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Abstract

In this thesis, we solve the seismic inverse problem in a Bayesian setting and perform
the associated model parameter estimation. The subsurface rock layers are represented by
categorical variables, which depends on some response variables. The observations recorded

appear as a convolution of these response variables. We thus assess the categorical variables’
posterior distribution based on a prior distribution and a convolved likelihood distribution.

Assuming that the prior model follows a Markov chain, the full model becomes a hidden
Markov model. In the associated Posterior-Prior deconvolution algorithm, we approximate

the convolved likelihood in order to use the recursive forward-backward algorithm. The
prior and likelihood distributions are parameter dependent, and two parameter estimation

approaches are discussed. Both estimation methods make use of the marginal likelihood
distribution, which can be computed during the forward-backward algorithm.

In two thorough test studies, we perform parameter estimation in the likelihood. Ap-
proximate posterior models, based on the respective parameter estimates, are computed by
Posterior-Prior deconvolution algorithms for different orders. The signal-to-noise ratio, a ra-

tio between the observation mean and variance, is found to be of importance. The results are
generally more reliable for large values of this ratio. A more realistic seismic example is also

introduced, with a more complex model description. The posterior model approximations
are here more poor, due to under-estimation of the noise parameter.
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Chapter 1

Introduction

In this thesis, we want to perform lithology/fluid (LF) prediction in subsurface layers. This is
of importance in exploration and development of petroleum reservoirs. In seismic exploration,

seismic waves are initiated by a seismic source. The waves are then reflected by the subsurface
and recorded by a set of receivers. The propagation of the waves through the different

subsurface rock layers is described physically by the wave equation, see References [1] and [2].
Figure 1.1 shows an example of a marine seismic survey, where we see that the waves are

initiated and registered from different angles. We will choose to approach the problem in a
Bayesian setting.

Figure 1.1: Marine seismic survey with a survey ship towing a wave source, an air gun,
and a set of hydrophones, which are wave receivers. Figure from Reference [16].

1
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1.1 Variables of interest

In this thesis, we study the LF-characteristics along a vertical 1D-profile through the subsur-
face layers. We discretize the LF-characteristics into a set of LF-classes. The categorical vari-

able, xt, is associated with one of these classes, and corresponds to the scaled reflection time,
t, at which the seismic waves are recorded by the receivers, i.e. the hydrophones in Figure 1.1.

The total LF-profile is represented by the full categorical variable vector x : {xt; t = 1, . . . , T}.
Each LF-state, xt, corresponds to a response, rt, represented by the full response vector r.
The actual seismic data from the LF-states recorded by the hydrophones along the profile are

registered as a convolution of these responses, or locally weighted averages. These convolved
observations are represented by the discretized vector d.

From a geologic viewpoint, the response variable rt can represent three elastic medium
properties at time t, and thus actually be a three-dimensional vector, see e.g. References [3],

[4] and [12]. These properties are P- and S-wave velocity and density, represented by their
logarithms in rt. We only consider rt at time t as a one-dimensional response variable in this

thesis, making r a (T × 1) response vector.
Work done in e.g. References [3], [4] and [12] treats observation data, d, from different

angles as shown in Figure 1.1. In this thesis, we will consider the simplest case only, assuming
the data to be 1D, i.e. from one angle only.

1.2 Seismic inverse problem

For a seismic inverse problem, we want to make inference on the LF-profile, x, based on the

observations, d. The general seismic forward model can be written as

d = A(x) + ε . (1.1)

Here d is an observation vector with seismic data on discrete form related to the full LF-state

profile, x, by a transfer function, A(·), from the state space into the observation space, and ε

is observation error. The convolution effect divides the inversion problem in two, giving the

divided forward model

d = Ad(r) + εd (1.2)

r = Ar(x) + εr . (1.3)

Here Ad(·) and Ar(·) are transfer functions from the observation space to the response space
and from the response space to the state space respectively. The two forward models descried

are ideal cases when we know the true transfer functions. In this thesis, we will set these as
matrices, i.e. A(x) = Ax in Expression (1.1), where A is a (T × T )-matrix, and likewise

in Expressions (1.2) and (1.3). This approach leads to model uncertainty in addition to the
observation error. Methods on how to set up these seismic forward models are discussed in

Reference [2] .
Many LF-states may return the same observation vector, d. The solution is thus non-

unique, which makes the inverse problem ill posed and thereby challenging. With our ap-

proach, a classical inverse solution based on a square error loss would be

x̂ = argmin
x

(
‖d− Ax‖2

)
(1.4)

for the general model in Expression (1.1). This solution may be unstable for an ill-posed

problem, i.e. small perturbations in d by ε may cause large change in x̂. The matrix A
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may in addition not have full rank. Likewise the inverse solutions for the divided inversion

problem in Expressions (1.2) and (1.3) are

x̂ = argmin
x

(
‖r̂ −Arx‖2

)
(1.5)

r̂ = argmin
r

(
‖d̂−Adr‖2

)
. (1.6)

In this case, we might have to obtain two unstable inversion solutions, and we might have

two matrices, Ar and Ad, without full rank.
In this thesis, we approach the inverse problem in a Bayesian setting. We then make

our inference on the LF-profile, x, based on a combination of the observations, d, and prior

knowledge. The solution is represented by the full posterior distribution, p(x|d). As the
objective is to predict the categorical variables in x based on d, which are registered as a

convolution, we name this inversion approach Bayesian categorical deconvolution. The major
difference between a Bayesian approach and the classical inversion approach in Expression

(1.4) is that the posterior distribution associate a probability to every possible solution. This
way we can simulate realizations of the LF-layer based on the seismic observed data and prior

knowledge, and in addition obtain information on how likely these predicted LF-layers are.
Throughout this thesis we will assume that the observation error, ε in Expression (1.1),

is Gaussian distributed,
ε ∼ NT (0, Σε) . (1.7)

The Gaussian distribution is presented in Appendix A.1. This error takes the measurement

uncertainty into account. If the error is uncorrelated with equal variance, we may write
ε ∼ NT (0, σ2

εI). Here I is the identity matrix of proper dimensions, in this case a (T × T )-

matrix.
With our Bayesian approach, the models will depend on some parameters, θ. In the gen-

eral forward model in Expression (1.1), these parameters may originate from the restrictions
on the model matrix, A, including parameters defining the model uncertainty. Also, the

Gaussian error would include the variance parameter Σε by Expression (1.7). This variance
parameter could again depend on other parameters. Likewise for the divided forward model

in Expressions (1.2) and (1.3), we would have parameters restricting Ar and Ad, and variance
parameters Σεr and Σεr . All parameters can be set if we know their true values, but this is
seldom the case. They should thus be estimated based on the seismic observations, d, and

this estimation work will be a main objective in this work, thereby the name of this thesis:
Parameter estimation in convolved categorical models.

In Chapter 2, we deduce the Bayesian model in more detail. We define the prior distribu-
tion p(x) and a convolved likelihood distribution consisting of a response likelihood p(r|x) and

an acquisition likelihood p(d|r). Together, these distributions define the posterior distribution
p(x|d). In Chapter 3, we then derive a method on how to compute an approximate posterior

distribution p̂(x|d). The approximation can be computed during a kth order Posterior-Prior
deconvolution algorithm, which again makes use of the important forward-backward algo-

rithm. Both of these algorithms are derived in more detail. Study on the efficiency of the
first order algorithm, for k = 1, is done in Reference [21]. In Chapter 4, we derive methods

on how to estimate the model parameters, θ. These are parameters that defines the prior
distribution and the two likelihood distributions. The main tool in the parameter estimation
is the marginal likelihood, p(d), which we make use of in two different estimation procedures.

In Chapters 5 and 6, we apply the models and corresponding methods, derived in the pre-
vious chapters, for two thorough test studies. In Chapter 5 we estimate the parameters in

the acquisition likelihood for different parameter sets, based on the respective observation



4 CHAPTER 1. INTRODUCTION

profiles only. The same acquisition likelihood parameter estimation is performed in Chapter

6, which explores the estimations sensitivity to the prior distribution model. In both test
studies we then assess the approximated posterior distribution for different orders k, based

on the corresponding kth order estimated parameters. In Chapter 7 we estimate the acqui-
sition likelihood parameters for a more realistic empirical example, with reference models

related to actual seismic models, see e.g References [12], [14] and [21]. The estimation, and
corresponding posterior model assessment, is discussed due to the results from the foregoing
test studies. Finally, in Chapter 8, we summarize the findings and look at further work to be

done.



Chapter 2

Model formulation

Assume that we have a stochastic process on D ∈ R
1 discretised by the lattice LD

t =
{1, . . . , T}. Every xt has a value from the finite discrete state space Ωx : {1, 2, . . . , L}.
Based on the forward model in Expression (1.1), the objective in a Bayesian setting is to
explore the posterior distribution, p(x|d), where x : {xt ∈ Ωx; t ∈ LD

t} are the LF-states and
d : {dt ∈ R

1; t ∈ LD
t} are observed seismic data. The posterior pdf is

p(x|d) =
p(d|x)

p(d)
p(x) (2.1)

by Bayes’ rule. Here p(d|x) is the likelihood pdf and p(x) is the prior pdf, both assumed to
be known, and p(d) is a constant which ensures normality.

In our model, we assume that the distribution of the data points, dt, depends on the
unknown states, xt. We also assume that these hidden underlying states, xt, follow a Markov

chain with a stationary transition matrix. With these assumptions, the model becomes a
hidden Markov model (HMM), see References [17] and [19]. In the rest of this chapter we

present the distributions in Expression (2.1) in more detail.

2.1 Prior model

We now assume that the prior chain fulfills the first-order Markov property,

p(xt|x1, . . . , xt−1) = p(xt|xt−1) ∀ t , (2.2)

i.e. that the conditional probability of the state xt at time t, given all the previous states, only
depends on the closest previous state, xt−1. The transition probabilities can be represented

by a one-step (L × L) transition probability matrix, Pxt. If the Markov chain is stationary,
the transitions for all times t will have the same transition probability matrix, Px.

The prior model, p(x), is assumed to be a first order stationary Markov model, by Ex-
pression (2.2) we thus have the prior distribution

p(x) = p(x1, . . . , xT ) = p(xT |x1, . . . , xT−1)p(xT−1|xT−2, . . . , x1) · · ·p(x2|x1)p(x1)

=

T∏

t=1

p(xt|xt−1) , (2.3)

where p(x1|x0) = p(x1) for notational ease. Here p(x1) is the initial marginal prior and
p(xt|xt−1) defines the stationary (L× L) transition probability matrix Px. In this thesis, we

will let p(x1) be the stationary pdf of Px.

5
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2.2 Likelihood model

For the most simple HMM we have the conditional independent likelihood model

p(d|x) =

T∏

t=1

p(dt|x) =

T∏

t=1

p(dt|xt), (2.4)

i.e. every observation dt only depends on the underlying state xt. A graphical model of the

HMM with likelihood by Expression (2.4) and prior by Expression (2.3) is shown in Figure
2.1.

d1 d2 dt−1 dt dt+1 dn−1 dn

x1 x2 . . . xt−1 xt xt+1 . . . xn−1 xn

Figure 2.1: Graphical model of a simple HMM.

Given all states in Figure 2.1, each node will only depend on the nodes connected to itself

by an edge. We observe the dependency relationships between the observations, d, and
the states, x, defined by Expression (2.4). We also observe the prior Markov property in
Expression (2.3) by the directed edges between elements in x.

In the convolved seismic inversion case, with forward models by Expressions (1.2) and
(1.3), we assume a likelihood model by

p(d|x) =

∫
p(d|r)p(r|x)dr . (2.5)

Here p(d|r) is termed the acquisition likelihood model and p(r|x) the response likelihood

model. We choose the likelihood such that [d|r] is independent of x. A graphical model of
the HMM with this likelihood model is shown in Figure 2.2. The Markov property in the

prior distribution is, by Expression (2.3), the same as for the simple HMM in Figure 2.1,
but the likelihood for the observation variables d and r makes it more complex. We see that

every observation element, dt, depends on the complete response vector r.

d1
. . . dt−1 dt dt+1

. . . dT

r1 . . . rt−1 rt rt+1 . . . rT

x1 . . . xt−1 xt xt+1 . . . xT

Figure 2.2: Graphical model of the HMM for our convolved Bayesian model.
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2.2.1 Response likelihood model

The response likelihood model, p(r|x), represents response variables related to the x-classes

that are actually captured by the observations in d,

[r|x] = µx + σxe ∼ p(r|x) = NT (µx, σxσ′
x) . (2.6)

Here e is a (T ×1)-vector of independent, standard Gaussian random variables, e ∼ NT (0, I).

In this pdf, µx = (µx1 , . . . , µxT
)′ is the (T × 1) response expectation vector and σx =

(σx1, . . . , σxT
)′ is the (T × 1) response variance vector related to the classes. Hence the

marginal response likelihoods, [rt|xt], will have independent univariate Gaussian pdfs by

[rt|xt] ∼ p(rt|xt) = N1(µxt , σ
2
xt

) ∀ t . (2.7)

Here µxt is the t’th element in µx and σxt is the t’th element in σx. The response likelihood

distribution in Expression (2.6) can then be factorized by its marginals,

p(r|x) =

T∏

t=1

p(rt|xt) . (2.8)

2.2.2 Acquisition likelihood model

The convolution effect is captured by the acquisition likelihood model,

[d|r] = Wr + De ∼ p(d|r) = NT (Wr, DD′) . (2.9)

Here W is a (T × T )-convolution matrix, which is fairly broad-banded as we assume the

convolution to be relatively wide. The error term, e, is a (T ×1)-vector of independent, stan-
dard Gaussian random variables, which makes the acquisition likelihood, given by Expression

(2.9), Gauss-linear. The (T × T )-matrix D captures observation error, and may be colored
such that De = We1 + e2. Here e1 and e2 are both independent Gaussian distributed error

terms, i.e. e1 ∼ NT (0, σ2
e1

I) and e2 ∼ NT (0, σ2
e2
I), and represents colored and white noise

respectively. Thus, with colored noise the acquisition likelihood pdf is

[d|r] ∼ p(d|r) = NT (Wr, σ2
e1

WW′ + σ2
e2

I) . (2.10)

With white noise only, i.e. De = e ∼ NT (0, σ2
eI), the acquisition likelihood would be p(d|r) =

NT (Wr, σ2
eI).

Throughout this thesis, we will assume that the convolution is stationary. The rows

in W will then contain the same elements. These rows corresponds to wavelets, w, which
are discussed and estimated in Reference [4]. In the two test studies in Chapters 5 and 6,

we assume that the wavelets are equal, normalized second order exponential functions. We
discretize this function for a variable interval of length 2a + 1 centered around zero,

w = [wi]i={−a,...,a} =

[
Cw√
2πσw

e
x2

w

2σ2
w

]

xw={−a,...,a}

. (2.11)

Hence W will be a 2a + 1-diagonal convolution matrix. Here Cw =
[∑a

i=−a wi

]−1
is an

added constant that ensures normality of the discretization. For a large value of the interval

parameter a, more of the functions tails is captured in w by Expression (2.11).
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2.3 Posterior model

For the simple HMM with prior distribution by Expression (2.3) and conditional independent
likelihood distribution by Expression (2.4), we have the posterior distribution by Expression

(2.1),

p(x|d) = Cd · p(d|x)p(x) = Cd ·
T∏

t=1

p(dt|xt)p(xt|xt−1) . (2.12)

Here we find the constant, Cd, by a summation over the states, xt, for all times t,

∑

x

p(x|d) = 1 ⇒ Cd =

[∑

x1

. . .
∑

xT

T∏

t=1

p(dt|xt)p(xt|xt−1)

]−1

.

The constant, Cd, corresponds to 1/p(d) in Expression (2.1), and ensures normality. In
practice, the computation of Cd is very computer demanding, or even impossible as there

are LT possible outcomes of x. The posterior distribution can be rewritten as p(x|d) =
p(x1|d)

∏T
t=2 p(xt|x1, . . . , xt−1, d). It can be shown that p(xt|x1, . . . , xt−1, d) = p(xt|xt−1, d),

hence the posterior distribution is also a Markov chain,

p(x|d) =

T∏

t=1

p(xt|xt−1, d) , (2.13)

where p(x1|x0, d) = p(x1|d). The posterior transition probability at time t, i.e. p(xt|xt−1, d),
defines the non-stationary (L×L) posterior transition probability matrix, Pxt|d. This Markov
model is non-homogeneous as the conditioning on different data, d, may give different transi-

tion matrices, Pxt|d. In the next chapter, we will introduce the forward-backward algorithm
in which we can compute the posterior distribution in Expression (2.13) recursively.

For the more complex HMM with the same prior distribution by Expression (2.3), but
with the likelihood distribution by Expression (2.5), we have the posterior distribution

p(x|d) = Cd ·
∫

p(d|r)p(r|x)dr ·
T∏

t=1

p(xt|xt−1) , (2.14)

with likelihood models defined by Expressions (2.8) and (2.9). We have reasons to believe
that this posterior distribution is not a first order Markov chain, because of the coupling in
the likelihood model. The normalizing constant, Cd, can be found by the same procedure

as in Expression (2.13), and is hard to compute in practice as for the simple HMM. In the
next chapter, we will approximate the acquisition likelihood in Expression (2.9) in order to

be able to use the Posterior-Prior ratio deconvolution algorithm. The posterior distribution
in Expression (2.14) is then approximated by a Markov chain as for the simple HMM in

Expression (2.13). This way, we can compute the approximated posterior distribution by the
forward-backward algorithm.



Chapter 3

Assessing the posterior model

In this chapter, we first introduce the forward-backward algorithm for the simple HMM model
in Figure 2.1. We then approximate the posterior distribution in the HMM in Figure 2.2,

using the Posterior-Prior ratio deconvolution algorithm, to gain a posterior distribution with
Markov properties. This way we can use the forward-backward algorithm in the approx-
imated, more complex HMM also. Most of the procedures presented originate from work

done in Reference [14].

3.1 Forward-backward algorithm

We now define two probabilities, the forward probability,

pf(x1, . . . , xt) = p(x1, . . . , xt|d1, . . . , dt) , (3.1)

and the backward probability,

pb(x1, . . . , xt) = p(x1, . . . , xt|d1, . . . , dT ) . (3.2)

The difference between the forward and the backward probabilities is that pf conditions on the

observations in d up to the highest state index t, while pb conditions on all the observations.
We also notice that the full backward probability is

pb(x) = pb(x1, . . . , xT ) = p(x|d),

i.e. it is equal to the full posteriori distribution which we want to find. In the rest of this

section, we deduce the forward-backward algorithm for the simple HMM in Figure 2.1.
The initial marginal forward probability is

pf(x1) = p(x1|d1) = Cx1 · p(d1|x1)p(x1) , (3.3)

where the constant, Cx1 = 1/p(d1), is found by
∑

x1

pf (x1) = 1 ⇒ Cx1 =
1

p(d1)
=

1∑
x1

p(d1|x1)p(x1)
.

The joint forward probability distribution of two neighbor states is

pf(xt−1, xt) = p(xt−1, xt|d1, . . . , dt) =
p(xt−1, xt, d1, . . . , dt)

p(d1, . . . , dt)

=
1

p(d1, . . . , dt)
· p(dt|xt, xt−1, d1, . . . , dt−1)p(xt|xt−1, d1, . . . , dt−1)

· p(xt−1|d1, . . . , dt−1)p(d1, . . . , dt−1)

= Cxt−1,t
· p(dt|xt)p(xt|xt−1)pf(xt−1) , (3.4)

9
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where we can find p(dt|xt) by the likelihood pdf in Expression (2.4) and p(xt|xt−1) by the

prior pdf in Expression (2.3). In the last equation, we have used the Markov property by
Expression (2.2) and the conditional independence properties by the likelihood model in

Expression (2.4). The constant, Cxt−1,t
= p(d1, . . . , dt−1)/p(d1, . . . , dt), can be found by

∑

xt−1

∑

xt

pf (xt−1, xt) = 1 ⇒ Cxt−1,t
=

1∑
xt−1

∑
xt

p(dt|xt)p(xt|xt−1)pf (xt−1)
,

with the summations being over the state space, xt, xt−1 ∈ Ωx : {1, 2, . . . , L}. Now the

marginal forward probabilities are simply found by

pf (xt) =
∑

xt−1

pf (xt−1, xt) = Cxt−1,t
·
∑

xt−1

p(dt|xt)p(xt|xt−1)pf(xt−1) . (3.5)

We can thus compute the marginal and joint forward probabilities, by Expressions (3.5) and

(3.4) respectively, for all t recursively.
We notice that pf(xT ) = pb(xT ), thus we have an initial upper marginal backward prob-

ability. The conditional backward probability distribution of two neighbor states is

pb(xt−1|xt) = p(xt−1|xt, d1, . . . , dT ) (3.6)

= p(xt−1|xt, d1, . . . , dt−1) (3.7)

= p(xt−1|xt, d1, . . . , dt−1, dt) (3.8)

=
p(xt−1, xt|d1, . . . , dt) · p(d1, . . . , dt)

p(xt|d1, . . . , dt) · p(d1, . . . , dt)

=
pf(xt−1, xt)

pf(xt)
. (3.9)

From Expression (3.6) to Expression (3.7) we have used the Markov property, i.e. xt−1 will be
independent of dt, . . . , dT when xt is given. This is also shown graphically in Figure 2.1. Since
we can condition on anything that is independent, we condition xt−1 on dt from Expression

(3.7) to Expression (3.8) to gain desirable properties. The result in Expression (3.9) only
depends on the joint and marginal forward probabilities found by Expressions (3.4) and (3.5)

respectively. As in the forward procedure, we find the marginal backward probabilities by

pb(xt−1) =
∑

xt

pb(xt−1, xt) =
∑

xt

pb(xt−1|xt)pb(xt) , (3.10)

with the summation being over the state space, Ωx.

We can now make the full forward-backward algorithm by Expressions (3.3), (3.4), (3.5),
(3.9) and (3.10). The full algorithm is presented in Algorithm 1.

Algorithm 1: Forward-backward algorithm

Forward:

• Initiate:
pf (x1) = Cx1 · p(d1|x1)p(x1)

Cx1 = 1
P

x1
p(d1|x1)p(x1)

• Iterate for t = 2, . . . , T :
pf (xt−1, xt) = Cxt−1,t

· p(dt|xt)p(xt|xt−1)pf (xt−1)

Cxt−1,t
= 1

P

xt−1

P

xt
p(dt|xt)p(xt|xt−1)pf(xt−1)

pf (xt) =
∑

xt−1
Cxt−1,t

· p(dt|xt)p(xt|xt−1)pf(xt−1)
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Backward:

• Initiate:
pb(xT ) = pf (xT )

• Iterate for t = T, . . . , 2:

pb(xt−1|xt) =
pf (xt−1,xt)

pf (xt)

pb(xt−1) =
∑

xt
pb(xt−1|xt)pb(xt)

pb(xt|xt−1) = pb(xt−1|xt)pb(xt)
pb(xt−1)

After running Algorithm 1, we can compute the full posteriori distribution by Expression
(2.13),

p(x|d) =

T∏

t=1

p(xt|xt−1, d) = pb(x1)

T∏

t=2

pb(xt|xt−1) . (3.11)

From Expression (3.11), we can simulate realizations [x|d]s = (xs
1, . . . , x

s
T ) from the posterior

distribution by the following algorithm.

Algorithm 2: Simulate full state realizations

• Draw xs
1 ∼ pb(x1).

• For t = 2, . . . , T : Draw xs
t ∼ pb(xt|xs

t−1).

Then, we have the full simulated realization (xs
1, . . . , x

s
T ) = xs. The forward-backward al-

gorithm can be used to compute the locationwise maximum a posteriori predictions (MAP),

[x̂t|d]MAP = argmax
xt

{p(xt|d)} = arg max
xt

{pb(xt)} ∀ t . (3.12)

The global MAP can be computed by the Viterbi algorithm, which is a recursive optimal

solution to the problem of estimating the full state sequence of a discrete-time finite-state
Markov process, see Reference [10]. This is a dynamic programming algorithm for finding the

shortest route, see Reference [6], where the transition probabilities are weights between the
states. We then find the path through the states in time that maximizes the total weight,

i.e. maximizes the probability of the full state sequence. A small example on how the VA
algorithm works is displayed in Figure 3.1.

Algorithm 3: Viterbi algorithm

• Initiate:
γ1(l) = pb(x1 = l) , ∀ l ∈ Ωx = {1, 2, . . . , L}
x̂1(l) = {l}

• Iterate for t = 2, . . . , T :
γt,t−1(l, l

∗) = γt−1(l
∗) · pb(xt = l|xt−1 = l∗) , ∀ l, l∗ ∈ Ωx

γt(l) = maxl∗ {γt,t−1(l, l
∗)}

x̂t(l) = {x̂t−1(l
∗), l}

• Global MAP:
lT = arg maxl{γT (l)}
[x̂|d]MAP = x̂T (lT )
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I II

(a)

Class

I

II •

•

•

•

•

•

•

•

•

•
t = 1 t = 2 t = 3 t = 4 t = 5

0.6

0.4

0.5

0.3

0.5

0.7

0.6

0.8

0.4

0.2

0.7

0.4

0.3

0.6

0.45

0.8

0.55

0.2

(b)

• •

•
t = 2 :

γ2(II) = 0.3000

γ2(I) = 0.3000

• •

•

•

•
t = 3 :

γ3(II) = 0.1800

γ3(I) = 0.2400

•

• •

•

•
t = 4 :

γ4(II) = 0.1440

γ4(I) = 0.0960

•

• •

• •

•
t = 5 :

γ5(II) = 0.0648

γ5(I) = 0.0792

(c)

Figure 3.1: An example of the VA for a Markov chain of length T = 5 with L = 2 classes,
i.e. Ωx = {I, II}, see the state diagram in (a). In (b) we see the backward initial probabilities,

pb(x1), as the dotted lines weights and the backward transition probabilities, pb(xt|xt−1), as
the solid lines weights. These are computed during the forward-backward algorithm. The

recursive shortest path evaluations are shown in (c). As γ5(I) > γ5(II), the global MAP
after the VA is [x̂|d]MAP = x̂5(I) = {II, I, I, II, I}.
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3.2 Posterior-Prior (P-P) ratio deconvolution algorithm

We want to find an approximation to the full posterior distribution in Expression (2.14) by

p̂(x|d) = Cd∗ ·
T∏

t=1

ld(xt)p(xt|xt−1) . (3.13)

Here ld(xt) is a likelihood which only depends on xt when d is given. This way the approx-
imate posterior distribution becomes a non-stationary first-order Markov chain by the same
reasoning as for Expression (2.13),

p̂(x|d) =

T∏

t=1

p̂(xt|xt−1, d) , (3.14)

with p̂(x1|x0, d) = p̂(x1|d) for notational ease. We only approximate the posterior distribu-
tion by approximations in the likelihood distribution, as the prior distribution often defines

constraints on the posterior. These constraints may be hard to ensure in prior model approx-
imations.

We now rewrite the acquisition likelihood model in Expression (2.9) by Bayes’ rule,

p(d|r) = Cd|r ·
p(r|d)

p(r)
.

This is valid for all p(r) as long as p(d|r) is used when calculating p(r|d). As p(d|r) is Gauss-

linear by Expression (2.9), we choose p(r) to be Gaussian. Then p(r|d) will also be Gaussian,

p(d|r) = Cd|r ·
p∗(r|d)

p∗(r)
, (3.15)

where

p∗(r|d) = NT (µr|d, Σr|d) (3.16)

p∗(r) = NT (µr, Σr) . (3.17)

The prior distribution in Expression (2.3) and the response likelihood distribution in Ex-
pression (2.6) indicate that p∗(r) is non-Gaussian, but we can still calculate µr and Σr by

finding the two first moments analytically. The parameters µr|d and Σr|d are also available
analytically. The approximation of these four parameters is performed in Appendix B.1,
see Expressions (B.9), (B.13) and (B.14). For a first order algorithm we then approximate

Expression (3.15) by

p̂(d|r) = Cd|r ·
T∏

t=1

p∗(rt|d)

p∗(rt)
, (3.18)

where p∗(rt|d) and p∗(rt) are marginal distributions of Expressions (3.16) and (3.17) respec-
tively. With this approximation, the dependencies in r and [r|d] are ignored since we only

use their first order marginals.

We can now approximate the full posterior distribution in Expression (2.14) by the re-

sponse likelihood distribution in Expression (2.8) and the approximated acquisition likelihood
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distribution in (3.18). The approximated posterior distribution is

p̂(x|d) = Cd ·
∫

p̂(d|r)p(r|x)dr ·
T∏

t=1

p(xt|xt−1)

= Cd ·Cd|r ·
∫ ( T∏

t=1

p∗(rt|d)

p∗(rt)

T∏

t=1

p(rt|xt)

)
dr

T∏

t=1

p(xt|xt−1)

= Cd∗ ·
T∏

t=1

ld(xt)p(xt|xt−1) ,

according to Expression (3.13). Here

ld(xt) =

∫
p∗(rt|d)

p∗(rt)
p(rt|xt)drt (3.19)

and Cd∗ = Cd · Cd|r is a normalizing constant. We notice that the full observation vector
d is used in ld(xt) for all times t when we apply the approximated acquisition likelihood

distribution in Expression (3.18). The integral in Expression (3.19) can be approximated
numerically by Algorithm 5 in Appendix B.2.

The posterior model has been approximated by a first-order Markov chain according

to Expression (3.14), and we can compute the approximated posterior distribution by the
forward-backward algorithm in Section 3.1. Instead of using the marginal likelihoods p(dt|xt)

in the forward recursions in Expression (3.4), we use the approximated likelihood ld(xt).

3.3 Higher order P-P ratio deconvolution algorithm

We now generalize the P-P ratio deconvolution algorithm from the last section. First we

define a new representation of the LF-states x = (x1, . . . , xT ) by the kth order states x
(k)
t =

(xt−k+1, . . . , xt),

x(k) =
(
x

(k)
k , x

(k)
k+1, . . . , x

(k)
T

)
= [(x1, . . . , xk), (x2, . . . , xk+1), . . . , (xT−k+1, . . . , xT )] .

The kth order full LF-state x(k) contains the whole first order full LF-state x, but many

elements xt are repeated. The state space for x
(k)
t has Lk elements. One can show that the

prior model is still Markovian,

p(x(k)) =

T∏

t=k

p
(

x
(k)
t

∣∣∣ x(k)∗
t−1

)
=

T∏

t=k

p[(xt−k+1, . . . , xt)|(x∗
t−k, . . . , x

∗
t−1)]

=

T∏

t=k

(
k−1∏

i=1

I
(
xt−k+i = x∗

t−k+i

)
)

· p
(
xt|x∗

t−1

)
. (3.20)

Here I(A) is an indicator function, which is equal to 1 if A is true and 0 if A is false,
and p(xt|x∗

t−1) is found by the first order transition matrix Px. The transition probabilities

p
(

x
(k)
t

∣∣∣ x(k)∗
t−1

)
will thus make a (Lk × Lk) transition matrix Px(k) defined by Px. As in

Expression (3.13), for the first order approximation, we want to approximate the full posterior
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distribution by an approximation in the acquisition likelihood distribution, but now for a

higher order k,

p̂(k)
(
x(k)

∣∣∣d
)

= Cd∗ ·
T∏

t=k

l
(k)
d

(
x

(k)
t

)
p
(

x
(k)
t

∣∣∣ x(k)∗
t−1

)
. (3.21)

Here

l
(k)
d

(
x

(k)
t

)
=

∫ p∗

(
r
(k)
t

∣∣∣d
)

p∗

(
r
(k)
t

) p
(

r
(k)
t

∣∣∣x(k)
t

)
dr

(k)
t , (3.22)

according to Expression (3.19) for the first order, i.e. for k = 1.

The kth order response variable in Expression (3.22) is r
(k)
t = (rt−k+1, . . . , rt), and the

kth order marginal response likelihood p
(

r
(k)
t

∣∣∣ x(k)
t

)
is simply

[
r
(k)
t

∣∣∣ x(k)
t

]
∼ p

(
r
(k)
t

∣∣∣x(k)
t

)
=

k∏

i=t−k+1

p(ri|xi) , (3.23)

by the assumption of independent marginals in Expression (2.8). The Gaussian distributions

p∗

(
r
(k)
t

∣∣∣d
)

and p∗

(
r
(k)
t

)
, which makes the kth order marginal acquisition likelihood distri-

bution, are the kth marginals from Expressions (3.16) and (3.17) respectively. For larger k,

more of the smoothness in the acquisition likelihood model is captured, as these kth order
marginals utilize more rows in the covariance matrices Σr|d and Σr in Expressions (3.16) and

(3.17) respectively. As for the first order approximation in Expression (3.19), we use the full

observation vector d in every element l
(k)
d

(
x

(k)
t

)
, and the approximations are only made in

the likelihood distribution.
By Expression (3.21), our approximated posterior distribution is a non-stationary kth

order Markov chain,

p̂(k)
(
x(k)|d

)
=

T∏

t=k

p̂(k)
(
x

(k)
t

∣∣∣x(k)∗
t−1 , d

)

=

T∏

t=k

(
k−1∏

i=1

I(xt−k+i = x∗
t−k+i)

)
p̂
(
xt|x∗

t−1, d
)

. (3.24)

The initial posterior transition probabilities are

p̂(k)
(
x

(k)
k

∣∣∣x(k)∗
k−1, d

)
= p̂

(
x

(k)
k

∣∣∣d
)

= C
x
(k)
k

· l(k)
d

(
x

(k)
k

) k∏

j=1

p(xj|xj−1) , (3.25)

where p(xj|xj−1) are simply transition probabilities in the first order transition matrix, Px.

For k = 1, we obtain the first order algorithm as discussed in the previous section. For
k = T we have, by Expressions (3.21) and (3.22),

p̂(T )
(
x(T )

∣∣∣d
)

= Cd∗ ·
T∏

t=T

l
(T )
d

(
x

(T )
t

)
p
(

x
(T )
t

∣∣∣ x(T )
t−1

)
= Cd∗ · l(T )

d (x)p(x)

= Cd∗ ·
∫

p∗(r|d)

p∗(r)
p(r|x)dr = p(x|d) ,
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i.e. the full posterior. Here we have used the properties in Expressions (3.20) and (3.23). The

algorithm for k = T would use to much cpu-time as it would require too many operations in
the forward-backward algorithm. The computations would also be memory intensive, as we

gain an (LT × LT ) transition matrix, even though this is sparse.
We can now compute the approximated posterior distribution by Algorithm 1 in Section

3.1. By Expressions (3.24) and (3.25) and the definition of the backward probability in
Expression (3.2), we have the approximate kth order posterior distribution

p̂(k)
(
x(k)

∣∣∣d
)

=

T∏

t=k

p̂(k)
(

x
(k)
t

∣∣∣ xk∗
t−1, d

)
= p

(k)
b

(
x

(k)
k

)
·

T∏

t=k+1

p
(k)
b

(
x

(k)
t

∣∣∣ x(k)∗
t−1

)
, (3.26)

similar to Expression (3.11) for the first order simple HMM. We can simulate approximate

realizations, [x|d]s = (xs
1, . . . , x

s
T ), by the procedure in Algorithm 2 in Section 3.1. The

locationwise MAPs are by Expression (3.12) approximated by

[x̂t|d]MAP = arg max
xt

{pb(xt)} = arg max
xt




∑

x
(k)
i \xt

pb

(
x

(k)
i

)




, (3.27)

with the total MAP solution [x̂|d]MAP = {[x̂t|d]MAP ; t = 1, . . . , T}. The global MAPs can
likewise be computed by Alorithm 3 in Section 3.1.



Chapter 4

Parameter estimation

In this chapter, we will assume that the prior and the likelihood distributions depend on the
parameters θ = (θx, θd, θr). We will thus have a prior model by p(x; θx) and a likelihood

model by p(d|x; θd, θr) =
∫

p(d|r; θd)p(r|x; θr)dr. Further, we will discuss two ways on
how to estimate these parameters and how to evaluate the estimates. We begin by deriving

the marginal distribution p(d) of the observed data, as it plays an important part in the
estimation procedure.

4.1 Marginal likelihood distribution

In the simple HMM in Figure 2.1, the full variable space is [d, x, θ], while it is [d, r, x,θ] for

the more complex HMM in Figure 2.2. Here the random variables d, r and x depend on the
parameter θ in the prior and the likelihood models. The parameters in θ can be unknown

constants or random variables themselves. By computing the marginal likelihood, p(d; θ),
the state variable, x, and the response variable, r, are integrated out. This way we can make

inference on the parameter θ based on the observations in d only. For notational ease, we
omit θ in the following developments, hence p(d) = p(d; θ), i.e. the marginal likelihood

distribution is parameter dependent and the parameters are considered as constants.

The marginal likelihood distribution, p(d), can be written as

p(d) = p(dT |dT−1, . . . , d1)p(dT−1|dT−2, . . . , d1) · · ·p(d3|d2, d1)p(d2|d1)p(d1) . (4.1)

For the simple HMM in Figure 2.1 with likelihood model by Expression (2.4), we have an

initial marginal distribution p(d1) =
∑

x1
p(d1|x1)p(x1) which appears in the initial marginal

posterior distribution

p(x1|d1) =
p(d1|x1)p(x1)

p(d1)
. (4.2)

For t = T, . . . , 3 we have

p(xt|dt, . . . , d1) =
p(dt|xt)p(xt|dt−1, . . . , d1)p(dt−1, . . . , d1)

p(dt|dt−1, . . . , d1)p(dt−1, . . . , d1)

=
p(dt|xt)

∑
xt−1

p(xt|xt−1, dt−1, . . . , d1)p(xt−1|dt−1, . . . , d1)

p(dt|dt−1, . . . , d1)

=
p(dt|xt)

∑
xt−1

p(xt|xt−1)p(xt−1|dt−1, . . . , d1)

p(dt|dt−1, . . . , d1)
, (4.3)

17
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which are the marginal forward probabilities in Expression (3.5) with a defined constant,

Cxt−1,t
= 1/p(dt|dt−1, . . . , d1). With initial posterior probability by Expression (4.2) and

marginal forward probability by Expression (4.3), we thus have by recursion

1 =
1

p(dT |dT−1, . . . , d1)

∑

xT

∑

xT−1

p(dT , xT , xT−1|dT−1, . . . , d1)

=
1

p(dT |dT−1, . . . , d1)

∑

xT

∑

xT−1

p(dT |xT )p(xT |xT−1)p(xT−1|dT−1, . . . , d1)

=
1

p(dT |dT−1, . . . , d1)

∑

xT

∑

xT−1

p(dT |xT )p(xT |xT−1)
p(dT−1|xT−1)

∑
xT−2

p(xT−2|dT−2, . . . , d1)

p(dT−1|dT−2, . . . , d1)

= . . . =
1

p(dT |dT−1, . . . , d1) · · ·p(d2|d1)p(d1)

∑

x1

. . .
∑

xT

T∏

t=1

p(dt|xt)p(xt|xt−1) .

By Expression (4.1), we can thus write the marginal likelihood distribution as

p(d) =
∑

x1

. . .
∑

xT

T∏

t=1

p(dt|xt)p(xt|xt−1) . (4.4)

During the forward-backward algorithm described in Section 3.1, we compute all the constants
defined by Cxt−1,t

= 1/p(dt|dt−1, . . . , d1) in Expression (4.3). We can thus compute the

marginal likelihood distribution in Expression (4.1) as

p(d) =
1[∏T

t=1 Cxt−1,t

] , (4.5)

where Cx0,1 = Cx1 . The marginal log-likelihood is thus

l(d) = log[p(d)] = −
T∑

t=1

log
(
Cxt−1,t

)
, (4.6)

and this computation can be implemented in the forward-backward algorithm. As the

marginal likelihood, the log-likelihood will be parameter dependent, i.e. l(d; θ).
We now look at the more complex HMM in Figure 2.2 approximated by the kth order

P-P ratio deconvolution algorithm described in Section 3.3. The model has approximated
likelihoods by Expression (3.22). With approximated likelihoods, the marginal likelihood

distribution will be an approximation as well. One can by the same reasoning as above show
that the kth order approximated marginal likelihood distribution now becomes

p̂(k)(d) =
1[∏T

t=k C
x
(k)
t−1∗,t

] , (4.7)

where C
x
(k)
k−1∗,k

= C
x
(k)
k

. Thus, the kth order approximated marginal log-likelihood is

l̂(k)(d) = log
[
p̂(k)(d)

]
= −

T∑

t=k

log

(
C

x
(k)
t−1∗,t

)
, (4.8)

and will also depend on θ, i.e. l̂(k)(d; θ). The constants C
x
(k)
t−1∗,t

are computed in the forward

recursions during the forward-backward algorithm described in Algorithm 1 in Section 3.1.
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4.2 Parameter estimation methods

In this section, we introduce two similar approaches for estimating the most likely value of

θ. These are maximum marginal likelihood estimation and maximum a posteriori prediction.
The major difference between the approaches is that we consider the parameters as unknown
constants in the first method, and as unknown random variables in the second. An algorithm

for computing the parameter estimate is also derived, which can be applied for both these
methods. We then define the Fisher information, a quantity for evaluation of the parameter

estimates by their corresponding log-likelihood values.

4.2.1 Parameter maximum marginal likelihood estimation (MMLE)

In this subsection, we assume that the parameters in θ are unknown constants. The approx-
imated marginal likelihood distribution in Expression (4.7), for the complex HMM in Figure

2.2, is parameter dependent, i.e. p̂(k)(d; θ). Hence the constants computed by the forward
iterations in the forward-backward algorithm will by Expression (4.7) also depend on the

parameters, i.e. C
x
(k)
t−1∗,t

=

[
C

x
(k)
t−1∗,t

; θ

]
. We can then find the kth order maximum marginal

likelihood estimate (MMLE) of the parameters,

θ̂
(k)

MMLE = argmax
θ

{
l̂(k)(d; θ)

}
= argmax

θ

{
−

T∑

t=k

log

([
C

x
(k)
t−1∗,t

; θ

])}
. (4.9)

Here l̂(k)(d; θ) is the kth order approximate marginal log-likelihood in Expression (4.8).

4.2.2 Parameter estimation by maximum a posteriori prediction (MAP)

We now assume that the parameters in θ are random variables with a prior distribution π(θ).
The approximated marginal likelihood in Expression (4.7) is then a conditional probability,

p̂(k)(d|θ), with C
x
(k)
t−1∗,t

=

[
C

x
(k)
t−1∗,t

∣∣∣∣θ
]
. As p̂(k)(θ|d) ∝ p̂(k)(d|θ) · π(θ), we first define the

kth order parameter posterior logarithm value

l̂(k)∗(θ|d) = l̂(k)(d|θ) + log [π(θ)] ∝ log
[
p̂(k)(θ|d)

]
. (4.10)

The kth order maximum a posteriori prediction (MAP) of θ is then

θ̂
(k)

MAP = argmax
θ

{
p̂(k)(θ|d)

}
= arg max

θ

{
l̂(k)∗(θ|d)

}

= argmax
θ

{
log[π(θ)] −

T∑

t=k

log

([
C

x
(k)
t−1∗,t

∣∣∣∣ θ
])}

. (4.11)

This is similar to the MMLE in Expression (4.9), but we have included the parameter prior
distribution in the estimation. This parameter prior distribution will depend on some hyper-
parameters α, which should be fixed constants. If they were not fixed, α could depend on

the hyperhyperparameters α∗ which again could depend on the hyperhyperhyperparameters
α∗∗ and so on. This could lead to an infinite dimensional hyperparameter space which makes

parameter estimation impossible.
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4.2.3 Estimation optimization algorithm

We assume that the parameter θ is a (M × 1) vector, θ = (θ1, . . . , θM). Every parameter

{θm; m = 1, . . . , M} is now discretized on D ∈ R
1 by an independent lattice with length

nm, LD
θm = {hθm

1 , . . . , hθm
nm

}. These intervals should be restricted by the definition space
of the respective parameters, e.g. the variance parameters can not be negative. To ease

the notations, we choose nm = n ∀ m = 1, . . . , M in the rest of this thesis. Together, the
lattices make the M -dimensional parameter grid {LG = LD

θ1 × . . .× LD
θM ; G ∈ R

M}. With

this discretization, we should run the forward-backward algorithm for every parameter set in
LG , i.e. nM runs, obtaining nM log-likelihood values by Expression (4.8). The MMLE and

MAP estimate will then be the parameter, θg ∈ LG , that maximizes Expressions (4.9) and
(4.11) respectively. The two estimates need not be the same parameter θg. The procedure is

presented in the following algorithm.

Algorithm 4: Parameter estimation on grid

• Initiate:
- For every {θm; m = 1, . . . , M} initiate lattices LD

θm = {hθm

1 , . . . , hθm
n }

with |hθm
n − hθm

1 | sufficiently large.

- LG = LD
θ1 × . . .×LD

θM

• For every θg ∈ LG :

- Run the forward-backward algorithm with parameters θg.

- Compute the marginal log-likelihood l̂
(k)
g = l̂(k)(d; θg) by Expression (4.8).

• Parameter estimates:
- θ̂MMLE = arg maxθg∈LG

{
l̂
(k)
g

}

- θ̂MAP = arg maxθg∈LG

{
l̂
(k)
g + log [π(θg)]

}

After running this algorithm on an initial grid, LG
1, we can run it again on a more narrow

grid, LG
2, centered around θ̂

(k)

MMLE ∈ LG
1 or θ̂

(k)

MAP ∈ LG
1. This could be repeated until we

have a grid, LG
j, where all θg ∈ LG

j are satisfactory close. This procedure should be done

separately for MMLE and MAP estimation as they not necessarily give the same estimate.
For the MAP estimation, we can include approximation of the marginal parameter poste-

rior distributions, p(θm|d), θm ∈ θ, in Algorithm 4. The parameter intervals chosen should
thus be relatively wide, with a sufficient number of elements, n. To simplify the computa-

tions, the grid’s step length should be chosen to be equal, i.e. |hθm

j − hθm

j−1| = δθm ∀ j. The
approximate marginal discrete parameter posterior pdf is then

p̂(k)(θm|d) = Cθm ·
∑

θ\θm

exp
{
l̂(k)(d|θ) + log [π(θ)]

}
, (4.12)

where Cθm = 1/
[
δθm ·∑n

j=1 p̂(k)(θm = hθm

j |d)
]

is an added constant which assures that the

distribution sums to unity. The marginal parameter MAP estimate is then simply found by

θ̂
(k)
m,MAP = arg maxθm

{
p̂(k)(θm|d)

}
.

One challenge in Algorithm 4 is to set the initial parameter intervals, {hθm

1 , . . . , hθm
n } ∀ m,

as the optimal parameter values might fall outside of these intervals. We should thus choose

|hθm
n −hθm

1 | relatively large. With many parameters, the algorithm gets computer demanding
as we run the forward-backward algorithm nM times. Another challenge is thus to find a

reasonable interval length n.
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4.2.4 Parameter estimate evaluation

For a parameter set, θ= (θ1, . . . , θM), with marginal log-likelihood value, l(d; θ), by Expres-

sion (4.6), the Fisher information, or information number, is given as,

I(θ) = Eθ

[(
∂

∂θ
l(d; θ)

)2
∣∣∣∣∣ θ
]

= −Eθ

[
∂2

∂θ2
l(d; θ)

∣∣∣∣θ
]

, (4.13)

see Reference [5]. This is the second moment of the partial derivative of the log-likelihood
function with respect to the parameter. The last equality in Expression (4.13) holds when

p(d; θ) belongs to the family of exponential distributions, i.e. the Fisher information is then
the negative expectation of the second derivative of the log-likelihood function with respect

to the parameter, see Reference [5]. The Fisher information gives a bound on the variance of
any unbiased parameter estimator θ̂u of θ,

[I(θ)]−1 ≤ Varθ(θ̂u) , (4.14)

see Reference [5]. Large information numbers thus makes a smaller bound on the estimators
variance, and the best unbiased estimator of θ will have variance [I(θ)]−1.

The complex HMM in Figure 2.2 is approximated by the kth order P-P ratio deconvolution
algorithm in Section 3.3. The corresponding marginal likelihood distribution, by Expression

(4.7), is an approximation as well, but is exact with respect to the approximated model.
As we compute the approximate marginal log-likelihood values numerically, likewise is their

approximate second derivatives computed numerically. Assuming that p(d; θ) belongs to
the family of exponential distributions, the numerical approximation of the kth order Fisher

information is then by Expression (4.13)

Î(k)(θ) = − ∂̂2

∂θ2 l̂(k)(d; θ) . (4.15)

Here l̂(k)(d|θ) is the kth order approximate marginal log-likelihood by Expression (4.8).

We assume that the parameter MMLE in Expression (4.9) is an unbiased estimator. For
univariate parameter estimation, an approximate parameter 100(1−α)% minimum Gaussian-
based confidence interval can by Expression (4.14) be computed by

θ ∈
[
θ̂
(k)
MMLE − zα/2 ·

[
Î(k)(θ)

]−1
, θ̂

(k)
MMLE + zα/2 ·

[
Î(k)(θ)

]−1
]

, (4.16)

see Reference [22]. Here zα/2 is the α/2-quantile in the standard Gaussian distribution. Large

values of the Fisher information indicate small variance and thus result in small confidence
intervals. Similarly, when estimating M parameters, approximate parameter 100(1 − α)%
minimum Gaussian-based confidence regions are defined by M -dimensional ellipsoids satisfy-

ing

(θ − θ̂
(k)

MMLE
)′
[
Î(k)(θ)

]
(θ − θ̂

(k)

MMLE
) ≤ χ2

M (α) , (4.17)

see Reference [11]. Here χ2
M(α) is the upper (100α)th percentile of a chi-square distribution

with M degrees of freedom, and Î(k)(θ) corresponds to a (M × M) Gaussian covariance
matrix. The ellipsoid in Expression (4.17) defining the confidence region boundary is centered

in θ̂
(k)

MMLE and have semi axes ±
√

χ2
M (α)λ

(k)
i e

(k)
i , where

{
(λ

(k)
1 , e

(k)
1 ), . . . , (λ

(k)
M , e

(k)
M )
}

are the

eigenvalue-eigenvector pairs for
[
Î(k)(θ)

]−1
, see Reference [11]. As we expect better model
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approximations for higher orders k, the approximate Fisher information in Expression (4.15)

should become smaller for increasing orders. The resulting parameter confidence intervals
and regions, by Expressions (4.16) and (4.17) respectively, should thus become smaller for

increasing orders as well.

4.3 Parameters in the model

We now introduce the parameters θx, θr and θd in the prior, the response and the acquisition

likelihood model respectively. We thus have a prior distribution by p(x; θx), a response like-
lihood distribution by p(r|x; θr) and an acquisition likelihood distribution by p(d|r; θd). We

deduce the MMLE and MAP estimate for these distributions, suggesting conjugate parameter
prior distributions in the MAP approach. The dependencies between the parameters in the

models and the model distributions by Expressions (2.3), (2.8) and (2.10) are presented in
Figure 4.1. The parameters shown will be discussed in more detail.

Hyperparameters

Model parameters

Model distributions

αx

αr

αd

σ2
e2

σ2
e1

σ2
w

a

µL, σ2
L

..

.

µ1, σ2
1

Px

De

W

p(x)

p(r|x)

p(d|r)

p(x|d)

Figure 4.1: Relations between the parameters in the full model and the model’s distributions.

The lines between the hyperparameters and the model parameters are dotted as these relations
are valid only for the parameter MAP estimation.
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4.3.1 Parameters in the prior model

We assume that the prior model still holds the Markov property as in Expression (2.3), but

instead of fixing the transition probabilities in Px they are now unknown parameters,

θx = Px =




p1,1 p1,2 . . . p1,L−1 p1,L

p2,1 p2,2 . . . p2,L−1 p2,L
...

...
...

...

pL,1 pL,2 . . . pL,L−1 pL,L


 . (4.18)

The initial marginal prior distribution, p(x1), will also depend on θx as we still assume it to
be the stationary distribution of Px. We also still assume that the transition matrix, Px, is
stationary with state space Ωx : {1, 2, . . . , L}. Every row in Px must sum to unity. We will

thus have M = L · (L − 1) unknown parameters,

θx = {pi,j < 1 ∀ (i, j); i = 1, . . . , L, j = 1, . . . , L − 1} ,

with pi,L = 1 −∑L−1
j=1 pi,j. The kth order MMLE of θx is then, by Expression (4.9),

θ̂
(k)

x,MMLE = argmax
θx

{
−

T∑

t=k

log

([
C

x
(k)
t−1∗,t

; θx

])}
,

and can be computed by Algorithm 4 in Section 4.2.3. When we run the algorithm in this
case, we assume that all other parameters in the model besides from θx are fixed.

In a Bayesian setting, we can choose to assign an independent Dirichlet distribution to

every row in Px. The Dirichlet distribution is described in Appendix A.2, see also Reference
[13]. Each row in Px, as we have defined it, will be probability parameters in a multinomial

distribution, see Reference [20]. The Dirichlet distribution is chosen as it is conjugate prior
to the multinomial distribution, see Appendix A.2. The parameter prior pdf for θx = Px is

then

π(θx) = p(p1,1, . . . , p1,L, p2,1, . . . , pL,L) =

L∏

i=1

p(pi,1, . . . , pi,L; αi,1, . . . , αi,L)

=

L∏

i=1

1

B(αi)

L∏

j=1

p
αi,j−1
i,j . (4.19)

Here B(αi) =
QL

i=1 Γ(αi,j)

Γ(
PL

j=1 αi,j )
is the multinomial beta function, where Γ(·) is the gamma function,

and the αi’s are fixed hyperparameter vectors. All hyperparameters in the prior will then

make an (L2 × 1) vector, αx = (α1,1, . . . , αL,L). Reference [8] proposes a model where the
rows in Px are given symmetric Dirichlet distributions, i.e. αi,j = α ∀ i, j. The parameter
prior pdf is then

π(θx) =
1

[B(α)]L

L∏

i=1

L∏

j=1

pα−1
i,j , (4.20)

where B(α) =
[Γ(α)]L

Γ(Lα) . Then there is only one hyperparameter, αx = α, to fix. Assuming that
all other parameters are fixed, the kth order MAP estimate with parameter prior distribution

from either Expressions (4.19) or (4.20) is, by Expression (4.11),

θ̂
(k)

x,MAP = argmax
θx

{
log[π(θx)] −

T∑

t=k

log

([
C

x
(k)
t−1∗,t

∣∣∣∣ θx

])}
.

The MAP estimate can be computed by Algorithm 4 in Section 4.2.3.
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4.3.2 Parameters in the response likelihood model

Every element in the response likelihood model are independent univariate Gaussian dis-

tributed by Expression (2.7), [rt|xt] ∼ N1(µxt , σ
2
xt

). Here (µxt , σxt) can take L possible values,
(µxt , σxt) ∈ {(µ1, σ1), . . . , (µL, σL)}. Every parameter set, (µi, σ

2
i ), is the response mean and

variance corresponding to the ith class in the categorical LF-state space Ωx : {1, . . . , i, . . . , L}.
There are thus 2L unknown parameters to determine in the response likelihood, see also Fig-

ure 4.1,

θr = (µ1, . . . , µL, σ1, . . . , σL) . (4.21)

The kth order MMLE of θr is, by Expression (4.9),

θ̂
(k)

r,MMLE = arg max
θr

{
−

T∑

t=k

log

([
C

x
(k)
t−1∗,t

; θr

])}
,

and can be computed by Algorithm 4 in Section 4.2.3 assuming that all other parameters

are fixed. If we assume that the variance parameters are equal, i.e. σi = σx ∀ i, there will
be L + 1 unknown parameters, i.e. θr = (µ1, . . . , µL, σx). This would simplify Algorithm 4,
gaining a parameter grid of lower dimension.

As for the prior model, we can use a Bayesian setting for the response likelihood model pa-
rameters in Expression (4.21). We choose to assign independent prior Gaussian distributions

to every conditional mean parameter, [µi|σ2
i ] ∼ N1(γi, σ

2
i /λi) and independent prior Inverse

Gamma distribution to every variance parameter, σ2
i ∼ IG(αi, βi). The Inverse Gamma dis-

tribution is described in Appendix A.3. These particular prior distributions are chosen as
they are conjugate prior distributions for the Gaussian distribution, see Appendix A.1. The

full response parameter prior is then normal-scaled inverse gamma distributed,

π(θr) =

L∏

i=1

[ √
λi√

2πσi

1

βαi

i Γ(αi)

(
1

σ2
i

)αi+1

exp

(
−2 + βiλi(µi − γi)

2

2βiσ
2
i

)]
, (4.22)

with the (4L×1) hyperparameter vector αr = (γ1, . . . , γL, λ1, . . . , λL, α1, . . . , αL, β1, . . . , βL).

If we assume equal variance, i.e. σi = σx ∀ i = 1, . . . , L with σ2
x ∼ IG(α, β), the parameter

prior pdf becomes

π(θr) =

L∏

i=1

[ √
λi√

2πσx

1

βαΓ(α)

(
1

σ2
x

)α+1

exp

(
−2 + βλi(µi − γi)

2

2βσ2
x

)]
, (4.23)

with the ((2L + 2) × 1) hyperparameter vector αr = (γ1, . . . , γL, λ1, . . . , λL, α, β). The kth
order MAP estimate with parameter prior pdf from either Expressions (4.22) or (4.23), is, by

Expression (4.11),

θ̂
(k)

r,MAP
= argmax

θr

{
log[π(θr)]−

T∑

t=k

log

([
C

x
(k)
t−1∗,t

∣∣∣∣ θr

])}
.

Here we have assumed that all other parameters in our HMM besides from θr are fixed. We

can then find this estimate by Algorithm 4 in Section 4.2.3.
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4.3.3 Parameters in the acquisition likelihood model

The wavelets, w, are the rows in the convolution matrix, W, in the acquisition likelihood

model in Expression (2.9), and depend on the parameters a and σw by Expression (2.11). We
first assume that the error term in the acquisition likelihood model contains colored noise,
i.e. the acquisition likelihood is given by Expression (2.10). With the two unknown noise

parameters, σe1 and σe2 , there are four unknown parameters in total, see also Figure 4.1,

θd = (σw, a, σe1, σe2) .

The acquisition likelihood parameters kth order MMLE is, by Expression (4.9),

θ̂
(k)

d,MMLE
= argmax

θd

{
−

T∑

t=k

log

([
C

x
(k)
t−1∗,t

; θd

])}
. (4.24)

These parameters can be estimated by Algorithm 4 in Section 4.2.3, when assuming that all
other parameters are fixed. If we only assume white noise, i.e. De = e ∼ NT (0, σ2

eI), and fix

a, then θd = (σe, σw) only. We can justify fixing a as the wavelet variance parameter, σw,
constrains the significant wavelet length by Expression (2.11).

In a Bayesian setting, we could assign independent Inverse Gamma distributions to the
noise variance parameters, σ2

e1
and σ2

e2
, i.e. σ2

j ∼ IG(αj, βj); j ∈ {e1, e2}, presuming that

the Gaussian error means are zero by Expression (1.7). We choose this prior distribution
family as it is the conjugate prior to the Gaussian distribution when the mean is given, see

Appendix A.1. The discrete wavelet function in Expression (2.11) is not actually a probability
distribution, but is identical to a discrete zero-meaned Gaussian distribution function. We
thus choose to assign an Inverse Gamma prior distribution to the wavelet variance parameter

as well, i.e. σ2
w ∼ IG(αw, βw). Here we assume a to be fixed. The acquisition likelihood

parameter prior pdf is then

π(θd) =
∏

j=w,e1,e2


 1

β
αj

j Γ(αj)

e−1/(σ2
j βj)

σ
2(αj+1)
j


 , (4.25)

with the (6×1) hyperparameter vector αd = (αw, αe1, αe2, βw, βe1, βe2). With the white noise
assumption the parameter prior pdf is

π(θd) =
∏

j=w,e2


 1

β
αj

j Γ(αj)

e−1/(σ2
j βj)

σ
2(αj+1)
j


 , (4.26)

with the (4 × 1) hyperparameter vector αd = (αw, αe, βw, βe). Assuming that all other

parameters beside from θd is fixed, the parameter MAP estimate with prior pdf from either
Expressions (4.25) or (4.26) is

θ̂
(k)

d,MAP
= arg max

θd

{
log[π(θd)]−

T∑

t=k

log

([
C

x
(k)
t−1∗,t

∣∣∣∣ θd

])}
, (4.27)

by Expression (4.11). We can find this estimate by Algorithm 4 in Section 4.2.3.
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Chapter 5

Test study: Parameter estimation
in the acquisition likelihood

In the test study in this chapter, we will use a model with three possible classes, with the
state space Ωx = {white,grey,black}. A representation of the model is displayed in Figure

5.1 along a 1D class profile of length T = 200, i.e. x : {xt; t = 1, . . . , 200}. This particular
representation will be the reference class profile, xR, in our test study. In Figure 5.1, we
also have a response profile, rR, which will be our reference response profile. Observation

profiles will be simulated based on this response profile, according to Expression (2.10), for
different acquisition likelihood parameter sets containing the convolution variance, σ2

w, and

the noise variance, σ2
e . The main objective will be to estimate these two acquisition likelihood

parameters based on the respective observation profiles. The next objective will then be to

predict class profiles, x̂, using the observation profiles and the estimated parameters, and
compare the reproductions to the reference profile, xR.

x
R

−4−3−2−1 0 1 2 3 4 5

r
R

Figure 5.1: Reference profile, xR, and an associated response profile, rR.
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CHAPTER 5. TEST STUDY: PARAMETER ESTIMATION IN THE ACQUISITION

LIKELIHOOD

5.1 Model specifications

In our model, there are L = 3 possible states. The reference class profile in Figure 5.1
is simulated from the prior distribution defined in Section 2.1, with the (3 × 3) transition

probability matrix

Px =




0.50 0.50 0

0.33 0.34 0.33
0 0.50 0.50


 . (5.1)

The initial marginal prior distribution is defined as the stationary pdf of Px in Expression
(5.1), i.e. p(x1) = (0.2845, 0.4310, 0.2845). We note that the classes white and black are de-

fined symmetrically relative to the background class, grey, and that they cannot be neighbors
by Expression (5.1). Except from this, there is no informative prior knowledge in Px, i.e. the

transition probabilities are uniform.
The response levels are associated to the states by independent Gaussian univariate re-

sponse likelihood pdfs as defined in Section 2.2.1, i.e.

p(r|x) =

T∏

t=1

p(rt|xt) =

T∏

t=1

φ1(rt; µxt , σ
2
x) (5.2)

by Expressions (2.7) and (2.8). There is thus no spatial dependency between the conditional
response levels, [rt|xt], for all times t. In the reference response profile in Figure 5.1, we

have assumed equal variance for the three classes, with σx = 0.7. The reference response
class means are µxt ∈ {−2, 0, 3}, corresponding to white, grey and black respectively. The

resulting marginal response pdfs are displayed in Figure 5.2. We see that these Gaussian
response pdfs slightly overlap, most for the white and grey class, as their means are closer

than between the black and grey mean. The black class should thus be easier to identify and
separate from the grey background class than the white class.

−4 −3 −2 −1 0 1 2 3 4 5

Figure 5.2: Class response pdfs, φ1(rt; µxt , 0.72), with µxt ∈ {−2, 0, 3} corresponding to the

classes white, grey and black respectively.

We assume an acquisition likelihood model, as defined by Expression (2.10), with white
noise only, i.e. p(d|r) = NT (Wr, σ2

eI). The wavelets, w, which are the rows in the convolu-

tion matrix, W, are assumed to be the discrete second-order exponential function given by
Expression (2.11). There are thus two acquisition likelihood parameters, σw and σe, and the

parameter values used in our test study is presented in Table 5.1. The wavelets studied are
presented in Figure 5.3, where the resulting wavelet length parameters used are SC:a = 2,

MC:a = 4 and LC:a = 10 with corresponding wavelet lengths 2a + 1. The marked function
values in Figure 5.3 define the discretized wavelets.
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Convolution

SC MC LC
Short kernel Medium kernel Long kernel

σw = 0.5 σw = 1 σw = 3
E

rr
o
r

SN

Small noise - MC/SN -
σe = 0.1

MN
Medium noise SC/MN MC/MN LC/MN

σe = 0.3 Base case

LN

Large noise - MC/LN -
σe = 0.8

Table 5.1: Acquisition likelihood parameters in the test study.
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Figure 5.3: The second-order exponential function, with marked values defining the discrete

wavelet vector, w, given by Expression (2.11) for (a) short kernel, (b) medium kernel and (c)
long kernel.

The resulting simulated reference observation profiles for the different parameter sets in
Table 5.1 are shown in Figure 5.4. Here we have also simulated observation profiles for the

four cases in Table 5.1 not present in the study, just to see how the observations vary for the
different parameters. We see that the observation profiles are more similar to the response

profile for smaller kernels, with smoother profiles for larger kernels. We also observe the
influence of the increasing noise, especially clearly for the long kernel observations.
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Figure 5.4: Reference profile, xR, with the associated response profile, rR, and all observa-
tion profiles, d, in the test study.

The ratio between the wavelet variance and the noise variance is the signal-to-noise ratio,
here approximated by

S/N = [Tr(Var{e2})]−1 × [Tr(Var{Wr})] = [Tσ2
e ]

−1 × [Tr(WVar{r}W′)]

≈ Tr(WΣrW
′)

Tσ2
e

, (5.3)

i.e. a ratio between the observation mean and variance. Here Tr(A) is the trace of the matrix

A and Σr is the variance in the Gaussian approximation in Expression (3.17). High values
of the signal-to-noise ratio indicate a good read of the response signal, while it is low when

the variance, i.e. the noise, is large. The approximated S/N-ratios in our test study, by
Expression (5.3), are shown in Table 5.2. We see that the S/N-ratio is larger for smaller

noise, and also larger for smaller kernels with observations more similar to the response, see
Figure 5.4.

MC/LN LC/MN MC/MN SC/MN MC/SN

S/N 3.3 10.6 23.8 36.1 214.0

Table 5.2: Approximated signal-to-noise ratios in the test study.

From a typical statistical viewpoint, the parameters should be estimated by the following
method. For every test case, we should simulate many observation profiles, then the param-

eter estimate would be the mean of the estimates from the respective observations. As our
model is in space along a profile of length T , approximated by kth order Markov models,
we obtain parameter randomization along the profile by the noise. We thus choose not to

simulate many observation profiles as the variations are captured along the profile when we
choose T to be large. Here we have chosen T = 200, and assume that the class transitions

and corresponding observation changes are repeated sufficiently.
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5.1.1 Test statistics for the approximated posterior model

The quality of the class profiles maximum a posteriori predictions (MAPs) are evaluated by
the class profile ratio statistic

∆MAP =
1

T

T∑

t=1

I
(
[x̂t|d]MAP = xR

t

)
· 100% , (5.4)

i.e. the ratio in percentage of the lattice nodes, x̂t, in the predicted class profile, [x̂|d]MAP ,
which are correctly predicted compared to the true reference class profile, xR. This can

be evaluated for both locationwise and global MAP prediction, as described in Section 3.1.
Perfect prediction would naturally yield ∆MAP = 100%.

The misclassification rate of each class, l ∈ Ωx, is defined by the two coverage rate statistics
[al, bl], as done in Reference [14]. When using the kth order P-P ratio deconvolution algorithm,
these are defined as

al =

∑
t I(xR

t = l)p̂(k)(xt = l|d)∑
t I(xR

t = l)
(5.5)

bl =

∑
t p̂(k)(xt = l|d)∑

t I(xR
t = l)

. (5.6)

Here al represents the ability to predict the l-class in xR correctly, i.e. how well the posterior
model predicts the true reference class profile. The value of al should be larger than the

prior probability for the respective class, i.e. the marginal distribution p(x1 = l), and close
to 1 when using an informative likelihood model. The variable bl represents over/under-

prediction of class l, i.e. the ratio between how much the posterior model favors class l and
the representation of class l in the reference profile. The value of bl should be close to 1 for a
good prediction. The difference (bl − al) represents the misclassification rate of class l, thus

perfect prediction would yield al = bl = 1.

5.2 Test study results

The test study discussed is based on the five test cases defined in Table 5.1. Parameter
estimation of the acquisition likelihood parameters is performed as described in Section 4.2,

based on the observation profiles displayed in Figure 5.4. The objective will be to predict the
reference class profile, xR, based on these estimated parameters and the observations. All

other parameters are kept fixed as the real values. The prediction will be performed by the P-
P ratio deconvolution algorithm as defined in Sections 3.2 and 3.3, for orders k = 1, 2, 3, 4, 5,

as higher order approximations turned out to be too computer demanding.

For each of the five test study cases, estimation of the two acquisition likelihood pa-

rameters, θd = (σw, σe), separately and estimation of both parameters simultaneously by
Algorithm 4 in Section 4.2.3 are discussed. In the estimation, we keep all other parameters

fixed. Univariate estimation results are displayed for k = 1, 2, 3, 4, see i.e. Figure 5.5, with
corresponding 95% parameter minimum Gaussian-based confidence intervals approximated
by Expression (4.16). Simultaneous estimation results are displayed for k = 1, 3, see i.e.

Figure 5.6, with corresponding elliptic 95% parameter minimum Gaussian-based confidence
regions approximated by Expression (4.17). The marginal log-likelihood values, by Expression

(4.8), which are displayed, are computed during the forward-backward algorithm described
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in Section 3.1. Only parameter maximum marginal likelihood estimation (MMLE), as de-

scribed in Section 4.2.1, is considered here, with estimate by Expression (4.24). Prediction
of order k of the reference class profile, xR, based on the corresponding observation profile

and the kth order simultaneous MMLE estimate, θ̂
(k)

d,MMLE, is displayed, see i.e. Figure 5.7.
This is performed by locationwise class MAP prediction by Expression (3.12), and global

class MAP prediction as defined in Algorithm 3 in Section 3.1. The same prediction is also
performed based on the true acquisition parameters, θd, to be compared with the results from

the MMLE estimate. The class MAPs are evaluated by the class profile ratio in Expression
(5.4) for the different orders k, see i.e. Table 5.3, where ∆MAP should be close to one for
a good prediction. The class coverage rates defined by Expressions (5.5) and (5.6) are also

displayed, see i.e. Figure 5.9. Both values should be close to one for a good prediction, and
the resulting misclassification rate, (bl − al), should be small.

We begin by performing the parameter estimation and corresponding class profile predic-
tion for the base case MC/MN. Then we look at the model’s sensitivity in the convolution

effect by performing the same estimation for the test cases SC/MN and LC/MN, with smaller
and longer wavelet kernel respectively than for the base case. Next we look at the models
noise sensitivity by performing the same procedure for the test cases MC/SN and MC/LN,

with smaller and larger noise respectively. We want to see how the results in these test cases
differ when compared to the base case. For all test cases, we should expect the results to im-

prove for increasing orders k, as the models should be approximated better for higher orders.
The kth order approximated models are simplifications of the true model, and the parame-

ters thus have different interpretations for different orders k. We should thus not necessarily
expect the parameter confidence intervals and regions to capture the true parameter value,

but we should expect them to become smaller for increasing orders k.

5.2.1 Test case: MC/MN, base case

For the base case MC/MN with true parameter values (σw, σe) = (1, 0.3), the univariate
parameter estimation plots are displayed in Figure 5.5. The dotted lines represents the true

parameter values, and the univariate parameter MMLEs correspond to the log-likelihood
functions maximums, and are marked with a star. The resulting univariate 95% parameter

minimum Gaussian-based confidence intervals centered in the MMLEs are marked by trian-
gular brackets. The univariate wavelet parameter MMLE is very close to the true parameter

value for all k, with slightly closer estimates for k > 1. The univariate noise parameter
MMLE is a bit over-estimated for k = 1, and under-estimated for k > 1 when compared to

the true parameter value. For both parameters, the confidence intervals become smaller for
increasing k, and even overlaps the MMLE star. The parameter estimates and corresponding
confidence intervals seem to stabilize for k > 1.

The simultaneous parameter estimation plots for the base case, MC/MN, are displayed
in Figure 5.6. Here darker color indicate lower log-likelihood values, with independent color

settings for the two plots. The round marker and the star indicate the true parameter value
and the parameter MMLE value respectively. The boundary of the 95% parameter minimum

Gaussian-based confidence region is displayed by an elliptic border. The simultaneous pa-
rameter MMLEs are here close to the true values for both orders, and for k = 1 the MMLE
is actually equal to the true parameters. The wavelet parameter’s simultaneous MMLE is

equal to the true parameter value also for k = 3. The noise parameter’s simultaneous MMLE
is a bit under-estimated for k = 3 when compared to the true value, similar to the univariate

noise parameter MMLE result in Figure 5.5. The confidence region is much smaller for the
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higher order, k = 3, where it overlaps the MMLE star.
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Figure 5.5: MC/MN: Marginal log-likelihood plots for univariate parameter estimation.
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Figure 5.6: MC/MN: Marginal log-likelihood plots for simultaneous parameter estimation.

The locationwise and global class MAPs based on the simultaneous parameter MMLEs,

θ̂
(k)

d,MMLE, for the base case MC/MN are displayed in Figure 5.7 together with the reference
class and observation profile. The class MAPs based on the true parameters, θd, are likewise
displayed in Figure 5.8. The resulting class profile ratio values are presented in Table 5.3.

We notice that for both cases, the two MAP solutions are mutually almost the same for
every k, with stable predictions for k > 1. For k = 1, the MAPs seem to be quite poor

when compared to the reference class profile, xR, as too large layers of white and black are
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predicted. For k > 1 the MAPs seem to be better, as the transitions between the layers are

better recognized. The class profile ratio values are however almost the same for the MAPs
by the MMLE, and only slightly better for increasing k for the MAPs by the true parameter.

This could be because too many false transitions are predicted for k > 1. We notice that the
differences between the MAPs based on the parameter MMLE and the MAPs based on the

true parameters are small.
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k = 5

Figure 5.7: MC/MN: Locationwise and global MAPs based on the parameter MMLE esti-

mate, [x̂|dMCMN; θ̂
(k)

d,MMLE]MAP .
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Figure 5.8: MC/MN: Locationwise and global MAPs based on the true parameter,
[x̂|dMCMN ; θd]MAP .
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(∆locMAP , ∆globMAP) k = 1 k = 2 k = 3 k = 4 k = 5

θ̂
(k)

d,MMLE : (81.0, 80.5) (82.0, 80.0) (80.0, 80.0) (80.5, 81.0) (80.0, 79.5)

θd : (81.0, 80.5) (85.0, 83.5) (84.0, 83.5) (85.0, 85.0) (85.0, 85.0)

Table 5.3: MC/MN: Class profile ratios in percentage for the locationwise and global MAPs.

The classes’ coverage rate values and corresponding misclassification rates for the base
case, MC/MN, are displayed in Figure 5.9 for the different orders k. In the plots, for every

order k, the lower marker indicates the value of the coverage rate statistic al and the upper
marker the value of the coverage rate statistic bl. The misclassification rate is then indicated

by the interval length [al, bl]. The results for the posterior kth order approximations based on
the kth order parameter MMLE correspond to the values in black, while the values in grey

are based on the true parameters. The lower horizontal line in these plots is the marginal
prior probability for the each class, given as p(x1) = (0.2845, 0.4310, 0.2845), which should be
below the coverage rate values. The upper horizontal line is the balanced ratio of 1, which the

coverage rates ideally should lie on. We notice that the coverage rate values, and hence the
misclassification rates as well, seem to stabilize for all classes for orders k > 1. The posterior

model’s probability rates of the correct classes’ depths in xR, indicated by the value of al, are
stable and quite good for the white and black class, being relatively close to 1. For the grey

class, the value of al is quite low for k = 1, increasing for k = 2 and then stabilizing. For
k = 1, the white and black class is, by the value of bl, over-predicted while the grey class is

under-predicted. This is in accordance with the large white and black layers predicted in the
MAPs in Figures 5.7 and 5.8. For k > 1, the white and grey class are slightly under-predicted,

and the black class a bit over-predicted. The resulting misclassification rates, (bl − al), are
quite good for all classes. For the white and black class, it is increasing for k > 1 and
stabilizing, while it is stable for all k for the grey class. As for the class MAP results, there

is no big difference between the rates based on the parameter MMLE and the rates based on
the true parameters, with slightly better results for the true parameters.
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Figure 5.9: MC/MN: Misclassification rates, [al, bl], with the prior ratios marked for (a)
the white class, (b) the grey class and (c) the black class.
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For the base case MC/MN, the class profile, response profile and observation profile, i.e.

xR, rR and dMCMN respectively in Figure 5.4, are actually the 200 first elements of longer
profiles with length T = 1000. These complete base case profiles are presented in Figure

C.1 in Appendix C.1. With longer profiles, we should expect that more of the variations are
captured. The univariate and simultaneous parameter estimation plots based on these longer

profiles are displayed in Figures 5.10 and 5.11 respectively. We notice how the plots resemble
the corresponding plots in Figures 5.5 and 5.6 for the profile of length T = 200, with almost
the same MMLEs. The confidence intervals and regions are here slightly smaller, due to more

data points used in the computations. As the difference is small, we have chosen to simulate
profiles of length T = 200 only for the other test studies.
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Figure 5.10: MC/MN: Marginal log-likelihood plots for univariate parameter estimation

based on the complete profiles.
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Figure 5.11: MC/MN: Marginal log-likelihood plots for simultaneous parameter estimation

based on the complete profiles.
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5.2.2 Test case: SC/MN

For the test case SC/MN with true parameter values (σw, σe) = (0.5, 0.3), the univariate

parameter estimation plots are displayed in Figure 5.12. The wavelet parameters univariate
MMLE is very close to the true value for all orders k, with decreasing confidence intervals. The
noise parameter is a bit under-estimated for k = 1 in the univariate case, and estimated very

close to 0 for k > 1, i.e. higher order estimations favors no noise. The simultaneous parameter
estimation plots are displayed in Figure 5.13. The simultaneous wavelet parameter MMLE

is slightly under-estimated for k = 1 compared to the true value, and equal for k = 3. The
simultaneous noise parameter MMLE is, for both orders, very under-estimated compared to

the true value, similar to the univariate estimation result. As in the base case, the confidence
region decrease for higher orders k. Due to the strong under-estimation of the noise, some of

the confidence intervals and regions in Figures 5.12 and 5.13 fall outside of the possible noise
definition space, i.e. it captures negative noise variance parameters. Thus, the assumption of

the confidence intervals and regions being Gaussian-based does not hold in these cases.

0 0.2 0.4 0.6 0.8

45

50

55

60

σ
e

0 0.2 0.4 0.6 0.8 1 1.2
−20

0

20

40

60

σ
w

(a) k = 1

0 0.2 0.4 0.6 0.8

180

190

200

210

220

230

240

250

σ
e

0 0.2 0.4 0.6 0.8 1 1.2
50

100

150

200

250

σ
w

(b) k = 2

0 0.2 0.4 0.6 0.8

320

340

360

380

400

420

440

460

σ
e

0 0.2 0.4 0.6 0.8 1 1.2
100

150

200

250

300

350

400

450

σ
w

(c) k = 3

0 0.2 0.4 0.6 0.8

500

550

600

650

σ
e

0 0.2 0.4 0.6 0.8 1 1.2
200

300

400

500

600

σ
w

(d) k = 4

Figure 5.12: SC/MN: Marginal log-likelihood plots for univariate parameter estimation.

The locationwise and global class MAPs based on the simultaneous parameter MMLEs,

θ̂
(k)

d,MMLE
, for the test case SC/MN are displayed in Figure 5.14, and the resulting class profile

ratio values are presented in Table 5.4. The MAPs are almost equal for all orders k for both
MAP approaches, and they copy the reference profile, xR, very accurate. The resulting class

profile ratio values are close to 100% for all orders k. In this test case, and in the ones left, we
will not display the MAPs based on the true parameters as we did for the base case. These

MAPs have however been computed, and they will be evaluated compared to the results by
the MMLE. For the test case SC/MN, the predictions are almost equally reliable for both

parameter sets as seen in Table 5.4.
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Figure 5.13: SC/MN: Marginal log-likelihood plots for simultaneous parameter estimation.
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Figure 5.14: SC/MN: Locationwise and global MAPs based on the parameter MMLE esti-

mate, [x̂|dSCMN ; θ̂
(k)

d,MMLE
]MAP .

(∆locMAP , ∆globMAP ) k = 1 k = 2 k = 3 k = 4 k = 5

θ̂
(k)

d,MMLE : (95.0, 95.0) (94.0, 94.0) (95.0, 95.0) (94.5, 94.5) (94.5, 94.5)

θd : (95.5, 95.5) (95.0, 95.0) (94.0, 94.5) (94.0, 94.5) (94.0, 94.5)

Table 5.4: SC/MN: Class profile ratios in percentage for the locationwise and global MAPs.
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The classes’ coverage rate values and corresponding misclassification rates for the test case

SC/MN are displayed in Figure 5.15. The coverage rate values, and resulting misclassification
rates, are very stable, with small improvement for the white and black class for increasing k.

The coverage rate values are especially reliable for the black and grey class, while the white
class is a bit under-predicted. We can see this in Figure 5.14 where some white layers in xR

are reduced to thinner layers in the class MAPs, for an example the second last white layer.

1 2 3 4 5
0.2

0.4

0.6

0.8

1

k

R
a

ti
o

1 2 3 4 5
0.2

0.4

0.6

0.8

1

1.2

k

R
a

ti
o

1 2 3 4 5
0.2

0.4

0.6

0.8

1

1.2

k

R
a

ti
o

(a) (b) (c)

Figure 5.15: SC/MN: Misclassification rates, [al, bl], with the prior ratios marked for (a)

the white class, (b) the grey class and (c) the black class.

5.2.3 Test case: LC/MN

For the test case LC/MN with true parameter values (σw, σe) = (3, 0.3), the univariate

parameter estimation plots are displayed in Figure 5.16. The univariate MMLE of the wavelet
parameter is, when compared to the true value, strongly over-estimated for k = 1, 2, while it

is quite under-estimated for k = 3, 4. We notice a local log-likelihood maximum close to the
true parameter value for all k. The univariate MMLE of the noise parameter is quite under-

estimated and stable for all k when compared to the true value. The simultaneous parameter
estimation plots are displayed in Figure 5.17. As in the univariate case, when compared to
the true value, the wavelet parameter is here strongly over-estimated for k = 1 and quite

under-estimated for k = 3. The noise parameter’s simultaneous MMLE is close to the true
value for k = 1 and under-estimated for k = 3. In both simultaneous estimation plots and in

the wavelet parameter univariate plots the approximate log-likelihood function is multimodal,
i.e. there are multiple maximas. Thus, the assumption of the marginal likelihood belonging

to the exponential family of distributions does not apply to this test case, and the confidence
intervals and regions may not be representative.

The locationwise and global class MAPs based on the simultaneous parameter MMLEs,

θ̂
(k)

d,MMLE, for the test case LC/MN are displayed in Figure 5.18, and the resulting class profile
ratios are presented in Table 5.5. The MAPs are poor for all k with almost equal predictions
for k > 2. For k = 1, very large black and white layers are predicted in accordance to the

strongly over-predicted wavelet parameter. The MAPs are actually best for k = 2, while too
many and too thin black and white layers are predicted for k > 2 with an under-predicted

wavelet parameter compared to the true parameter. The class profile ratio values are very
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poor for all orders k. We notice that in this test case, the class MAPs based on the true

parameters resemble the reference class profile significantly more reliable then the MMLE
class MAPs. They are however also quite poor.
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Figure 5.16: LC/MN: Marginal log-likelihood plots for univariate parameter estimation.

1 2 3 4 5 6 7 8 9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ
e

σ
w

(a) k = 1

1 2 3 4 5 6 7 8 9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ
e

σ
w

(b) k = 3

Figure 5.17: LC/MN: Marginal log-likelihood plots for simultaneous parameter estimation.

The classes’ coverage rate values and corresponding misclassification rates for the test case

LC/MN are displayed in Figure 5.19. The coverage rate values, and resulting misclassification
rates, are poor for all classes for all orders k, stabilizing for k > 2. The black and white class is

over-predicted for k = 1, 2 corresponding to under-prediction of the grey class, in accordance
to the MAPs in Figure 5.18.



41 5.2. TEST STUDY RESULTS

Loc Glob Loc Glob Loc Glob Loc Glob Loc Glob x
R

−3−2−1 0 1 2 3

d
LCMN

︸ ︷︷ ︸
k = 1

︸ ︷︷ ︸
k = 2

︸ ︷︷ ︸
k = 3

︸ ︷︷ ︸
k = 4

︸ ︷︷ ︸
k = 5

Figure 5.18: LC/MN: Locationwise and global MAPs based on the parameter MMLE esti-

mate, [x̂|dLCMN ; θ̂
(k)

d,MMLE
]MAP .

(∆locMAP , ∆globMAP) k = 1 k = 2 k = 3 k = 4 k = 5

θ̂
(k)

d,MMLE : (42.0, 42.5) (55.5, 53.5) (45.5, 46.0) (45.5, 45.0) (46.0, 46.0)

θd : (62.0, 59.0) (63.0, 60.5) (64.0, 64.5) (64.5, 67.0) (63.0, 58.5)

Table 5.5: LC/MN: Class profile ratios in percentage for the locationwise and global MAPs.
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Figure 5.19: LC/MN: Misclassification rates, [al, bl], with the prior ratios marked for (a)
the white class, (b) the grey class and (c) the black class.
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5.2.4 Test case: MC/SN

For the test case MC/SN with true parameter values (σw, σe) = (1, 0.1), the univariate

parameter estimation plots are displayed in Figure 5.20. The univariate MMLEs are stable
for k > 1 and close to the true values for all orders k, especially for the wavelet parameter.
The simultaneous parameter estimation plots are displayed in Figure 5.21. The resulting

simultaneous MMLEs are very close to the true values for both orders k, again especially for
the wavelet parameter.
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Figure 5.20: MC/SN: Marginal log-likelihood plots for univariate parameter estimation.
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Figure 5.21: MC/SN: Marginal log-likelihood plots for simultaneous parameter estimation.

The locationwise and global class MAPs based on the simultaneous parameter MMLEs,

θ̂
(k)

d,MMLE, for the test case MC/SN are displayed in Figure 5.22, and the resulting class profile

ratios are presented in Table 5.6. Both of the MAPs resemble the reference class profile very
reliably for all orders k, with no significant improvement for higher orders.
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Figure 5.22: MC/SN: Locationwise and global MAPs based on the parameter MMLE esti-

mate, [x̂|dMCSN ; θ̂
(k)

d,MMLE]MAP .

(∆locMAP , ∆globMAP) k = 1 k = 2 k = 3 k = 4 k = 5

θ̂
(k)

d,MMLE : (91.0, 90.5) (90.5, 91.0) (91.0, 91.5) (90.5, 90.5) (90.5, 90.5)

θd : (91.0, 90.5) (90.0, 91.0) (91.0, 90.5) (91.5, 91.5) (91.5, 91.0)

Table 5.6: MC/SN: Class profile ratios in percentage for the locationwise and global MAPs.

The classes’ coverage rate values and corresponding misclassification rates for the test

case MC/SN are displayed in Figure 5.23, and are in general quite reliable. The coverage
rate values seem to stabilize for k > 1 for all classes, and are especially satisfying for the

black class. The white class is a bit under-predicted for k > 1, corresponding to the small
over-prediction of the other classes. As for the class MAP comparisons, the rates from the

approximated model based on the parameter MMLEs are as reliable as the rates from the
approximated model based on the true parameters.
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Figure 5.23: MC/SN: Misclassification rates, [al, bl], with the prior ratios marked for (a)
the white class, (b) the grey class and (c) the black class.
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5.2.5 Test case: MC/LN

For the test case MC/LN with true parameter values (σw, σe) = (1, 0.8), the univariate

parameter estimation plots are displayed in Figure 5.24. The univariate MMLE of the wavelet
parameter is, when compared to the true value, quite over-estimated for k = 1, and under-
estimated, but stable, for k > 1. The univariate MMLE of the noise parameter is under-

estimated for all k. The simultaneous parameter estimation plots are displayed in Figure
5.25. The wavelet parameter is here, as in the univariate case, strongly over-estimated for

k = 1, and a bit under-estimated for k = 3. As in the testcase LC/MN there is a tendency
of multi modality in the simultaneous MMLE plots.
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Figure 5.24: MC/LN: Marginal log-likelihood plots for univariate parameter estimation.
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Figure 5.25: MC/LN: Marginal log-likelihood plots for simultaneous parameter estimation.
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The locationwise and global class MAPs based on the simultaneous parameter MMLEs,

θ̂
(k)

d,MMLE, for the test case MC/LN are displayed in Figure 5.26, and the resulting class
profile ratios are presented in Table 5.7. For k = 1, with a strongly over-estimated wavelet

parameter, too thick black and white layers are predicted. The MAPs for k > 1 recognize
the class transitions more correctly, but many false thin layers are also predicted. The values

of ∆MAP are a bit poor for all k.

Loc Glob Loc Glob Loc Glob Loc Glob Loc Glob x
R

−4−3−2−1012345

d
MCLN

︸ ︷︷ ︸
k = 1

︸ ︷︷ ︸
k = 2

︸ ︷︷ ︸
k = 3

︸ ︷︷ ︸
k = 4

︸ ︷︷ ︸
k = 5

Figure 5.26: MC/LN: Locationwise and global MAPs based on the parameter MMLE esti-

mate, [x̂|dMCLN ; θ̂
(k)

d,MMLE]MAP .

(∆locMAP , ∆globMAP) k = 1 k = 2 k = 3 k = 4 k = 5

θ̂
(k)

d,MMLE
: (71.0, 69.5) (76.0, 75.5) (71.5, 72.0) (71.5, 72.0) (71.5, 72.0)

θd : (75.5, 72.0) (75.0, 73.0) (76.0, 74.5) (76.0, 75.0) (76.0, 75.5)

Table 5.7: MC/LN: Class profile ratios in percentage for the locationwise and global MAPs.

The classes’ coverage rate values and corresponding misclassification rates for the test
case MC/LN are displayed in Figure 5.27. The rates seem to stabilize for k > 2. The white

and the black class are over-predicted for k = 1 in accordance to the class MAPs in Figure
5.26, and under-predicted for k > 2. The misclassification rates are in general quite poor,

especially for the grey class. The coverage rate values from the approximated model based
on the true parameters are more reliable then the rates from the approximated model based

on the parameter MMLEs, but the misclassifcation rates are almost equal.
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Figure 5.27: MC/LN: Misclassification rates, [al, bl], with the prior ratios marked for (a)
the white class, (b) the grey class and (c) the black class.

5.3 Discussion

The two parameters in the acquisition likelihood have been estimated by maximum marginal
likelihood estimation (MMLE), by Expression (4.24), based on the five test cases in Table 5.1.

The shape of the log-likelihood function generally stabilizes for k = 2. For both univariate
and simultaneous MMLE, the wavelet parameter estimate, σ̂w,MMLE, is generally close to the

true parameter value. The noise parameter estimate, σ̂e,MMLE, is generally under-estimated
when compared to the true value. One could believe that this under-estimation occurs as we

have chosen the profile length T too short. The noise parameter could thus be overfitted due
to few data points, as our kth order approximated model is a simplification of the exact model.

The computed MMLEs may also be biased, but estimation by MMLE is consistent and it
should thus approach the true value when T grows large. However, the noise parameter is

also under-estimated when based on the complete profiles of length T = 1000 in the base case,
MC/MN. These longer profiles are thus perhaps too short as well. Another explanation to
the under-estimation could be because we use every data point dt, in the observation profile,

k times when approximating the posterior model by the kth order P-P ratio deconvolution
algorithm.

For all test cases, the 95% confidence intervals and regions become smaller for increasing
orders k when the log-likelihood values are stable. As we expect more exact approximations

for increasing orders k, we should also expect smaller confidence intervals and regions. We
notice that the confidence intervals and regions often do not cover the true parameter values,

which might seem like unreliable results. The kth order MMLEs, however, have a different
interpretation than the true parameters, as we use kth order approximated models. When

approximating the posterior distribution by a kth order model by the P-P deconvolution
algorithm, we use the kth order marginal acquisition likelihood, see Expression (3.22). We

thus make different use of the wavelet matrix W for the different orders k, i.e. different use of
the wavelet parameter. In the test case SC/MN, some of the confidence intervals and regions
captures negative parameter values, i.e. it falls outside the parameters definition space. Here,

the assumption of the confidence intervals/regions being Gaussian-based clearly fails. The
intervals/regions are still informative in the sense that they become smaller for increasing

orders k as expected.
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The approximated posterior models are generally more reliable for early increasing orders

k, and stabilizing for k = 2, 3. There seems to be a strong correspondence between the
S/N-ratios and the results from the posterior model approximations. In Figure 5.28, we have

plotted the logarithm of the test study S/N-ratios in Table 5.2, i.e. log(S/N ), against the
logit of the class MAP ratio, logit(∆globMAP/100), for k = 3. Here logit(p) = log( p

1−p), where

0 ≤ p ≤ 1. The results for the posterior approximations based on the parameter MMLE
correspond to the values in black, while the values in grey are based on the true parameters.
The plot indicates that the approximated posterior models are more reliable for increasing

S/N-ratios, but also more reliable for shorter wavelet kernels. In the test case LC/MN with
long wavelet kernel, too many data points are thus utilized in the wavelet. For the test

cases with medium kernel (MC) there seem to be a linear trend, with respect to the log-logit
transform, when tuning the noise parameter, as indicated by the dotted lines. The class

MAPs based on the true parameters are in general only slightly more reliable, except for the
test case LC/MN.

As discussed, the results are in general more reliable for early increasing orders k, with
no great improvements after k = 2. Thus, k = 3 should be sufficient when running the

estimation algorithms for the two current acquisition parameters, σw and σe, being relatively
less computer demanding. The posterior model approximations for all orders k could then
be computed based on this 3rd order simultaneous estimate. We should here expect more

reliable results for models with larger S/N-ratio.
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Figure 5.28: The logarithm of the test cases’ S/N-ratios, log(S/N ) plotted against the logit

of the respective global class MAP profile ratios, logit(∆globMAP/100), for k = 3.
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Chapter 6

Test study: Parameter estimation
in the acquisition likelihood -
sensitivity to prior model

In the test study in this chapter, we evaluate the prior model’s influence on the parameter
estimation in the acquisition likelihood model. The same class model as in Chapter 5 will be

used, with the state space Ωx = {white,grey,black}. The study is performed by simulating
reference class profiles using different prior models, with associated reference response and

observations profiles. We then perform the parameter estimation and class prediction, as we
did in Chapter 5, but now using an equal, less informative prior model for all the test cases.
We thus assume that the simulated class profiles originate from the same prior model. The

estimation of the associated acquisition likelihood parameters, i.e. the convolution variance,
σ2

w, and the noise variance, σ2
e , will be performed.

6.1 Observation model

There are L = 3 possible states in our model, and we define the test case prior models by the
(3 × 3) transition matrix

Px =




1 − p1 p1 0

p2 1 − 2p2 p2

0 p1 1 − p1


 . (6.1)

The initial marginal prior distribution is defined as the stationary pdf of Px, and thus depends

on the variables p1 and p2 as well. The white and black class are defined symmetrically relative
to the grey class, and are defined such that they cannot be neighbors. The prior models used

in our test study are presented in Table 6.1, and the test cases will from here on out be
referred to by their prior model. We notice that the prior model in the base case, P22, has

the same transition matrix used in Chapter 5, defined by Expression (5.1). The corresponding
marginal prior distributions are displayed in Figure 6.1, and can be interpreted as the prior
ratios between the classes. We notice that for all test cases in Figure 6.1, the ratios for

the classes white and black are equal by the defined prior model in Expression (6.1). The
approximated signal-to-noise ratios for the test cases, computed by Expression (5.3), are

shown in Table 6.2. We notice that the S/N-ratio is especially low for the test case P13.

49
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p2 = 0.1 P11 P12 P13

p2 = 0.33 P21 P22 P23
Base case

p2 = 0.4 P31 P32 P33

Table 6.1: Prior transition matrix parameters in the test study according to Expression

(6.1).
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Figure 6.1: Marginal prior ratios in the test cases between the white, grey and black class.

P11 P12 P13 P21 P22 P23 P31 P32 P33

S/N 29.6 12.9 6.9 44.2 23.8 13.5 45.9 25.5 14.7

Table 6.2: Approximated signal-to-noise ratios in the test study.
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We next define the likelihood models in the same way as we did in in Chapter 5. The

response likelihood model is defined by independent Gaussian univariate response likelihood
pdfs, i.e. p(r|x) =

∏T
t=1 φ1(rt; µxt , σ

2
x). The reference response class means are µxt ∈

{−2, 0, 3}, and the response class variance is equal for all classes, σ2
x = 0.72. The black

class should thus be easier to identify from grey than the white class. The resulting class

response pdfs are displayed in Figure 6.2(a). The acquisition likelihood model is defined by
Expression (2.9), where we here assume white noise only, i.e. p(d|r) = NT (Wr, σ2

eI), with
reference noise parameter σe = 0.3. The wavelets, w, in the convolution matrix, W, are given

by Expression (2.11). The reference wavelet is displayed in Figure 6.2(b), with parameter
value σw = 1 and resulting wavelet length a = 4. The acquisition likelihood model defined

thus corresponds to the base case in Chapter 5, i.e. MC/MN in Table 5.1 with S/N-ratio
23.8 by Table 5.2.
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Figure 6.2: (a) Class response pdfs, φ1(rt; µxt, 0.72), with µxt ∈ {−2, 0, 3} corresponding
to the classes white, grey and black respectively. (b) The second-order exponential function

given by Expression (2.11) with σw = 1, where the marked values define the discrete wavelet
vector, w.

The acquisition likelihood parameters, σw and σe, will be estimated by maximum a poste-

riori prediction (MAP) as defined in Section 4.2.2, with estimates by Expression (4.27). Both
parameters are assigned independent univariate prior Inverse Gamma distributions, IG(α, β),

as described in Section 4.3.3, i.e. σ2
e ∼ IG(2, 4) and σ2

w ∼ IG(1, 0.4). The two prior distribu-
tions are displayed in Figure 6.3 where the dotted lines represents the reference values, i.e.

12 = 1 and 0.32 = 0.09 respectively. The parameter posterior logarithm values, as defined in
Expression (4.10), are then

l̂(k)∗(θd|d) = l̂(k)(d|θd) + log{π(θd)} = l̂(k)(d|σ2
e, σ

2
w) + log{π(σ2

w)}+ log{π(σ2
e)} , (6.2)

where π(σ2
w) and π(σ2

e) are the defined parameter prior distributions. The chosen prior

distributions are quite centered around the true values. To justify the noise parameter prior
distribution chosen, we refer to Chapter 5, where the noise parameter was often under-

estimated compared to the reference value. We notice that the wavelet parameter prior
distribution is much wider than for the noise parameter.
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Figure 6.3: Acquisition likelihood parameter inverse gamma prior distributions.

6.2 Test study results

The test study discussed is based on the nine test cases with true prior models defined by Table
6.1. In the study, we will simulate 1D class profiles, and associated response and observation

profiles, using these prior models. All the class profiles simulated are of equal length, T = 200.
The less informative base case prior model, P22, is then set as the prior model for all the

test cases when estimating the parameters. The only distinct prior knowledge in P22 is that
white and black can not be neighbors. The response likelihood parameters are kept fixed as

the reference values. Estimation of the acquisition likelihood parameters is performed, by
algorithms of order k = 1, 3, based on the observation profiles and the base case prior model.

The objective is to reproduce the reference class profiles based on the estimated parameters.
The class prediction will be performed by the P-P ratio deconvolution algorithm, as defined

in Sections 3.2 and 3.3, for orders k = 1, 2, 3, 4, 5. In these predictions, we will for all orders

k set the acquisition parameters as the parameter MAP estimate for k = 3, i.e. θ̂
(3)

d,MAP , as

proposed by the results in Chapter 5.

For each of the nine test study cases, simultaneous MAP estimation of the acquisition
likelihood parameters, θd = (σw, σe), is discussed. The displayed values in the kth order
parameter MAP plots are the kth order parameter posterior logarithm values defined in

Expression (6.2). The parameter prior distribution values are also displayed in the parameter
MAP plots, together with the corresponding approximated marginal parameter posterior

distribution values, computed by Expression (4.12). Predictions of the reference profile, xR,
based on the parameter MAP estimate for k = 3 are displayed by global class MAPs up

to order k = 5, computed by Algorithm 3. The coverage rate values, al and bl defined
by Expressions (5.5) and (5.6) respectively, are also displayed. The misclassification rate,

(bl − al), should be small, and both values should be close to one for a good prediction. As
in Chapter 5, these rates are compared to the rates from the posterior distribution based on

the true acquisition likelihood parameters, θd, which also is computed.

We begin by performing the parameter estimation and corresponding class profile predic-
tion for the test case P22. Then we perform the same estimation and prediction procedures
for the remaining test cases in Table 6.1 in turn, i.e. P11, P12, etc. For all test cases, we

should expect the results to improve for increasing orders k, as the models should be approx-
imated better for higher orders. We should also expect more reliable results for the test cases

with larger S/N-ratio, see Table 6.2, due to the results from Chapter 5.
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6.2.1 Test case: Observation model P22, base case

The reference class profile, response profile and observation profile for the test case P22 are

displayed in Figure 6.4. These reference profiles are equal to the base case profiles from
Chapter 5, which are the first parts of the longer profiles of length T = 1000 displayed in
Appendix C.1. The prior model, from which the reference class profile, xR, is simulated from,

is here defined by the transition matrix

P22 =




0.50 0.50 0
0.33 0.34 0.33
0 0.50 0.50


 , (6.3)

by Table 6.1. The initial marginal prior distribution is p(x1) = (0.2845, 0.4310, 0.2845),
i.e. it slightly favors the grey class, and is displayed in Figure 6.1(e). The class profile is

characterized by many class transitions and medium-sized layers, according to the prior model
in Expression (6.3).
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−3−2−1 0 1 2 3 4

d
R

Figure 6.4: P22: Reference class profile, xR, response profile, rR, and observation profile,

dR.

The parameter estimation plots for the base case, P22, are displayed in Figure 6.5. We

have here included the marginal log-likelihood plots, which are displayed in Figures 6.5(a) and
6.5(b). Darker color in these two plots indicate lower log-likelihood values, with independent
color settings for the two plots. The round marker and the star indicate the true parameter

value, θd, and the parameter MMLE value, θ̂
(k)

d,MMLE, respectively. These two plots are equal
to the simultaneous MMLE plots for the base case MC/MN in Chapter 5, see Figure 5.6. The

resulting parameter MAP estimation plots, with computed values by Expression (6.2), are
displayed in Figures 6.5(c) and 6.5(d). Here darker color indicate lower function values. The

round marker and the star now indicate the true parameter value, θd, and and the parameter

MAP value, θ̂
(k)

d,MAP
, respectively. We notice how the marginal log-likelihood plots resemble

the MAP plots, as the computed marginal log-likelihood values are large compared to the
logarithm of the parameter prior distribution values, see Expression (6.2). A major difference

however occurs for small parameter values, where the parameter posterior logarithm values
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are considerably smaller due to the small parameter prior probabilities, see especially the

plots for k = 1. In this case, the noise parameter MAP estimate is slightly larger then the
MMLE estimate, while the wavelet estimates are equal. Due to the quite similar estimates,

parameter estimation by MMLE would probably be sufficient, as it does not require prior
knowledge on the parameters. We have however chosen to perform MAP estimation only for

the other test cases, as estimation by MMLE was considered in the test study in Chapter 5.
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Figure 6.5: P22: Computed marginal log-likelihood values for the two acquisition likelihood

parameters for orders (a) k = 1 and (b) k = 3, and their corresponding parameter posterior
logarithm values in (c) and (d) respectively.

The acquisition parameters marginal prior and posterior distribution values are also dis-
played in the MAP plots, in black and grey respectively. The dotted lines here represent

the reference parameter values. In these plots, the distribution values are plotted against
the unsquared parameter variables, i.e. θd against π(θ2

d), θd ∈ {σw, σe}. The functions plot-

ted are thus not real probability distributions, but the marginal parameter MAP estimates
are still the maximas of these posteriors. We will from here on out refer to them as the
marginal parameter prior and posterior functions. In this case, the bivariate parameter MAP

estimate is equal to the marginal MAP estimates for both orders. For k = 1, the marginal
posterior function is wider distributed due to smaller parameter posterior logarithm values

for decreasing orders.
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The global class MAPs based on the parameter MAP estimate for k = 3, θ̂
(3)

d,MAP , for the

base case P22 are displayed in Figure 6.6 together with the reference class and observation
profile. The global class MAPs based on the reference parameters, θd, are likewise displayed

in Figure 6.7, and are equal to the global MAPs in Figure 5.8 in the base case in Chapter
5. The resulting class profile ratio values, as defined by Expression (5.4), are presented in
Table 6.3. We notice that the class MAPs reproduce the reference class profile quite well for

all orders, and slightly more reliably for the true parameters except for k = 1.
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Figure 6.6: P22: Global class MAPs based on the parameter MAP estimate for k = 3,

[x̂|d; θ̂
(3)

d,MAP ]MAP .
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Figure 6.7: P22: Global class MAPs based on the reference parameters, [x̂|d; θd]MAP .
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∆globMAP k = 1 k = 2 k = 3 k = 4 k = 5

θ̂
(3)

d,MAP : 83.5 80.0 82.0 82.5 82.5

θd : 80.5 83.5 83.5 85.0 85.0

Table 6.3: P22: Class profile ratios in percentage for the locationwise and global MAPs.

The classes’ coverage rate values and corresponding misclassification rates for the base

case, P22, are displayed in Figure 6.8 for the different orders k. These plots resemble the
misclassification plots in Figure 5.9 for the base case in Chapter 5. The results for the posterior

kth order approximations based on the 3rd order parameter MAP estimate correspond to the
values in black, while the values in grey are based on the true parameters. The rates seem to
stabilize for k > 1 for all classes, and are almost equal between the two posterior distribution

approximations. For orders k > 1 the misclassification rates for the white and black class are
quite reliable.
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Figure 6.8: P22: Misclassification rates, [al, bl], with the prior ratios marked for (a) the
white class, (b) the grey class and (c) the black class.

6.2.2 Test case: Observation model P11

In Figure 6.9, we see the reference class profile simulated from P11, and the corresponding
response and observation profile. The prior model is here defined by the transition matrix

P11 =




0.80 0.20 0

0.10 0.80 0.10
0 0.20 0.80


 (6.4)

with initial marginal prior p(x1) = (0.25, 0.50, 0.25). This prior model favors the grey class,

which is reflected by the reference class profile. When entering a class, the probability of
staying there is large by Expression (6.4). This results in quite few transitions, and thick

layers as seen in the reference class profile.
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Figure 6.9: P11: Reference class profile, xR, response profile, rR, and observation profile,
dR.

The parameter MAP estimation plots for the test case P11 are displayed in Figure 6.10.
For k = 1, both parameters are a bit over-estimated when compared to the reference param-

eter value. For k = 3, the noise parameter is slightly under-estimated when compared to the
reference parameter value, and the wavelet parameter is quite under-estimated. As for the
base case, the marginal posterior functions are wider for the lower order, and the bivariate

MAP estimate is equal to the marginal estimate for both orders.
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Figure 6.10: P11: Computed bivariate parameter posterior logarithm values for (a) k = 1

and (b) k = 3.
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The global class MAPs based on the parameter MAP estimate for k = 3, θ̂
(3)

d,MAP , for the

test case P11 are displayed in Figure 6.11 together with the reference class and observation
profile. For all orders k, the predictions reproduce the reference class profile very reliably.

Except for a predicted thin white layer above the middle white layer for k = 1, 2, there is no
significant difference between the kth order class MAPs.
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Figure 6.11: P11: Global class MAPs based on the parameter MAP estimate for k = 3,

[x̂|d; θ̂
(3)

d,MAP ]MAP .

The classes’ coverage rate values and corresponding misclassification rates for the test
case P11 are displayed in Figure 6.12 for the different orders k. We notice that the rates

are significantly more reliable for the approximations based on the estimated parameters.
Especially for the white and black class, the misclassification rates are very small for k > 1.
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Figure 6.12: P11: Misclassification rates, [al, bl], with the prior ratios marked for (a) the
white class, (b) the grey class and (c) the black class.
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6.2.3 Test case: Observation model P12

In Figure 6.13, we see the reference class profile simulated from P12, and the corresponding

response and observation profile. The prior model is here defined by the transition matrix

P12 =




0.50 0.50 0
0.10 0.80 0.10

0 0.50 0.50


 , (6.5)

with initial marginal prior p(x1) = (0.1429, 0.7143, 0.1429). This prior model clearly favors

grey, as seen in the class profile, with small transition probabilities from the grey class to the
other classes.
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Figure 6.13: P12: Reference class profile, xR, response profile, rR, and observation profile,

dR.

The parameter MAP estimation plots for the test case P12 are displayed in Figure 6.14.

For k = 1, the wavelet parameter is strongly over-estimated when compared to the reference
value. For k = 3, the plot is multimodal. Both parameters are a bit under-estimated, but

a local maximum occurs for the posterior logarithm values of (σw, σe) = (1, 0.2) which is
closer to the reference value. Parts of the marginal wavelet parameter posterior function for
k = 1 actually falls outside the chosen parameter interval. We also notice that for k = 1 the

marginal noise parameter posterior MAP estimate is slightly larger then the bivariate noise
MAP estimate.

The global class MAPs based on the parameter MAP estimate for k = 3, θ̂
(3)

d,MAP , for the

test case P12 are displayed in Figure 6.15 together with the reference class and observation
profile. The predictions are quite reliable for all orders k, with no great improvements for
increasing orders. Some thin layers in xR are not recognized, including transitions in the

black layer neighborhoods which are predicted by thicker black layers.
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Figure 6.14: P12: Computed bivariate parameter posterior logarithm values for (a) k = 1

and (b) k = 3.
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Figure 6.15: P12: Global class MAPs based on the parameter MAP estimate for k = 3,

[x̂|d; θ̂
(3)

d,MAP ]MAP .

The classes’ coverage rate values and corresponding misclassification rates for the test

case P12 are displayed in Figure 6.16 for the different orders k. The coverage rates seem to
stabilize for orders k > 2, and the misclassification rates are more reliable for increasing k for

the white and black class. As in the test case P11, see Figure 6.12, the rates are much more
reliable for the posterior approximations based on the estimated parameters. Both the white

and the black class is quite over-predicted for all orders k for the posterior approximations
based on the reference parameters.
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Figure 6.16: P12: Misclassification rates, [al, bl], with the prior ratios marked for (a) the
white class, (b) the grey class and (c) the black class.

6.2.4 Test case: Observation model P13

In Figure 6.17, we see the reference class profile simulated from P13, and the corresponding
response and observation profile. The prior model is here defined by the transition matrix

P13 =




0.20 0.80 0
0.10 0.80 0.10

0 0.80 0.20


 (6.6)

with initial marginal prior p(x1) = (0.10, 0.80, 0.10). Due to large transition probabilities
from all classes into the grey class, the class profile is mainly grey with thin layers of white

and black.
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Figure 6.17: P13: Reference class profile, xR, response profile, rR, and observation profile,

dR.
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The parameter MAP estimation plots for the test case P13 are displayed in Figure 6.18.

For k = 1, the wavelet parameter is strongly over-estimated when compared to the reference
value. For k = 3, the wavelet parameter is still quite over-estimated while the noise parameter

is under-estimated, and the plot seems to be multimodal.
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Figure 6.18: P13: Computed bivariate parameter posterior logarithm values for (a) k = 1

and (b) k = 3.

The global class MAPs based on the parameter MAP estimate for k = 3, θ̂
(3)

d,MAP
, for the

test case P13 are displayed in Figure 6.19 together with the reference class and observation
profile. The predictions are very poor for all orders k. Too many and too thick white and

black layers are predicted due to the over-estimated wavelet parameter, especially for k = 1.
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Figure 6.19: P13: Global class MAPs based on the parameter MAP estimate for k = 3,

[x̂|d; θ̂
(3)

d,MAP ]MAP .
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The classes’ coverage rate values and corresponding misclassification rates for the test

case P13 are displayed in Figure 6.20 for the different orders k. The rates reflect the poor
result in the class MAPs, i.e. the black and white classes are strongly over-predicted, and the

grey class is accordingly under-predicted. The misclassification rates are a bit more reliable
for the posterior approximations based on the reference parameters. These rates decrease for

increasing orders k, but are also very poor.
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Figure 6.20: P13: Misclassification rates, [al, bl], with the prior ratios marked for (a) the
white class, (b) the grey class and (c) the black class.

6.2.5 Test case: Observation model P21

In Figure 6.21, we see the reference class profile simulated from P21, and the corresponding
response and observation profile. The prior model is here defined by the transition matrix

P21 =




0.80 0.20 0

0.33 0.34 0.33
0 0.20 0.80


 , (6.7)

with initial marginal prior p(x1) = (0.3837, 0.2326, 0.3837). This prior model favors the white

and the black classes, due to small transition probability from these classes into the grey class.
The reference class thus consists mainly of thick white and black layers.

The parameter MAP estimation plots for the test case P21 are displayed in Figure 6.22.
For both orders k, the MAP estimate is close to the reference value. The wavelet parameter

is a bit under-estimated for both orders when compared to the reference value.

The global class MAPs based on the parameter MAP estimate for k = 3, θ̂
(3)

d,MAP
, for the

test case P21 are displayed in Figure 6.23 together with the reference class and observation
profile. The predictions are quite reliable for all orders k. The thick black and white layers

are quite well predicted, even if some of the internal transitions are not recognized.
The classes’ coverage rate values and corresponding misclassification rates for the test

case P21 are displayed in Figure 6.24 for the different orders k. The coverage rate values
seem to stabilize for orders k > 1. For the white and black classes, the misclassification rates

are quite reliable, decreasing for increasing orders k. For the grey class the misclassification
rates are a bit more poor.
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Figure 6.21: P21: Reference class profile, xR, response profile, rR, and observation profile,

dR.
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Figure 6.22: P21: Computed bivariate parameter posterior logarithm values for (a) k = 1
and (b) k = 3.
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Figure 6.23: P21: Global class MAPs based on the parameter MAP estimate for k = 3,

[x̂|d; θ̂
(3)

d,MAP ]MAP .
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Figure 6.24: P21: Misclassification rates, [al, bl], with the prior ratios marked for (a) the
white class, (b) the grey class and (c) the black class.

6.2.6 Test case: Observation model P23

In Figure 6.25, we see the reference class profile simulated from P23, and the corresponding

response and observation profile. The prior model is here defined by the transition matrix

P23 =




0.20 0.80 0
0.33 0.34 0.33

0 0.80 0.20


 , (6.8)

with initial marginal prior p(x1) = (0.2260, 0.5479, 0.2260). The reference class profile consists
of frequent thin white and black layers between medium-sized grey layers, according to the

prior model in Expression (6.8). The frequent class changes result in frequent fluctuations in
the response and observation profile.
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Figure 6.25: P23: Reference class profile, xR, response profile, rR, and observation profile,

dR.

The parameter MAP estimation plots for the test case P23 are displayed in Figure 6.26.
For k = 1, the wavelet parameter is over-estimated when compared to the reference value,

and the plot is multimodal. For k = 3 the wavelet parameter MAP estimate is equal to the
reference value, while the noise parameter is under-estimated.

0 5 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ
e

0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4
0

0.2

0.4

σ
w

(a) k = 1

0 50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ
e

0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4
0

1

2

σ
w

(b) k = 3

Figure 6.26: P23: Computed bivariate parameter posterior logarithm values for (a) k = 1
and (b) k = 3.



67 6.2. TEST STUDY RESULTS

The global class MAPs based on the parameter MAP estimate for k = 3, θ̂
(3)

d,MAP , for the

test case P23 are displayed in Figure 6.27 together with the reference class and observation
profile. The predictions resemble the reference class profile quite well for all orders k.
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Figure 6.27: P23: Global class MAPs based on the parameter MAP estimate for k = 3,

[x̂|d; θ̂
(3)

d,MAP
]MAP .

The classes’ coverage rate values and corresponding misclassification rates for the test case

P23 are displayed in Figure 6.28 for the different orders k. The coverage rate values seem to
stabilize for orders k > 1, and the misclassification rates are quite reliable. We notice that
the rates are slightly more reliable for the posterior approximations based on the parameter

MAP estimate.
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Figure 6.28: P23: Misclassification rates, [al, bl], with the prior ratios marked for (a) the

white class, (b) the grey class and (c) the black class.
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6.2.7 Test case: Observation model P31

In Figure 6.29, we see the reference class profile simulated from P31, and the corresponding

response and observation profile. The prior model is here defined by the transition matrix

P31 =




0.80 0.20 0
0.40 0.20 0.40

0 0.20 0.80


 (6.9)

with initial marginal prior p(x1) = (0.40, 0.20, 0.40). This prior model clearly favors the white

and black classes, due to the large transition probabilities into these classes. The reference
class profile reflects this property, consisting of thick white and black layers, with thin grey

layers in between them.

x
R

−4−3−2−1012345

r
R

−3−2−1 0 1 2 3 4

d
R

Figure 6.29: P31: Reference class profile, xR, response profile, rR, and observation profile,
dR.

The parameter MAP estimation plots for the test case P31 are displayed in Figure 6.30.
The MAP estimates are for both orders k close to the reference values. For both orders, the

wavelet parameter is slightly under-estimated when compared to the reference value. The
noise parameter is slightly over-estimated for k = 1 and a bit under-estimated for k = 3.

The global class MAPs based on the parameter MAP estimate for k = 3, θ̂
(3)

d,MAP , for the
test case P31 are displayed in Figure 6.31 together with the reference class and observation

profile. The predictions are reliable for all orders k, recognizing the large white and black
layers well.

The classes’ coverage rate values and corresponding misclassification rates for the test
case P31 are displayed in Figure 6.32 for the different orders k. The misclassification rates
are very reliable for the white and black class, and poor for the grey class due to few grey

layers in the reference class profile.
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Figure 6.30: P31: Computed bivariate parameter posterior logarithm values for (a) k = 1

and (b) k = 3.
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Figure 6.31: P31: Global class MAPs based on the parameter MAP estimate for k = 3,

[x̂|d; θ̂
(3)

d,MAP ]MAP .
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Figure 6.32: P31: Misclassification rates, [al, bl], with the prior ratios marked for (a) the
white class, (b) the grey class and (c) the black class.

6.2.8 Test case: Observation model P32

In Figure 6.33, we see the reference class profile simulated from P32, and the corresponding

response and observation profile. The prior model is here defined by the transition matrix

P32 =




0.50 0.50 0
0.40 0.20 0.40

0 0.50 0.50


 , (6.10)

with initial marginal prior p(x1) = (0.3077, 0.3846, 0.3077). We should thus expect class

profiles with frequent transitions between medium-sized white and black layers and thin grey
layers in between them, as reflected by the reference class profile.
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Figure 6.33: P32: Reference class profile, xR, response profile, rR, and observation profile,
dR.
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The parameter MAP estimation plots for the test case P32 are displayed in Figure 6.34.

The MAP estimates are for both orders k close to the reference values. For k = 1, both
parameters are a bit over-estimated when compared to the reference values, and the marginal

noise parameter MAP estimate is slightly larger then the bivariate estimate. For k = 3 the
wavelet parameter MAP estimate is equal to the reference value, while the noise parameter

is a bit under-estimated.
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Figure 6.34: P32: Computed bivariate parameter posterior logarithm values for (a) k = 1
and (b) k = 3.

The global class MAPs based on the parameter MAP estimate for k = 3, θ̂
(3)

d,MAP
, for the

test case P32 are displayed in Figure 6.35 together with the reference class and observation
profile. For k = 1 a bit to thick black layers are predicted, while the predictions for k > 1

are slightly more reliable and stable.
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Figure 6.35: P32: Global class MAPs based on the parameter MAP estimate for k = 3,

[x̂|d; θ̂
(3)

d,MAP ]MAP .
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The classes’ coverage rate values and corresponding misclassification rates for the test
case P32 are displayed in Figure 6.36 for the different orders k. The misclassification rates

are quite reliable for the white and black class, decreasing for increasing orders k.
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Figure 6.36: P32: Misclassification rates, [al, bl], with the prior ratios marked for (a) the
white class, (b) the grey class and (c) the black class.

6.2.9 Test case: Observation model P33

In Figure 6.37, we see the reference class profile simulated from P33, and the corresponding

response and observation profile. The prior model is here defined by the transition matrix

P33 =




0.20 0.80 0
0.40 0.20 0.40

0 0.80 0.20


 (6.11)

with initial marginal prior p(x1) = (0.25, 0.50, 0.25). The reference class profile now consists

of thin layers of all classes with very frequent transitions, due to large transition probabilities
out of the classes by Expression (6.11).

The parameter MAP estimation plots for the test case P33 are displayed in Figure 6.38.
For k = 1, the wavelet parameter is strongly over-estimated when compared to the reference

value. As for the MAP plot for the test case P12 for k = 1, see Figure 6.14, parts of the
marginal wavelet parameter posterior function falls outside the chosen parameter interval.

We notice that both the MAP plot and the marginal wavelet parameter posterior function
for k = 1 are multimodal. For k = 3 the joint parameter MAP estimate is close to the

reference value.

The global class MAPs based on the parameter MAP estimate for k = 3, θ̂
(3)

d,MAP
, for the

test case P33 are displayed in Figure 6.39 together with the reference class and observation
profile. The predictions are quite reliable and early improving for increasing orders k. For

k = 1, a bit to thick white and black layers are predicted.
The classes’ coverage rate values and corresponding misclassification rates for the test

case P33 are displayed in Figure 6.40 for the different orders k. The misclassification rates
for the grey and black class are a bit poor, and stable for all orders k. We notice that the

rates for the posterior approximations based on the parameter MAP estimate are a bit more
reliable, except for the black class.
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Figure 6.37: P33: Reference class profile, xR, response profile, rR, and observation profile,

dR.
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Figure 6.38: P33: Computed bivariate parameter posterior logarithm values for (a) k = 1

and (b) k = 3.
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Figure 6.39: P33: Global class MAPs based on the parameter MAP estimate for k = 3,

[x̂|d; θ̂
(3)

d,MAP ]MAP .
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Figure 6.40: P33: Misclassification rates, [al, bl], with the prior ratios marked for (a) the
white class, (b) the grey class and (c) the black class.

6.3 Discussion

The two acquisition likelihood parameters have been estimated by simultaneous maximum a

posteriori prediction (MAP) estimation, by Expression (4.11), as described in Section 4.2.2.
This estimation is based on the nine test cases in Table 6.1, with nine different reference class
profiles simulated from prior models with varying transition matrices. The behavior of the

reference class profiles clearly follows from these respective prior transition matrices. The
results from the parameter estimation and the posterior model approximation are in general

quite reliable, and the reference class profile is well recognized in the predictions.
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As for the test study in Chapter 5, the noise parameter is generally under-estimated for

k = 3 when compared to the reference value. As mentioned in the discussion in Section 5.3
this might be because the profiles are too short, the MMLEs might be biased or due to the fact

that we utilize every observation data point k times in the posterior model approximations.
The wavelet parameter MAP estimate is in general closer to the reference value for the larger

order k = 3. For the base case, we showed that the kth order MMLE and MAP plots are not
that different because the computed marginal log-likelihood values are very large. Estimation
of the parameters by MMLE should thus be sufficient, in which we do not need to assign prior

distributions to the parameters.
The approximated posterior models are, as for the test study in Chapter 5, generally

more reliable for early increasing orders k, and stabilizing for k = 2, 3. We have plotted the
logarithm of the test study S/N-ratios in Table 6.2, against the logit of the class MAP ratio

for k = 3, see Figure 6.41. As for the test study in Chapter 5, see Figure 5.28, the results are
more reliable for increasing S/N-ratios. A suggested linear trend, with respect to the log-logit

transform, is included in the plot. We notice how the plotted values fall outside of the MC-
trend in Figure 5.28 as we now tune the prior model parameters and not the noise parameter.

We also notice that the results from the class predictions based on the estimated parameters
are as reliable, and often significantly better, than the predictions based on the reference
parameters. The outlying test case P13, with the smallest S/N-ratio, is where the estimation

and corresponding prediction is most poor. The wavelet parameter is over-estimated only in
this test case, probably because the observation profile is too smooth, see Figure 6.17, due to

few class transitions.
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Figure 6.41: The logarithm of the test cases’ S/N-ratios, log(S/N ) plotted against the logit
of the respective global class MAP profile ratios, logit(∆globMAP/100), for k = 3.
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Chapter 7

Example: Seismic Inversion Model

As our empirical example, we will use a model with four possible classes, with the state space
Ωx = {white,light-grey,dark-grey,black}. A representation of the model is displayed in Figure

7.1 along a 1D class profile of length T = 200, i.e. x : {xt; t = 1, . . . , 200}, which will be
our reference class profile, xR. The associated profiles in Figure 7.1, rR and dR, will be our
reference response and observation profile respectively. A physical interpretation is that the

class profile constitutes a geological sequence of lithology/fluid classes. The four classes in
the state space corresponds to the four lithology-fluid classes gas-saturated sandstone, oil-

saturated sandstone, brine-saturated sandstone and shale respectively, see e.g. References [14]
and [21]. The main objective will be to estimate the parameters in the acquisition likelihood

model, i.e. the convolution variance, σ2
w, and the noise variance, σ2

e , based on the observation
profile. The next objective will then be to predict class profiles, x̂, using the observation

profile and the estimated parameters, and compare the reproductions to the reference profile,
xR. The estimation and prediction procedures are based on the results from the two forgoing

chapters.
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d
R

Figure 7.1: Reference profile, xR, and an associated response profile, rR, and observation

profile, dR.
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7.1 Model specifications

In our seismic model, there are L = 4 possible states. The reference class profile in Figure
7.1 is simulated from the prior distribution defined in Section 2.1, with the (4× 4) transition

probability matrix

Px =




0.9441 0 0 0.0559
0.0430 0.9146 0 0.0424

0.0063 0.0230 0.9423 0.0284
0.0201 0.0202 0.1006 0.8591


 . (7.1)

The initial marginal prior distribution is defined as the stationary pdf of Px in Expression

(5.1), i.e. p(x1) = (0.2416, 0.1552, 0.3833, 0.2198). Considering the geophysical interpreta-
tion, gas-saturated sandstone can naturally only occur beneath shale stone by Expression

(7.1), and brine-saturated sandstone can not occur above oil-saturated sandstone. In the
parameter estimation algorithms, we will use a less informative prior model, defined by the

prior transition matrix

Px =




0.95 0 0 0.05
0.05 0.90 0 0.05

0.03 0.03 0.91 0.03
0.03 0.03 0.10 0.84


 , (7.2)

with initial marginal prior distribution p(x1) = (0.4091, 0.1364, 0.2392, 0.2153). We notice
how the relative small change in Px results in a significant change in the marginal prior. The

prior transition matrix in Expression (7.1) resembles the prior transition matrix in the test
case P11 in Chapter 6, see Expression (6.4), with large transition probabilities from each class

into themselves. Based on results from this test case, when using the simpler prior model in
Expression (7.2) in the computations, we could expect as good results as when using the true

prior model in Expression (7.1).
We assume a response likelihood model with no spatial dependency, i.e. p(r|x) =

∏T
t=1 φ1(rt; µxt, σ

2
x),

where µxt ∈ {15.7402, 15.8001, 15.8671, 16.0120} and σ2
xt

∈ {0.0004, 0.0003, 0.0002, 0.0011}
corresponding to the respective classes in Ωx. The resulting marginal response pdfs are dis-
played in Figure 7.2. We observe how the white and light-grey classes’ response pdfs clearly

overlap, and the black class pdf is wider corresponding to the larger variance. The response
likelihood model corresponds to a rock physics likelihood model, i.e. it represents the seismic

impedance for each geological class, see References [3], [4], [12], [14], [21].

15.6 15.7 15.8 15.9 16 16.1 16.2

Figure 7.2: Class response Gaussian pdfs, φ1(rt; µxt , σ
2
xt

), corresponding to the classes white,

light-grey, dark-grey and black respectively.



79 7.1. MODEL SPECIFICATIONS

We assume an acquisition likelihood model, as defined by Expression (2.10), with white

noise only, i.e. p(d|r) = NT (Wr, σ2
eI) with σe = 0.01. The convolution matrix is now defined

as

W = R∆ ,

where ∆ is a 3-band wide contrast matrix with band elements (−0.5, 0, 0.5) and R is a Ricker

convolution matrix. The Ricker wavelets, wR, which are the rows in the Ricker convolution
matrix, R, are assumed to be discrete values of the normalized Ricker wavelet function

wR(t) =
2√

3σwπ1/4

(
1 − t2

σ2
w

)
e

−t2

2σ2
w . (7.3)

This is the negative normalized second derivative of a Gaussian function, i.e., up to scale and

normalization, the second Hermite function, see Reference [18]. The standard definition of
the Ricker wavelet is

wR(t) =
(
1 − 2π2f2t2

)
e−π2f2t2 , (7.4)

see Reference [15], where f is frequency in Hz. The relationship between the convolution
variance parameter and the frequency is thus by Expression (7.3)

σw =
1√
2πf

. (7.5)

The wavelet parameter used in our empirical example is σw = 3, which by Expression (7.5)

corresponds to a 0.075Hz wavelet. The resulting Ricker wavelet and its contrast wavelet is
displayed in Figure 7.3, where the marked function values define the discretized wavelets.

The wavelet length is 31. The signal-to-noise ratio is S/N = 23.9 by Expression (5.3).
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Figure 7.3: (a) The Ricker wavelet, wR, given by Expression (7.3) for σw = 3 and (b) its

contrast wavelet by wc = wR∆.
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7.2 Results with discussion

In this seismic example, we perform univariate and simultaneous MMLE estimation of the
current two acquisition parameters, σw and σe, as done in the test study in Chapter 5. The

wavelet parameter now has a different interpretation, as we now utilize the Ricker wavelet
function in Expression (7.3) instead of the Gaussian wavelet function in Expression (2.11).

The estimation is based on the observation profile in Figure 7.1, and all other parameters
are kept fixed by their reference values given in Section 7.1. We then assess the approximate
posterior model by the P-P ratio deconvolution algorithm for orders k = 1, 2, 3, 4, as described

in Sections 3.2 and 3.3, based on the MMLE estimate for k = 3, i.e. θ̂
(3)

d,MMLE. We evaluate
the approximate posterior model by the class MAP, and by the coverage rates given by

Expressions (5.5) and (5.6) as done in the test studies in Chapters 5 and 6.
The univariate estimation plots for k = 1, 2, 3, 4 are displayed in Figure 7.4, where both

parameters have very stable estimates for all orders k. The univariate wavelet parameter
MMLE is very close to the reference value, while the univariate noise parameter MMLE is

quite under-estimated. The simultaneous parameter plots for k = 1, 3 are displayed in Figure
7.5, with very stable estimates as well. As for the univariate case, the wavelet parameter

estimate is almost equal to the reference value, while the noise parameter is quite under-
estimated.
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Figure 7.4: Marginal log-likelihood plots for univariate parameter estimation.

The locationwise and global class MAPs for k = 1, 2, 3, 4 based on the simultaneous

parameter MMLE for k = 3, θ̂
(3)

d,MMLE, are displayed in Figure 7.6 together with the reference
class and observation profile. The predictions are quite poor for all orders k, and are mutually
significantly different. The class MAPs based on the reference parameters, θd, are likewise

displayed in Figure 7.7. We notice how these predictions recognize the transitions in the
reference profile significantly more reliable, even though the wavelet parameter is the same

in the two approximations. In the class MAPs in both figures, the black class seem to be
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recognized most reliably, in accordance to the more distinct response distribution, see Figure

7.2. For the class MAPs based on the reference parameters, the main misclassification is
between the white and the light-grey classes, whose response distributions overlap the most,

see Figure 7.2. We notice how some of the locationwise MAPs based on the parameter
MMLE estimate contain class transitions prohibited by the prior model, see Expression (7.2).

These are class transitions from white to light-grey and light-grey to dark-grey. As these
MAPs consider the approximate posterior model locationwise independently, thereby the
name, these illegal transitions might occur. The global MAPs however do not adopt illegal

transitions.
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Figure 7.5: Computed marginal log-likelihood values for the two acquisition likelihood pa-
rameters for (a) k = 1 and (b) k = 3.
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Figure 7.6: Locationwise and global MAPs based on the 3rd order parameter MMLE esti-

mate, [x̂|d; θ̂
(3)

d,MMLE]MAP .
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Figure 7.7: Locationwise and global MAPs based on the reference parameter, [x̂|d; θd]MAP .

The class profile ratios from the global class MAPs in Figures 7.6 and 7.7 are presented
in Table 7.1. The ratios are poor for both parameter sets, and increases for increasing orders

k. We also notice that the predictions based on the true parameters are only slightly more
reliable. In Table 7.2, we have computed similar class profile ratios, but here we consider white

and light-grey as the same class. The physical interpretation is that we consider gas-saturated
sandstone and oil-saturated sandstone as one class, i.e. as a hydrocarbon class, which would

be the class of most interest. We now observe how the rates increase significantly, especially
for the MAPs based on the true parameters. This is in accordance to the MAPs in Figure

7.7 where the main misclassification was between the white and light-grey class. The rates
are however still quite poor for the MAPs based on the estimated parameters.

(∆locMAP , ∆globMAP) k = 1 k = 2 k = 3 k = 4

θ̂
(3)

d,MMLE
: (41.0, 35.5) (42.5, 44.0) (42.5, 45.0) (53.5, 54.5)

θd : (47.5, 51.5) (45.0, 48.5) (46.0, 48.0) (53.0, 54.0)

Table 7.1: Class profile ratios in percentage for the locationwise and global MAPs.

(∆locMAP , ∆globMAP) k = 1 k = 2 k = 3 k = 4

θ̂
(3)

d,MMLE : (61.5, 69.5) (64.5, 68.5) (61.0, 68.5) (64.0, 64.0)

θd : (82.5, 83.5) (80.5, 81.0) (79.5, 79.5) (82.0, 83.0)

Table 7.2: Class profile ratios in percentage for the locationwise and global MAPs considering
white and light-grey as the same class.
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The classes’ coverage rate values and corresponding misclassification rates are displayed

in Figure 7.8 for the different orders k, and are in general quite poor. We notice that the
rates seem to be stable only for the black class, whose misclassification rates are quite reliable

according to the distinct marginal response distribution. For both the dark-grey and the black
class, the misclassification rates are significantly more reliable for the approximate posterior

models based on the true parameters. Except for the black class, the coverage rate value of
al, i.e. the ability to predict the l-class in xR correctly, is poor.
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Figure 7.8: Misclassification rates, [al, bl], with the prior ratios marked for (a) the white

class, (b) the light-grey class, (c) the dark-grey class and (d) the black class.

The S/N-ratio in our seismic example is relatively large, S/N = 23.9, and based on the
results from Chapters 5 and 6, we should expect more reliable posterior model approxima-
tions. The seismic model is, however, quite more complex than the test study models, e.g.

there are now four possible classes, and the prior model is not as simple. The convolution
matrix is also different, utilizing the Ricker wavelet. This wavelet could have been chosen by

Expression (7.4), i.e. not normalized, and based on the results from Chapter 5, the discrete
reference wavelet chosen is perhaps to wide, consisting of 31 elements. The MMLE of the

wavelet parameter is however very close to the reference value, and the major misclassification
factor originate from under-estimation of the noise parameter. In the test studies, the noise

parameter was consistently under-estimated when compared to the true value, but this did
not affect the posterior model approximation significantly. In our seismic example however,

the noise is large when compared to the mean differences in the response pdfs, which makes
class recognition more difficult.
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Chapter 8

Conclusion and further work

In this master’s thesis, we study lithology/fluid (LF) prediction along a 1D-profile based on

recorded prestack seismic data. The subsurface LF-classes are denoted by x, which corre-
sponds to a response, denoted by r. The actual observed data, which is recorded as a con-

volution of r, is denoted by d. The inverse problem is ill-posed, which in addition to model
and observation error makes the prediction challenging. We have approached the problem in

a Bayesian setting. One objective has been to find the posterior distribution, p(x|d), given
by a prior distribution, p(x), and a convolved likelihood distribution, p(d|x), consisting of a

response likelihood distribution p(r|x) and an acquisition likelihood distribution p(d|r). The
main objective has been to estimate the model’s parameters, in the acquisition likelihood

model in particular . Necessary theory and methods, in order to perform these tasks, have
been introduced.

In two thorough test studies and an empirical seismic example, we have performed pa-

rameter estimation in the acquisition likelihood model and approximated posterior models of
order k based on the respective estimates. The results generally stabilize for orders k = 2, 3.
Estimation for different acquisition likelihood parameter sets, and the estimations sensitivity

to the prior model has been studied. The ratio between the observation mean and variance
is termed the signal-to-noise ratio (S/N). The results from the test studies indicate that

this ratio could be a reliable indication of the quality of the parameter estimates and the
corresponding posterior model approximations. For test cases with increasing S/N-ratios,

the results were in general more reliable, with posterior model approximations recognizing
the true LF-class well. The estimated parameters need however not be very close to the

true parameters, even for a model with large S/N-ratio, as the simplified kth order posterior
approximations utilize the parameters in different ways for different orders.

In the second test study and in the seismic example, we chose to approximate the posterior

models based on the parameter estimate for order k = 3. This procedure is less computer
demanding and was proposed by the first test study as the estimates were stable. The

resulting posterior model approximation were generally quite reliable. Due to the fact that
the approximations utilize the parameters differently, this solution might however not be
optimal, and should perhaps have been studied in more detail.

The noise parameter is consistently under-estimated for higher order computations when
compared to the true value. This property clearly affected the following posterior model
approximation in the seismic example. By the results in the test studies, this under-estimation

seems not to occur due to use of few data points, i.e. by over-fitting the data, nor due to
MMLE bias. Most likely it originates from the fact that every data point is used multiple

times in the approximations. We do not explore this property in this thesis, but it should be
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studied in more detail.

What should be done in further work is thus mainly a larger parameter estimation study
for the model in the seismic example, with respect to the noise parameter in particular. Study

on why the noise is under-estimated, and possible solutions by e.g. noise correction or sim-
ilarly, should be performed. Models including colored noise should also be explored, as the

studies in this thesis consider white noise only. Both the observation data and the response
variables might be extended into higher dimensions for this seismic model. Thus, data from
multiple angles and three-dimensional response variables by the three elastic material prop-

erties P-wave velocity, S-wave velocity and density should be considered, as described in the
thesis’ introduction. Parameter estimation in the prior model and the response likelihood

model should be studied. Other parameter optimization methods could be examined, as the
optimization method used in this thesis might require too much cpu-time when estimating

many parameters.
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Appendix A

Relevant probability distributions

In this appendix, we introduce the probability distributions utilized in the thesis. The given

distributions and their properties are in accordance with References [7], [9], [11] and [20].
Concerning the term conjugate distribution, a parameter prior distribution p(θ) is conjugate

to the likelihood p(x|θ) if the posterior p(θ|x) is in the same distribution family as the prior.

A.1 Gaussian distribution

Let X = (X1, . . . , Xn) be a Gaussian distributed random vector defined on x ∈ R
n. The

Gaussian probability density function with parameters µ and Σ is defined as

φn(x) = φn(x1, . . . , xn; µ, Σ) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(x− µ)′Σ−1(x − µ)

)
.

We say that X is Gaussian distributed by Nn(µ, Σ). Here µ is the (n × 1) mean vector and
Σ is the (n × n) covariance matrix of x,

E[X] = µ , Var[X] = Σ .

For the one-dimensional Gaussian distribution, N1(µ, σ2), the moment generating function is

defined as

MX(t) =

∫ ∞

−∞

etxφ1(x)dx = eµt+σ2t2/2 .

A.1.1 Properties

Let X be a Gaussian distributed random vector with parameters µ and Σ where

X =

(
X1

X2

)
, µ =

(
µ1

µ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

Here X1 = (X1, . . . , Xn1) and X2 = (Xn1+1, . . . , Xn1+n2) with n = n1 + n2. Then the condi-
tional distribution for X1 given X2 = x2 is also Gaussian, Nn1(µ1|2, Σ1|2), with expectation

and variance

µ1|2 = E[X1|X2 = x2] = µ1 + Σ12Σ
−1
22 (x2 − µ2)

Σ1|2 = Var[X1|X2 = x2] = Σ11 −Σ12Σ
−1
22 Σ21 .
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Linear combinations of Gaussian variables are also Gaussian distributed, i.e.

Ax + b ∼ Nn(Aµ + b, AΣA′) .

Here A is a (n × n) matrix of constants and b is a (n × 1) vector of constants.

For the one-dimensional Gaussian distribution, N1(µ, σ2), the conditional conjugate pa-
rameter priors are [µ|σ2] ∼ N (γ∗, λ∗) and [σ2|µ] ∼ IG(α∗, β∗). Here IG(·) indicates the
Inverse Gamma distribution defined in Appendix A.3. We can assign the conditional conju-

gate prior distribution [µ|σ2] ∼ N (γ, σ2/λ) to the mean parameter and the conjugate prior
distribution σ2 ∼ IG(α, β) to the variance parameter . The joint conjugate prior is the

normal-scaled inverse gamma distribution, (µ, σ2) ∼ p(µ|σ2)p(σ2) = NsIG(γ, λ, α, β), with
pdf defined as

f(µ, σ2; γ, λ, α, β) =

√
λ√

2πσ

1

βαΓ(α)

(
1

σ2

)α+1

exp

(
−2 + βλ(µ − γ)2

2βσ2

)
.

A.2 Dirichlet distribution

Let P = (P1, . . . , Pn) be a Dirichlet distributed random vector defined for {0 < pi < 1; i =

1, . . . , n} and
∑n

i=1 pi = 1. The Dirichlet probability density function with scale parameter
vector α = (α1, . . . , αn), where αi > 0 ∀ i, is defined as

f(p) = f(p1, . . . , pn−1; α1, . . . , αn) =
1

B(α)

n∏

i=1

pαi−1
i . (A.1)

Here B(α) ensures normality and is the multinomial beta function expressed by the gamma
function Γ(·)

B(α) =

∏n
i=1 Γ(αi)

Γ(
∑n

i=1 αi)
.

We say that X is Dirichlet distributed by Dn(α). We notice that only (n − 1) of the pi’s

are found by the probability distribution in Expression (A.1) as
∑n

i=1 pi = 1, then pn =
1 −∑n−1

i=1 pi. The mean and variance of each element in P can be found as

E[Pi] =
αi∑n

j=1 αj
, Var[Pi] =

E[Pi](1− E[Pi])

1 +
∑n

j=1 αj
.

The Dirichlet distribution is the parameter conjugate prior distribution to the multinomial

distribution.

A.3 Inverse Gamma distribution

Let X > 0 be an inverse Gamma distributed random variable defined for x > 0. The Inverse

Gamma probability density function with parameters α > 0 and β > 0 is defined as

f(x) = f(x; α, β) =
1

βαΓ(α)

e−1/(βx)

xα+1
.

The mean and variance can be found as

E[X ] =
1

β(α − 1)
for α > 1 , Var[X ] =

1

β2(α − 1)2(α − 2)
for α > 2 .

We say that X is Inverse Gamma distributed by IG(α, β). If X is Gamma distributed, then
1/X will be Inverse Gamma distributed, thereby the name.



Appendix B

Explicit computations

In this appendix, we first derive the computation of the approximate Gaussian distributions
in Expressions (3.16) and (3.17) for the models defined in Chapters 5 and 6. These two

approximate distributions are thus computed with the assumption of equal marginal response
likelihood distribution variance, i.e. σ2

xt
= σ2

x in Expression (2.7). The computations are

similar without this assumption. Next, the likelihood integral l
(k)
d (x

(k)
t ) in Expression (3.22)

is computed.

B.1 Computing p∗(r) and p∗(r|d)

We want to compute the mean and variance for the Gaussian distributions, p∗(r|d) and

p∗(r) in Expressions (3.16) and (3.17) respectively, which defines the alternative acquisition
likelihood distribution in Expression (3.15). This is done in order to use the P-P ratio

deconvolution algorithm defined in Sections 3.2 and 3.3.
First we assume that every marginal prior pdf is the stationary distribution of Px denoted

pstas = (p1, . . . , pL), i.e. p(xt) = pstas for all times t. Then the marginal response pdf will be
Gauss-linear by Expression (2.7),

p(rt) =
∑

xt

p(rt|xt)p(xt) =

L∑

i=1

piφ1(rt; µi, σ
2
x) .

We will thus have the Gaussian marginal response moment generating function

MRt(s) =

∫ ∞

−∞
esrp(rt)drt = e

σ2
xs2

2

L∑

i=1

pie
µis .

The two first moments are

E(Rt) =
d

ds
MRt(s)

∣∣∣∣
s=0

=

L∑

i=1

µipi = E(R) (B.1)

E(R2
t ) =

d2

ds2
MRt(s)

∣∣∣∣
s=0

= σ2
x +

L∑

i=1

µ2
i pi = E(R2) . (B.2)

We can then compute the marginal mean and variance by these moments,

µr = E(R) (B.3)

σ2
r = E(R2) − E(R)2 . (B.4)
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The moments in Expressions (B.1) and (B.2) are independent of rt, and so are then the mean

and variance, thus p(rt) = N1(µr, σ
2
r) for all times t.

The spatial covariance between two marginal response variables over a positive natural

numbered timestep, ∆t, is

Cov(Rt, Rt+∆t) = E(Rt · Rt+∆t) − E(Rt)E(Rt+∆t) = E(Rt ·Rt+∆t)− µ2
r . (B.5)

Here

E(Rt · Rt+∆t) =

∫ ∞

−∞

∫ ∞

−∞

rtrt+∆tp(rt, rt+∆t)drtdrt+∆t (B.6)

by the definition of the expectation function. The joint response marginal is

p(rt, rt+∆t) =
∑

xt

∑

xt+∆t

p(xt, xt+∆t)p(rt, rt+∆t|xt, xt+∆t)

=
∑

xt

∑

xt+∆t

p∆t(xt+∆t |xt)p(xt)p(rt|xt)p(rt+∆t |xt+∆t) , (B.7)

where we have used the conditional response independence property in Expression (2.8). In
Expression (B.7) p∆t(xt+∆t |xt) defines the ∆t-transition probability matrix, P∆t = (Px)

∆t .

The expectation in Expression (B.6) is then

E(Rt · Rt+∆t) =
∑

xt

∑

xt+∆t

p∆t(xt+∆t |xt)p(xt)

∫ ∞

−∞
rtp(rt|xt)drt

·
∫ ∞

−∞
rt+∆tp(rt+∆t |xt+∆t)drt+∆t

=
∑

xt

∑

xt+∆t

p∆t(xt+∆t |xt)p(xt)µxtµxt+∆t
.

Here we have used the definition of the expectation function, for p(rt|xt) = N1(µxt , σ
2
x) we

have µxt = E(rt|xt) =
∫∞
−∞ rtp(rt|xt)drt. The covariance in Expression (B.5) thus becomes

ρ∆t = Cov(Rt, Rt+∆t) =
∑

xt

∑

xt+∆t

p∆t(xt+∆t |xt)p(xt)µxtµxt+∆t
− µ2

r . (B.8)

With µr given by Expression (B.3) we can compute the covariance in Expression (B.8) for all

timesteps ∆t. By Expressions (B.3), (B.4) and (B.8) we can now compute p∗(r) = NT (µr, Σr)
with

µr =




µr
...

µr


 , Σr =




σ2
r ρ1 . . . ρ199

ρ1 σ2
r

...
...

. . . ρ1

ρ199 . . . ρ1 σ2
r




. (B.9)

Next we assume that the marginal likelihood has a Gaussian pdf, p∗(d) = NT (µd, Σd) in
order to find p∗(r|d). With this assumption we can write

(
r

d

)
∼ N2T

([
µr

µd

]
,

[
Σr Σrd

Σdr Σd

])
,

where Σrd = Σ′
dr. If we can find µd, Σd and Σrd we can compute the mean and variance

in the distribution in Expression (3.16) by

p∗(r|d) = NT (µr|d, Σr|d) = NT

(
µr + ΣrdΣ

−1
d (d− µd), Σr −ΣrdΣ

−1
d Σdr

)
. (B.10)
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(K)
D (X

(K)
T )

With the acquisition likelihood pdf in Expression (2.10), assuming an error term with colored

noise, the approximate marginal likelihood distribution mean and variance is

µd = E(d) = E[E(d|r)] = E(Wr) = Wµr (B.11)

Σd = Var(d) = E[Var(d|r)] + Var[E((d|r))]
= E(σ2

e1
WW′ + σ2

e2
I) + Var(Wr) = WΣrW

′ + σ2
e1

WW′ + σ2
e2

I . (B.12)

By the properties of the Gaussian distribution and the acquisition likelihood distribution

variance in Expression (2.10) we have

Σd|r = Σd − ΣdrΣ
−1
r Σrd

= WΣrW
′ + σ2

e1
WW′ + σ2

e2
I − ΣdrΣ

−1
r Σrd

= σ2
e1

WW′ + σ2
e2

I ,

thus ΣdrΣ
−1
r Σrd = WΣrW

′. We see that Σdr = WΣr is a possible solution, as Σr is
symmetric. With this solution, and with the marginal likelihood distribution parameters by

Expressions (B.11) and (B.12), we are able to compute the pdf in Expression (B.10). Its
mean and variance is

µr|d = µr + (WΣr)
′ (

WΣrW
′ + σ2

e1
WW′ + σ2

e2
I
)−1

(d− Wµr) (B.13)

Σr|d = Σr − (WΣr)
′ (

WΣrW
′ + σ2

e1
WW′ + σ2

e2
I
)−1

(WΣr) . (B.14)

With the Gaussian pdfs, p∗(r) defined by Expression (B.9) and p∗(r|d) defined by Expressions

(B.13) and (B.14), we have an acquisition likelihood model according to Expression (3.15).
We can then use the P-P ratio algorithm to compute the approximate posterior distribution.

B.2 Approximating l
(k)
d (x

(k)
t )

We want to approximate the integral in Expression (3.22),

l
(k)
d

(
x

(k)
t

)
=

∫ p∗

(
r
(k)
t

∣∣∣d
)

p∗

(
r
(k)
t

) p
(

r
(k)
t

∣∣∣x(k)
t

)
dr

(k)
t , (B.15)

for every r
(k)
t = (rt−k+1, . . . , rt); t = k, . . . , T . Here p∗(r|d) = NT (µr|d, Σr|d), p∗(r) =

NT (µr, Σr) and p(r|x) = NT (µr|x, Σr|x) with

[a
(k)
t ] ∼ Nk

(
[µa]

t
t−k+1, [Σa]

t
t−k+1

)
(B.16)

for a ∈ {r, [r|d], [r|x]}. The notation [·]ji in Expression (B.16) indicates a matrix of rows
and columns i to j from the matrix in the brackets. We can approximate the integral in

Expression (B.15) by the following algorithm.

Algorithm 5: Estimating the l
(k)
d (x

(k)
t ) integral

• For i = 1, . . . , ns :

- Draw [r
(k)
t ](s) ∼ p(r

(k)
t |x(k)

t )

- mi =
φ∗([r

(k)
t ](s)|d)

φ∗([r
(k)
t ](s))



94 APPENDIX B. EXPLICIT COMPUTATIONS

• l̂
(k)
d (x

(k)
t ) = 1

ns

∑ns

i=1 mi

We have to estimate this integral for all {x(k)
t = (xt−k+1, . . . , xt); t = k, . . . , T} for every

possible state, xt ∈ Ωx : {1, . . . , L}, to be able to implement the forward-backward algorithm

in Algorithm 1. We thus have to run Algorithm 5 (T − k + 1)L(k) times before running
Algorithm 1, which becomes computer demanding for large k. A challenge is thus to find a

reasonable number of simulations, ns.



Appendix C

Additional figures

In this appendix we display the complete reference profiles of length T = 1000 for the base
case in Chapters 5 and 6. The base case profiles displayed in these two chapters are the 200

first elements of the complete profiles.
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C.1 Full profiles from Chapters 5 and 6

x
R

−5−4−3−2−1012345

r
R

−3−2−1012345

d
R

Figure C.1: The full reference profile, xR, response profile, rR, and observation profile,
dMCMN , in the base case in Chapter 5 with length T = 1000.






	Title Page
	Problem Description
	Masteroppgave.DVI

