"\ ﬂu‘ﬂ“ A
N) | i |
_ | : i f (N hr
T e = | L 1 ! '
é é; I WL‘ ‘”!ﬁ M.m ‘ | W‘.‘
1ol \l ‘ P L \ ; ‘\1 I
' \ / I
NNy AW u
[N, W w
b ﬁ’f % - \“\’!/;‘/‘ |
Snow Water Equivalent (SWE) Snow Cover Area
“ e A
i |
g
o \
S
e l \A\",
g 0 ; \ LL‘
\l
'.“y
\ U ‘\l‘
A 0z |
p J I | 1 7] |\
Figure 4 comparing of PTGSK method with two other methods
Snow Cover Area on 2015-03-18 Snow Cover Area on 2015-04-12 Show Cover Area on 2016-04-06
(a) (c) (e)
o T ~-
PTGSK PTGSK - PTGSK
!
%1’ PTHSK PTHSK PTHSK
{
% e : —
T PTSSK PTSSK PTSSK
SATELLITE IMAGE SATELLITE IMAGE SATELLITE IMAGE

Snow Water Equivalent (0-800)[mm] on 2015-03-18

. (b)
PTGSK

Snow Water Equivalent (0-800)[mm] on 2015-04-12

(d)
%

PTHSK

PTSSK

Snow Water Equivalent (0-800)[mm] on 2016-04-06

U]
%

PTHSK

Figure 5 Snow Cover Area (SCA) and Snow Water Equivalent (SWE) and Satellite images

16

M.Sc. thesis: Evaluation of snow simulations in SHyFT Amir Nasser Katirachi

4. SUMMARY AND CONCLUSION

In this study, it was found that the PTHSK and PTSSK methods produced similar results. The
simulated SWE images illustrate that PTGSK tends to model more snow on lowland while the
two other methods do not. On the other hand, the total outflow was calibrated for all three
methods, in order to compensate for the more snow on lowland, PTGSK method simulates less
snow on highland where the snow courses are situated. The studied cell (The cell which has
observed points) shows PTGSK method to have less SWE when compared to the two methods
which are consonant with SWE images. Wind blowing is the main driving force to redistribute
snow masses and the SWE observed shows low variability of SWE in comparison to other
methods in the year 2014. It seems that there was less wind during the winter of that time.
Calculations conducted on different orientations and MAE (Mean Absolute Error) show high
and low errors on the east and west aspect in the all methods. The PTGSK method shows less
sensitivity to different orientations in comparison with others while it presents less sensitivity
to terrain characteristics such as; slope and elevation.

It is interesting that there is no clear relationship between terrain roughness and SWEAE
(Absolute Error of Snow Water Equivalent) for all three methods. Despite the poor Pearson
correlation coefficient of CV and snow absolute error the results are still significant for all the
three methods. The more the number of observed SWE points in a cell the less the SWEAE
and the better the results for PTSSK and PTHSK while there is less change in the SWEAE for the
PTGSK method. The differences between total average of MAE in the three methods is less
than 5 [mm] and the results are from snow courses on high elevations, however the methods
did not generate similar SCA on the low lands. The MODIS show better similarity between
PTHSK and PTSSK with satellite images. In order to simulate better with the PTGSK method, a
unique PDF is needed due to the differences in terrain characteristics of each cell as well as the
unique hydro-meteorological properties of catchments therefore some catchments match
better with normal or log normal or even other PDF. Maybe possible to modify the PDF of

Gamma snow distribution routine to simulate snow pack better than it is now.

17

M.Sc. thesis: Evaluation of snow simulations in SHyFT Amir Nasser Katirachi

5. ACKNOWLEDGMENTS

My sincere gratitude goes to Andrew Mabula, MSc. Hydro power development student at
NTNU for his great support and help and Felix Nikolaus Matt, department of geoscience

university Oslo and Sigbjgrn Helset from Statkraft for their vital assistance in SHyFT.

18

M.Sc. thesis: Evaluation of snow simulations in SHyFT Amir Nasser Katirachi

6. REFRENCES

Al-Safi, H. I. J. and P. R. Sarukkalige (2017). "Potential climate change impacts on the hydrological
system of the Harvey River catchment." World Academy of Science, Engineering and Technology,
International Journal of Environmental, Chemical, Ecological, Geological and Geophysical
Engineering 11(4): 296-306.

Bergstrém, S. (1997). "Development and test of the distributed HBV-96 hydrological model." Journal
of hydrology 201: 272-288.

Duan, Q., et al. (1992). "Effective and efficient global optimization for conceptual rainfall-runoff
models." Water Resources Research 28(4): 1015-1031.

Duan, Q., et al. (1994). "Optimal use of the SCE-UA global optimization method for calibrating
watershed models." Journal of hydrology 158(3-4): 265-284.

Iskra, I. and R. Droste (2008). "Parameter uncertainty of a watershed model." Canadian Water
Resources Journal 33(1): 5-22.

Kirchner, J. W. (2009). "Catchments as simple dynamical systems: Catchment characterization,
rainfall-runoff modeling, and doing hydrology backward." Water Resources Research 45(2).

Kolberg, S. and L. Gottschalk (2010). "Interannual stability of grid cell snow depletion curves as
estimated from MODIS images." Water Resources Research 46(11).

Kolberg, S. A. and L. Gottschalk (2006). "Updating of snow depletion curve with remote sensing
data." Hydrological Processes 20(11): 2363-2380.

Marchand, W.-D., et al. (2001). "Improved Measurements and Analysis of Spatial Snow Cover by
Combining a Ground Based Radar System With a Differential Global Positioning System
ReceiverPaper presented at the Nordic Hydrological Conference (Uppsala, Sweden—June, 2000)."
Hydrology Research 32(3): 181-194.

Marchand, W.-D. and A. Killingtveit (2001). Analyses of the relation between spatial snow
distribution and terrain characteristics. Proceedings of the 58th Eastern snow conference, Citeseer.

Nash, J. E. and J. V. Sutcliffe (1970). "River flow forecasting through conceptual models part I—A
discussion of principles." Journal of hydrology 10(3): 282-290.

Pan, M., et al. (2003). "Snow process modeling in the North American Land Data Assimilation System
(NLDAS): 2. Evaluation of model simulated snow water equivalent." Journal of Geophysical Research:

Atmospheres 108(D22).

19

M.Sc. thesis: Evaluation of snow simulations in SHyFT Amir Nasser Katirachi

Priestley, C. and R. Taylor (1972). "On the assessment of surface heat flux and evaporation using
large-scale parameters." Monthly weather review 100(2): 81-92.

Rinde, T. (1996). PINE—a hydrological model with flexible model structure. Proceedings from the
Nordic Hydrological Conference.

Sand, K. and O. Bruland (1998). "Application of Georadar for Snow Cover SurveyingPaper presented
at the 11th Northern Res. Basins Symposium/Workshop Prudhoe Bay to Fairbanks, Alaska, USA—Aug.
18-22, 1997." Hydrology Research 29(4-5): 361-370.

Seibert, J. (2000). "Multi-criteria calibration of a conceptual runoff model using a genetic algorithm.'
Hydrology and Earth System Sciences Discussions 4(2): 215-224.

Seity, Y., et al. (2011). "The AROME-France convective-scale operational model." Monthly weather
review 139(3): 976-991.

Shrestha, A. B. and R. Aryal (2011). "Climate change in Nepal and its impact on Himalayan glaciers."
Regional Environmental Change 11(1): 65-77.

Skaugen, T. (2007). "Modelling the spatial variability of snow water equivalent at the catchment
scale." Hydrology and Earth System Sciences Discussions 11(5): 1543-1550.

Skaugen, T. and C. Onof (2014). "A rainfall-runoff model parameterized from GIS and runoff data."
Hydrological Processes 28(15): 4529-4542.

Skaugen, T. and I. H. Weltzien (2016). "A model for the spatial distribution of snow water equivalent
parameterized from the spatial variability of precipitation." The Cryosphere 10(5): 1947-1963.

20

Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix

Appendix

10

11

12

13

Appendices

Python script for Snow course calculation
How does SHyFT work?
YAML files
Calibration codes
Simulation codes
Miscellaneous codes
Calibration results
Summary of SWE calculations
Calibrated and validated Hydrographs
Graphs code in Seaborn (Python)
miscellaneous graphs
YouTube movie

Satellite images

All codes can be accessed on GitHub:

https.//github.com/amirnk/master_thesis

Appendix 1

Python script for Snow

course calculation

Appendix 1 - Python script for Snow course calculation

Python script for Snow course calculation

Description: In this Python Script, a number of modules were first imported which included, Pandas
for DataFarme, Numpy for calculation, Matplotlib to make graphs, as well as OS and deepcopy. X,
Y coordinates and SWE of all the snow course lines from 2013 to 2017 were read from some CSV
files followed by the catchment’s X, Y and Z.

The distances between all snow course line points and the center points of all cells were
determined. Each snow course line point was allocated to the cell in which it was nearest to. The
snow course line points of a cell were then categorized into an individual group in which the SWE
average, minimum, maximum and standard deviation calculated. The date of doing the snow
course was read off and the SWE of that cell was computed in order to compare with the SWE
average from snow course points in that cell.

The elevations of neighboring cells were read with subsequent calculation of the elevation gradient
of specific cells that had at least one snow course point. Three graphs where plotted with the first
showing the catchment shape and the snow course line position and its length.

The second graph shows the snow course lines and the center of the cells with dots. It should be
noted that those that do not have snow course line points are marked with a red dot while for
those that have, a black dot was used and showing their boundaries. All latter cells include the cell
No., the number of snow course line points, average, maximum, minimum, standard deviation, the
elevation gradient and the orientation slope with an arrow and the SWE of that.

The third graph shows the SWE histogram of the snow course line and the SWE of passed cells.
Finally, write all this values in a CSV file. The Python code and the three graphs described are

presented as follows.

Appendix 1 - Python script for Snow course calculation

import pandas as pd

import numpy as np

import os

from matplotlib import pyplot as plt
from copy import deepcopy

for snowcoursel in range(4,10):
for snowcourse2 in range(2013,2018): # years 2013, 2014, 2015, 2016,
2017
snow_course pd = pd.DataFrame ()
all swe pd = pd.DataFrame ()
snow _course file = r"D:\Dropbox\Thesis\Nea snowradar
transects\NEO" + str(snowcoursel) + " " + str(snowcourse2) + ".csv"

reading the simulated SWE data in all cells which is given out
by simulation

all swe pd = pd.read csv(r'D:\Dropbox\Thesis\Nea snowradar
transects\SWE pd 18 G.csv')

get the file name without extension
file name = snow course file.split ('\\'")[-1].split(".")[-2]

set the current directory to the where read the 'snow course

file'

os.chdir (os.path.dirname (snow_course file))

make DataFrame for snow course

snow_course pd = pd.read csv(snow course file)

the date of doing snow course

if file name == 'NEO1l 2013' or file name == 'NEO2 2013' or
file name == 'NEO3 2013': date get = 'll-Apr-13'

elif file name == 'NEO4 2013' or file name == 'NEO5 2013' or
file name == 'NEO6 2013' or file name == 'NEO7 2013' or file name ==
'NEO8 2013' or file name == 'NEO09 2013': date get = '10-Apr-13'

elif file name == 'NEO1 2014' or file name == 'NE0O2 2014' or
file name == 'NEO4 2014': date get = '2-Apr-14'

elif file name == 'NEO3 2014': date get = 'S-Apr-14'

elif file name == 'NE05 2014' or file name == 'NE06 2014' or
file name == 'NEO7 2014' or file name == 'NEO08 2014' or file name ==
'NEO9 2014': date get = 'l-Apr-14'

elif file name == 'NEO1 2015' or file name == 'NEO0O3 2015' or
file name == 'NEO4 2015' or file name == 'NEO9 2015': date get = '9-Apr-
15"

elif file name == 'NE02 2015' or file name == 'NE0O5 2015' or
file name == 'NEO6 2015' or file name == 'NEO7 2015' or file name ==
'NEO8 2015': date get = '10-Apr-15'

elif file name == 'NEOl 2016' or file name == 'NE03 2016' or
file name == 'NEO4 2016' or file name == 'NEO9 2016': date get = '4-Apr-
16"

elif file name == 'NE02 2016' or file name == 'NE0O6 2016' or
file name == 'NEQ7 2016': date get = 'll-Apr-16'

elif file name == 'NE05 2016' or file name == 'NE0O8 2016':

date get = '5-Apr-16"'

Appendix 1 - Python script for Snow course calculation

elif file name == 'NEO1l 2017' or file name == 'NE02 2017' or
file name == 'NEO3 2017' or file name == 'NEO4 2017': date get = '7-Mar-
17"

elif file name == 'NE0O5 2017' or file name == 'NEO6 2017' or
file name == 'NEO7 2017' or file name == 'NEO08 2017' or file name ==
'NEO9 2017': date get = '8-Mar-17'

to read the simulated SWE form a CSV file

if date get == 'l1l-Apr-13': cell swe no = 228
elif date get == '"1l0-Apr-13': cell swe no = 227
elif date get == 'l-Apr-14': cell swe no = 583
elif date get == '2-Apr-14': cell swe no = 584
elif date get == '9-Apr-14': cell swe no = 591
elif date get == '9-Apr-15': cell swe no = 956
elif date get == '1l0-Apr-15': cell swe no = 957
elif date get == '4-Apr-16': cell swe no = 1317
elif date get == '5-Apr-16': cell swe no = 1318
elif date get == 'll-Apr-16': cell swe no = 1324
elif date get == '7-Mar-17': cell swe no = 1654
elif date get == '8-Mar-17': cell swe no = 1655
cells x np22 = np.array(all swe pd.loc[l:]['2'])
cells xs = []

for item in cells x np22:
cells xs.append(float (item))
cells x np = np.array(cells xs)

cells y np22 = np.array(all swe pd.loc[l:]["'3'])
cells ys = []
for item in cells y np22:
cells ys.append(float (item))
cells y np = np.array(cells ys)

path x np = np.array(snow course pd[:]['X'])
path y np = np.array(snow course pd[:]['Y'])
swe np = np.array(snow course pd[:]['SWE'])
swe = list(swe_ np)

cells, path=[], []

for i in range(len(cells x np)):
cells.append((cells x np[i],cells y np[i]))

for i in range(len(path x np)):
path.append((path x npli],path y np[i]))

snow course length = 0
for i in range(len(path x np)-1):
dd = ((path x np[i]-path x np[i+1])**2 + (path y npli]-

path y np[i+1])**2)**0.5
snow_course length += dd
snow_course length = round(snow course length,1)
print ('Lenght of snow course:\t\t ', snow course length, "meters")
print ('Number of cells in the catchment:', cells x np.size)

Appendix 1 - Python script for Snow course calculation

listl, distance =[], I]

for i in range(len(path)):
for j in range(len(cells)):
listl.append((((path[i]

(01)-
(cells[J]101))**2+ ((path[1][1])~-(cells[]]

[1]1))**2)**0.5)
distance.append(listl)
listl = []

distance pd = pd.DataFrame (distance)
distance2 pd = distance pd.transpose ()
first = distance pd[:][0]

cell close no = []

for i in range(first.size):

cell close no.append(list(distance2 pd[i][:]) .index (distance2 pd[i][:].min
0))

list close cell = list(set(cell close no))
list close cell.sort()

all cat, averageif, std swe, min swe, max swe, CV_swe,
no_swe, forprint = [],[],[1,01,01,01,01, T[]

for j in range(len(set(cell close no))):
sum, counter = 0,0
all cat.append([])
for i in range(len(cell close no)):
if list close cell[j] == cell close nol[i]:

sum += swe[1i]

counter += 1

all cat[j].append(swel[i])
averageif.append (sum/counter)
new np = np.array(all cat[]j])
std swe.append(new np.std()
min swe.append(new np.min ()
max_ swe.append(new np.max ()
cv_swe.append (new np.std()/ (sum/counter))
no_ swe.append (counter)
forprint.append([])
forprint[j].append(list close cell[]])
forprint[j].append (counter)
average 1 = sum/counter
forprint[j].append (round
forprint[j].append (round
forprint[j].append (round
forprint[j].append (round

)
)
)

average 1,2))

new np.std(),2))
new np.min(),2))
new np.max(),2))

—~ o~~~

14

for i in range(len(cell close no)-len(list close cell)):

list close cell.append(0)

averageif.append(0)

std swe.append(0)

min swe.append(0)

max_swe.append (0)

cv_swe.append(0)

no_swe.append (0)

Appendix 1 - Python script for Snow course calculation

snow_course pd['inside cell'] = cell close no
snow course pd['Cell No.'] = list close cell
snow_course pd['AverageIf'] = averageif
snow_course pd['Minimum'] = min swe
snow_course pd['Maximum'] = max swe
snow_course_pd['Standard Deviation'] = std swe
snow_course pd['CV'] = cv_swe

snow_course pd['No.'] = no_swe

snow_course pd.to csv(f'{file name} cell close no.csv')
fig, axl = plt.subplots(figsize=(25,9))
for item in ([axl.title, axl.xaxis.label, axl.yaxis.label] +

axl.get xticklabels() + axl.get yticklabels()):
item.set fontsize(12)

close = []
for i in range(len(cells x np)):
close.append(distance pd[:][i].min())

cm = plt.cm.get cmap ('tab20c')
axl.scatter (cells x np, cells y np, c=close, marker='o', s=220,
1lw=0, cmap=cm, alpha = 0.9)

axl.plot (path x np, path y np, 1w = 1.4, color = 'black',
label=f'Snow course line ({snow_course length} Meters)')

file name = snow_course file.split ('\\'")[-1].split(".") [-2]

plt.title (f"Snow course on the catchment layout ({date get}):
{file name}", fontsize = 14)

plt.xlabel ('X coordinade')

plt.ylabel ('Y coordinade')

axl.legend(loc=1, fontsize = 14)

plt.savefig(f"{file name} 1l.png")

plt.show ()

draw all cells = 'no' # 'yes' or 'no'
range cell = 650

font size = 14

cells x 2, cells y 2 = [],!]

for i in range (len(cells x np)):
if cells x np[i] > path x np.min()-range cell and
cells x npl[i] < path x np.max()+range cell:
if cells y np[i] > path y np.min()-range cell and
cells y np[i] < path y np.max()+range cell:
cells x 2.append(cells x np[i])
cells y 2.append(cells y npl[i])

cells x np2 = np.array(cells x 2)
cells y np2 = np.array(cells y 2)

listl = []
for i in range(len(cells x np2)):
for j in range(len(cells x np)):

Appendix 1 - Python script for Snow course calculation

if cells x np2[i] == cells x np[J]:
if cells y np2[i] == cells y np[j]:

listl.append([cells x np2[i],cells y np2[i],]])

status = 0
for i in range(len(listl)):
for j in range(len(forprint)):
if 1listl[i][2] == forprint[j]I[0]:
listl[i].append(forprlnt[j][l])
listl[i].append(forprint[j][2])
listl[i].append(forprint[j][3])
listl[i].append(forprint[j][4])
listl[i] .append(forprint[j][5])
status +=1
if status == 0:
listl

make a deep copy of listl
list2 = deepcopy(listl)
cell list = []

for i in range(cells x np.size):
cell list temp =
[float(all swe pd.loc[i+1][1]),float(all swe pd.loc[i+1][2]),float(all swe
_pd.loc[i+1][3])]
cell list.append(cell list temp)

for i in range(len(list2)):
for j in range(len(cell list)):
if int(list2[1][0]) == int(cell 1list[j][0]):
if int(list2[i][1]) == int(cell list[j][1]):
list2[i].append(cell 1list[j][2])

list x new, list y new, list z new, distan new, gradia new = [],

tr, tl, 01, [l

for i in range(len(list2)):
for j in range(len(cell list)):
if int(cell 1ist[j]1[0]) < int(list2[i][0]) + 1500 and
int (cell 1ist[3][0]) > int(list2[i][0])-1500:
if int(cell 1ist[j]1[1]) < int(list2[i][1]) + 1500 and
int(cell 1ist[j][1]) > int(list2[1][1])-1500:
list x new.append(cell 1list[j][0])
list y new.append(cell 1list[j][1])
list z new.append(cell list[j][2])

for 1 in range(len(list x new)):
dis = ((list2[i][0]-1list x new[l])**2 + (list2[i][1]-
list y new[1l])**2)**0.5
if dis ==
gradian = 0
gradia new.append(gradian)

vi

Appendix 1 - Python script for Snow course calculation

distan new.append(dis)
continue
gradian = (1ist2[i][8] - list z new[1l]) / dis
distan new.append (dis)
gradia new.append(gradian)
gradia new np = np.array(np.abs(gradia new))

gr = 0
for ii in range(len(gradia new np)):
if gradia new[ii] > gr:

gr = gradia new np[ii]
x_compare = list x new[ii]
y _compare = list y new[ii]
if 1ist2[i][0] == x compare:

if 1list2[i][1] < y compare:
o ="North"

elif list2[i][1] > y compare:
o ="South"

elif 1ist2[1i][0] < x compare:
if 1list2[i] [1] < y compare:
o ='North-East'
elif list2[i][1] == y compare:
o ='Easth'
else:
o ='South-East'
elif 1ist2[i][0] > x compare:
if 1list2[i][1] < y compare:
o ='North-West'
elif list2[i][1] == y compare:
o ='West'
else:
o ='South-West'

list2[1i].append(int (gradia new np.mean()*100)) # take the
average slope of the cells
list2[i] .append(int (gradia new np.max()*100)) # take the
maximum slope of the cells
list2[i] .append (o)
list x new, list y new, list z new, distan new, gradia new =

(1, [1, 11, (1, [1

grad = []
orientation = []
for i in range(len(list2)):
if 1ist2[i][3]!'=0:
grad.append (1list2[i][9])
orientation.append(list2[i][10])

for i in range(len(cell close no)-len(grad)):
grad.append (0)

orientation.append(0)

snow_course pd['Elevation gradient'] = grad
snow_course pd['Orientation'] = orientation

snow_course pd.to csv(f'{file name} cell close no.csv')

vii

for

Appendix 1 - Python script for Snow course calculation

i in range(len(list2)):
if 1list2[41]1[3] != 0:

list2[i] .append(all swe pd.loc[list2[i][2]+1][cell swe no])

fig,

else:
list2[i] .append(0)

ax = plt.subplots(figsize=(int ((max(cells x 2) -

min(cells x 2)+1000)/270),

int ((max(cells y 2) -

min(cells y 2) + 1000)/270)))

for

item in ([ax.title, ax.xaxis.label, ax.yaxis.label] +

ax.get xticklabels() + ax.get yticklabels()):

item.set fontsize (font size)

label statl, label stat2 = True, True

for

marker='o",

this cell')

marker='o"',

marker='o"',

cell")

marker='o",
plt.

marker='_"',
plt.

d in range(len(listl)):
if 1listl[d][3] ==
if label statl:
plot = ax.scatter(listl[d][0], listl[d][1],
s=60, 1lw=0, color = 'red',
label = 'snow course doesn t pass

label statl = False
else:
plot = ax.scatter(listl[d][0], listl[d]I[1],
s=60, 1lw=0, color = 'red')
else:
if label stat2:
plot = ax.scatter(listl[d][0], listl[d]I[1],
s=60, 1lw=0, color = 'Black',
label = 'snow course passes this

label stat2 = False
else:
plot = ax.scatter(listl[d][0], listl[d][1],
s=60, 1lw=0, color = 'Black')

plot (path x np[0], path y np[0], 1lw = 4, color = 'green',
alpha = 0.5,
label =f'Snow course ({snow_course length} Meters)'
scatter (path x np, path y np, marker='.', s=100, 1lw=0, color

'green', alpha = 0.03)

if draw_all cells == 'yes':

draw_all cells = -1

else:

draw _all cells = 0

temp x, temp y = [],[]

label stat3 = True

for

i in range(cells x np2.size):
temp x.append(listl[i1][0]+500)
temp x.append(listl[1][0]+500)

viii

)

Appendix 1 - Python script for Snow course calculation

temp x.append(listl[1][0]-500)
temp x.append(listl[1i][0]-500)
temp x.append(listl[1][0]+500)
temp y.append(listl[i][1]1+500)
temp y.append(listl[i][1]-500)
temp y.append(listl[i][1]-500)
temp y.append(listl[1i][1]+500)
temp y.append(listl[1i][1]1+500)

if listl[i][3] > draw_all cells:
if label stat3:

plt.plot(temp x, temp y, 1w = 4, color = 'black',
alpha = 0.2, label = "Confine a cell")
label stat3 = False
else:
plt.plot(temp x, temp y, 1lw = 4, color = 'black',
alpha = 0.2, label = "")
temp x, temp y = [],[]
for j in range(len(listl)):
if cells x np2[i] == 1listl[j][0]:
if cells y np2[i] == listl[j][1]:

strcell = f£'Cell No.: {listl[j][2]}"

if 1istl[3]1[3] == : strcell = ""

plt.annotate(strcell, xy =(cells x np2[i]-450,
cells y np2[i]+410), fontsize = 12,

color = "blue")
if 1istl1[3]1I[3] ==
continue
else:

if 1ist2[j][10] == 'North':
xx = 0
yy = 350

elif 1ist2[j][10] == 'South':
xx = 0
yy = =350

elif 1ist2[j][10] == 'North-East':
xx = 250
yy = 250

elif 1ist2[j][10] == 'Easth':
xx = 350
yy = 0

elif 1ist2[j][10] == 'South-East':
xx = 250
yy = =250

elif 1ist2[j][10] == 'North-West':
xx = =250
yy = 250

elif 1ist2[j][10] == 'West':
xx = =350
yy = 0

elif 1ist2[j][10] == 'South-West':
xx = =250
yy = =250

Appendix 1 - Python script for Snow course calculation

plt.annotate("", xy =(cells x np2[i]+xx,
cells y np2[i] + yy), fontsize = 12,
arrowprops = dict (facecolor =
'olive', width =4, alpha = 0.6),
xytext=(cells x np2[i],
cells y np2[i]),)

strcell = f'EL.grad. {list2[j1[9]1}%"
if 1istl[j]1([3] == 0 : strcell = ""
plt.annotate(strcell, xy =(cells x np2[i]-450,
cells y np2[i]+70), fontsize = 12,
color = "olive")

strnumber = f'points: {listl[j][3]}"
if 1istl1[3]1[3] == 0 : strnumber = ""
plt.annotate (strnumber, xy =(cells x np2[i]+20,
cells y np2[i]+410), fontsize = 12,
color = 'darkgreen')

strnumber = f£'{1list2[j][10]}"

if 1istl[j]I[3] == : strnumber = ""

plt.annotate (strnumber, xy =(cells x np2[i]+30,
cells y np2[i]+70), fontsize = 12,

color = 'olive')
str average swe = f'Average SWE:
{int (1istl[J][4])} (mm)'
if 1listl[j]I[3] == : str average swe = ""

plt.annotate(str average swe, xy =(cells x np2[i]-
450, cells y np2[i]-260), fontsize = 12,
color = 'green')

str std = f' {int (1ist1[3j]I[5]1)}, '

if 1istl1[j][3] == 0 : str std = ""

plt.annotate(str std, xy =(cells x np2[i]-120,
cells y np2[i]+200), fontsize = 12,

color = 'black')
str min = f' {int (listl[Jj]1[6]1)}1"
if 1istl1[3j][3] == 0 : str min = ""

plt.annotate(str min, xy =(cells x np2[i]+200,
cells y np2[i]+200), fontsize = 12,
color = 'black")

str max = £'[{int(list1[J][7])}, '

if 1istl1[3]1I[3] == : str max = ""

plt.annotate(str max, xy =(cells x np2[i]-450,
cells y np2[i]+200), fontsize = 12,

color = 'black')
str maxminstdl = f'[Max. Std.
Min.]'
if 1istl[j][3] == 0 : str maxminstdl = ""

plt.annotate(str maxminstdl, xy =(cells x np2[i]-
450, cells y np2[i]+310), fontsize = 12,
color = 'black'")

obs = float(listl([j]1[4])

Appendix 1 - Python script for Snow course calculation

sim = float(list2[j][11])
accuracy = int((l-abs((obs-sim) /obs))*100)
str accuracy = f'Accuracy: {accuracy} %'
if 1istl[j][3] == 0 : str accuracy = ""
plt.annotate(str_ accuracy, xy =(cells x np2[i]-
450, cells y np2[i]-400), fontsize = 12,
color = 'black'")

model swe = round(float (list2[j][11]),2)

str max = f'Model SWE: {int (model swe)} (mm)'

if 1istl[3j][3] == 0 : str max = ""

plt.annotate(str max, xy =(cells x np2[i]-450,
cells y np2[i]-120), fontsize = 12,

color = 'deeppink')
if int((max(cells x 2) - min(cells x 2))/220) < 12:
plt.title(f"Snow course over cells grid\n({date get}) file:
{file name}", fontsize = font size + 6)
else:
plt.title (f"Snow course over cells grid ({date get}) file:
{file name}", fontsize = font size + 6)
plt.xlabel ('X coordinade')
plt.ylabel ('Y coordinade')
ax.legend(loc=0, fontsize = 14)

plt.savefig (f"{snowcourse2} {snowcoursel}.png")
plt.show ()

1ist3 = deepcopy(list2)
for i in range(len(list2)):
if float(list2[i][4]) == O:
accuracy = 0
else:
obs = float(list2[i][4])
sim float (1ist2[1i][11]1)
accuracy = int((l-abs((obs-sim) /obs))*100)
1list3[i] .append(accuracy)

accuracy = []
sim model = []
for i in range(len(list3)):
if 1ist2[1][3]!=0:
accuracy.append (list3[i
sim model.append(list3][

1012])
i][117])

for i in range(len(cell close no)-len(accuracy)) :
accuracy.append (0)

sim model.append (0)

snow_course pd['SWE Model'] = sim model
snow_course pd['Accuracy'] = accuracy

snow_course pd.to csv(f'{file name} cell close no.csv')

list cell no, list swe model = [], []

xi

Appendix 1 - Python script for Snow course calculation

for item in range(len(listl)):
if listl[item] [3]== O0:
continue
list cell no.append(listl[item][2])

for num in range(len(list cell no)):
list swe model.append(all swe pd.loc[list cell no[num]+1][cell swe nol)

list swe model flat = []
for item in list swe model:

item str = str(item)
list swe model flat.append(int (item str.split('.')[0]))
fig, ((axl, ax2)) = plt.subplots(nrows=1l, ncols=2, figsize =

(15,6))

axl.hist (list swe model flat, color='y', alpha=0.3)

axl.set xlabel (f"Snow Water Equivalent (mm) of passed
cells\n{list_swe_model_flat}", fontsize=14)

axl.set ylabel ("frequency", fontsize=14)

axl.set title(f"SWE Histogram of passed cells ({file name})",
fontsize = font size + 0)

ax2.hist (swe, bins=50, color='r', alpha=0.3)

ax2.set xlabel (f"Snow Water Equivalent (mm) of snow course\nMin:
{int (swe np.min())} Mean: {int(swe np.mean())} Max:
{int (swe np.max())}", fontsize=14)

ax2.set ylabel ("frequency", fontsize=14)

ax2.set title(f"SWE Histogram of snow course ({file name}",
fontsize = font size + 0)

plt.savefig(f"{file name} 3.png")
plt.show ()
print (' It is done '*7)
make a sound to notify that it is done
import winsound

for i in range (1400,3500,100):
winsound.Beep (i, int (200*1500/1))

Xii

Y coordinade

7030000

7020000

7010000

7000000

6990000

6980000

6970000

Y Coordinate

Appendix 1 - Python script for Snow course calculation

Snow course on the catchment layout (10-Apr-13): NEO4_2013

—— Snow course line (5014.3 Meters)

6993000

6992500

6992000

6991500

6991000

6990500

6990000

6989500

6989000

280000

300000

320000
X coordinade

340000

Figure Ap1.1 Snow course on the catchment layout

360000

Snow course over cells grid (2-Apr-14) file: NE0O4 2014

Cell No.: 280 points: 120
[Max. Std. Min.]
[798, 167, 190]

ELgrad. 12% West

G
Model SWE: 220 (mm)
Average SWE: 438 (mm}

Cell No.:
[Max. Std.
[800, 193,

EL.grad. 11% West

Model SWE: 222 (mm)
Average SWE: 364 (mm)

Cell No.: 308 peints: 1118

[Max Std. Min.1
[792. 182, 191
11% West

Average SWE: 326 (m

Cell No.: 337 points: 514
[Max Std. Min.1
[640, 123, 751

ELgrad. 7% South-West

Model SWgF325 (mm)
Averad® SWE: 313 (mm)

Cell No.- 336 ints: 469
[Max Std. i

[791, 121, 751
EL.grad. 6% \West

Model SWE: 361 (mm)
Average SWE: 363 {(mm)

== Snow course (5004 Meters)
- Confine of cells

e Snow course doesn't pass this cell

e Snow course passes this cell

Cell No.: 359 points: 735
[Max

Std. Min_|

66]

Model SWE: 445 (
Average SWE: 349 (mm)

[]

Cell No.: 378 points: 479
[Max Std. Min]

[803, 166, 751
EL.grad North-West

Model SWE: 521 {mm)

erage SWE: 339 (mm)

Cell No.: 377 points: 128
[Max Std. Min_]
[627, 140, 66]

EL.grad. 18% West
e

Model SWE: 572 {(mm)
Average SWE: 334 (mm)

350000

351000

352000

X Coordinate

353000

Figure Ap1.2 Snow course over cells grid 1

354000

355000

6971000

6970750

6970500

6970250

6970000

Y Coordinate

6969750

6969500

6969250

6969000

Appendix 1 - Python script for Snow course calculation

Snow course over cells grid (10-Apr-13) file: NEO6_2013

Cell No.: 864 points: 406 Cell No.: 880 points: 67
[Max. Std. Min.] [Max Std. Min.]
[7986, 162, 114] [1007, 197, 235]
ELgrad. 15% Easth EL.grad. 15% Easth

Model SWE: 277 {mm)
Average SWE: 408 (mm)

Model SWE: 232 (mm)
Average SWE: 490 (mm)

Cell No.: 894 points: 31
[Max. St Min.]
[122, P 109]
EL.grad. 5% North

Model SWE: 218 {(mm)
Average SWE: 117 (mm)

—
Cell No™ polftsT
[Max Std_ Min]
[3249, 632, 1051
ELgrad. 13% Easth

Model SWE: 239 (mm)
Average SWE: 768 (mm)

points: 10
[Max St Min]
[1619, 264, 1051
EL grad. 5% North

Model SWE: 217 {mm)
Average SWE: 449 (mm)

Cell No.: 907 points: 1063
[Max. Std. Min_]

[2278, 376, 105]
EL.grad. 39 North-West

]
Model SWE: 218 (mm)

Average SW| (mm)

L] []
=== Snow course (3571 Meters)
Confine of cells
e Snow course doesn’t pass this cell
e Snow course passes this cell

363000

364000

365000

X Coordinate

Figure Ap1.3 Snow course over cells grid 2

SWE Histogram of passed cells (NEO4_2013)

366000

367000

SWE Histogram of snow course (NEO4_2013

2.00

175 1

150 A

125 1

100 1

frequency

0.75 A

0.50 1

0.25 1

600

500

8
1=}

frequency
]
o

200

100

300 350

400

450 500

0 500

1000 1500 2000 2500

Snow Water Equivalent (mm) of passed cells
[284, 283, 325, 372, 348, 394, 506, 453]

Snow Water Equivalent (mm) of snow course
Min: 80 Mean: 440 Max: 3014

Figure Ap1.4 Snow water equivalent histogram

Xiv

Appendix 2

How does SHyFT work?

Appendix 2 - How does SHyFT work?

How does SHyFT work?

1. SHyFT needs the region properties and hydro-meteorological data which are fed into
it using NC files (NC is short term for NetCDF which stands for Network Common Data
Frame). The NC files are:

e Region properties (cell_data.nc), which is the whole catchment divided into
small areas called cells, for example 1x1 kilometers (fishnet method). The file
includes;

i. EPSG (the UTM projection) that shows where the catchment is located.
UTM stands for Universal Transverse Mercator.
Which represents catchment IDs of every single cell (the main catchment
is divided into small sub-catchments with unique Id and then categorized
all cells to different sub-catchments), so each cell belongs just to one
unique sub-catchment.
i. XandY coordinates at the center of all the cells
iii. Elevation of all cells (Z plane)
iv. Area of all cells
v. Reservoir fraction, lake fraction, forest fraction and glacier fraction of
all cells with values between 0 to 1.

The regional data are static and independent to the time but the following data

changes with time and are represented in time series.

e Precipitation (precipitation.nc): Contains precipitation data that is collected
from a station(s), which can either be inside or outside the catchment. SHyFT
uses these data to distribute the precipitation over the entire catchment by
the use of distribution methods. This file includes the EPSG, how missing
values are represented (e.g. -999), unit (e.g. mm/hr.), station(s) name, X and Y
coordinates and elevation and precipitation of all the days in that period.

e Temperature (temperature.nc): This is similar to the Precipitation. It includes

EPSG data, how it shows missing values (e.g. -999), units (e.g. Celsius),

Appendix 2 - How does SHyFT work?

station(s) name, X, Y coordinates and elevation as well as temperature values
in that period. (Like precipitation, the temperature values are distributed to all
the catchment cells)

Wind speed (wind_speed.nc): is similar to the temperature file but has wind
speed instead of temperature values

Global radiation (radiation.nc): Similar to temperature file but instead of
temperature values it includes radiation values.

Relative humidity (relative_humidity.nc): Similar to temperature file but
instead of temperature values it includes relative humidity values.

Discharge (discharge.nc): Similar to temperature file but has one more value
which is the catchment ID, it shows that these discharge values are associate
with which sub-catchment. This catchment ID shows that all cells of that sub-
catchment drain to the relevant point and generate the discharge of that sub-
catchment. In the cell data file cells are categorized and assigned to
catchment IDs and in discharge file, the discharge of catchments is shown.

In some cases, all precipitation, temperature, wind speed and relative
humidity values are combined in one file which is called Arome stands as
Application of Research to Operations at Mesoscale (AROME-France). So
instead of four files just one Arome file. In this study we used AROME file too.
To make the NC files, Using ArcGIS, physiographic, observed Hydro-
meteorological all into Excel file then convert to tab delaminated text files and

then with a Python script convert them to NC files.

SHyFT like other programs need to be introduced methods for simulation and also

calibration. There is two ways to do that, first feed the SHyFT through command lines

or put all methods and variables in some separate files and feed SHyFT theses files

through command lines. For sure using these separate files are more convenient and

straight forward and possible to use them for other simulations as many times as you

want. These separate files are YAML files, YAML stands for Yet Another Markup

Language. The YAML files are explained as follows:

Appendix 2 - How does SHyFT work?

The YAML file is a region. yam| file which contains the required region data. It
includes ESPG, the number of cells in X and Y coordinates, the dimensions of
cellsin X and Y directions and lower left of X and Y based on the UTM system.
The IDs of all sub-catchments participate in the simulation and hence a limited
number of cells in the mentioned sub-catchments are modeled in the
simulation.

The model. yaml, states which methods should be used, with the options of
PTGSK (Priestley Taylor Gamma Snow Kirchner), PTHSK (Priestley Taylor HBV
Snow Kirchner) or PTSSK (Priestley Taylor Skaugen Snow Kirchner). The file
also gives the free variables of that model. It is however, impossible to collect
values of free variables in a catchment at stations like temperature value, the
mentioned models use the values of free variables for simulation. In the
calibration part, the free variable values are modified to fit the simulation
results with observed ones.

The interpolation. yam/ determines the interpolation method, BTK or IDW.
BTK stands for Bayesian Temperature Kriging and IDW stands for Inverse
Distance Weighting. The file shows how the input station data should be
interpolated and assigns meteorological data to all the cells. In most cases it is
better to use BTK for temperature interpolation and IDW for the precipitation,
wind speed, radiation and relative humidity data.

The dataset. yam| file shows the path and names of all NC files. NC files
contain precipitation, temperature, wind speed, relative humidity and
radiation data or AROME data. These files were introduced in the first section.
In some new cases, the Arome NC file is used instead of the mentioned NC
files.

The Simulation.yaml file shows the name of simulation and the required yaml

files. This file is the only file that is introduced in the simulation and SHyFT to
find all relevant yaml files and to retrieve the required data. The start date and

time, step times (in seconds) and number of steps are shown in this file and

3.

Appendix 2 - How does SHyFT work?

also shows the method for the simulation (PTGSK, PTHSK or PTSSK). The path
and name of discharge NC file is also shown, and lastly the target vectors. The
target vectors are categorized sub-catchments in different groups with each
group being a target vector. Each target vector is associated to a single
meteorological station which means that all sub-catchments of that target
vector drain to one point. SHyFT operates by distributing input data to all the
cells and then draining out the rain fall and outflow of melted snow of each
cells to the outlet of relevant sub-catchment. The water however does not go
from cell to cell then though all cells are connected to one point (outlet of that
sub-catchment). For each target value there is a station name and the
discharge values of all stations are in discharge NC files.

e The yaml files are needed for simulation, but for calibration, another yaml file,

calibration. yaml is required. The file first shows the calibration name followed

by the calibrated parameters file after calibration. It also determines the
optimization method (min_bobyqga, dream, sceua), all target values, start
date-time, run time step, number of steps and the weight of target values as
well as the parameters that should be calibrated (discharge) and the method
to be used to compare the observed and simulated values. The two methods
for comparing the simulated and observed values are NSE and KGE which
stand for Nash-Sutcliffe Efficiency and Kling-Gupta Efficiency, respectively. It
then determines the method (PTGSK, PTHSK or PTSSK) and the ranges of all
parameters for calibration.
In summary, orchestration in SHyFT means ingestions of all observed hydro-
meteorological data. In Jupyter Notebook, first run the RunShyft.py for simulation and
then it gives out all distributed of precipitation, temperature, relative humidity, wind
speed and radiation, also SWE (Snow Water Equivalent) SCA (Snow Cover Area) in
separated CSV files. Also, execute the Calibshyft.py to calibrate the model and then
gives out a file with all calibrated parameters. The simulation and calibration codes

must be run for all three routines separately.

Appendix 3

YAML files

Appendix 3 - YAML files

YAML files:

Every method in SHyFT requires six yaml files. Each method shares three yaml files consisting
of the dataset.yaml, region.Yaml and interpolation.yaml. There are three other yaml files
specific for each method which include model.yaml, simulation.yaml and calibration.yaml. An

elaborate description on yaml files has been provided in appendix2.
PTGSK (Priestley Taylor Gamma Snow Kirchner)
PTHSK (Priestley Taylor HBV Snow Kirchner)

PTSSK (Priestley Taylor Skaugen Snow Kirchner).

Datasets.yaml (PTGSK, PTHSK, PTSSK)

sources:
- repository:
!'python/name:shyft.repository.netcdf.concat data repository.ConcatData
Repository
types:
- precipitation
- wind speed
- temperature
- relative humidity
- radiation
params:
filename: netcdf/orchestration-testdata/arome merged all.nc
nb lead intervals to drop: 0
nb lead intervals: 1
use filled values: true

Appendix 3 - YAML files

Interpolation.yaml (PTGSK, PTHSK, PTSSK)

interpolation parameters:
temperature:

#method: btk

#params:
#temperature gradient: -0.6
#temperature gradient sd: 0.25
#nug: 0.5
#range: 200000.0
#sill: 25.0
#zscale: 20.0

method: idw

params:
max distance: 3000.0
max members: 5
distance measure factor: 1.0
default temp gradient: -0.005 # degC/m, so -0.5 degC/100m
gradient by equation: false

precipitation:
method: idw
params:

max distance: 3000.0
max members: 5
distance measure factor: 1
scale factor: 1.02
radiation:
method: idw
params:
max distance: 3000.0
max members: 5
distance measure factor: 1.0
wind speed:
method: idw
params:
max distance: 3000.0
max members: 5
distance measure factor: 1.0
relative humidity:
method: idw
params:
max distance: 3000.0
max members: 5
distance measure factor: 1.0

Appendix 3 - YAML files

Region.yaml (PTGSK, PTHSK, PTSSK)

repository:
class:
! 'python/name:shyft.repository.netcdf.cf region model repository.CFRegi
onModelRepository
params:
data file: netcdf/orchestration-testdata/cell data.nc

domain:
EPSG: 32633
nx: 109
ny: 80
step x: 1000
step y: 1000
lower left x: 266000
lower left y: 6960000

catchment indices:
- 1228
- 1308
- 1394
- 1443
- 1726
- 1867
- 1996
- 2041
- 2129
- 2195
- 2198
- 2277
- 2402
- 2446
- 2465
- 2545
- 2640
- 2718
- 3002
- 3536
- 3630
- 1000010
- 1000011

model.yaml (PTGSK)

Appendix 3 - YAML files

model t: !!python/name:shyft.api.pt gs k.PTGSKModel # model to

construct
model parameters:
ae: # actual evapotranspiration
ae scale factor: 0.7
gs: # gamma snow
calculate iso pot energy: false
fast albedo decay rate: 1.194
glacier albedo: 0.484

initial bare ground fraction: 0.04

max_albedo: 0.897

max water: 0.106

min albedo: 0.652

n winter days: 217

slow albedo decay rate: 8.429
snow cv: 0.203
snow_cv_altitude factor: 0.
snow_cv_forest factor: 0.0
tx: -0.932
snowfall reset depth: 6.401

0

surface magnitude: 29.798000000000002

wind const: 5.031000000000001
wind scale: 0.583
winter end day of year: 114
kirchner:
cl: -3.984
c2: 0.08900000000000001
c3: -0.055999999999999994
p _corr: # precipitation correction
scale factor: 0.727
pt: # priestley taylor
albedo: 0.2
alpha: 1.26
routing:
alpha: 0.9
beta: 3.0
velocity: 0.0
gm:
direct response: 0.475

Appendix 3 - YAML files

model.yam! (PTHSK)

model t: !!python/name:shyft.api.pt hs k.PTHSKModel # priestley taylor
HBV Snow kirchner
model parameters:
ae: # actual evapotranspiration
ae scale factor: 0.603133018
hs: # HBV_ Snow
cfr: 0.000550204
cx: 0.281854159
lw: 0.051751484
ts: 0.436940844
tx: -0.42668965600000003
kirchner:
cl: -3.606984865
c2: 0.462349299
c3: -0.030007472
p _corr: # precipitation correction
scale factor: 0.7766866720000001
pt: # priestley taylor
albedo: 0.2
alpha: 1.26
routing:
alpha: 0.9
beta: 3.0
velocity: 0.0

Appendix 3 - YAML files

model.yaml! (PTSSK)

model t: !!python/name:shyft.api.pt ss k.PTSSKModel # priestley taylor
Skaugen Snow kirchner
model parameters:
ae: # actual evapotranspiration
ae scale factor: 1.5
ss: # Skaugen Snow
alpha 0: 40.55
cfr: 0.0098
cx: 0.5857
d range: 110.71
max water fraction: 0.3453
ts: 0.137
tx: -0.0042
unit size: 0.1858
kirchner:
cl: -3.916197322290274
c2: 0.52433661533385695
c3: -0.019503959620315988
p_corr: # precipitation correction
scale factor: 1.5
pt: # priestley taylor
albedo: 0.2
alpha: 1.26
routing:
alpha: 0.9
beta: 3.0
velocity: 0.0

v

Appendix 3 - YAML files

simulation.yaml (PTGSK)

neanidelva:
region config file: neanidelva region.yaml
model config file: neanidelva model.yaml
datasets config file: neanidelva datasets.yaml
interpolation config file: neanidelva interpolation.yaml
start datetime: 2012-09-01T00:00:00
run time step: 86400 # set to 3600 1 hour time step(slower
simulations, but hourly details)
number of steps: 1095 # set to 8759 for hours in 1 year
region model id: 'neanidelva-ptgsk'
#interpolation id: 2 # this is optional (default 0)
initial state:
repository:
class:
! 'python/name:shyft.repository.generated state repository.GeneratedStat
eRepository
params:
model: !!python/name:shyft.api.pt gs k.PTGSKModel
tags: []
references:
- repository:
! 'python/name:shyft.repository.netcdf.cf ts repository.CFTsRepository
params:
file: netcdf/orchestration-testdata/discharge.nc
var type: discharge
1D timeseries:
- catch id: [1308,1394,1867,2198,2402,2545]
type: discharge
uid: smg://SMG_PROD?name=/TEV.-Tya........... -
D9100A3B1060R123.999
run_time step: 86400 # 3600
- catch id:
[1228,1443,1726,2041,2129,2195,2277,2465,2718,3002,3630,1000010,1000011
]
type: discharge
uid: smg://SMG_PROD?name=/TEV.-Selbu-lok..... -
D9100A3B1070R123.020
run_time step: 86400 # 3600
- catch id: [1996,2446,2640,3536]
type: discharge
uid: smg://SMG PROD?name=/TEV.-Nea........... -
D9100A3B1050R123.998
run_time step: 86400 # 3600

Vii

Appendix 3 - YAML files

simulation.yaml! (PTHSK)

neanidelva:
region config file: neanidelva region.yaml
model config file: neanidelva model.yaml
datasets config file: neanidelva datasets.yaml
interpolation config file: neanidelva interpolation.yaml
start datetime: 2012-09-01T00:00:00
run time step: 86400 # set to 3600 1 hour time step(slower
simulations, but hourly details)
number of steps: 1095 # set to 8759 for hours in 1 year
region model id: 'neanidelva-pthsk'
#interpolation id: 2 # this is optional (default 0)
initial state:
repository:
class:
! 'python/name:shyft.repository.generated state repository.GeneratedStat
eRepository
params:
model: !!python/name:shyft.api.pt hs k.PTHSKModel
tags: []
references:
- repository:
! 'python/name:shyft.repository.netcdf.cf ts repository.CFTsRepository
params:
file: netcdf/orchestration-testdata/discharge.nc
var type: discharge
1D timeseries:
- catch id: [1308,1394,1867,2198,2402,2545]
type: discharge
uid: smg://SMG_PROD?name=/TEV.-Tya........... -
D9100A3B1060R123.999
run_time step: 86400 # 3600
- catch id:
[1228,1443,1726,2041,2129,2195,2277,2465,2718,3002,3630,1000010,1000011
]
type: discharge
uid: smg://SMG_PROD?name=/TEV.-Selbu-lok..... -
D9100A3B1070R123.020
run_time step: 86400 # 3600
- catch id: [1996,2446,2640,3536]
type: discharge
uid: smg://SMG PROD?name=/TEV.-Nea........... -
D9100A3B1050R123.998
run_time step: 86400 # 3600

viii

Appendix 3 - YAML files

simulation.yaml (PTSSK)

neanidelva:
region config file: neanidelva region.yaml
model config file: neanidelva model.yaml
datasets config file: neanidelva datasets.yaml
interpolation config file: neanidelva interpolation.yaml
start datetime: 2012-09-01T00:00:00
run time step: 86400 # set to 3600 1 hour time step(slower
simulations, but hourly details)
number of steps: 1095 # set to 8759 for hours in 1 year
region model id: 'neanidelva-ptssk'
#interpolation id: 2 # this is optional (default 0)
initial state:
repository:
class:
! 'python/name:shyft.repository.generated state repository.GeneratedStat
eRepository
params:
model: !!python/name:shyft.api.pt ss k.PTSSKModel
tags: []
references:
- repository:
! 'python/name:shyft.repository.netcdf.cf ts repository.CFTsRepository
params:
file: netcdf/orchestration-testdata/discharge.nc
var type: discharge
1D timeseries:
- catch id: [1308,1394,1867,2198,2402,2545]
type: discharge
uid: smg://SMG_PROD?name=/TEV.-Tya........... -
D9100A3B1060R123.999
run_time step: 86400 # 3600
- catch id:
[1228,1443,1726,2041,2129,2195,2277,2465,2718,3002,3630,1000010,1000011
]
type: discharge
uid: smg://SMG_PROD?name=/TEV.-Selbu-lok..... -
D9100A3B1070R123.020
run_time step: 86400 # 3600
- catch id: [1996,2446,2640,3536]
type: discharge
uid: smg://SMG PROD?name=/TEV.-Nea........... -
D9100A3B1050R123.998
run_time step: 86400 # 3600

Appendix 3 - YAML files

Calibration.yaml (PTGSK)

neanidelva:
model config file: neanidelva simulation.yaml
calibrated model file: calibrated model.yaml # file where the
calibrated params will go
optimization method:
name: min bobyga # can be 'min bobyga', 'dream' or 'sceua'
params:
max n evaluations: 1504 #1504/ 1543/1562/1571/1581 FOR CONSTANT
TR use 1404/1443/1462/1471/1481 - or 1504/1523/1542/1561/1571
tr start: 0.1
tr stop: 0.00001
#name: sceua
#params:
#max n evaluations: 2500
#x eps: 0.15

#y eps: 0.1
#name: dream
#params:
#max n evaluations: 1500
target:
- repository:
!'python/name:shyft.repository.netcdf.cf ts repository.CFTsRepository
params:

file: netcdf/orchestration-testdata/discharge.nc
var type: discharge
1D timeseries:
- catch id: [1308,1394,1867,2198,2402,2545]
uid: smg://SMG_PROD?name=/TEV.-Tya........... -
D9100A3B1060R123.999
start datetime: 2012-09-01T00:00:00
run_time step: 86400 # 3600
number of steps: 1095
weight: 1.0
obj func:
name: NSE # Nash-Sutcliffe efficiency (NSE) or Kling-Gupta
efficiency (KGE)
scaling factors:
s corr: 1.0
s var: 1.0
s bias: 1.0
- catch id:
[1228,1443,1726,2041,2129,2195,2277,2465,2718,3002,3630,1000010,1000011
]
uid: smg://SMG PROD?name=/TEV.-Selbu-lok..... -
D9100A3B1070R123.020
start datetime: 2012-09-01T00:00:00
run_time step: 86400 # 3600
number of steps: 1095
weight: 1.0
obj func:
name: NSE # Nash-Sutcliffe efficiency (NSE) or Kling-Gupta
efficiency (KGE)
scaling factors:
s corr: 1.0

Appendix 3 - YAML files

s var: 1.0
s _bias: 1.0
- catch id: [1996,2446,2640,3536]
uid: smg://SMG_PROD?name=/TEV.-Nea........... -
D9100A3B1050R123.998
start datetime: 2012-09-01T00:00:00
run_time step: 86400 # 3600
number of steps: 1095
weight: 1.0
obj func:
name: NSE # Nash-Sutcliffe efficiency (NSE) or Kling-Gupta
efficiency (KGE)
scaling factors:
s _corr: 1.0
s var: 1.0
s _bias: 1.0
overrides:
model:
model t: !!python/name:shyft.api.pt gs k.PTGSKOptModel
calibration parameters:
kirchner.cl:

min: -8.0
max: 0.0
kirchner.c2:
min: -1.0
max: 1.2
kirchner.c3:
min: -0.15
max: -0.04
ae.ae_scale factor:
min: 0.5
max: 2.5
gs.tx:
min: -3.0
max: 2.0
gs.wind scale:
min: 0.5
max: 6.0
gs.max water:
min: 0.06
max: 0.19

gs.wind const:
min: 1.0

max: 6.0
gs.fast albedo decay rate:

min: 1.0

max: 15.0
gs.slow albedo decay rate:

min: 2.0

max: 40.0
gs.surface magnitude:

min: 10.0

max: 70.0

gs.max albedo:
min: 0.7

max: 0.95
gs.min albedo:
min: 0.4

Xi

max: 0.6999
gs.snowfall reset depth:

min: 4.0
max: 9.0
gs.snow_cv:
min: 0.1
max: 0.8

gs.snow cv_forest factor:
min: 0.0
max: 0.0
gs.snow_cv_altitude factor:
min: 0.0

max: 0.0
gs.glacier albedo:

min: 0.4

max: 0.4

p_corr.scale factor:
min: 0.5

max: 2.0
pt.albedo:
min: 0.2
max: 0.2
pt.alpha:
min: 1.26
max: 1.26

gs.initial bare ground fraction:
min: 0.04
max: 0.04
gs.winter end day of year:
min: 80
max: 125
gs.calculate iso pot energy:
min: O

max: 0
gs.n _winter days:
min: 170
max: 270
gm.dtf:
min: 6.0
max: 6.0
gm.direct response:
min: 0.475
max: 0.475

routing.velocity:
min: 0.0
max: 0.0
routing.alpha:
min: 0.9

max: 0.9
routing.beta:
min: 3.0
max: 3.0

Xii

Appendix 3 - YAML files

Appendix 3 - YAML files

Calibration.yaml (PTHSK)

neanidelva:
model config file: neanidelva simulation.yaml
calibrated model file: calibrated model.yaml # file where the
calibrated params will go
optimization method:
name: min bobyga # can be 'min bobyga', 'dream' or 'sceua'

params:
max n evaluations: 1504 #1504/ 1543/1562/1571/1581 FOR CONSTANT

TR use 1404/1443/1462/1471/1481 - or 1504/1523/1542/1561/1571
tr start: 0.1
tr stop: 0.00001
#name: sceua
#params:
#max n evaluations: 2500
#x eps: 0.15

#y eps: 0.1
#name: dream
#params:
#max n evaluations: 1500
target:
- repository:
!'python/name:shyft.repository.netcdf.cf ts repository.CFTsRepository
params:

file: netcdf/orchestration-testdata/discharge.nc
var type: discharge
1D timeseries:
- catch id: [1308,1394,1867,2198,2402,2545]
uid: smg://SMG_PROD?name=/TEV.-Tya........... -
D9100A3B1060R123.999
start datetime: 2012-09-01T00:00:00
run_time step: 86400 # 3600
number of steps: 1095
weight: 1.0
obj func:
name: NSE # Nash-Sutcliffe efficiency (NSE) or Kling-Gupta
efficiency (KGE)
scaling factors:
s corr: 1.0
s var: 1.0
s bias: 1.0
- catch id:
[1228,1443,1726,2041,2129,2195,2277,2465,2718,3002,3630,1000010,1000011
]
uid: smg://SMG_PROD?name=/TEV.-Selbu-lok..... -
D9100A3B1070R123.020
start datetime: 2012-09-01T00:00:00
run_time step: 86400 # 3600
number of steps: 1095
weight: 1.0
obj func:
name: NSE # Nash-Sutcliffe efficiency (NSE) or Kling-Gupta
efficiency (KGE)
scaling factors:
s corr: 1.0

Xiii

Appendix 3 - YAML files

s var: 1.0
s _bias: 1.0
- catch id: [1996,2446,2640,3536]
uid: smg://SMG_PROD?name=/TEV.-Nea........... -
D9100A3B1050R123.998
start datetime: 2012-09-01T00:00:00
run_time step: 86400 # 3600
number of steps: 1095
weight: 1.0
obj func:
name: NSE # Nash-Sutcliffe efficiency (NSE) or Kling-Gupta
efficiency (KGE)
scaling factors:
s _corr: 1.0
s var: 1.0
s _bias: 1.0
overrides:
model:
model t: !!python/name:shyft.api.pt hs k.PTHSKOptModel
calibration parameters:
kirchner.cl:

min: -8.0
max: 0.0
kirchner.c2:
min: -1.0
max: 1.2
kirchner.c3:

min: -0.15

max: -0.05
ae.ae_scale factor:

min: 1.5

max: 1.5
hs.cfr:

min: 0O

max: 1
hs.cx:

min: O

max: 1
hs.lw:

min: O

max: 0.5
hs.ts:

min: -0.5

max: 0.5
hs.tx:

min: -0.5

max: 0.5
p_corr.scale factor:

min: 1.0

max: 1.0
pt.albedo:

min: 0.2

max: 0.2
pt.alpha:

min: 1.26

max: 1.26
gm.dtf:

min: 6.0

Xiv

max: 6.0
gm.direct response:

min: 0.475

max: 0.475

routing.velocity:
min: 0.0
max: 0.0
routing.alpha:
min: 0.9

max: 0.9
routing.beta:
min: 3.0
max: 3.0

XV

Appendix 3 - YAML files

Appendix 3 - YAML files

Calibration.yaml (PTSSK)

neanidelva:
model config file: neanidelva simulation.yaml
calibrated model file: calibrated model.yaml # file where the
calibrated params will go
optimization method:
name: min bobyga # can be 'min bobyga', 'dream' or 'sceua'
params:
max n evaluations: 1541 #1541/1542/1543/1544 FOR CONSTANT TR use
1441/1442/1443/1444
tr start: 0.1
tr stop: 0.00001
#name: sceua
#params:
#max n evaluations: 2500
#x eps: 0.15

#y eps: 0.1
#name: dream
#params:
#max n evaluations: 1500
target:
- repository:
!'python/name:shyft.repository.netcdf.cf ts repository.CFTsRepository
params:

file: netcdf/orchestration-testdata/discharge.nc
var type: discharge
1D timeseries:
- catch id: [1308,1394,1867,2198,2402,2545]
uid: smg://SMG_PROD?name=/TEV.-Tya........... -
D9100A3B1060R123.999
start datetime: 2012-09-01T00:00:00
run_time step: 86400 # 3600
number of steps: 1095
weight: 1.0
obj func:
name: NSE # Nash-Sutcliffe efficiency (NSE) or Kling-Gupta
efficiency (KGE)
scaling factors:
s corr: 1.0
s var: 1.0
s bias: 1.0
- catch id:
[1228,1443,1726,2041,2129,2195,2277,2465,2718,3002,3630,1000010,1000011
]
uid: smg://SMG PROD?name=/TEV.-Selbu-lok..... -
D9100A3B1070R123.020
start datetime: 2012-09-01T00:00:00
run_time step: 86400 # 3600
number of steps: 1095
weight: 1.0
obj func:
name: NSE # Nash-Sutcliffe efficiency (NSE) or Kling-Gupta
efficiency (KGE)
scaling factors:
s corr: 1.0

XVi

Appendix 3 - YAML files

s var: 1.0
s _bias: 1.0
- catch id: [1996,2446,2640,3536]
uid: smg://SMG_PROD?name=/TEV.-Nea........... -
D9100A3B1050R123.998
start datetime: 2012-09-01T00:00:00
run_time step: 86400 # 3600
number of steps: 1095
weight: 1.0
obj func:
name: NSE # Nash-Sutcliffe efficiency (NSE) or Kling-Gupta
efficiency (KGE)
scaling factors:
s _corr: 1.0
s var: 1.0
s _bias: 1.0
overrides:
model:
model t: !!python/name:shyft.api.pt ss k.PTSSKOptModel
calibration parameters:
kirchner.cl:

min: -8.0
max: 0.0
kirchner.c2:
min: -1.0
max: 1.2
kirchner.c3:
min: -0.15
max: -0.03
ae.ae_scale factor:

min: 0.55
max: 2.5

ss.alpha 0:
min: 10
max: 70

ss.cfr:
min: O
max: 1.4

SsS.CcX:
min: O
max: 7/

Ss.d _range:
min: 20
max: 300

ss.max water fraction:
min: 0.001
max: 0.35

Ss.ts:
min: -0.99
max: 0.99

ss.tx:
min: -0.99
max: 0.99

Ss.unit size:
min: 0.01
max: 0.4

p_corr.scale factor:
min: 0.5

Xvii

max: 1.8
pt.albedo:
min: 0.2
max: 0.2
pt.alpha:
min: 1.26
max: 1.26
gm.dtf:
min: 6.0
max: 6.0
gm.direct response:
min: 0.475
max: 0.475

routing.velocity:
min: 0.0
max: 0.0
routing.alpha:
min: 0.9

max: 0.9
routing.beta:
min: 3.0
max: 3.0

XViii

Appendix 3 - YAML files

Appendix 4

Calibration codes

Appendix 4 - Calibration codes

Calibration

Conventional SHyFT calibration is a one-time calibration. The program stops after each
calibration and saves calibrated parameters to a calibrated.yaml file. It then reruns the
calibration codes to get another calibrated parameter set.

Validation of parameters in SHyFT is done by placing new parameter set into a model.yaml
file manually and running the simulation codes. In this study, 200 calibrations for each
method were done. A number of codes written in python as well as loop calibration scripts
were developed. The codes described below are capable of running calibrations multiple
times and saving the calibrated parameters in a CSV file. They can further update the saved
file after each new loop is complete. The only limitation is the machine memory. For a typical
today’s computer with a core i7 — 8Mb Ram, the memory will usually overload after 17 loops
which crashes the program necessitating a restart.

in addition, the codes can generate the simulated and observed discharge graphs for every
calibration time and save them. So, it is possible to have many calibrated parameters in a
single CSV file and their graphs after a period of time. The CSV parameter file is used in the
validation part without the need to modify the model.yaml manually. This calibration code

can be used for all types of methods in SHyFT.

Loop calibration

Importing the third-party python modules

import os

from os import path

import sys

import datetime as dt

import pandas as pd

import numpy as np

from matplotlib import pyplot as plt
import time

import random

all results, good results = [], []
counter = -1

while counter < 0:
shyft data path = path.abspath(r"C:\shyft workspace\shyft-data")

Appendix 4 - Calibration codes

if path.exists(shyft data path) and 'SHYFT DATA' not in

os.environ:
os.environ['SHYFT DATA']=shyft data path

from shyft.repository.default state repository import
DefaultStateRepository

from shyft.orchestration.configuration.yaml configs import
YAMLCalibConfig, YAMLSimConfig

from shyft.orchestration.simulators.config simulator import
ConfigCalibrator, ConfigSimulator

counter += 1
tl = time.time ()

config file path =
os.path.abspath (r"D:\Dropbox\Thesis\SHyFT\Yaml files\Skaugen\neanidelv
a_simulation.yaml")

cfg = YAMLSimConfig(config file path, "neanidelva")

simulator = ConfigSimulator (cfqg)

simulator.run ()

state = simulator.region model.state

region model = simulator.region model

config file path =
os.path.abspath (r"D:\Dropbox\Thesis\SHyFT\Yaml files\Skaugen\neanidelv
a_simulation.yaml")

cfg = YAMLCalibConfig(config file path, "neanidelva")

calib = ConfigCalibrator (cfqg)
cfg.optimization method['params']['tr start'] =
random.randrange (1,2000) /10000

state repos = DefaultStateRepository(calib.region model)

results = calib.calibrate(cfg.sim config.time axis,
state repos.get state(0).state vector,

cfg.optimization method['name'],

cfg.optimization method['params'])

t2 = time.time ()

now = str(dt.datetime.now())

result params = []

for i in range (results.size()):

result params.append(results.get (i))

result params.append(1-
calib.optimizer.calculate goal function(result params))

result_params.append(int((t2—tl)/60))

result params.append (now)

result params.append(str(cfg.optimization method['name']))

(cfg.optimization method['params']))
(region model.time axis) [-30:-20])

(

str(region model.time axis).split(',")[-

result params.append(str

result params.append(str

result params.append(str
110:-11))

result params.append(str(cfg.overrides['model']['model t']) [-15:-
101)

result params.append(str(cfg.calibration parameters))

o~ o~ o~ —~

all results.append(result params)

Appendix 4 - Calibration codes
pd results = pd.DataFrame (all results)
pd good results = pd.DataFrame (good results)

pd results 2 = pd results.transpose()
pd _good results 2 = pd good results.transpose ()

if str(cfg.overrides['model']['model t'])[-15:-10] == 'PTGSK':
param list =
['kirchner.cl', 'kirchner.c2', 'kirchner.c3', 'ae.ae_scale factor', 'gs.tx

','gs.wind scale', 'gs.max water',6 'gs.wind const', 'gs.fast albedo decay
_rate','gs.slow albedo decay rate', 'gs.surface magnitude', 'gs.max albe
do','gs.min albedo', 'gs.snowfall reset depth',6 'gs.snow cv', 'gs.glacier
albedo','p corr.scale factor', 'gs.snow cv forest factor',6 'gs.snow cv
altitude factor', 'pt.albedo', 'pt.alpha','gs.initial bare ground fracti
on','gs.winter end day of year',6 'gs.calculate iso pot energy','gm.dtf'
, 'routing.velocity', 'routing.alpha', 'routing.beta', 'gs.n winter days',
'gm.direct response', 'NSE', 'Computation time (Minutes)', 'Date &

Time', '"Method name', 'Params method', 'Start datetime', 'Number of

days', '"Model name', 'Ranges’']

elif str(cfg.overrides['model']['model t'])[-15:-10] == 'PTHSK':
param list =
['kirchner.cl', 'kirchner.c2', 'kirchner.c3', 'ae.ae_scale factor', 'hs.lw

', 'hs.tx', 'hs.cx', 'hs.ts', 'hs.cfr', 'gm.dtf', 'p corr.scale factor', 'pt.
albedo', 'pt.alpha', 'routing.velocity', 'routing.alpha', 'routing.beta',"’
gm.direct response', 'NSE', 'Computation time (Minutes)', 'Date &

Time', '"Method name', 'Params method', 'Start datetime', 'Number of

days', '"Model name', 'Ranges’']

elif str(cfg.overrides['model']['model t'])[-15:-10] == 'PTSSK':
param list =
['kirchner.cl', 'kirchner.c2', 'kirchner.c3', 'ae.ae scale factor', 'ss.al
pha 0','ss.d range', 'ss.unit size','ss.max water fraction',6 'ss.tx', 'ss

.cx',"'ss.ts','ss.cfr', 'p corr.scale factor','pt.albedo', 'pt.alpha', 'gm
.dtf', 'routing.velocity', 'routing.alpha', 'routing.beta', 'gm.direct res
ponse', 'NSE', 'Computation time (Minutes)', 'Date & Time', 'Method

name', 'Params method', 'Start datetime', 'Number of days', 'Model

name', 'Ranges']

pd param = pd.DataFrame (param list)
pd res = pd.concat([pd param, pd results 2], axis = 1)

pd res2 = pd.concat ([pd param, pd good results 2], axis = 1)
pd res.to_csv('D:\\Dropbox\\Thesis\\SHyFT\\Results\\results.csv')
target obs = calib.tv[0]

disch sim all = np.linspace(0,0,target obs.ts.time axis.size())
disch obs all np.linspace (0,0, target obs.ts.time axis.size())

for tar in range(calib.tv.size()):

target obs = calib.tv[tar]
disch sim =
calib.region model.statistics.discharge (target obs.catchment indexes)
disch obs = target obs.ts.values
disch sim np = np.array(disch sim.values)
disch obs np = np.array(disch obs)

Appendix 4 - Calibration codes
disch sim all += disch sim np
disch obs all += disch obs np

ts timestamps = [dt.datetime.utcfromtimestamp (p.start) for p in
target obs.ts.time axis]

fig, ax = plt.subplots(l, figsize=(45,10))

ax.plot (ts_timestamps, disch sim all, lw=1l, 1ls = '-', label =
"sim", color = 'navy')

ax.plot (ts timestamps, disch obs all, 1lw=l, 1ls='-', label = "obs",
color = 'crimson')

ax.set title(f"observed and simulated discharge (sum of all
catchments) {str(simulator.region model. class_) [-12:-7]}")

ax.legend()
ax.set ylabel ("discharge [m3 s-1]")

plt.savefig (f"D:\\Dropbox\\Thesis\\SHyFT\\Results\\{counter}.png")

Appendix 5

Simulation codes

Appendix 5 - Simulation codes

1. One-time Simulation code

This code does one-time simulation and gives out data about the model which are include

the following

v

LR R N N N NN

Double check the main model data

Make Precipitation and Temperature graphs

Make a Data-Frame and put discharge of all sub-catchments into a CSV file

Make a Data-Frame and put the distributed p, T, Geo and etc. into separated CSV file
Generate SCA, SWE and outflow of all cells

Generate all SCA & SWE images

Discharge graphs of all targets

make precipitation graph

2. Loop simulation code

This code does a loop simulation and reads data from a CSV file column by column

generating discharge validation graphs.

#

1. One-time Simulation code

Importing the third-party python modules

from netCDF4 import Dataset

import os

from os import path

import sys

import datetime as dt

import pandas as pd

import numpy as np

from matplotlib import pyplot as plt
import time

Recored the starting time

tl

#

time.time ()

Define SHyFT data path

Appendix 5 - Simulation codes

Adding 'r' to avoid change slash or doubl backslash

shyft data path = path.abspath(r"C:\shyft workspace\shyft-data")
if path.exists(shyft data path) and 'SHYFT DATA' not in os.environ:
os.environ['SHYFT DATA']=shyft data path

Importing the shyft modules

import shyft

from shyft import api

from shyft.repository.default state repository import
DefaultStateRepository

from shyft.orchestration.configuration.yaml configs import
YAMLSimConfig

from shyft.orchestration.simulators.config simulator import
ConfigSimulator

Set up YAML files to configure simulation

config file path =
r'D:\Dropbox\Thesis\SHyFT\neanidelva simulation.yaml'
cfg = YAMLSimConfig(config file path, "neanidelva")

Config the simulator

simulator = ConfigSimulator (cfqg)
region model = simulator.region model

Double check the main information of the model

print ('Number of steps is','\t\t\t', cfg.number of steps,'\n')

print ('Start datetime is','\t\t\t', cfg.start datetime, '\n')

print ('Number of seconds of each step is','\t',
cfg.run time step, '\n')

print ('Name and method of model is','\t\t', cfg.region model id, '\n"')
print ('Number of total cells are', '\t\t',

simulator.region model.size(), '\n")

print ('catchment ids

are:\n\n',simulator.region model.catchment ids,'\n")

Run the simulation

simulator.run ()

Make Precipitation and Temperature graph for a catchment or a cell
in a period

while True:

question = input("make a P & T graph, for a catchment or a cell?")
if question == 'catchment' or question == 'cell' or question ==
'stop':

break

Appendix 5 - Simulation codes

if question == 'catchment':

print (region model.catchment ids)
cid = int (input ("Please enter catchment ID"))
start day = int(input("start day (0 to {})
?".format ((cfg.number of steps-1))))
left days = cfg.number of steps - start day
n day = int (input ("how many days (0 to {}) ?".format (left days)))

ta statistics =
api.TimeAxis (simulator.region model.time axis.time(start day),api.Cale
ndar.DAY,n day)

ts timestamps = [dt.datetime.utcfromtimestamp (p.start) for p in
ta statistics]

pre cell = region model.statistics.precipitation([cid]) .values
temp cell = region model.statistics.temperature([cid]) .values

fig, axl = plt.subplots(figsize=(10,8))

ax2 = axl.twinx ()

axl.plot (ts_timestamps,pre cell[start day:n dayt+start day],
c='black', 1lw=2, label='precipitation')

ax2.plot (ts_timestamps, temp cell[start day:n daytstart day],
c='purple', 1lw=2, label='Temperature')

axl.set ylabel('daily precip [mm/h]")

ax2.set ylabel ('temp [$°$ C]")

axl.set xlabel ('date')

loc = 1(right-top) 2(left-top) 3 (bottom-left) 4 (bottom-right)

axl.legend(loc=2); ax2.legend(loc=1)

plt.show ()

print ("precipitation = ", pre cell[start day:n day+start day]l)

print ("Temperature = ", temp cell[start day:n day+start day])
elif question == 'cell':

print (f"Total number of cells are
{simulator.region model.size()}, enter from 0 to
{simulator.region model.size()-1}")
cell num = int (input ("Enter the cell id"))
start day = int(input("start day (0 to {})
?".format ((cfg.number of steps-1))))
left days = cfg.number of steps - start day
n day = int(input ("how many days (0 to {}) ?".format(left days)))

ta statistics =
api.TimeAxis (simulator.region model.time axis.time(start day),api.Cale
ndar.DAY,n day)

ts timestamps = [dt.datetime.utcfromtimestamp (p.start) for p in
ta statistics]

pre cell =
region model.cells[cell num].env ts.precipitation.values
temp cell = region model.cells[cell num].env_ ts.temperature.values

fig, axl = plt.subplots(figsize=(10,8))
ax2 = axl.twinx ()

Appendix 5 - Simulation codes

axl.plot (ts timestamps,pre cell[start day:n day+start day],

c='cornflowerblue', 1lw=2, label='precipitation')
ax2.plot (ts_timestamps, temp cell[start day:n daytstart day],
c='orange', 1lw=2, label='Temperature')

axl.set ylabel('daily precip [mm/h]")

ax2.set ylabel ('temp [$°$ C]")

axl.set xlabel ('date')

loc = 1l(right-top) 2(left-top) 3 (bottom-left) 4 (bottom-right)
axl.legend(loc=2); ax2.legend(loc=1)

plt.show ()

print ("precipitation = ", pre cell[start day:n dayt+start day])

print ("Temperature = ", temp cell[start day:n day+start dayl])
else:

pass

Make a pandas DataFrame and put discharge of all subcatchments and
save into a CSV file

discharge subcatch pd = pd.DataFrame ()
for cid in region model.catchment ids:
discharge subcatch pd[cid] =
region model.statistics.discharge([int(cid)]) .values

ts timestamps = [dt.datetime.utcfromtimestamp (p.start) for p in
region model.time axis]

discharge subcatch pd.index = ts timestamps

discharge subcatch pd.to csv('discharge subcatch pd.csv')

Access to the whole dataframe

discharge subcatch pd.loc[:][:]

Access to the specific catchment and time

discharge subcatch pd.loc['2014-03-18"][1996]

Access to discharge of all catchments in specific date

discharge subcatch pd.loc['2014-03-18"][:]

Access to discharge of specific catchment in whole period

discharge subcatch pd.loc[:][1996]

Make a pandas DataFrame and put the distributed
precipitation, radiation,relative humidity, temperature,wind speed and
discharge of all cells and save into CSV files

precipitation pd = pd.DataFrame ()
radiation pd = pd.DataFrame ()

rel hum pd = pd.DataFrame ()
temperature pd = pd.DataFrame ()

Appendix 5 - Simulation codes

wind speed pd = pd.DataFrame ()
disch cell pd pd.DataFrame ()

for num in range (region model.size()):
precipitation pd[num] =
region model.cells[num].env ts.precipitation.values
radiation pd[num] =
region model.cells[num].env_ ts.radiation.values
rel hum pd[num] = region model.cells[num].env ts.rel hum.values
temperature pd[num] =
region model.cells[num].env_ts.temperature.values
wind speed pd[num] =
region model.cells[num].env ts.wind speed.values
disch cell pd[num] =
region model.cells[num].rc.avg discharge.values
ts timestamps = [dt.datetime.utcfromtimestamp (p.start) for p in
region model.time axis]

precipitation pd.index = ts timestamps
radiation pd.index = ts_timestamps

rel hum pd.index = ts_ timestamps
temperature pd.index = ts timestamps
wind speed pd.index = ts timestamps
disch cell pd.index = ts_timestamps

precipitation pd.to csv('precipitation pd.csv')
radiation pd.to csv('radiation pd.csv')

rel hum pd.to csv('rel hum pd.csv')
temperature pd.to csv('temperature pd.csv')
wind speed pd.to csv('wind speed pd.csv')

disch cell pd.to csv('disch cell pd.csv')

Make discharge graph for a catchment or a cell in a period

while True:

question = input ("make a graph for a catchment or a cell?")
if question == 'catchment' or question == 'cell' or question ==
'stop':
break
if question == 'catchment':

print (region model.catchment ids)
cid = input ("Please enter catchment ID")
start day = int(input ("start day (0 to {})
?".format ((cfg.number of steps-1))))
left days = cfg.number of steps - start day
n day = int (input ("how many days (0 to {}) ?".format(left days)))

fig, ax = plt.subplots(figsize=(10,8))

ta statistics =
api.TimeAxis (simulator.region model.time axis.time(start day),api.Cale
ndar.DAY,n day)

ts timestamps = [dt.datetime.utcfromtimestamp (p.start) for p in
ta statistics]
data = region model.statistics.discharge ([int (cid)]) .values

ax.plot (ts_timestamps,data[start day:n daytstart day], label =
"{}1".format (cid))

Appendix 5 - Simulation codes

fig.autofmt xdate ()
ax.legend(title="Catch. ID")
ax.set ylabel ("discharge [m3 s-1]")

plt.show ()
print (data[start day:n day+start day])
elif question == 'cell':

print (f"Total number of cells are
{simulator.region model.size()}, enter from 0 to
{simulator.region model.size()-1}")
cell num = int (input ("Enter the cell id"))
start day = int(input("start day (0 to {})
?".format ((cfg.number of steps-1))))
left days = cfg.number of steps - start day
n day = int (input ("how many days (0 to {}) ?".format (left days)))

fig, ax = plt.subplots(figsize=(10,8))

ta statistics =
api.TimeAxis (simulator.region model.time axis.time(start day),api.Cale
ndar.DAY,n day)

ts timestamps = [dt.datetime.utcfromtimestamp (p.start) for p in
ta statistics]

data = region model.cells[cell num].rc.avg discharge.values
ax.plot (ts timestamps,data[start day:n day+start day], label =
f"Cell {cell num}")

fig.autofmt xdate ()

ax.legend(title="Cell ID")

ax.set ylabel ("discharge [m3 s-1]")

plt.show ()

print (data[start day:n day+start day])
else:

pass

Access to the x, y ,z, area and catch ids of all cells
cells = region model.get cells()

x = np.array([cell.geo.mid point().x for cell in cells])
y = np.array([cell.geo.mid point().y for cell in cells])
z = np.array([cell.geo.mid point().z for cell in cells])

area = np.array([cell.geo.area() for cell in cells])
catch ids = np.array([cell.geo.catchment id() for cell in cells])

Make a panadas DataFrame for Geo. data save into a CSV file

geo _pd = pd.DataFrame ()

geo pd['x"'] = x

geo_pd['y']l =y

geo pd['z'] = z

geo _pd['catch ids'] = catch ids
geo _pd['area'] = area

geo _pd.to csv('geo pd.csv')

Appendix 5 - Simulation codes

Do some calculation on Geo. data

np z = np.array(geo pd[:]['z"'])
print (np_z.size)

print (np_z.mean())

print (np_z.max())

print(np z.min())

print (np_z.std())

id Access directly to the catchment ids

catchment ids = region model.catchment ids

Make a dictionary an enumarate them form zero to twenty-six

cid z map = dict ([(catchment ids[i],i) for i in
range (len (catchment ids))])
print (cid z map)

Then create an array the same length as our 'x' and 'y', which
holds the integer reflecting values with the cid z map dictionary for
each single cells

catch ids = np.array([cid z map[cell.geo.catchment id()] for cell in
cells])

Illustrate the catchment

fig, ax = plt.subplots(figsize=(15,5))

cm = plt.cm.get cmap(color[73])# color[0 to 75]

plot = ax.scatter(x, y, c=catch ids, marker='s', s=7, lw=4, cmap=cm)
plot = ax.scatter(x, y, c=z, marker='o', s=9, lw=5, cmap=cm)
plt.colorbar (plot) .set label ('Numerate the sub-catchment IDs')

plt.legend(title="sub-catchments", fontsize = 16, loc = 1)
plt.show ()

Gamma-sSnow response

Set a date: year, month, day, (hour of day if hourly time step).
The oslo calendar (incl dst) converts calendar coordinates Y,M,D.. to
its utc-time. 1400104800 (seconds passed from 1970,1,1,1,0,0). It
needs to get the index of the time axis for the time

oslo = api.Calendar ('Europe/Oslo') # Europe/Berlin
time x = oslo.time(2016,3,1)

Index of time x on time-axis
try:

idx = simulator.region model.time axis.index of (time x)
except:

print ("Date out of range, setting index to 0")

Appendix 5 - Simulation codes

idx = 0
Snow Cover Area
In the mentioned day idx = (2016,3,1) for all all catchments ([])
sca = simulator.region model.gamma snow_response.sca([],idx)
sca = simulator.region model.hbv snow state.sca([],idx)
sca = simulator.region model.skaugen snow state.sca([],idx)
Snow Water Equivalent (mm)
In the mentioned day idx = (2016,3,1) for all catchments ([])
swe = simulator.region model.gamma snow_response.swe ([],1dx)
swe = simulator.region model.hbv snow state.swe([],idx)
swe = simulator.region model.skaugen snow state.swe([],idx)
The average of swe in the selected catchment, one value (mm)
swev = simulator.region model.gamma snow response.swe value ([],idx)
swev = simulator.region model.hbv snow state.swe value([],idx)
swev = simulator.region model.skaugen snow state.swe value([],idx)
Swe np = np.array (swe)
area np = np.array(area)
sum np = swe np * area np
swe average = sum_np.sum()/area_np.sum()

print (swe average)
print (swev)
print (round(swe average,3) == round(swev, 3))

Do some calculation with numpy help
print (swe np.mean (
print (swe np.std(
print (swe np.sum/(
print (swe np.max (
print (swe np.min(

The number of cells with more 250 mm Snow Water equivalent

swe np[swe np > 250].size

Snow outflow

sout = simulator.region model.gamma snow response.outflow([],idx)

sout = simulator.region model.hbv snow response.outflow([],idx)

sout = simulator.region model.skaugen snow response.outflow([],idx)

sout np = np.array (sout)
print (sout np)

print (sout np.sum())
print (sout np.max())
print (sout np.min())

Appendix 5 - Simulation codes

Simple scatter plots for SCA , SWE , Outflow

fig, ax = plt.subplots(figsize=(15,5))

cm = plt.cm.get cmap(color[2])# color[0 to 75]

plot = ax.scatter(x, y, c=sca, vmin=0, vmax=1l,marker='s', s=40, 1lw=0,
cmap=cm)

plt.colorbar (plot)

plt.title('Snow Covered area of {0} on

{1}'.format (cfg.region model id, oslo.to string(time x)))

fig, ax = plt.subplots(figsize=(15,5))

cm = plt.cm.get cmap(color[l]) # color[0 to 75]

plot = ax.scatter(x, y, c=swe, vmin=swe np.min(), vmax=swe np.max(),
marker='s', s=40, lw=0, cmap=cm)

plt.colorbar (plot)

plt.title ('Snow Water Equivalent (mm) {0} on

{1}'.format (cfg.region model id, oslo.to string(time x)))

fig, ax = plt.subplots(figsize=(15,5))

cm = plt.cm.get cmap(color[72])# color[0 to 75]

plot = ax.scatter(x, y, c=sout, vmin=sout np.min(),

vmax=sout np.max (), marker='s', s=40, 1lw=0, cmap=cm)
plt.colorbar (plot)

plt.title('Snow outflow {0} on {1}'.format (cfg.region model id,
oslo.to _string(time x)))

plt.show ()

Histogram of SCA and SWE

fig, ((axl, ax2)) = plt.subplots(nrows=1l, ncols=2, figsize = (15,6))
axl.hist(sca, bins=20, range=(0,1), color='y', alpha=0.3)

axl.set xlabel ("SCA of grid cell", fontsize=14)
axl.set ylabel ("frequency", fontsize=14)

ax2.hist (swe, bins=20, color='r', alpha=0.3)
ax2.set xlabel ("Snow Water Equivalent (mm) of grid cell", fontsize=14)
ax2.set ylabel ("frequency", fontsize=14)

plt.show ()

Put SCA, SWE and outflow of all cells in Pandas DataFrames and
save them into CSV files

SCA pd = geo_pd.copy ()
SWE pd geo_pd.copy ()
outflow pd = geo pd.copy ()
dic swe ptgsk = {}
dic_sca ptgsk = {}

ts timestamps = [dt.datetime.utcfromtimestamp (p.start) for p in
region model.time axis]
for day in range (0,cfg.number of steps):
sca = simulator.region model.gamma snow_response.sca([],day)
SCA pd[ts timestamps([day]] = sca

Appendix 5 - Simulation codes

dic sca ptgsk.update({day:sca})
SCA pd.to _csv('SCA pd.csv')

ts timestamps = [dt.datetime.utcfromtimestamp (p.start) for p in
region model.time axis]
for day in range (0,cfg.number of steps):
swe = simulator.region model.gamma snow_response.swe ([],day)
SWE pd[ts timestamps[day]] = swe
dic_swe ptgsk.update ({day:swe})
SWE pd.to csv('SWE pd.csv')

outflow pd = pd.DataFrame ()

ts timestamps = [dt.datetime.utcfromtimestamp (p.start) for p in
region model.time axis]

for day in range (0,cfg.number of steps):

outflow =
simulator.region model.gamma snow response.outflow([],day)
outflow pd[ts timestamps[day]] = outflow

outflow pd.to csv('outflow pd.csv')

dic_swe ptgsk pd = pd.DataFrame (dic_swe ptgsk)
dic_sca ptgsk pd pd.DataFrame (dic_sca ptgsk)

dic_swe ptgsk pd.to csv('dic swe ptgsk pd.csv')
dic_sca ptgsk pd.to csv('dic sca ptgsk pd.csv')

SCA pd = geo_pd.copy ()

SWE pd = geo_pd.copy ()
outflow pd = geo pd.copy ()
dic_swe pthsk = {}

dic_sca pthsk {}

+H H S
I

ts timestamps [dt.datetime.utcfromtimestamp (p.start) for p in
region model.time axis]
for day in range(0,cfg.number of steps):

sca = simulator.region model.hbv snow state.sca([],day)
¥# SCA pd[ts_timestamps([day]] = sca
dic _sca pthsk.update({day:sca})

SCA pd.to csv('SCA pd.csv')

ts timestamps = [dt.datetime.utcfromtimestamp (p.start) for p in
region model.time axis]
for day in range(0,cfg.number of steps):
swe = simulator.region model.hbv snow state.swe([],day)
SWE pd[ts_timestamps[day]] = swe
dic_swe pthsk.update ({day:swe})
SWE pd.to csv('SWE pd.csv')

=+

#
#
#
#

outflow pd = pd.DataFrame ()

ts timestamps = [dt.datetime.utcfromtimestamp (p.start) for p in
region model.time axis]

for day in range(0,cfg.number of steps):

outflow =
simulator.region model.hbv snow response.outflow([],day)
¥# outflow pd[ts timestamps[day]] = outflow

outflow pd.to csv('outflow pd.csv')

dic swe pthsk pd = pd.DataFrame (dic swe pthsk)

Appendix 5 - Simulation codes

dic sca pthsk pd = pd.DataFrame(dic sca pthsk)

dic_swe pthsk pd.to csv('dic swe pthsk pd.csv')
dic sca pthsk pd.to csv('dic sca pthsk pd.csv')

SCA pd = geo pd.copy()

SWE pd = geo_pd.copy()

outflow pd = geo pd.copy()

dic _swe ptssk = {}

dic _sca ptssk = {}

ts_timestamps [dt.datetime.utcfromtimestamp (p.start) for p in
region model.time axis]
for day in range(0,cfg.number of steps):

sca = simulator.region model.skaugen snow state.sca([],day)
SCA pd[ts timestamps[day]] = sca
dic sca ptssk.update({day:sca})

SCA pd.to csv('SCA pd.csv')

ts timestamps = [dt.datetime.utcfromtimestamp (p.start) for p in
region model.time axis]
for day in range(0,cfg.number of steps):
swe = simulator.region model.skaugen snow state.swe([],day)
SWE pd[ts timestamps[day]] = swe
dic_swe ptssk.update({day:swe})
SWE pd.to csv('SWE pd.csv')

H=

#
#
#
#

outflow pd = pd.DataFrame ()

ts timestamps = [dt.datetime.utcfromtimestamp(p.start) for p in
region model.time axis]

for day in range(0,cfg.number of steps):

outflow =
simulator.region model.gamma snow response.outflow([],day)

outflow =
simulator.region model.skaugen snow response.outflow([],day)
outflow pd[ts timestamps[day]] = outflow

outflow pd.to csv('outflow pd.csv')

=

dic_swe ptssk pd = pd.DataFrame (dic swe ptssk)
dic_sca ptssk pd = pd.DataFrame (dic sca ptssk)

=+

dic swe ptssk pd.to csv('dic swe ptssk pd.csv')
dic _sca ptssk pd.to csv('dic sca ptssk pd.csv')

+H =

Make SWE graph for a catchment or a cell in a period

while True:

question = input ("make a SWE graph, for a catchment or a cell?"™)
if gquestion == 'catchment' or question == 'cell' or question ==
'stop':
break
if question == 'catchment':

print (region model.catchment ids)
cid = input ("Please enter catchment ID")

Appendix 5 - Simulation codes

start day = int(input("start day (0 to {})
?".format ((cfg.number of steps-1))))
left days = cfg.number of steps - start day
n day = int (input ("how many days (0 to {}) ?".format (left days)))

fig, ax = plt.subplots(figsize=(10,8))

ta statistics =
api.TimeAxis (simulator.region model.time axis.time(start day),api.Cale
ndar.DAY,n day)

ts timestamps = [dt.datetime.utcfromtimestamp (p.start) for p in
ta statistics]

swe catch =
simulator.region model.gamma snow response.swe ([int(cid)]) .v.to numpy (
)

ax.plot (ts_timestamps,swe catch[start day:n day+start day], label
= "{}".format (cid))

fig.autofmt xdate ()

ax.legend(title="Catch. ID")

ax.set ylabel ("SWE (mm)")

plt.show ()

print (swe catch[start day:n day+start dayl)

elif question == 'cell':

print (f"Total number of cells are
{simulator.region model.size()}, enter from 0 to
{simulator.region model.size()-1}")
cell num = int (input ("Enter the cell id"))
start day = int(input("start day (0 to {})
?".format ((cfg.number of steps-1))))
left days = cfg.number of steps - start day
n day = int (input ("how many days (0 to {}) ?".format (left days)))

fig, ax = plt.subplots(figsize=(10,8))
ta statistics =
api.TimeAxis (simulator.region model.time axis.time(start day),api.Cale
ndar.DAY,n day)
ts timestamps = [dt.datetime.utcfromtimestamp (p.start) for p in
ta statistics]
swe cell =
simulator.region model.cells[cell num].rc.snow swe.v.to numpy ()
ax.plot (ts_timestamps,swe cell[start day:n dayt+start day], label =
f"Cell {cell num}")

fig.autofmt xdate ()

ax.legend(title="Cell ID")

ax.set ylabel ("SWE (mm)")

plt.show ()

print (swe cell[start day:n dayt+start day])

else:

pass

Genarte all SCA images in whole period and save them in current
directory

Appendix 5 - Simulation codes

g2 = input("Do you want to genarte all SCA images in whole period ? ")
if g2 == 'yes':
for idx in range(365):

tim x = 1377986400+2*3600 + idx*86400

sca = simulator.region model.gamma snow_response.sca([],idx)

fig, ax = plt.subplots(figsize=(25,11))

cm = plt.cm.get cmap(color[2]) # color[0 to 75]

plot = ax.scatter(x, y, c=sca, vmin=0, vmax=1l, marker='s',
s=100, 1w=0, cmap=cm)

plt.colorbar (plot)

plt.title('Snow Covered area of {0} on
{1}'.format (cfg.region model id,
dt.datetime.utcfromtimestamp (tim x) .date()), fontsize = 22)

plt.savefig (£"SCA{idx}.png")
else:
pass

Genarte all SWE images in whole period and save them in current
directory

max_swe = 0

g2 = input ("Do you want to genarte all SWE images in whole period ? ")
if g2 == 'yes':

for idx in range(365):
tim x = 1377986400+2*3600 + 1idx*86400
swe = simulator.region model.gamma snow_response.swe ([],1dx)

sSwe np = np.array (swe)
if swe np.max() > max swe:
max swe = swe np.max()

for idx in range (365):
tim x = 1377986400+2*3600 + 1dx*86400
swe = simulator.region model.gamma snow response.swe ([],idx)

fig, ax = plt.subplots(figsize=(25,11))

cm = plt.cm.get cmap(color[l]) # color[0 to 75]

plot = ax.scatter(x, y, c=swe, vmin=0, vmax=max_ swe,
marker='s', s=100, 1lw=0, cmap=cm)

plt.colorbar (plot)

plt.title('Snow Water Equivalent (mm) {0} on
{1}'.format (cfg.region model id,
dt.datetime.utcfromtimestamp (tim x) .date()), fontsize = 22)

plt.savefig (f"SWE{idx}.png")
else:

pass

Discharge graphs of all targets and sum of all targets for the
whole period for comparing the simulated ones and Ob. Ones with NSE

Appendix 5 - Simulation codes
discharge file = r'C:\shyft workspace\shyft-data\netcdf\orchestration-
testdatal\discharge.nc'
discharge data = Dataset (discharge file)
dis pd = pd.DataFrame (np.array(discharge data['discharge'][:]))

startdatetime = (int(str(cfg.start datetime -
datetime.datetime (2012,9,1)) .split () [0])-1)

dis_ targetl = dis pd[0][:]
dis target2 = dis pd[1][:]
dis target3 = dis pd[2][:]
dis targets = dis pd[0][:] + dis pd[1][:] + dis pd[2][:]

dis targetl np =
np.array(dis targetl[startdatetime:cfg.number of steps+startdatetime])
dis_ target2 np =
np.array(dis target2[startdatetime:cfg.number of stepst+startdatetime])
dis target3 np =
np.array(dis target3[startdatetime:cfg.number of steps+startdatetime])
dis targets np =
np.array(dis targets[startdatetime:cfg.number of steps+startdatetime])

targetl = [1308, 1394, 1867, 2198, 2402, 2545]

target2 = [1228, 1443, 1726, 2041, 2129, 2195, 2277, 2465, 2718, 3002,
3630, 1000010, 1000011]

target3 = [19%96, 2446, 2640, 3536]

cid z map2 = {}
for key in cid z map.keys():
if key in targetl:
cid z mapZ2.update({key:1})
elif key in target2:
cid z map2.update({key:2})
elif key in target3:
cid z map2.update({key:3})
else:
cid z map2.update({key:0})

catch ids2 = np.array([cid z map2[cell.gec.catchment id()] for cell in
cells])

- Targetl -——-——-———————————————— - —————
dis siml = region model.statistics.discharge (targetl).v.to numpy() #
black

fig, ax = plt.subplots(figsize=(30,10))

ta statistics =

api.TimeAxis (simulator.region model.time axis.time(0),api.Calendar.DAY
,731)

ts timestamps = [dt.datetime.utcfromtimestamp (p.start) for p in

ta statistics]

ax.plot (ts_timestamps, dis siml, lw=1.5, 1ls ='-', color = 'black',
label = f'Sim from simulator {targetl}')

Appendix 5 - Simulation codes

ax.plot (ts timestamps, dis targetl np, lw=1.5, 1ls ='-', color = 'red',
label = 'Obs. Directly from discharge.nc')

NSE1l = 1—(((dis_siml—dis_targetl_np)**2).sum()/((dis_targetl_np—

dis targetl np.mean())**2) .sum())

fig.autofmt xdate ()

ax.legend(title="Discharge", fontsize = 16, loc = 2)

ax.set ylabel ("discharge [m3 s-1]")

ax.set title(f'Target 1, NSEl = {round(NSE1l,2)}', fontsize = 22)
plt.show ()

- Target2 ——————————————————————— - ————
dis sim2 = region model.statistics.discharge (target2).v.to numpy () #
black

fig, ax = plt.subplots(figsize=(30,10))

ta statistics =

api.TimeAxis (simulator.region model.time axis.time (0),api.Calendar.DAY
,731)

ts timestamps = [dt.datetime.utcfromtimestamp (p.start) for p in

ta statistics]

ax.plot (ts timestamps, dis sim2, lw=1.5, 1ls ='-', color = 'black',
label = f'Sim from simulator {target2}')

ax.plot (ts_ timestamps, dis target2 np, lw=1.5, 1ls ='-', color = 'red',
label = 'Obs. Directly from discharge.nc')

NSE2 = 1-(((dis sim2-dis target2 np)**2).sum()/((dis_ target2 np-

dis target2 np.mean())**2) .sum())

fig.autofmt xdate()

ax.legend(title="Discharge", fontsize = 16, loc = 2)

ax.set ylabel ("discharge [m3 s-1]")

ax.set title(f'Target 2, NSEZ = {round(NSEZ2,2)}', fontsize = 22)
plt.show ()

- Target3 ——-——————————————————— -
dis sim3 = region model.statistics.discharge (target3).v.to numpy() #
black

fig, ax = plt.subplots(figsize=(30,10))

ta statistics =

api.TimeAxis (simulator.region model.time axis.time (0),api.Calendar.DAY
,731)

ts timestamps = [dt.datetime.utcfromtimestamp (p.start) for p in

ta statistics]

ax.plot (ts_ timestamps, dis sim3, 1lw=1.5, 1ls ='-', color = 'black',
label = f£'Sim from simulator {target3}')
ax.plot (ts_timestamps, dis target3 np, lw=1.5, 1ls ='-', color = 'red',

label = 'Obs. Directly from discharge.nc')

Appendix 5 - Simulation codes

NSE3 = 1-(((dis sim3-dis target3 np)**2).sum()/((dis target3 np-
dis target3 np.mean())**2) .sum())

fig.autofmt xdate ()

ax.legend(title="Discharge", fontsize = 16, loc = 2)

ax.set ylabel ("discharge [m3 s-1]")

ax.set title(f'Target 3, NSE3 = {round(NSE3,2)}', fontsize = 22)
plt.show ()

dis sims = dis siml + dis sim2 + dis_ sim3

fig, ax = plt.subplots(figsize=(30,10))

ta statistics =

api.TimeAxis (simulator.region model.time axis.time(0),api.Calendar.DAY
;cfg.number of steps)

ts timestamps = [dt.datetime.utcfromtimestamp (p.start) for p in

ta statistics]

ax.plot (ts_timestamps, dis sims, lw=1l, 1ls ='-', color = 'black',
label = 'Sim. discharge')

ax.plot (ts timestamps, dis targets np, lw=l, ls ='-', color = 'red',
label = 'Obs. discharge')

NSEs = 1-(((dis sims-dis targets np)**2).sum()/((dis targets np-
dis targets np.mean())**2) .sum())

fig.autofmt xdate ()

ax.legend(title="Discharge", fontsize = 16, loc = 2)

ax.set ylabel ("discharge [m3 s-1]")

ax.set title(f'Targets, NSE = {round(NSEs,2)}', fontsize = 22)
plt.show ()

fig, ax = plt.subplots(figsize=(30,10))
cm = plt.cm.get cmap(color[46])# color[0 to 75]

plot = ax.scatter(x, y, c=catch ids2, marker='s',vmin = 0, vmax = 3,
s=30, lw=5, cmap=cm)

plot = ax.scatter(x, y, c=catch ids2, marker='s',vmin = 0, vmax = 3,
s=30, lw=5, cmap=cm)

plot = ax.scatter(x[140], y[140], marker='s',vmin = 0, vmax = 3, s=50,
1lw=0, cmap=cm, label ="Target 1", color = 'slateblue')

plot = ax.scatter(x[140], y[140], marker='s',vmin = 0, vmax = 3, s=50,
1lw=0, cmap=cm, label ="Target 2", color = 'deeppink')

plot = ax.scatter(x[140], y[140], marker='s',vmin = 0, vmax = 3, s=50,
lw=0, cmap=cm, label ="Target 3", color = 'maroon')

plot = ax.scatter(x, y, c=z, marker='o', s=10, 1lw=5, cmap=cm)

plt.colorbar (plot) .set label ('sub-catchments assocciate to targets')
plt.legend(fontsize = 16, loc = 1)
plt.show ()

timelist = []
for i in range(len(ts_timestamps)):

Appendix 5 - Simulation codes

timelist.append((str(ts timestamps([i]) [0:10],dis sims[i]))
timelist pd = pd.DataFrame (timelist)
timelist pd.to csv('dis sims G.csv')

Somthing more to know
Getting access to defualt values of variables (not used in
simulation)

parameterg = api.GammaSnowParameter ()

parameterk = api.KirchnerParameter ()

print ('slow albedo decay rate = ', parameterg.slow albedo decay rate)
print ('Kirchner Cl1 = ', parameterk.cl)

Getting access to the values are used for simulation which are in
model.yaml (used in simulation)

param = simulator.region model.get region parameter ()
print ('slow albedo decay rate = ',param.gs.slow_albedo decay rate)
print ('Kirchner Cl1 = ', param.kirchner.cl)

Getting access to atributes of simulator

for attr in dir(simulator.region model) :
if attr([0] is not ' ': #ignore privates
print (attr)

Precipitation graph

precipitation r = simulator.region model.statistics.precipitation([])
precipitation r np = precipitation r.values.to numpy ()

fig, ax = plt.subplots(figsize=(30,10))

ta statistics =

api.TimeAxis (simulator.region model.time axis.time (0),api.Calendar.DAY
;cfg.number of steps)

ts timestamps = [dt.datetime.utcfromtimestamp (p.start) for p in
ta statistics]

ax.plot (ts timestamps, precipitation r np, lw=1l, 1ls ='-', color =
'red', label = 'precipitation')

ax.legend(fontsize = 16, loc = 2)

precipitation r np pd = pd.DataFrame (precipitation r np)
precipitation r np pd.to csv('precipitation r np pd G.csv')

Average SWE

SWE average = simulator.region model.gamma snow response.swe([])
SWE average np = ssl.values.to numpy ()

fig, ax = plt.subplots(figsize=(30,10))

ta statistics =

api.TimeAxis (simulator.region model.time axis.time (0),api.Calendar.DAY
;cfg.number of steps)

Appendix 5 - Simulation codes

ts timestamps = [dt.datetime.utcfromtimestamp (p.start) for p in

ta statistics]

ax.plot (ts_timestamps, SWE average np, lw=1l, 1ls ='-', color = 'blue',
label = 'SWE average')

ax.legend(fontsize = 16, loc = 2)

SWE average np pd = pd.DataFrame (SWE average np)
SWE average np pd.to csv('SWE average np pd G.csv')

Calculation of the spent time

t2 = time.time ()

t3 = t2-tl

hourl = int(t3//3600)

minutel = int ((t3 % 3600)//60)

secondl = int(t3 - hourl*3600 - minutel*60)

print ("",hourl, "Hours\n",minutel, "Minutes\n", secondl, "Seconds")

Notify the end of simulation with an alarm

print (' It is done '*7)

import winsound

for i in range (2500,3500,250):
winsound.Beep (i, 850)

END

2. Loop simulation code

from netCDF4 import Dataset
import os

import time

from os import path

import sys

import datetime as dt
import pandas as pd

import numpy as np

from matplotlib import pyplot as plt
import pandas as pd

for column in range(1l,20):

my data =

Appendix 5 - Simulation codes

pd.read csv(r"D:\Dropbox\Thesis\SHyFT\Gamma parameters.csv")

with open (r"D:\Dropbox\Thesis\SHyFT\neanidelva model.yaml",

as parameters?2:

print (f"model t:
model to construct",
print (f"model parameters:",

lwl)

!''python/name:shyft.api.pt gs k.PTGSKModel #
file=parameters?2)
file=parameters?2)

print (f" ae: # actual evapotranspiration", file=parameters2)

print (£" ae scale factor: {my data.iloc[3][c]}",
file=parameters?2)

print (f" gs: # gamma snow", file=parameters2)

print (£" calculate iso pot energy: false",
file=parameters?2)

print (£" fast albedo decay rate: {my data.iloc[8]([c]}",
file=parameters?2)

print (£" glacier albedo: {my data.iloc[15][c]}",
file=parameters?2)

print (£" initial bare ground fraction:
{my data.iloc[21]([c]}", file=parameters2)

print (£" max_albedo: {my data.iloc[1l1l][c]}",
file=parameters?2)

print (£" max water: {my data.iloc[6][c]}",
file=parameters?2)

print (£" min albedo: {my data.iloc[12][c]}",
file=parameters2)

print (£" n winter days: {int (my data.iloc[28][c])}",
file=parameters?2)

print (£" slow _albedo decay rate: {my data.iloc[9]([c]}",
file=parameters?2)

print (£" snow_cv: {my data.iloc[14][c]}", file=parameters2)

print (£" snow_cv_altitude factor: {my data.iloc[18][c]}",
file=parameters2)

print (£" snow_cv_forest factor: {my data.iloc[17]([c]}",
file=parameters2)

print (£" tx: {my data.iloc[4]([c]}", file=parameters2)

print (£" snowfall reset depth: {my data.iloc[13][c]}",
file=parameters?2)

print (£" surface magnitude: {my data.iloc[10][c]}",
file=parameters2)

print (£" wind const: {my data.iloc[7][c]}",
file=parameters2)

print (£" wind scale: {my data.iloc[5]([c]}",
file=parameters?2)

print (£" winter end day of year:
{int (my data.iloc[22][c])}", file=parameters2)

print (f" kirchner:", file=parameters?2)

print (£" cl: {my data.iloc[0]([c]}", file=parameters2)

print (£" c2: {my data.iloc[1l]([c]}", file=parameters2)

print (£" c3: {my data.iloc[2][c]}", file=parameters2)

print (f" ©p corr: # precipitation correction",
file=parameters?2)

print (£" scale factor: {my data.iloc[l6]([c]}",
file=parameters?2)

print (f" pt: # priestley taylor", file=parameters?2)

print (£" albedo: {my data.iloc[19][c]}", file=parameters2)

print (£" alpha: {my data.iloc[20][c]}", file=parameters2)

(

print (£"

routing:", file=parameters?2)

print (£"
print (£"
print (£"
file=parameters?2)
print (£"
print (£"
file=parameters2)

gm:

Appendix 5 - Simulation codes

alpha: {my data.iloc[26][c]}", file=parameters2)
beta: {my data.iloc[27][c]}", file=parameters2)
velocity: {my data.iloc[25][c]}",

", file=parameters?2)

direct response: {my data.iloc[29][c]}",

for column in range (1,20):

my data =

pd.read csv(r"D:\Dropbox\Thesis\SHyFT\HBV parameters.csv")

with open (r"D:\Dropbox\Thesis\SHyFT\neanidelva model.yaml", 'w')
as parameters?2:

print (f"model t: !!python/name:shyft.api.pt hs k.PTHSKModel
priestley taylor HBV Snow kirchner", file=parameters?2)

print (f"model parameters:", file=parameters2)

print (f" ae: # actual evapotranspiration",
file=parameters?)

print (£" ae_scale factor: {my data.iloc[3][column]}",
file=parameters?2)

print (f" hs: # HBV Snow", file=parameters2)

print (£" cfr: {my data.iloc[8] [column]}",
file=parameters?2)

print (£" cx: {my data.iloc[6] [column]}",
file=parameters2)

print (£" lw: {my data.iloc[4][column]}",
file=parameters?2)

print (£" ts: {my data.iloc[7] [column]}",
file=parameters?2)

print (£" tx: {my data.iloc[5] [column]} ",
file=parameters?2)

print (f" kirchner:", file=parameters2)

print (£" cl: {my data.iloc[O] [column]}",
file=parameters2)

print (£" c2: {my data.iloc[1l][column]}",
file=parameters?)

print (£" c3: {my data.iloc[2][column]}",
file=parameters?2)

print (f" p corr: # precipitation correction",
file=parameters?2)

print (£" scale factor: {my data.iloc[10][column]}",
file=parameters2)

print (f" pt: # priestley taylor", file=parameters2)
print (£" albedo: {my data.iloc[11l][column]}",
file=parameters?2)

print (£" alpha: {my data.iloc[12][column]}",
file=parameters?2)

print (f" routing:", file=parameters2)

print (£" alpha: {my data.iloc[14][column]}",
file=parameters2)

print (£" beta: {my data.iloc[15][column]}",
file=parameters?)

print (£" velocity: {my data.iloc[13][column]}",

file=parameters?2)

for column in range (1,20):

Appendix 5 - Simulation codes

my data =
pd.read csv(r"D:\Dropbox\Thesis\SHyFT\Skaugen parameters.csv")

with open (r"D:\Dropbox\Thesis\SHyFT\neanidelva model.yaml", 'w')
as parameters?2:

print (f"model t: !!python/name:shyft.api.pt ss k.PTSSKModel
priestley taylor Skaugen Snow kirchner", file=parameters?2)

print (f"model parameters:", file=parameters2)

print (f" ae: # actual evapotranspiration",
file=parameters2)

print (£" ae_scale factor: {my data.iloc[3][column]}",
file=parameters?2)

print (f" ss: # Skaugen Snow", file=parameters2)

print (£" alpha 0: {my data.iloc[4][column]}",
file=parameters2)

print (£" cfr: {my data.iloc[11l][column]}",
file=parameters2)

print (£" cx: {my data.iloc[9][column]}",
file=parameters?)

print (£" d range: {my data.iloc[5][column]}",
file=parameters?2)

print (£" max water fraction: {my data.iloc[7][column]}",
file=parameters?2)

print (£" ts: {my data.iloc[10] [column]}",
file=parameters?2)

print (£" tx: {my data.iloc([8] [column]}",
file=parameters?2)

print (£" unit size: {my data.iloc[6][column]}",
file=parameters?2)

print (f" kirchner:", file=parameters?2)

print (£" cl: {my data.iloc[0][column]}",
file=parameters?2)

print (£" c2: {my data.iloc[1l][column]}",
file=parameters?2)

print (£" c3: {my data.iloc[2] [column]}",
file=parameters?2)

print (f" p corr: # precipitation correction",
file=parameters?2)

print (£" scale factor: {my data.iloc[12][column]}",
file=parameters2)

print (f" pt: # priestley taylor", file=parameters?2)
print (£" albedo: {my data.iloc[13][column]}",
file=parameters2)

print (£" alpha: {my data.iloc[14][column]}",
file=parameters?2)

print (f" routing:", file=parameters2)

print (£" alpha: {my data.iloc[17][column]}",
file=parameters?2)

print (£" beta: {my data.iloc[18][column]}",
file=parameters?2)

print (£" velocity: {my data.iloc[1l6][column]}",

file=parameters?2)
time.sleep (5)
shyft data path = path.abspath(r"C:\shyft workspace\shyft-data")

if path.exists(shyft data path) and 'SHYFT DATA' not in
os.environ:

Appendix 5 - Simulation codes

os.environ['SHYFT DATA']=shyft data path

import shyft

from shyft import api

from shyft.repository.default state repository import
DefaultStateRepository

from shyft.orchestration.configuration.yaml configs import
YAMLSimConfig

from shyft.orchestration.simulators.config simulator import
ConfigSimulator

config file path =
r'D:\Dropbox\Thesis\SHyFT\neanidelva simulation.yaml'
cfg = YAMLSimConfig(config file path, "neanidelva")

simulator = ConfigSimulator (cfqg)
region model = simulator.region model

simulator.region model.set snow sca swe collection(-1,True)
simulator.region model.set state collection(-1,True)
simulator.run ()

cells = region model.get cells()

x = np.array([cell.geo.mid point().x for cell in cells])

y = np.array([cell.geo.mid point().y for cell in cells])

z = np.array([cell.geo.mid point().z for cell in cells])

area = np.array([cell.geo.area() for cell in cells])

catch ids = np.array([cell.geo.catchment id() for cell in cells])
catchment ids = region model.catchment ids

cid z map = dict ([(catchment ids[i],1i) for i in

range (len (catchment ids))])
print (cid z map)

catch ids = np.array([cid z map[cell.geo.catchment id()] for cell
in cells])

discharge file = r'C:\shyft workspace\shyft-
data\netcdf\orchestration-testdataldischarge.nc'

discharge data = Dataset (discharge file)
dis pd = pd.DataFrame (np.array(discharge data['discharge'][:]))

startdatetime = (int(str(cfg.start datetime -
datetime.datetime (2012,9,1)) .split () [0])-1)

dis targetl = dis pd[0][:]
dis target2 = dis pd[1][:]
dis target3 = dis pd[2][:]
dis targets = dis pd[0][:] + dis pd[1][:] + dis pd[2][:]

dis targetl np =

np.array (dis targetl[startdatetime:cfg.number of steps+startdatetime])
dis target2 np =

np.array(dis target2[startdatetime:cfg.number of steps+startdatetime])

Appendix 5 - Simulation codes

dis_ target3 np =

np.array(dis target3[startdatetime:cfg.number of steps+startdatetime])
dis targets np =

np.array(dis targets[startdatetime:cfg.number of steps+startdatetime])

targetl [1308, 1394, 1867, 2198, 2402, 2545]

target2 = [1228, 1443, 1726, 2041, 2129, 2195, 2277, 2465, 2718,
3002, 3630, 1000010, 1000011]

target3 = [1996, 2446, 2640, 3536]

cid z map2 = {}
for key in cid z map.keys():
if key in targetl:
cid z mapZ2.update({key:1})
elif key in target2:
cid z mapZ2.update({key:2})
elif key in target3:
cid z map2.update({key:3})
else:
cid z map2.update({key:0})

catch ids2 = np.array([cid z map2[cell.geo.catchment id()] for
cell in cells])

dis siml = region model.statistics.discharge (targetl) .v.to numpy ()
dis sim2 region model.statistics.discharge (target2) .v.to numpy ()
dis sim3 region model.statistics.discharge(target3) .v.to numpy ()
dis sims = dis _siml + dis sim2 + dis_sim3

fig, ax = plt.subplots(figsize=(30,10))

ta statistics =
api.TimeAxis (simulator.region model.time axis.time (0),api.Calendar.DAY
;cfg.number of steps)

ts timestamps = [dt.datetime.utcfromtimestamp (p.start) for p in
ta statistics]

ax.plot (ts timestamps, dis sims, lw=1l, 1ls ='-', color = 'black',
label = 'Sim from simulator for all targets')

ax.plot (ts_timestamps, dis_ targets np, lw=l, 1ls ='-', color =
'red', label = 'Obs. Directly from discharge.nc')

NSEs = 1-(((dis sims-dis targets np)**2).sum()/((dis targets np-
dis targets np.mean())**2) .sum())

fig.autofmt xdate ()

ax.legend(title="Discharge", fontsize = 16, loc = 2)

ax.set ylabel ("discharge [m3 s-1]")

ax.set title(f'Targets, NSE = {round(NSEs,2)}', fontsize = 22)

file name = str(column)
plt.savefig (£"D:\\Dropbox\\Thesis\\{file name}.png")

plt.show ()

print (' It is done '*7)

import winsound

for i in range(2500,3500,250):
winsound.Beep (i, 850)

Appendlix 6

Miscellaneous codes

Appendix 6 - Miscellaneous codes

Miscellaneous codes

In this part some miscellaneous codes are presented. These codes were written in Python
Scripts to make the work flow easier, more precise and presentable.

1. Python Scripts to generate SWE and SCA images to make a video file with generated

database file in simulation part.
2. Python Scripts to read NC file

1. Python Scripts to generate SWE and SCA

from netCDF4 import Dataset

import os

from os import path

import sys

import datetime as dt

import pandas as pd

import numpy as np

from matplotlib import pyplot as plt

color = {0:'viridis', 1l:'plasma', 2:'inferno', 3:'magma', 4:'Greys',
5:'Purples', 6:'Blues', 7:'Greens', 8:'Oranges', 9:'Reds',
10:'Y1O0rBr'}

while True:
dic _sca ptgsk pd2=pd.read csv('dic_sca ptgsk pd.csv')
dic_sca pthsk pd2=pd.read csv('dic_sca pthsk pd.csv')
dic sca ptssk pd2=pd.read csv('dic_sca ptssk pd.csv')
dic swe ptgsk pd2=pd.read csv('dic swe ptgsk pd.csv')
dic_swe pthsk pd2=pd.read csv('dic_swe pthsk pd.csv')
dic_swe ptssk pd2=pd.read csv('dic swe ptssk pd.csv')

geo _data = pd.read csv('geo pd.csv')

for idx in range(364): # one year
tim x = 1377986400+2*3600 + 1idx*86400 # 2013/9/1

fig, ((axl, ax2)) = plt.subplots(nrows=1l, ncols=2, figsize =
(25,13))

cm = plt.cm.get cmap(color[3]) # color[0 to 75]

axl.scatter(geo data['x"'][:]-260000, geo data['y']l[:]1-6830000,
c=dic _sca ptgsk pd2[str(idx)][:], vmin=0, vmax = 1, marker='s', s=100,
1w=0, cmap=cm)

axl.scatter (geo data['x'][:]-260000, geo data['y'][:]1-60000-
6830000, c=dic_sca pthsk pd2[str(idx)][:], vmin=0, vmax = 1,

marker='s', s=100, 1lw=0, cmap=cm)

Appendix 6 - Miscellaneous codes

axl.scatter(geo data['x'][:]-260000, geo data['y'][:]1-120000-
6830000, c=dic_sca ptssk pd2[str(idx)][:], vmin=0, vmax = 1,

marker='s', s=100, 1lw=0, cmap=cm)

axl.annotate ('Gamma Snow (0 - 0.96)', xy =(5500,211000),
fontsize = 16, color = "black")

axl.annotate ('HBV Snow (0 - 1)', xy =(5500,152000), fontsize =
16, color = "black")

axl.annotate ('Skaugen Snow (0 - 1)', xy =(5500,92000), fontsize
= 16, color = "black")

axl.set xticks([])
axl.set yticks([])

axl.set title('Snow Cover Area on
{}'.format (dt.datetime.utcfromtimestamp (tim x) .date()), fontsize = 20)

cm = plt.cm.get cmap(color[l]) # color[0 to 75]

ax2.scatter(geo data['x"'][:]-260000, geo data['y']l[:]1-6830000,
c=dic_swe ptgsk pd2[str(idx)][:], vmin=0, vmax = 600, marker='s',
s=100, 1lw=0, cmap=cm)

ax2.scatter (geo data['x'][:]-260000, geo data['y'][:]1-60000-
6830000, c=dic_swe pthsk pd2[str(idx)][:], vmin=0, vmax = 25,
marker='s', s=100, 1lw=0, cmap=cm)

ax2.scatter(geo data['x"'][:]-260000, geo data['y'][:]1-120000-
6830000, c=dic_swe ptssk pd2[str(idx)][:], vmin=0, vmax = 25,
marker='s', s=100, lw=0, cmap=cm)

ax2.annotate ('Gamma Snow', xy =(5500,211000), fontsize = 16,
"black")

ax2.annotate ('HBV Snow', xy =(5500,152000), fontsize = 16,
"black")

ax2.annotate ('Skaugen Snow', xy =(5500,92000), fontsize
color = "black")

color

color

le,
ax2.set xticks([])
ax2.set yticks([])

ax2.set title('Snow Water Equivalent (mm) on
{}'.format (dt.datetime.utcfromtimestamp (tim x).date()), fontsize = 20)

plt.savefig (£f"SCA PTGSK PTHSK PTSSK{idx}.png")

Appendix 6 - Miscellaneous codes

2. Python Scripts to read NC file

from netCDF4 import Dataset
import pandas as pd

import numpy as np

import os

1. Precipitation

precipitation_file = r'C:\shyft_workspace\shyft-data\netcdf\orchestration-
testdata\precipitation.nc'

precipitation_data = Dataset(precipitation_file)

series_pd = pd.DataFrame()
pre_pd = pd.DataFrame(np.array(precipitation_data['precipitation'][:]))

foritemin ['x','y', 'Z", 'series_name']:
series_pd[repr(item)] = np.array(precipitation_data[item][:])
series_2_pd = series_pd.transpose()

frames = [series 2 pd, pre_pd]
precipitation = pd.concat(frames)

set the current directory to the file directory
os.chdir(os.path.dirname(precipitation_file))
get the file name without extension

file_name = precipitation_file.split("\\')[-1].split(".")[-2]

precipitation.to_csv(f'{file_name}.csv')

2. GeoCell

cells_file = r'C:\shyft_workspace\shyft-data\netcdf\orchestration-testdata\cell _data.nc'
cell_data = Dataset(cells_file)

cells_pd = pd.DataFrame()

for key in cell_data.variables.keys():
cells_pd[key] = np.array(cell_datalkey][:])

set the current directory to the file directory
os.chdir(os.path.dirname(cells_file))

Appendix 6 - Miscellaneous codes

get the file name without extension
file_name = cells_file.split("\\")[-1].split(".")[-2]

cells_pd.to_csv(f'{file_name}.csv')

3. Disharge
discharge_file = r'C:\shyft_workspace\shyft-data\netcdf\orchestration-testdata\discharge.nc'
discharge_data = Dataset(discharge_file)

series_pd = pd.DataFrame()
dis_pd = pd.DataFrame(np.array(discharge_data['discharge'][:]))
foritemin ['x','y', 'z, 'series_name']:

series_pd[repr(item)] = np.array(discharge_data[item][:])
series_2_pd = series_pd.transpose()

frames = [series_2 pd, dis_pd]
discharge = pd.concat(frames)

set the current directory to the file directory
os.chdir(os.path.dirname(discharge_file))

get the file name without extension
file_name = discharge_file.split("\\')[-1].split(".")[-2]

discharge.to_csv(f'{file_name}.csv')

4. Radiation
radiation_file = r'C:\shyft_workspace\shyft-data\netcdf\orchestration-testdata\radiation.nc'
radiation_data = Dataset(radiation_file)

series_pd = pd.DataFrame()
radi_pd = pd.DataFrame(np.array(radiation_data['global_radiation'][:]))
foritemin ['x','y', 'z, 'series_name']:

series_pd[repr(item)] = np.array(radiation_data[item][:])
series_2_pd = series_pd.transpose()

frames = [series_2 pd, radi_pd]
radiation = pd.concat(frames)

set the current directory to the file directory

Appendix 6 - Miscellaneous codes

os.chdir(os.path.dirname(radiation_file))
get the file name without extension
file_name = radiation_file.split("\\")[-1].split(".")[-2]

radiation.to_csv(f'{file_name}.csv')

5. Relative_humidity

humidity_file = r'C:\shyft_workspace\shyft-data\netcdf\orchestration-
testdata\relative_humidity.nc'

humidity_data = Dataset(humidity_file)

series_pd = pd.DataFrame()
humi_pd = pd.DataFrame(np.array(humidity_data['relative_humidity'][:]))
foritemin ['x','y', 'Z", 'series_name']:
series_pd[repr(item)] = np.array(humidity_data[item][:])
series_2_pd = series_pd.transpose()

frames = [series_2 pd, radi_pd]
humidity = pd.concat(frames)

set the current directory to the file directory
os.chdir(os.path.dirname(humidity_file))

get the file name without extension

file_name = humidity_file.split("\\')[-1].split(".")[-2]

humidity.to_csv(f'{file_name}.csv')

6. Temperature

temperature_file = r'C:\shyft_workspace\shyft-data\netcdf\orchestration-
testdata\temperature.nc'

temperature_data = Dataset(temperature_file)

series_pd = pd.DataFrame()
temp_pd = pd.DataFrame(np.array(temperature_data['temperature'](:]))
foritemin ['x','y', 'Z", 'series_name']:

series_pd[repr(item)] = np.array(temperature_datalitem][:])
series_2_ pd = series_pd.transpose()

frames = [series_2 pd, temp_pd]

Appendix 6 - Miscellaneous codes

temperature = pd.concat(frames)

set the current directory to the file directory
os.chdir(os.path.dirname(temperature_file))

get the file name without extension

file_name = temperature_file.split('"\\")[-1].split(".")[-2]

temperature.to_csv(f'{file_name}.csv')

7. wind_speed
wind_file = r'C:\shyft_workspace\shyft-data\netcdf\orchestration-testdata\wind_speed.nc'
wind_data = Dataset(wind_file)

series_pd = pd.DataFrame()
wind_pd = pd.DataFrame(np.array(wind_data['wind_speed'][:]))
foritemin ['x','y', 'Z", 'series_name']:

series_pd[repr(item)] = np.array(wind_data[item][:])
series_2_pd = series_pd.transpose()

frames = [series_2 pd, wind_pd]
wind = pd.concat(frames)

set the current directory to the file directory
os.chdir(os.path.dirname(wind_file))
get the file name without extension

file_name = wind_file.split("\\')[-1].split(".")[-2]

wind.to_csv(f'{file_name}.csv')

Y,

Appendix 7

Calibration results

Appendix 7 - Calibration

Table Ap7.1 200 calibration results for PTSSK method

results

PTSSK calibrations

No. NSE No. NSE No. NSE No. NSE No. NSE
1 77.2% | 21 76.7% | 41 76.6% | 61 76.6% | 81 76.5%
2 77.0% | 22 76.7% | 42 76.6% | 62 76.6% | 82 76.5%
3 77.0% | 23 76.7% | 43 76.6% | 63 76.6% | 83 76.5%
4 76.9% | 24 76.7% | 44 76.6%| 64 |76.6%| 84 76.5%
5 76.8% | 25 76.7% | 45 76.6% | 65 76.6% | 85 76.5%
6 76.8% | 26 76.7% | 46 76.6% | 66 76.6% | 86 76.5%
7 76.8% | 27 76.7% | 47 76.6% | 67 76.6% | 87 76.5%
8 76.8% | 28 76.7% | 48 76.6% | 68 76.5% | 88 76.5%
9 76.7% | 29 76.6% | 49 76.6% | 69 76.5% | 89 76.5%
10 76.7% | 30 76.6% | 50 76.6% | 70 76.5%(90 76.5%
11 76.7% | 31 76.6% | 51 76.6% | 71 76.5% | 91 76.5%
12 76.7% | 32 76.6% | 52 76.6% | 72 76.5%(92 76.5%
13 76.7% | 33 76.6% | 53 76.6% | 73 76.5% | 93 76.5%
14 76.7% | 34 |76.6%| 54 76.6% | 74 |765% | 94 76.5%
15 76.7% | 35 76.6% | 55 76.6% | 75 76.5% | 95 76.5%
16 76.7% | 36 76.6% | 56 76.6% | 76 76.5% | 96 76.5%
17 76.7% | 37 76.6% | 57 76.6% | 77 76.5% | 97 76.5%
18 76.7% | 38 76.6% | 58 76.6% | 78 76.5% | 98 76.5%
19 76.7% | 39 76.6% | 59 76.6% | 79 76.5% | 99 76.5%
20 76.7% | 40 76.6% | 60 76.6% | 80 76.5% | 100 | 76.5%
PTSSK calibrations
No. NSE No. NSE No. NSE No. NSE No. NSE
101 | 76.5% | 121 | 76.4%| 141 | 76.3%| 161 | 76.1%| 181 | 75.6%
102 | 76.5% | 122 |76.4%| 142 |763%| 162 | 76.1%| 182 | 75.6%
103 | 76.5% | 123 | 76.4%| 143 | 76.3%| 163 | 76.0%| 183 | 75.5%
104 | 76.5% | 124 |76.4%| 144 |76.3%| 164 | 76.0%| 184 | 75.5%
105 | 76.4% | 125 |76.4%| 145 | 76.3%| 165 | 76.0% | 185 | 75.5%
106 | 76.4%| 126 |76.4%| 146 |76.3%| 166 | 75.9% | 186 | 75.4%
107 | 76.4% | 127 |76.4%| 147 |76.3%| 167 | 75.9% | 187 | 75.4%
108 | 76.4% | 128 | 76.4%| 148 |76.3%| 168 | 75.9% | 188 | 75.4%
109 | 76.4% | 129 | 76.4%| 149 | 76.3%| 169 | 75.9% | 189 | 75.4%
110 | 76.4%| 130 | 76.4%| 150 | 76.2%| 170 | 75.9% | 190 | 75.3%
111 | 76.4%| 131 | 76.4%| 151 | 76.2%| 171 | 75.9% | 191 | 75.3%
112 | 76.4% | 132 |76.4%| 152 |76.2%| 172 | 75.8%| 192 | 75.3%
113 | 76.4% | 133 [76.4%| 153 | 76.2%| 173 | 75.8% | 193 | 75.2%
114 | 76.4%| 134 |76.4%| 154 |76.2%| 174 | 75.8% | 194 | 75.1%
115 | 76.4%| 135 | 76.4%| 155 | 76.2%| 175 | 75.8% | 195 | 75.1%
116 | 76.4%| 136 |76.4%| 156 | 76.2%| 176 | 75.8% | 196 | 75.1%
117 | 76.4% | 137 | 76.4%| 157 | 76.2%| 177 | 75.7%| 197 | 75.1%
118 | 76.4% | 138 | 76.4%| 158 | 76.2%| 178 | 75.7%| 198 | 75.0%
119 | 76.4%| 139 | 76.3% | 159 | 76.2%| 179 | 75.7%| 199 | 74.9%
120 | 76.4%| 140 |76.3%| 160 | 76.1%| 180 | 75.6% | 200 | 74.5%

Appendix 7 - Calibration results

Table Ap7.2 Top 36 calibration results parameters for PTSSK method

PTSSK 1 2 3 4 5 6 7 8 9
kirchner.cl -3.909(-3.807|-3.764|-3.948-3.732-3.606 | -3.606 | -3.793 | -3.770
kirchner.c2 0.3921 0.402 | 0.435] 0.317 | 0.415| 0.469 | 0.469 | 0.296 | 0.444
kirchner.c3 -0.030(-0.030|-0.030/-0.030(-0.031(-0.032|-0.032|-0.032-0.030
ae.ae_scale_factor 0.402 |1 0.509 | 0.364 | 0.453 | 0.399 | 0.640 | 0.640] 0.663 | 0.330
ss.alpha_0 27.56 | 53.24 (24.75 | 20.12 | 45.04 | 28.70 | 28.70 | 63.30 | 38.50
ss.d_range 433 242 343 539 259 399 399 312 256
ss.unit_size 0.148 (0.186 | 0.171 | 0.120 | 0.209 | 0.130 | 0.130 | 0.206 | 0.236
ss.max_water_fraction 0.1431 0.116 | 0.073 | 0.070 | 0.066 | 0.076 | 0.076 | 0.132 | 0.057
ss.tx -0.252(-0.237|-0.202|-0.282|-0.161| 0.126 | 0.126 |-0.247 | -0.246
$5.CX 7.666] 7.102 | 7.011 | 7.851 | 6.409 | 6.461 | 6.461 | 6.142 | 7.246
ss.ts 0.296 | 0.358 | 0.335 | 0.581 | 0.175 | 0.204 | 0.204 | 0.323 | 0.416
ss.cfr 0.001 | 0.001 | 0.000 | 0.000 | 0.005 | 0.000 | 0.000 | 0.001 | 0.000
p_corr.scale_factor 0.815(0.790 | 0.813 | 0.789 | 0.802 | 0.781 | 0.781 | 0.756 | 0.821
pt.albedo 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
pt.alpha 1.26 | 1.26 | 1.26 | 1.26 | 1.26 | 1.26 | 1.26 | 1.26 | 1.26
gm.dtf 6 6 6 6 6 6 6 6 6
routing.velocity 0 0 0 0 0 0 0 0 0
routing.alpha 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
routing.beta 3 3 3 3 3 3 3 3 3
gm.direct_response 0.47510.475| 0.4751 0.475| 0.475] 0.475| 0.4751 0.475| 0.475
NSE (2012 - 2015) 77.2%| 77.0%| 77.0%| 76.9%| 76.8%| 76.8%| 76.8%| 76.8%| 76.7%
NSE (2012 - 2017) 79%| 79%| 79%| 79%| 79%| 78%| 78%| 78%| 79%

PTSSK 10 11 12 13 14 15 16 17 18
kirchner.cl -3.770(-3.921|-3.713|-4.058 | -3.667 | -3.667 | -3.807 | -3.709 | -3.689
kirchner.c2 0.4441 0.355| 0.410| 0.148 | 0.452 | 0.452 | 0.357] 0.445 | 0.458
kirchner.c3 -0.030(-0.031|-0.030/-0.059(-0.030(-0.030|-0.035|-0.030(-0.030
ae.ae_scale_factor 0.330| 0.557 | 0.355 | 0.439| 0.423 | 0.423 | 0.598 | 0.358 | 0.394
ss.alpha_0 38.50 | 30.31 | 41.60 | 43.48 | 30.19 | 30.19 | 69.94 | 12.82 | 21.88
ss.d_range 256 | 376 65 221 | 298 | 298 | 118 | 309 | 562
ss.unit_size 0.236 | 0.076 | 0.399 | 0.069 | 0.287 | 0.287 | 0.034 | 0.154 | 0.063
ss.max_water_fraction 0.057 | 0.059 | 0.080 | 0.267 | 0.050 | 0.050 | 0.062 | 0.000 | 0.000
ss.tx -0.246(-0.344|-0.035|-0.447| 0.060 | 0.060 |-0.038|-0.034(-0.234
SS.CX 7.246 | 8.089 | 6.320 | 6.284 | 6.543 | 6.543 | 6.909 | 6.656 | 6.815
ss.ts 0.416 | 0.566 | 0.335 | 0.040 | 0.346 | 0.346 | 0.407 | 0.395 | 0.461
ss.cfr 0.000 | 0.001 | 0.000 | 0.001 | 0.000 | 0.000 | 0.001 | 1.198 | 2.037
p_corr.scale_factor 0.821(0.786 | 0.796 | 0.777 | 0.797 | 0.797 | 0.771 | 0.815 | 0.813
pt.albedo 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
pt.alpha 1.26 | 1.26 | 1.26 | 1.26 | 1.26 | 1.26 | 1.26 | 1.26 | 1.26
gm.dtf 6 6 6 6 6 6 6 6 6
routing.velocity 0 0 0 0 0 0 0 0 0
routing.alpha 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
routing.beta 3 3 3 3 3 3 3 3 3
gm.direct_response 0.475 | 0.475]1 0.475] 0.475| 0.475] 0.475 | 0.475| 0.475| 0.475
NSE (2012 - 2015) 76.7%| 76.7%| 76.7%| 76.7%| 76.7%| 76.7%| 76.7%| 76.7%| 76.7%
NSE (2012 - 2017) 79%| 79%| 78%| 79%| 78%| 78%| 79%| 78%| 78%

Appendix 7 - Calibration results

PTSSK 19 20 21 22 23 24 25 26 27
kirchner.cl -3.644|-3.6441-3.719|-3.690(-3.788 [-3.782| -3.720| -3.743 | -3.675
kirchner.c2 0.467 | 0.467 | 0.384] 0.454 (0.421 | 0.416 | 0.426 | 0.437 | 0.470
kirchner.c3 -0.030/-0.030|-0.032|-0.030(-0.030(-0.030|-0.030|-0.030(-0.030
ae.ae_scale_factor 0.393] 0.393| 0.476 | 0.359 | 0.369 | 0.390 | 0.443 | 0.362 | 0.365
ss.alpha_0 36.21 | 36.21 | 55.73 | 31.81 | 30.89 | 28.97 | 22.24 | 21.05 | 28.59
ss.d_range 565 565 438 514 599 473 458 | 465 459
ss.unit_size 0.068 | 0.068 | 0.268 | 0.092 | 0.056 | 0.068 | 0.099 | 0.123 | 0.105
ss.max_water_fraction 0.000 | 0.000 | 0.073 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
ss.tx 0.089 | 0.089 | 0.107 |-0.193|-0.246(-0.024|-0.076|-0.176| -0.210
$S.CX 6.305| 6.305 | 5.936 | 6.648 | 7.147 | 6.863 | 6.879 | 6.700 | 6.622
ss.ts 0.298 | 0.298 | 0.212 | 0.435 | 0.517 | 0.423 | 0.518 | 0.386 | 0.397
ss.cfr 1.284 | 1.284 | 0.000 | 1.412 | 0.022 | 2.230 | 2.585 | 0.267 | 3.268
p_corr.scale_factor 0.806 | 0.806 | 0.780 | 0.813 | 0.813 | 0.809 | 0.795 | 0.820 | 0.817
pt.albedo 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
pt.alpha 126 | 1.26 | 1.26 | 1.26 | 1.26 | 1.26 | 1.26 | 1.26 | 1.26
gm.dtf 6 6 6 6 6 6 6 6 6
routing.velocity 0 0 0 0 0 0 0 0 0
routing.alpha 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
routing.beta 3 3 3 3 3 3 3 3 3
gm.direct_response 0.475(0.475] 0.475| 0.475| 0.475| 0.475 | 0.475| 0.475 | 0.475
NSE (2012 - 2015) 76.7%| 76.7%| 76.7%| 76.7%| 76.7%| 76.7%| 76.7%| 76.7%| 76.7%
NSE (2012 - 2017) 78%| 78%| 78%| 78%| 78%| 78%| 78%| 78% 78%

PTSSK 28 29 30 31 32 33 34 35 36
kirchner.cl -3.675|-3.770|-3.755|-3.656 [-3.672|-3.675| -3.789 | -3.787 | -3.970
kirchner.c2 0.470| 0.426 | 0.352 | 0.477 | 0.461 | 0.466 | 0.417 | 0.419 | 0.246
kirchner.c3 -0.030(-0.030]-0.031|-0.030(-0.030(-0.030(-0.030|-0.030| -0.049
ae.ae_scale_factor 0.365| 0.337 | 0.675| 0.346 | 0.373 | 0.382| 0.397 | 0.427 | 0.430
ss.alpha_0 28.59 | 20.60 | 35.14 | 15.13 | 34.15| 43.31| 27.79 | 17.31 | 25.46
ss.d_range 459 333 363 344 512 549 558 | 484 395
ss.unit_size 0.105| 0.133 | 0.205 | 0.185 | 0.062 | 0.082 | 0.096 | 0.074 | 0.193
ss.max_water_fraction 0.000 | 0.000 | 0.149 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.122
ss.tx -0.210|-0.035|-0.875|-0.042(-0.220(-0.197|-0.176 | -0.246 | -0.097
S$S.CX 6.622 | 6.792 | 6.442 | 6.598 | 6.694 | 6.615 | 7.338 | 7.463 | 8.010
ss.ts 0.397 | 0.400 | 0.365 | 0.357 | 0.475 | 0.412 | 0.578 | 0.626 | 0.455
ss.cfr 3.268 | 1.074 | 0.003 | 1.946 | 1.267 | 0.393 | 1.547 | 1.291 | 0.001
p_corr.scale_factor 0.817| 0.818 | 0.756 | 0.818 | 0.808 | 0.813 | 0.808 | 0.804 | 0.784
pt.albedo 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
pt.alpha 126 | 1.26 | 1.26 | 1.26 | 1.26 | 1.26 | 1.26 | 1.26 | 1.26
gm.dtf 6 6 6 6 6 6 6 6 6
routing.velocity 0 0 0 0 0 0 0 0 0
routing.alpha 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
routing.beta 3 3 3 3 3 3 3 3 3
gm.direct_response 0.475(0.475] 0.475| 0.475| 0.475| 0.475 | 0.475| 0.475 | 0.475
NSE (2012 - 2015) 76.7%| 76.6%| 76.6%| 76.6%| 76.6%| 76.6%| 76.6%| 76.6%| 76.6%
NSE (2012 - 2017) 78%| 78%| T7%| 78%| 78%| 78%| 78%| 78% 78%

Appendix 7 - Calibration

Table Ap7.3 200 calibration results for PTHSK method

results

PTHSK calibrations

No. NSE No. NSE No. NSE No. NSE No. NSE
1 77.8% | 21 773% | 41 76.9% | 61 76.7% | 81 76.5%
2 717.7% | 22 772% | 42 76.9% | 62 76.7% | 82 76.5%
3 77.6% | 23 77.2% | 43 76.9% | 63 76.7% | 83 76.5%
4 717.6% | 24 77.2% | 44 76.8% | 64 76.7% | 84 76.5%
5 77.6% | 25 77.2% | 45 76.8% | 65 76.7% | 85 76.5%
6 77.5% | 26 77.1% | 46 76.8% | 66 76.6% | 86 76.5%
7 77.5% | 27 77.1% | 47 76.8% | 67 76.6% | 87 76.5%
8 717.5% | 28 77.1% | 48 76.8% | 68 76.6% | 88 76.5%
9 77.5%| 29 77.1%| 49 76.8% | 69 76.6% | 89 76.4%
10 77.5% | 30 77.1% | 50 76.8% | 70 76.6% | 90 76.4%
11 77.4% | 31 77.1% | 51 76.8% | 71 76.6% | 91 76.4%
12 77.4% | 32 77.0% | 52 76.7% | 72 76.6% | 92 76.4%
13 77.4% | 33 77.0% | 53 76.7% | 73 76.6% | 93 76.4%
14 77.4% | 34 77.0% | 54 76.7% | 74 76.6% | 94 76.4%
15 77.4% | 35 77.0% | 55 76.7% | 75 76.6% | 95 76.4%
16 77.4% | 36 77.0% | 56 76.7% | 76 76.6% | 96 76.3%
17 77.4% | 37 77.0% | 57 76.7% | 77 76.6% | 97 76.3%
18 77.4% | 38 76.9% | 58 76.7% | 78 76.5% | 98 76.3%
19 773% | 39 76.9% | 59 76.7% | 79 76.5% | 99 76.3%
20 77.3% | 40 76.9% | 60 76.7% | 80 76.5% | 100 | 76.3%
PTHSK calibrations
No. NSE No. NSE No. NSE No. NSE No. NSE
101 | 76.3% | 121 |76.1% | 141 | 76.0%| 161 | 75.8% | 181 | 75.5%
102 | 76.3% | 122 |76.1% | 142 | 76.0%| 162 | 75.8% | 182 | 75.5%
103 | 76.3% | 123 | 76.1% | 143 | 759% | 163 | 75.8% | 183 | 75.5%
104 | 76.3% | 124 |76.1% | 144 | 759% | 164 | 75.8% | 184 | 75.5%
105 | 76.2% | 125 [76.1% | 145 | 75.9% | 165 | 75.7% | 185 | 75.4%
106 | 76.2% | 126 [76.1% | 146 | 75.9% | 166 |75.7%| 186 | 75.4%
107 | 76.2% | 127 |76.1% | 147 | 75.9% | 167 | 75.7% | 187 | 75.4%
108 | 76.2% | 128 | 76.1% | 148 | 759% | 168 | 75.6% | 188 | 75.3%
109 | 76.2% | 129 | 76.1% | 149 | 759% | 169 | 75.6%| 189 | 75.3%
110 | 76.2%| 130 | 76.1% | 150 | 759% | 170 | 75.6%| 190 | 75.3%
111 | 76.2% | 131 [76.1% | 151 | 75.9% | 171 | 75.6%| 191 | 75.3%
112 | 76.2% | 132 | 76.0% | 152 | 75.9% | 172 | 75.6% | 192 | 75.2%
113 | 76.2% | 133 [76.0% | 153 | 75.9% | 173 | 75.6% | 193 | 75.2%
114 | 76.2% | 134 | 76.0% | 154 | 75.9% | 174 | 75.6% | 194 | 75.1%
115 | 76.2%| 135 | 76.0% | 155 | 75.9% | 175 | 75.6%| 195 | 75.1%
116 | 76.2% | 136 | 76.0%| 156 | 75.8% | 176 | 75.5%| 196 | 75.1%
117 | 76.1% | 137 | 76.0% | 157 | 75.8% | 177 | 75.5% | 197 | 75.1%
118 | 76.1% | 138 [76.0%| 158 | 75.8% | 178 | 75.5%| 198 | 75.0%
119 | 76.1%| 139 [76.0%| 159 | 75.8%| 179 | 75.5%| 199 | 75.0%
120 | 76.1%| 140 | 76.0% | 160 | 75.8% | 180 | 75.5%| 200 | 74.6%

Appendix 7 - Calibration results

Table Ap7.4 Top 36 calibration results parameters for PTHSK method

PTHSK 1 2 3 4 5 6 7 8 9
kirchner.cl -3.619|-3.703(-3.704-3.678|-3.718(-3.702 | -3.591 | -3.649 | -3.774
kirchner.c2 0.456 | 0.432 | 0.416 | 0.406 | 0.416 | 0.418 | 0.470 | 0.422 | 0.425
kirchner.c3 -0.030]-0.035(-0.035(-0.037|-0.030(-0.030(-0.030|-0.031|-0.030
ae.ae_scale_factor 0.509 | 0.340 | 0.287 | 0.356 | 0.385| 0.623 [0.317 | 0.526 | 0.594
hs.lw 0.748 | 0.524 | 0.582 | 0.464 | 0.281 | 0.544 | 0.432 | 0.556 | 0.577
hs.tx -0.217]-0.310(-0.632(-0.251|-0.639|-0.008 | 0.089 | 0.108 |-0.079
hs.cx 5.682 | 5.782 | 5.655 | 6.040 | 6.232 | 5.986 | 5.333 | 5.604 | 6.185
hs.ts -0.598(-0.4731-0.478(-0.277] 0.071 | -0.429]-0.588(-0.585]-0.541
hs.cfr 0.0004]0.0005(0.0006{0.0006/0.0008|0.0008(0.0007|0.0009|0.0012
gm.dtf 6 6 6 6 6 6 6 6 6
p_corr.scale_factor 0.832] 0.857 | 0.867 | 0.852 | 0.846 | 0.817 | 0.858 | 0.832 | 0.820
pt.albedo 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
pt.alpha 1.26 | 1.26 | 1.26 | 1.26 | 1.26 | 1.26 | 1.26 | 1.26 | 1.26
routing.velocity 0 0 0 0 0 0 0 0 0
routing.alpha 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
routing.beta 3 3 3 3 3 3 3 3 3
gm.direct_response 0.475]1 0.475] 0.4751 0.475| 0.475| 0.475 | 0.475 | 0.475 | 0.475
NSE (2012 - 2015) 77.8% | 77.7% | 77.6% | 77.6% | 77.6% | 77.5% | 77.5% | 77.5% | 77.5%
NSE (2012 - 2017) 79% | 79% | 79% | 79% | 79% | 80% | 79% | 79% | 80%

PTHSK 10 11 12 13 14 15 16 17 18
kirchner.cl -3.627|-3.578-3.725(-3.888-3.707 | -3.824 | -3.824 | -3.742 | -3.722
kirchner.c2 0.391] 0.461 | 0.470| 0.301 | 0.353 | 0.273 | 0.273 | 0.386 | 0.411
kirchner.c3 -0.034|-0.030(-0.030(-0.030|-0.032|-0.051 |-0.051-0.033|-0.035
ae.ae_scale_factor 0.484 | 0.709 | 0.307 | 0.577 | 0.392 | 0.457 | 0.457 | 0.445 | 0.417
hs.lw 0.327] 0.614 | 0.335 | 0.288 | 0.488 | 0.574 | 0.574 | 0.299 | 0.202
hs.tx -0.245| 0.002 |-0.132(-0.305]-0.229(-0.300]-0.300(0.024 |-0.201
hs.cx 5.356 | 5.665 | 6.219 | 6.625 | 5.158 | 6.422 | 6.422 | 6.210 | 6.646
hs.ts -0.279]-0.566(-0.370| 0.088 |-0.511(-0.248-0.248|-0.151| 0.086
hs.cfr 0.0008|0.0007(0.0011|0.0009]/0.0004(0.0008(0.0008|0.0008|0.0010
gm.dtf 6 6 6 6 6 6 6 6 6
p_corr.scale_factor 0.819| 0.820 | 0.859 | 0.808 | 0.835 | 0.821 | 0.821 | 0.832 | 0.838
pt.albedo 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
pt.alpha 1.26 | 1.26 | 1.26 | 1.26 | 1.26 | 1.26 | 1.26 | 1.26 | 1.26
routing.velocity 0 0 0 0 0 0 0 0 0
routing.alpha 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
routing.beta 3 3 3 3 3 3 3 3 3
gm.direct_response 0.475]1 0.475] 0.4751 0.475| 0.475| 0.475| 0.475 | 0.475 | 0.475
NSE (2012 - 2015) 77.5% | 77.4% | 77.4% | 77.4% | 77.4% | 77.4% | 77.4% | 77.4% | 77.4%
NSE (2012 - 2017) 78% | 79% | 80% | 80% | 79% | 80% | 80% | 80% | 79%

Appendix 7 - Calibration results

PTHSK 19 20 21 22 23 24 25 26 27
kirchner.cl -3.483]-3.840(-3.605(-3.733|-3.776|-3.810(-3.671| -3.687| -3.795
kirchner.c2 0.516 | 0.287 1 0.374 1 0.326 | 0.301 | 0.249] 0.349 | 0.344 | 0.268
kirchner.c3 -0.030|-0.051-0.039(-0.033]-0.036|-0.050 -0.048-0.043 | -0.055
ae.ae_scale_factor 0.608 | 0.426 | 0.758 | 0.475| 0.565 | 0.813 | 0.477 | 0.583 | 0.603
hs.lw 0.745| 0.690 | 0.351 | 0.253 | 0.315 | 0.632 | 0.415 | 0.264 | 0.348
hs.tx 0.013 |-0.173(-0.162|-0.575|-0.072(-0.273|-0.025|-0.077 | -0.327
hs.cx 5.129| 6.143 | 6.053 | 5.684 | 6.094 | 6.359 | 5.711 | 5.573 | 6.124
hs.ts -0.7941-0.472]-0.053(0.101 | 0.001 {-0.1841-0.326]-0.185]-0.126
hs.cfr 0.0004]0.0004(0.0008{0.0007)|0.0006|0.0004(0.0006|0.00080.0010
gm.dtf 6 6 6 6 6 6 6 6 6
p_corr.scale_factor 0.818 | 0.845 | 0.787 | 0.827 | 0.817 | 0.788 | 0.821 | 0.813 | 0.811
pt.albedo 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
pt.alpha 1.26 | 1.26 | 1.26 | 1.26 | 1.26 | 1.26 | 1.26 | 1.26 | 1.26
routing.velocity 0 0 0 0 0 0 0 0 0
routing.alpha 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
routing.beta 3 3 3 3 3 3 3 3 3
gm.direct_response 0.475| 0.475 | 0.475| 0.475 | 0.475 | 0.475 | 0.475 | 0.475 | 0.475
NSE (2012 - 2015) 773%|77.3%|77.3% | 77.2% | 77.2% | 77.2% | 77.2% | 77.1% | 77.1%
NSE (2012 - 2017) 78% | 80% | 78% | 78% | 79% | 79% | 79% | 79% | 79%

PTHSK 28 29 30 31 32 33 34 35 36
kirchner.cl -3.630|-3.852(-3.686[-4.058|-3.629(-3.865 | -3.597 | -3.755 | -3.644
kirchner.c2 0.458 | 0.273 1 0.430| 0.143] 0.403 | 0.204 | 0.376 | 0.308 | 0.359
kirchner.c3 -0.030|-0.053(-0.030(-0.063]-0.034|-0.061 | -0.043|-0.049|-0.043
ae.ae_scale_factor 0.310| 0.334| 0.758 | 0.471] 0.484]| 0.417 | 0.507 | 0.394 | 0.361
hs.lw 0.136 | 0.750 | 0.750 | 0.634 | 0.129 | 0.476 | 0.184 | 0.373 | 0.210
hs.tx 0.191 |-0.039(0.613 |-0.635]| 0.034 [-0.280| 0.079 | 0.211 | 0.120
hs.cx 5.840 | 6.251 | 5.838 | 7.861 | 5.447 | 6.063 | 5.651 | 5.900 | 5.247
hs.ts -0.120]-0.493(-0.731| 0.114 |-0.072|-0.204 [-0.067 | -0.366 | -0.278
hs.cfr 0.0008]0.0003(0.0009{0.0006/0.0009|0.0004(0.0009|0.0010|0.0006
gm.dtf 6 6 6 6 6 6 6 6 6
p_corr.scale_factor 0.852 | 0.851 | 0.805 | 0.834 | 0.823 | 0.826 | 0.824 | 0.834 | 0.788
pt.albedo 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
pt.alpha 1.26 | 1.26 | 1.26 | 1.26 | 1.26 | 1.26 | 1.26 | 1.26 | 1.26
routing.velocity 0 0 0 0 0 0 0 0 0
routing.alpha 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
routing.beta 3 3 3 3 3 3 3 3 3
gm.direct_response 0.475| 0.475 | 0.475 | 0.475 | 0.475 | 0.475 | 0.475 | 0.475 | 0.475
NSE (2012 - 2015) 77.1%|77.1% | 77.1% | 77.1% | 77.0% | 77.0% | 77.0% | 77.0% | 76.9%
NSE (2012 - 2017) 79% | 80% | 79% | 80% | 78% | 79% | 78% | 79% | 79%

Vi

Appendix 7 - Calibration results

Table Ap7.5 Calibration results for PTGSK method

PTGSK calibrations

No. NSE No. NSE No. NSE No. NSE No. NSE
1 799%| 21 |[785%| 41 (77.7%| 61 |77.4%| 81 |77.2%
2 798%| 22 |[784%| 42 |[77.7%| 62 |77.4%| 82 |77.2%
3 79.7%| 23 |[784%| 43 [77.7%| 63 |77.4%| 83 |77.2%
4 794% | 24 |784%| 44 |77.7%| 64 |77.4%| 84 |77.2%
5 794%| 25 |[783%| 45 |[77.7%| 65 |773%| 85 |77.2%
6 793%| 26 |[783%| 46 |[77.6%| 66 |773%| 86 |77.2%
7 793% | 27 |[783%| 47 |[77.6%| 67 |773%| 87 |77.2%
8 793%| 28 |[782%| 48 |[77.6%| 68 |773%| 88 |77.2%
9 792%| 29 |782%| 49 |[77.5%(| 69 |773%| 89 |77.2%
10 | 79.1%| 30 |781%| 50 |[775%| 70 [773%| 90 |[77.2%
11 | 79.1%| 31 |780%| 51 |[775%| 71 [773%(| 91 |[77.2%
12 [791%| 32 |77.9%| 52 |775%| 72 |[773%| 92 |77.1%
13 [79.0%| 33 |77.9%| 53 |77.4%| 73 [773%| 93 |77.1%
14 | 790%| 34 |778%| 54 |774%| 74 |[773%| 94 |77.1%
15 | 788%| 35 |778%| 55 |[774%| 75 |[773%(| 95 |[77.1%
16 | 786%| 36 |77.8%| 56 |77.4%| 76 |[77.2%| 96 |[77.1%
17 |[78.6%| 37 |77.8%| 57 |77.4%| 77 |(772%| 97 |77.1%
18 | 786%| 38 |778%| 58 |774%| 78 |[77.2%| 98 |[77.1%
19 | 785%| 39 |77.7%| 59 |774%| 79 |[77.2%(| 99 |[77.1%
20 [785%| 40 [77.7%| 60 |[77.4%| 80 |77.2%| 100 | 77.1%

PTGSK calibrations

No. NSE No. NSE No. NSE No. NSE No. NSE

101 | 77.1%| 121 | 77.0%| 141 | 76.9% | 161 |76.7% | 181 [76.4%
102 [77.1% | 122 | 77.0%| 142 |76.9% | 162 |76.7%| 182 |76.3%
103 | 77.1% | 123 | 77.0%| 143 [76.9% | 163 | 76.7%| 183 | 76.3%
104 | 77.1% | 124 | 77.0%| 144 |76.9% | 164 |76.7% | 184 | 76.2%
105 | 77.1%| 125 | 77.0%| 145 | 76.9% | 165 |76.7% | 185 [76.2%
106 | 77.1% | 126 |77.0%| 146 |76.9%| 166 | 76.6%| 186 | 76.1%
107 | 77.1% | 127 | 77.0%| 147 |76.8% | 167 | 76.6% | 187 | 76.1%
108 [77.1% | 128 | 77.0%| 148 |76.8% | 168 | 76.6% | 188 | 76.1%
109 | 77.1%| 129 | 77.0%| 149 | 76.8% | 169 | 76.6% | 189 [76.0%
110 | 77.1%| 130 | 76.9%| 150 |76.8% | 170 |76.6% | 190 [76.0%
111 [77.0%| 131 | 76.9%| 151 |[76.8% (| 171 | 76.6%| 191 | 76.0%
112 [77.0%| 132 | 76.9%| 152 |76.8% | 172 | 76.5% | 192 | 75.9%
113 | 77.0%| 133 | 76.9%| 153 | 76.8% | 173 | 76.5% | 193 [75.6%
114 | 77.0%| 134 | 76.9% | 154 | 76.8% | 174 |76.4% | 194 | 75.3%
115 [77.0%| 135 | 76.9% | 155 |[76.8% | 175 | 76.4%| 195 | 75.0%
116 | 77.0%| 136 | 76.9%| 156 |76.8% | 176 |76.4%| 196 | 74.3%
117 | 77.0%| 137 | 76.9%| 157 | 76.8% | 177 |76.4% | 197 | 74.2%
118 | 77.0%| 138 | 76.9%| 158 | 76.8% | 178 |[76.4% | 198 [73.3%
119 | 77.0%| 139 | 76.9%| 159 |76.8% | 179 |76.4% | 199 [73.2%
120 | 77.0%| 140 | 76.9%| 160 | 76.8% | 180 |[76.4%| 200 |[72.8%

Vi

Appendix 7 - Calibration results

Table Ap7.6 Top 36 calibration results parameters for PTGSK method

PTGSK 1 2 3 4 5 6 7 8 9
kirchner.cl -3.659 | -3.647 | -3.634 | -3.764 | -3.838 | -3.555 | -3.724 | -3.915 | -3.684
kirchner.c2 0.498 | 0.493 | 0.516 | 0.311 | 0.280 | 0.515 | 0.306 | 0.242 | 0.320
kirchner.c3 -0.010 | -0.010 | -0.010 | -0.040 | -0.040 | -0.010 | -0.040 | -0.040 | -0.040
ae.ae_scale_factor 0.388 | 0.399 | 0.339 | 0.658 | 0.552 | 0.346 | 0.551 | 0.551 | 0.550
gs.tx -1.297 | -0.931 | -1.293 | -0.943 | -0.943 | -0.791 | -0.916 | -0.997 | -0.891
gs.wind_scale 0.606 | 0.495 | 0.625 | 0.543 | 0.520 | 0.603 | 0.633 | 0.615 | 0.624
gs.max_water 0.178 | 0.079 | 0.166 | 0.137 | 0.127 | 0.099 | 0.144 | 0.153 | 0.161
gs.wind_const 4.727 | 5.998 | 4.111 | 5.356 | 5.427 | 4.342 | 4.627 | 4.525 | 4.643
gs.fast_albedo_decay_rate 1.265 | 1.001 | 1.226 | 1.312 | 1.228 | 2.467 | 1.612 | 1.018 | 1.471
gs.slow_albedo_decay_rate 9.180 | 34.430| 57.769| 19.274| 23.155| 36.663 | 7.669 | 11.927 | 29.151
gs.surface_magnitude 49.17 | 56.41 | 67.31 | 50.60 | 19.80 | 36.05 | 45.49 | 32.96 | 32.10
gs.max_albedo 0.867 | 0.894 | 0.840 | 0.878 | 0.870 | 0.856 | 0.886 | 0.869 | 0.890
gs.min_albedo 0.647 | 0.652 | 0.644 | 0.635 | 0.644 | 0.572 | 0.623 | 0.650 | 0.611
gs.snowfall_reset_depth 6.200 | 10.147 | 6.963 | 6.654 | 8.264 | 12.510| 7.026 | 6.916 | 7.116
gs.snow_cv 0.374 | 0.329 | 0.459 | 0.388 | 0.331 | 0.472 | 0.514 | 0.232 | 0.532
gs.glacier_albedo 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
p_corr.scale_factor 0.784 | 0.780 | 0.799 | 0.747 | 0.752 | 0.783 | 0.756 | 0.746 | 0.756
gs.snow_cv_forest_factor 0 0 0 0 0 0 0 0 0
gs.snow_cv_altitude_factor 0 0 0 0 0 0 0 0 0
pt.albedo 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
pt.alpha 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26
gs.initial_bare_ground_fraction | 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
gs.winter_end_day_of year 107 115 89 109 93 100 93 104 105
gs.calculate_iso_pot_energy 0 0 0 0 0 0 0 0 0
gm.dtf 6 6 6 6 6 6 6 6 6
routing.velocity 0 0 0 0 0 0 0 0 0
routing.alpha 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
routing.beta 3 3 3 3 3 3 3 3 3
gs.n_winter_days 235 206 192 255 193 226 245 244 217
gm.direct_response 0.475 | 0.475 | 0.475 | 0.475 | 0.475 | 0.475 | 0.475 | 0.475 | 0.475
NSE (2012 - 2015) 80% 80% 80% 79% 79% 79% 79% 79% 79%
NSE (2012 - 2017) 74% 75% 75% 75% 75% 75% 75% 75% 75%

viii

Appendix 7 - Calibration results

PTGSK 10 11 12 13 14 15 16 17 18
kirchner.cl -3.758 | -3.725 | -3.835 | -3.826 | -3.744 | -3.773 | -3.661 | -3.610 | -3.745
kirchner.c2 0.306 | 0.309 | 0.264 | 0.229 | 0.301 | 0.284 | 0.425 | 0.437 | 0.253
kirchner.c3 -0.040 | -0.040 | -0.040 | -0.048 | -0.040 | -0.040 | -0.013 | -0.010 | -0.044
ae.ae_scale_factor 0.583 | 0.579 | 0.785 | 0.926 | 0.948 | 0.790 | 0.662 | 0.959 | 1.298
gs.tx -0.932 | -0.857 | -0.891 | -0.922 | -1.091 | -0.995 | -1.042 | -0.887 | -0.922
gs.wind_scale 0.729 | 0.699 | 0.644 | 0.537 | 0.524 | 0.545 | 0.726 | 0.582 | 0.606
gs.max_water 0.140 | 0.155 | 0.137 | 0.156 | 0.156 | 0.152 | 0.129 | 0.148 | 0.160
gs.wind_const 3.087 | 3.638 | 4.102 | 5.413 | 5.108 | 4.784 | 2.109 | 3.933 | 4.472
gs.fast_albedo_decay_rate 1.200 | 1.555 | 1.024 | 1.057 | 1.612 | 3.354 | 4.498 | 4.007 | 2.546
gs.slow_albedo_decay_rate 26.862 | 22.608 | 21.656 | 28.552 | 23.057 | 13.184 | 6.321 | 10.724 | 8.922
gs.surface_magnitude 45.05 | 32.70 | 29.01 | 44.80 | 37.48 | 58.08 | 31.39 | 42.13 | 42.24
gs.max_albedo 0.884 | 0.877 | 0.880 | 0.884 | 0.860 | 0.837 | 0.803 | 0.832 | 0.862
gs.min_albedo 0.616 | 0.603 | 0.639 | 0.646 | 0.630 | 0.580 | 0.579 | 0.527 | 0.595
gs.snowfall_reset_depth 8.103 | 6.838 | 7.334 | 5.859 | 6.066 | 8.200 | 10.428 | 8.020 | 6.888
g5.SNOW_cv 0.378 | 0.455 | 0.252 | 0.348 | 0.357 | 0.390 | 0.268 | 0.412 | 0.380
gs.glacier_albedo 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
p_corr.scale_factor 0.752 | 0.750 | 0.730 | 0.722 | 0.727 | 0.736 | 0.744 | 0.721 | 0.706
gs.snow_cv_forest_factor 0 0 0 0 0 0 0 0 0
gs.snow_cv_altitude_factor 0 0 0 0 0 0 0 0 0
pt.albedo 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
pt.alpha 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26
gs.initial_bare_ground_fraction | 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
gs.winter_end_day_of year 84 94 98 114 100 111 96 104 99
gs.calculate_iso_pot_energy 0 0 0 0 0 0 0 0 0
gm.dtf 6 6 6 6 6 6 6 6 6
routing.velocity 0 0 0 0 0 0 0 0 0
routing.alpha 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
routing.beta 3 3 3 3 3 3 3 3 3
gs.n_winter_days 243 212 247 182 221 214 242 221 209
gm.direct_response 0.475 | 0.475 | 0.475 | 0.475 | 0.475 | 0.475 | 0.475 | 0.475 | 0.475
NSE (2012 - 2015) 79% 79% 79% 79% 79% 79% 79% 79% 79%
NSE (2012 - 2017) 74% 74% 74% 73% 74% 75% 73% 74% 74%

Appendix 7 - Calibration results

PTGSK
kirchner.cl

kirchner.c2

kirchner.c3
ae.ae_scale_factor

gs.tx

gs.wind_scale
gs.max_water
gs.wind_const
gs.fast_albedo_decay_rate
gs.slow_albedo_decay_rate
gs.surface_magnitude
gs.max_albedo
gs.min_albedo
gs.snowfall_reset_depth
gs.snow_cv
gs.glacier_albedo
p_corr.scale_factor
gs.snow_cv_forest_factor
gs.snow_cv_altitude_factor
pt.albedo

pt.alpha
gs.initial_bare_ground_fraction
gs.winter_end_day_of_year
gs.calculate_iso_pot_energy
gm.dtf

routing.velocity
routing.alpha

routing.beta
gs.n_winter_days
gm.direct_response

NSE (2012 - 2015)

NSE (2012 - 2017)

19
-3.593
0.441
-0.016
0.789
-1.000
0.647
0.138
3.572
4.304
35.521
41.71
0.827
0.542
9.470
0.356
0.4
0.734

0.2
1.26
0.04
121

)]

0.9

246
0.475
79%
74%

20
-3.874
0.148
-0.054
1.023
-0.893
0.580
0.145
4.652
2.715
21.991
50.62
0.859
0.580
7.026
0.385
0.4
0.714

0.2
1.26
0.04

105

0.9

238
0.475
79%
74%

21
-3.806
0.282
-0.033
0.466
-0.887
0.669
0.169
3.152
4.061
41.864
37.79
0.817
0.531
10.051
0.440
0.4
0.750

0.2
1.26
0.04

90

(o3}

0.9

221
0.475
78%
74%

22
-3.856
0.179
-0.052
0.901
-0.888
0.666
0.167
3.519
2.508
20.124
60.53
0.837
0.578
6.707
0.486
0.4
0.734

0.2
1.26
0.04

97

(o)}

0.9

225
0.475
78%
74%

23
-3.991
0.037
-0.075
0.550
-0.913
0.749
0.120
2.032
1.841
17.648
30.40
0.835
0.590
5.564
0.316
0.4
0.744

0.2
1.26
0.04
110

o))

0.9

240
0.475
78%
73%

24
-3.760
0.248
-0.044
0.980
-0.919
0.561
0.125
3.993
3.189
21.257
31.25
0.835
0.552
7.154
0.382
0.4
0.722

0.2
1.26
0.04

108

0.9

240
0.475
78%
74%

25
-3.730
0.253
-0.040
1.323
-0.857
0.632
0.119
4.168
2.433
20.636
25.25
0.871
0.579
6.271
0.473
0.4
0.711

0.2
1.26
0.04

102

(o3}

0.9

234
0.475
78%
74%

26
-3.632
0.287
-0.040
1.363
-0.741
0.517
0.148
5.730
3.196
27.558
31.43
0.874
0.562
8.990
0.549
0.4
0.700

0.2
1.26
0.04

104

(o3}

0.9

197
0.475
78%

74%

27
-3.809
0.196
-0.045
1.358
-0.792
0.646
0.160
3.763
2.551
18.877
50.42
0.847
0.588
9.985
0.387
0.4
0.700

0.2
1.26
0.04
104

)]

0.9

224
0.475
78%
73%

Appendix 7 - Calibration results

PTGSK 28 29 30 31 32 33 34 35 36
kirchner.cl -3.947 | -3.812 | -3.902 | -4.051 | -3.940 | -3.980 | -3.916 | -3.824 | -3.821
kirchner.c2 0.004 | 0.143 | 0.141 | -0.047 | 0.040 | 0.030 | 0.049 | 0.152 | 0.178
kirchner.c3 -0.081 | -0.058 | -0.057 | -0.076 | -0.070 | -0.076 | -0.070 | -0.062 | -0.049
ae.ae_scale_factor 0.617 | 1.467 | 0.863 | 0.898 | 1.295 | 0.776 | 1.364 | 0.953 | 0.768
gs.tx -0.934 | -0.856 | -0.887 | -0.913 | -0.741 | -0.857 | -0.738 | -1.067 | -0.918
gs.wind_scale 0.512 | 0.592 | 0.572 | 0.646 | 0.699 | 0.630 | 0.582 | 0.585 | 0.648
gs.max_water 0.165 | 0.100 | 0.142 | 0.143 | 0.133 | 0.127 | 0.115 | 0.142 | 0.148
gs.wind_const 5.181 | 4.054 | 4.653 | 3.732 | 3.372 | 3.806 | 4.019 | 3.687 | 3.366
gs.fast_albedo_decay_rate 3.539 | 2.281 | 3.896 | 2.968 | 2.055 | 3.833 | 2.796 | 4.802 | 7.464
gs.slow_albedo_decay_rate 30.050 | 21.780 | 20.471| 17.498 | 26.510| 17.779| 10.579 | 18.525| 21.942
gs.surface_magnitude 49.35 | 31.17 | 35.41 | 49.33 | 54.58 | 45.71 | 65.43 | 45.41 | 33.28
gs.max_albedo 0.841 | 0.853 | 0.850 | 0.851 | 0.877 | 0.841 | 0.838 | 0.809 | 0.810
gs.min_albedo 0.573 | 0.596 | 0.521 | 0.566 | 0.574 | 0.525 | 0.570 | 0.560 | 0.488
gs.snowfall_reset_depth 7.742 | 6.312 | 6.010 | 7.277 | 6.419 | 6.836 | 5.837 | 6.893 | 10.259
gs.snow_cv 0.482 | 0.363 | 0.392 | 0.348 | 0.430 | 0.336 | 0.481 | 0.450 | 0.406
gs.glacier_albedo 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
p_corr.scale_factor 0.721 | 0.699 | 0.720 | 0.711 | 0.702 | 0.723 | 0.702 | 0.727 | 0.721
gs.snow_cv_forest_factor 0 0 0 0 0 0 0 0 0
gs.snow_cv_altitude_factor 0 0 0 0 0 0 0 0 0
pt.albedo 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
pt.alpha 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26
gs.initial_bare_ground_fraction | 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
gs.winter_end_day_of_year 103 110 99 109 101 107 89 109 106
gs.calculate_iso_pot_energy 0 0 0 0 0 0 0 0 0
gm.dtf 6 6 6 6 6 6 6 6 6
routing.velocity 0 0 0 0 0 0 0 0 0
routing.alpha 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
routing.beta 3 3 3 3 3 3 3 3 3
gs.n_winter_days 203 208 211 223 222 221 220 202 203
gm.direct_response 0.475 | 0.475 | 0.475 | 0.475 | 0.475 | 0.475 | 0.475 | 0.475 | 0.475
NSE (2012 - 2015) 78% 78% 78% 78% 78% 78% 78% 78% 78%
NSE (2012 - 2017) 74% 73% 74% 73% 73% 74% 73% 73% 74%

Xi

Appendix 7 - Calibration results

Table Ap7.7 All parameters ranges for all methods

PTGSK PTSSK PTHSK
Pa ra mete rs For Calibration | 200 Calibration results For Calibration | 200 Calibration results For Calibration l 200 Calibration results

lower limit | Upper limit | Lowest | Highest | lower limit | Upper limit | Lowest Highest | lower limit | Upper limit [Lowest Highest
kirchner.cl -8 0 -4.943 -3.555 -8 0 -4.41 3155 -8 0 -4.058 -3.483
kirchner.c2 -1 1.2 -0.740 0.516 -1 1.2 -0.04 0.49 -1 1.2 0.006 0.516
kirchner.c3 -0.25 -0.01 -0.120 -0.017 -0.25 -0.01 -0.09 -0.03 -0.25 -0.01 -0.089 -0.030
ae.ae_scale_factor 0.2 2.5 0.339 2.385 0.2 2.5 0.30 2.49 0.2 2.5 0.268 2.484
p_corr.scale_factor 0.5 1.5 0.624 0.799 0.5 1.5 0.71 0.86 0.5 1.5 0.686 0.838
gs.calculate_iso_pot_energy 0 0 0 0 - - - - - - - -
gs.tx =3} 2 -1.297 -0.352 = = = = = = = =
gs.wind_scale 0.5 6 0.495 0.769 - - - - - - - -
gs.max_water 0.06 0.2 0.079 0.189 - - - - - - - -
gs.wind_const 1 7 2.032 6.043 - - - - - - - -
gs.fast_albedo_decay_rate 1 15 1.001 12.223 - - - - - - - -
gs.slow_albedo_decay_rate 2 70 4.799 69.008 - - - - - - - -
gs.surface_magnitude 10 70 17.664 67.314 - - - - - - - -
gs.max_albedo 0.7 0.95 0.789 0.933 - - - - - - - -
gs.min_albedo 0.4 0.7 0.423 0.652 - - - - - - - -
gs.snowfall_reset_depth 4 9 4.710 14.274 - - - - - - - -
g5.SnowW_cv 0.1 0.8 0.050 0.556 - - - - - - - -
gs.glacier_albedo 0.4 0.4 0.4 0.4 - - - - - - - -
gs.snow_cv_forest_factor 0 0 0 0 - - - - - - - -
gs.snow_cv_altitude_factor 0 0 0 0 - - - - - - - -
gs.initial_bare_ground_fraction 0.04 0.04 0.04 0.04 - - - - - - - -
gs.winter_end_day_of_year 80 125 84 121 - - - - - - - -
gs.n_winter_days 170 270 175 263 - - - - - - - -
ss.alpha_0 - - - - 8 75 10 70 - - - -
ss.d_range - - - - 4 650 5 604 - - - -
ss.unit_size - - - - 0.001 0.45 0.0012 0.399 - - - -
ss.max_water_fraction - - - - 0 0.35 0.0000 0.277 - - - -
ss.tx - - - - -1.2 1.2 -0.987 0.877 - - - -
S$5.CX - - - - 0 10 5.61 9.08 - - - -
ss.ts - - - - -1.2 1.2 -0.17 0.98 - - - -
ss.cfr - - - - 0 4 0.0001 3.484 - - - -
hs.lw - - - - - - - - 0 0.85 0 0.750
hs.tx - - - - - - - - -1.2 1.2 -0.977 0.989
hs.cx - - - - - - - - 0 10 4.626 7.861
hs.ts - - - - - - - - -1.2 1.2 -0.799 0.522
hs.cfr - - - - - - - - 0 1.2 0.0001 3.234
pt.albedo 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
pt.alpha 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26
gm.dtf 6 6 6 6 6 6 6 6 6 6 6 6
gm.direct_response 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475
routing.velocity 0 0 0 0 0 0 0 0 0 0 0 0
routing.alpha 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
routing.beta 3 3 3 3 3 3 3 3 3 3 3 3

xii

Appendix 8

Summary of SWE

calculations

Appendix 8 - Summary of SWE calculations

Table Ap8.1 Summary of SWE calculation in passed cell in PTGSK method

Appendix 8 - Summary of SWE calculations

1199 sty3 ssed 3 up1p aur

1192 s1y3 ssed 3 upip aun

1199 siy3 ssed 3 upip aun

Appendix 8 - Summary of SWE calculations

Table Ap8.2 Summary of SWE calculation in passed cell in PTHSK method

Appendix 8 - Summary of SWE calculations

1199 s1y3 ssed 3 upip aur

1193 sy3 ssed 3 upip aur)

1192 s1y3 ssed 3 upip aur]

iv

Appendix 8 - Summary of SWE calculations

Table Ap8.3 Summary of SWE calculation in passed cell in PTSSK method

Appendix 8 - Summary of SWE calculations

1192 siy3 ssed 3 upip aun

1192 siya ssed 3 upip aun

1192 siya ssed 3 upip aun

v

Appendix 9

Calibrated and

validated Hydrographs

Discharge [m3 s-1]

Discharge [m3 s-1]

700

600

500

400

300

200

100

Appendix 9 - Calibrated and validated Hydrographs

Calibrated and validated Hydrographs

In this appendix the average of 36 best calibrations and validations hydrographs out of 200
tries for each method are presented. The calibrations and verifications were done for 3 years

(2012-2015) and 2 years (2015-2017) respectively.

Figure Ap9.1 Observed and PTGSK simulated hydrographs

NSE (Calibration): 77% NSE (Validation): 67%

Hydrograph 2012-2015

—— Gamma snow distribution routine
—— Observed discharge

201211 2013.03 2013.07 201311 2014-03 2014.07 2014-11 2015-03 2015.07

Hydrograph 2015-2017

—— Gamma snow distribution routine
—— Observed discharge

2015.08 201511 2016-02 2016-05 2016-08 201611 201702 201705 201708

Discharge [m3 s-1]

Discharge [m3 s-1]

H

H

¥

Appendix 9 - Calibrated and validated Hydrographs

Figure Ap9.2 Observed and PTHSK simulated hydrographs

NSE (Calibration): 77% NSE (Validation): 81%

Hydrograph 2012-2015

—— HBV snow routine
—— Observed discharge

201211 2013-03 2013-07 201311 2014-03 2014-07 201411 2015.03 2015.07

Hydrograph 2015-2017

—— HBV snow routine
—— Observed discharge

2015-08

201511 201602 2016-05 201608 201611 2017-02 2017.05 2017-08

k-3 8 8
3 8 3

Discharge [m3 s-1]

8
3

8
3

Discharge [m3 s-1]
b1

8
8

Figure Ap9.3 Observed and PTSSK simulated hydrographs

Appendix 9 - Calibrated and validated Hydrographs

NSE (Calibration): 77%

Hydrograph 2012-2015

NSE (Validation): 79%

—— Skaugen snow routine
—— Observed discharge

201211

201303

Hydrograph 2015-2017

2015.07

—— Skaugen snow routine
—— Observed discharge

2015.08 201511

201702

201705

201708

Appendix 160

Graphs code in Seaborn

(Python)

Appendix 10 - Graphs code in seaborn(Python)

Graphs code in seaborn (Python)

import seaborn as sb

import pandas as pd

import numpy as np

from matplotlib import pyplot as plt

file name = r'D:\Dropbox\Thesis\SHyFT\seaborn.csv'
my data = pd.DataFrame ()

my data =pd.read csv(file name)

my data.index= my data['Cell No.'][:]

del my data['Cell No.']

with sb.axes style("white"):
sb.jointplot (x=np.array (my datal['Elevation'][:]),
y=np.array(my datal['Accuracy'][:]), kind="hex", color="k");

sb.set (style="darkgrid", color codes=True)

plt.figure(figsize = (13,9))

tips = sb.load dataset("tips")

g = sb.jointplot ("Number of points", "Accuracy", data=my data,
kind="reg", xlim=(-10, 1400), ylim=(-0.1, 1.1), color="r", size=7)

plt.figure(figsize = (13,9))

sb.swarmplot (x = "range", y='Accuracy', data = my data , size = 7,hue
= "snow_course", edgecolor='gray')

sb.boxplot (x = "range", y='Accuracy', data = my data , whis=np.inf)
plt.grid()

plt.show()

plt.figure(figsize = (13,9))

sb.swarmplot (x = "range", y='Accuracy', data = my data , size = 7,hue
= "snow course", edgecolor='gray')

plt.grid()

plt.show ()

plt.figure(figsize = (13,9))

sb.swarmplot (x = "snow course", y='Accuracy',6 data = my data , size =
7,hue = "range", edgecolor='gray')

plt.legend(loc = 0)

sb.boxplot (x = "snow_ course", y='Accuracy', data = my data ,
whis=np.inf)

plt.grid()

plt.show ()

plt.figure(figsize = (13,9))

sb.swarmplot (x = "snow course", y='Accuracy',6 data = my data , size =

7,hue = "range", edgecolor='gray')

Appendix 10 - Graphs code in seaborn(Python)

sb.violinplot (x = "snow course", y='Accuracy',6 data = my data,
inner=None)
plt.grid()
plt.show ()

fig, ax = plt.subplots(figsize=(15,8))
sb.set (style="ticks", palette="pastel")

sb.stripplot (x = "snow course", y='Accuracy',6 hue = 'Year',K data =
my data , size = 8)

ax.legend(loc = 2)

plt.savefig("snow course accuracy yearZ.png")

plt.show ()

fig, ax = plt.subplots(figsize=(20,10))

sb.stripplot(x = 'Elevation', y='Accuracy',hue = 'Year',6 data =
my data , size = 6)

plt.savefig("elevation accuracy year.png")

plt.show ()

plt.figure(figsize = (13,8))

do not overlap on them, hue make a legend and shows the"Company"
with color

sb.swarmplot (x = 'range', y='Accuracy', data = my data , size = 10,
hue = "snow course", vmin = 0, vmax =10)
plt.grid()

plt.savefig("Range accuracy snow.png")
plt.xticks([1,20,30,40,501)
plt.show ()

fig, ax = plt.subplots(figsize=(15,8))

sb.boxplot (x = 'range', y='Accuracy',hue="Year", data = my data)

sb.despine (offset=6, trim=False)
plt.savefig("Range accuracy year.png")

sns.boxplot (x="Cells", y="SWE [mm]",hue="Method", palette=["m", "g",
"b", "r"],data=1ined2013)

plt.show ()

Appendix 11

miscellaneous graphs

Appendix 11 - miscellaneous graphs

1292 1180 Pizd Bl zrelied 6€T 119D $1%4

© 9SANDD MOUS

106 1190 £68 1190 088 1180 6.8 1190

9 ISANDID MOUS

0 0

Ml b

[(Ce] zie ey

98 1180 868 118D

(o] oLz lied 98. 118D

158 1180 958 1180 S58 18D

© 91100 MOous

0

. i .
Y .

G9. 118D

Sv. 1180

S 9SANDD MOUS

€€8 118D 8/€ 119D

0
q .
.

vyL 1D

foer

6S¢€ lI8D

008 1180 6.2 1180 8141180 957 18D
o
7 9S1N00 MOous
o2
m
El
El
: Tis
& - ‘+
mov
LEE 118D 9¢¢g 118D 80¢ 118D 6.2 1180
o
¥ 9S1100 MOUS
NO—« m
m
El
3
.
= e =
L ‘
Lo
poniesqo
Ysold .
YiSHid .
MSSid

OB

Figure Ap11.1 Logarithmic SWE axis in different cells

Appendix 11 - miscellaneous graphs

Nethod
I PTSSK
== PTHSK
00 | PTGSK
+
a0 + ot
+ L}
it '
| R
o
O ? o
N, a ™0,
él =
.[P q]
[} L}
BT T
300
L}
+ +
s SNowW course 4 Snow course 3 sSnow course ©
Cell279 Cel308 Cell3356 Cell337 Cell359 Cell378 | Cell833 Cell855 Cell855 CellB57 CellB58 | CellB54 Cell879 Cell880 Cell893 Cell'807
Nethod
[PTSSK + !
== PTHSK +
[PTGSK
700 4
‘ +
[* :
+
&00 |
. T i
500 -
T +
E +
'] y -
400 +
ai ;Eé [
300 é
L}
+
‘
“1 Snow course 7 snow course 8 Snow course 9
Cel 756 Cell778 Cell 773 CellB00 | Cell744 Cel745 Cel 765 Cel 785 | Cell210 Cell211 Cell212 Cell213 Cell238 Cel242 Cell243 Cell 2627
Figure AP11.2 SWE boxplot of different cells
2000

6992000
6991500

6991000
6990500
6990000

354000
353000
352000

351000

Figure AP11.3 An example of a SWE depth profile

SWE real error

SWE real error

Appendix 11 - miscellaneous graphs

400 4

200

o

-600 1

400

200 A

=400 A

fear

2013
2014
2015
2016
2017

+
+
$
+
700-900 500-1000 1000-1100 1100.1200 1200-1500
Ranges
Figure AP11.4 SWE real error boxplot against ranges 1
SWE real error versus ranges 1
Method
HE PTSSK
mm PTHSK
El PTGSK

-

700-900

1000-1100 1100-1200 1200-1500

Ranges

900-1000

Figure AP11.5 SWE real error boxplot against ranges 2

Appendix 11 - miscellaneous graphs

Figure AP11.6 Snow course on the catchment layout

Appendix 12

YouTube movie

Appendix 12 - YouTube video

YouTube video

It shows 2 years simulation with three methods in 2 minutes

https://youtu.be/HeLNBz tszo

Snow Cover Area on 2014-04-21 Snow Water Equivalent (0-800)[mm] on 2014-04-21
Gamma
HBV
Skaugen Skaugen
NTNU

Appendix 13

Satellite images

Appendix 13 - Satellite images

Figure Ap13.1 A typical satellite image during snow season

Appendix 13 - Satellite images

Figure Ap13.2 Changing the image Style in Qgis

The same color pallet which was used in SHyFT for SCA image for better comparison (a
singleband gray to a singleband pseudocolor)

	Final.pdf
	test5.pdf
	test4.pdf
	test3.pdf
	agreement.pdf
	Acknowledgment.pdf
	Table of contents.pdf
	Abbreviations.pdf
	introduction.pdf

	Thesis_Paper_25_SEP_3.pdf
	blanks.pdf

	blanks.pdf
	introduction2.pdf
	1.pdf

	app1.pdf
	Appendicesss.pdf
	Appendicesss.pdf
	Appendices.pdf
	1.pdf
	Appendix 1.pdf
	2.pdf
	Appendix 2.pdf
	3.pdf
	Appendix 3.pdf
	4.pdf
	Appendix 4.pdf
	5.pdf
	Appendix 5.pdf
	6.pdf
	Appendix 6.pdf
	7.pdf
	Appendix 7.pdf
	8.pdf
	Appendix 8.pdf
	9.pdf
	Appendix 9.pdf
	10.pdf
	Appendix 10.pdf
	11.pdf
	Appendix 11.pdf
	12.pdf
	Appendix 12.pdf
	13.pdf
	Appendix 13.pdf
	blanks.pdf

	11n.pdf

	Appendix 11.pdf

	introduction2.pdf
	Table of contents.pdf

