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Abstract 

This paper extends the averaged Strain Energy Density (SED) method to the static assessment of 
notched components at the nanoscale. First, in situ micromechanical testing of notched nano-
cantilever beams made of single-crystal silicon is briefly reviewed. Then, an alternative strategy 
based on the Theory of Critical Distances is employed to evaluate the control volume and the critical 
SED. The method is later verified against experiments and FE analyses. The SED method successfully 
estimates the load at fracture of nanoscale notched specimens with a maximum discrepancy of 
4.7%. Moreover, the method is mesh-independent, and therefore very coarse meshes can be 
employed in numerical analyses. Finally, the results are discussed on the basis of the breakdown of 
continuum fracture mechanics at the nanoscale. The extension of the SED approach to the micro- 
and nanoscales provides a fast and simple tool for the design of micro- and nanodevices. 
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1. Introduction 

The miniaturisation of electronic devices, for example, the use of micro- and nano-
electromechanical systems (MEMS and NEMS) as sensors and actuators, have brought problems of 
material behaviour at the nanometer scale into the domain of fracture mechanics [1]. Thus, new 
challenges have arisen recently, e.g. mechanical characterisation at small scales, static and fatigue 
assessment at the micro and nanoscale, and development of tools for the proper design of such 
small components. Miniaturised devices are not free of the notches and cracks/defects encountered 
in their macro counterparts. However, it was unclear whether linear elastic fracture mechanics 
(LEFM) could be applied at small scales. Wang et al. [2] reviewed recent advances in the application 
of modified continuum models in nanostructures, providing a comprehensive overview of the 
development in that area. Recently, since in situ observation of mechanical behaviour at the 
nanoscale has advanced considerably [3], [4], [5], [6], the questions above have sparked the interest 
of the scientific community. A review of a series of experimental studies at small scales was 
published by Sumigawa et al. [3], who showed how continuum mechanics remains applicable to 
fracture at the nanoscale. The concept of the plastic stress intensity factor, for example, has been 
used to characterise crack initiation at the interface edge at the nanoscale [7]. Huang et al. [7] 
demonstrated that under large-scale yield conditions, the stress distribution shows an r-λp-type 
singularity, as predicted by conventional fracture mechanics. Recent studies have focused on the 
cracking behaviour of silicon instead [8], [9], [10], [11], [12]. Specifically, Sumigawa et al. [11] 
determined the fracture toughness in a nanoscale singular stress field of 23–58 nm by using single-
crystal silicon specimens with different pre-crack lengths. The fracture toughness obtained showed 
good agreement with the bulk KIC, proving the size independence of the fracture behaviour. 



Moreover, the stress distribution showed a conventional r−0.5-type singularity, as would be 
expected for cracks. On the other hand, Shimada et al. [13] considered smaller scales and found that 
even though a singular stress field of only several nanometers still governed fracture, the stress 
intensity factor approach failed for stress field lengths ranging between 1.2 and 3.6 nm. Indeed, at 
such a small scale, one must deal with the atomic structure. 

 

The background outlined above suggests that several tools for static and fatigue design based on 
LEFM and used at the macroscale may be directly scaled down to the nanoscale once the lower limit 
of LEFM is defined [13]. Among the standard LEFM approaches, energy-based criteria showed the 
potential to be easily extended beyond the dimensional limits of conventional continuum fracture 
mechanics. Several authors have contributed to this topic. Among them, Huang et al. [14] showed 
that the Griffith-based criterion describes brittle fracture of notches even below a critical size of 
5 nm, below which the fracture stress fails. This result was obtained by modifying the Griffith 
criterion to account for the atomic discreteness at very small scales. Similarly, Sumigawa et al. [15] 
experimentally characterised nano-cracking behaviour in brittle silicon and demonstrated that the 
classical Griffith criterion could mechanically describe nano-cracking. 

 

While the Griffith criterion (and Energy Release Rate) has been the primary focus of much recent 
research (see given references), other energy approaches have been completely neglected. Among 
them, the averaged Strain Energy Density (SED) concept has proved to be one of the most versatile, 
simple, and useful tools both in fatigue and static assessment of notched components and welded 
joints. The method was formalised by Lazzarin and co-workers [16], [17] and derived from Neuber’s 
concept of elementary volume and the local mode I concept proposed by Erdogan and Sih [18]. The 
SED criterion states that failure occurs when the mean value of the SED, averaged over a control 
volume surrounding the notch (crack) root (tip), equals a critical value. Applications of the method 
are widely available in the literature for large bodies and several materials [19], [20], [21], [22], [23], 
[24], [25], [26], [27], where local inhomogeneities are neglected owing to the large volume-to-
surface ratio, and recent reviews [28], [29], [30] summarise the main advantages and theoretical 
developments in detail. Unlike other methods, an extension of the SED approach to the micro- and 
nanoscales would offer enormous practical simplifications to the fatigue and static design of micro- 
and nanodevices. Indeed, as long as the control volume is well defined, the averaged SED method 
can be applied to specimens of any shape, from cracks to notches. Moreover, it would simplify Finite 
Element (FE) analyses thanks to its mesh-independence [16]. As explained in detail in Section 2, the 
control volume for static loadings is a function of the ultimate tensile stress and the fracture 
toughness. Gallo et al. [31] recently tried to obtain a first estimation of the averaged Strain Energy 
Density control volume for the static assessment of single-crystal silicon at the nanoscale. The 
authors proposed values of 0.84 μm and 0.99 μm for plane strain and plane stress, respectively. 
However, this preliminary estimation was based on an approximated tensile strength of 2 GPa. 
Therefore, despite the fact that the work represented a first step toward the application of the 
averaged SED at the nanoscale, the proposed value needed further investigation. Indeed, although 
the fracture toughness is fundamentally an inherent property, the yield stress is significantly 
affected by the specimen size [32], [33], increasing as the micro- and nanoscales are approached 
[11]. This phenomenon is easily explained by the relationship between fracture stress and volume of 
the component. The fracture stress is usually studied on the assumption that fracture takes place 
originating from pre-existing defects or flaws. However, the defects vary in number and in severity 
depending on the volume (size) of the component. Ideally, the ideal fracture stress of the material 



having no defect is reached at the nanoscale [34]. Thus, accurate control of the final geometry and 
size, which is currently very challenging, plays an essential role in the determination of mechanical 
properties and, in turn, in the evaluation of the control volume. Compared to the application of the 
method at the macroscale, this is an entirely new challenge. 

 

This paper further extends the averaged SED to the static assessment of notched components at the 
nanoscale by employing an alternative strategy based on the Theory of Critical Distances [35] to 
determine the control volume and the critical SED. The proposed procedure avoids the demanding 
control of the geometry at the nanoscale while obtaining accurate values for both the tensile 
strength and fracture toughness simultaneously, as shown in [36] for the considered scale. 
Moreover, it allows the introduction of the scale effect into the SED formulation within the limits of 
continuum fracture mechanics. Accurate FE analyses and theoretical equations yield the averaged 
SED, and the method is verified by reviewing in situ micromechanical test results for notched nano-
cantilever beams available in the literature [36]. The SED criterion successfully estimates the static 
critical load at fracture by using both coarse and fine meshes, providing a practical tool for the static 
and fatigue assessment of MEMS and NEMS. 

 

2. Fundamentals of the Strain Energy Density averaged over a control volume 

The averaged Strain Energy Density (SED) method was derived from Neuber’s concept of elementary 
volume and the local mode I concept proposed by Erdogan and Sih [18]. Lazzarin and co-workers 
initially formalised it for notches of different geometries [16], [17] and large bodies. The approach 
combines the concept of energy criterion with the advantages tied to the definition of a material-
dependent structural volume. Some recent contributions reviewed the method in detail, including 
the full analytical framework and primary applications [29], [30], [31]. The approach assumes that 
under tensile stress, failure occurs when the strain energy density averaged over a given control 
volume  reaches a critical value Wc (that depends on the selected material). Fig. 1 shows an example 
of control volumes becoming “areas” when in-plane problems are considered. In the case of blunt 
notches, the area assumes a crescent shape. When mixed-mode loading is considered, the control 
area rotates and is aligned to the point where the principal stress reaches its maximum value [37]. 
The control volume R0 depends on the fracture toughness KIC and ultimate tensile stress σt for 
static loading, and on the smooth specimen fatigue limit Δσ0 and the fatigue threshold ΔKth (for 
metallic materials) for cyclic loads [38]. Under plane strain conditions, the R0 for static loading is 
given by 

(1) 

Under plane stress conditions R0 is defined as follows: 

(2) 

The control volume/radius can also be linked to the El Haddad-Smith-Topper parameter a0 = 
(1/π)(KIC/σt)2[39] via 

(3) 

where C is derived by comparing Eq. (3) to Eq. (2) (for plane stress) or Eq. (1) (for plane strain) and is 
a function of the Poisson’s ratio alone. 
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Fig. 1. Critical volume (area) for sharp V-notch (a), crack (b), and blunt V-notch (c) under mode I 
loading; distance . 

 

If the material behaviour is ideally brittle, the critical energy value Wc can be evaluated by using the 
conventional ultimate tensile strength σt for static cases and the fatigue strength Δσ0 for fatigue 
loading: 

(4) 

(5) 

The parameter cw is introduced to consider the influence of the nominal load ratio on the variation 
of the deviatoric energy imparted to the material in one cycle [40]. It should be noted that Eqs. (1), 
(2), (3), (4), (5) are defined for the mode I stress distribution due to tension or bending loads. For 
blunt notches under static loading, the following expression can be used to determine the averaged 
SED analytically [17]: 

(6) 

In Eq. (6), σmax is the maximum principal stress at the notch root, E is Young’s modulus, and F is a 
function that depends on the notch opening angle. Finally, H depends on the notch angle and the 
critical radius/notch tip radius ratio. Values of functions H and F for numerous Poisson’s ratios and 
opening angles have been reported in [17], [29] and are presented in Appendix A for the sake of 
clarity. The equation can also be expressed in a more useful form since σmax can be derived as a 
function of the stress concentration factor Ktn (net section) and the applied nominal load σnom: 

(7) 

In the case of sharp notches, the Mode I notch stress intensity factor  is introduced and the following 
equation is employed: 

(8) 

where λ1 is the Williams’ eigenvalue while γ = π–α depends on the notch opening angle 2α. 
Parameter I1 is tabulated in Table A3 for different values of the Poisson’s ratio. Further details on Eq. 
(8) can be found in [29] and are omitted here since sharp notches are not considered in the present 
paper. 

 

Once the control volume is defined, the SED can be evaluated through the above equations for the 
geometry of interest, or by more practical FE analysis. Indeed, the mean value of the elastic SED on 
the control volume can be determined with high accuracy by using very coarse meshes [41]. The SED 
is derived from the numerical nodal displacements, which are not affected by the mesh refinement. 
Provided that all the material inhomogeneities can be averaged, the SED approach has proven to be 
a powerful tool both for static and fatigue strength assessment of notched components. 



 

3. Validation of the averaged SED at the nanoscale 

3.1. Evaluation of the control volume 

The control volume for static loadings, as introduced in the previous section, is a function of the 
ultimate tensile stress and the fracture toughness. Gallo et al. [31] recently provided a first 
estimation of the averaged SED control volume at the nanoscale for single-crystal silicon. They 
proposed a value of 0.84 μm for plane strain. However, this preliminary estimation was based on Eq. 
(1) and on approximated values of the tensile strength (2 GPa) and fracture toughness (1 MPa⋅m0.5). 
Although the fracture toughness is fundamentally inherent, the yield stress is significantly affected 
by the material size [32], [33], increasing as the micro- and nanoscales are approached [11]. Thus, 
the control volume was affected by the tensile strength chosen and was not valid for different 
specimen sizes. In other words, the scale effect was not appropriately considered. However, an 
alternative procedure based on the theory of critical distances (TCD) [42] enables rapid evaluation of 
the control volume for the considered scale. According to the TCD, failure occurs when the principal 
stress σ1 at a given distance L/2 from the notch tip reaches the inherent material strength σ0. L, the 
so-called characteristic length, is considered to be a material property and is defined as [35] 

(9) 

At the nanoscale, the inherent material strength σ0 can be considered to be the ideal fracture stress, 
i.e. the upper limit of fracture stress of components having no defect. This limit, once reached, 
should not be affected by further changes in the size of the specimen and can be correlated to the 
atomic level mechanisms [34]. 

 

By combining Eq. (9) with the definitions in Eqs. (1), (2), it is possible to define the control volume as 
a function of L through the El Haddad-Smith-Topper parameter [39] introduced earlier in Eq. (3). 
Indeed, L = a0 = (1/π)(KIC/σt)2 and therefore: 

(10) 

(11) 

It should be noted that when the characteristic length L is defined for the specimens (and their 
scale), the control volume is automatically defined without any assumptions about the other 
mechanical properties. According to the comments provided earlier, for brittle materials, the TCD 
inherent material stress σ0 is representative of the ideal fracture stress, i.e. the limit of a component 
having no defects. Therefore, the critical SED at failure can be redefined as follows: 

(12) 

Gallo et al. [36] recently evaluated the characteristic length for single-crystal silicon under static 
loads. They investigated the nanoscale fracture behaviour of silicon and showed that the TCD could 
correctly estimate the fracture toughness at the nanoscale. In situ micromechanical testing of 
notched nano-cantilever beams was carried out in a transmission electron microscope (TEM). Four 
specimens were fabricated by a focused ion beam (FIB) processing system with notch radii of 10.2, 
6.3, 20.2, and 13.8 nm and opening angles 2α of 33°, 68°, 59°, and 48° respectively. Details on the 
specimen fabrication process and all the geometrical parameters have been reported in [36], and 



Fig. 2 presents an example of the final sample. The above geometries gave stress concentration 
factors Ktn (net section) of 4.3, 4.9, 2.9, and 3.7, respectively [36]. 
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Fig. 2. Example of (a) nanoscale notched specimen tested in [36] (SEM image), and TEM image of the 
sample after final failure (b). 

 

The specimens were later loaded into the TEM using a sample holder with a loading device. The TEM 
was equipped with an in situ observation camera, and the loading device consisted of a stage 
capable of being moved freely to achieve correct alignment. The load was applied to the specimens 
by pushing onto the indenter while the load was detected by a sensor beneath the indenter. The 
deflection at failure δf and load at failure Pf were obtained. The results are summarized in Table 1 
together with main geometrical parameters of the notches (refer to Fig. 3); details can be found in 
[36]. Following the definition by Susmel et al. [43], [44] and Taylor et al. [35], [42], fracture 
toughness KIC and the material characteristic length L were determined by overlapping on a single 
graph the linear elastic stress fields of the considered notches under incipient failure conditions. The 
average value of the fracture toughness was 0.98 MPa·m0.5, while L varied between 1.3 and 1.9 nm 
(i.e., 1.6 nm on average). The inherent material strength σ0 was 13.9 GPa. 

 

Table 1. Main geometrical parameters of notches (see Fig. 3), final deflections to failure, and loads at 
fracture of the nano-cantilever notches; details can be found in [36]. 

 

Specimen 2α (deg) a (nm) d (nm) ρ (nm) Ktn δf (nm) Pf (μN) 

1 33 155 217 10.2 4.3 99.96 45.33 

2 68 144 87 6.3 4.9 83.74 30.84 

3 59 179 119 20.2 2.9 115.59 65.11 

4 48 161 96 13.8 3.7 83.59 84.80 
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Fig. 3. Schematics of the block, nano-specimens, and material constants (left), and FE model (right). 

 

By using Eq. (10), the averaged SED control volume R0 for plane strain conditions is found to be 
1.4 nm. This value is calculated by assuming a Poisson’s ratio and Young’s modulus of 0.28 and 
130 GPa [45], respectively, for the [1 0 0] crystal plane, as reported in [36]. Through Eq. (12), the 
critical SED redefined by the inherent material stress σ0 of the TCD is calculated to be 0.7431 GJ/m3. 
These values are later verified against data from [36] and finite element analyses. 



 

3.2. FE analyses 

The micromechanical tests presented in [36] and briefly reviewed in Section 3.1 were re-analysed by 
using the control volume evaluated in the previous section. Nano-cantilevers were modelled by 
using the Ansys® Apdl 15.0 finite element software package, and linear elastic analyses were 
conducted. The model consists of a notched nano-cantilever beam and relative block derived from 
the fabrication process. Fig. 3 shows the simplified geometry of a typical sample. The block is 
assumed to be ten times bigger than the cantilever and fully constrained along its lower and lateral 
surfaces, as depicted in Fig. 3. Plane strain conditions were assumed and, given the condition of in-
plane loading, a 2D 8-node element-type PLANE183 [46] with unit thickness was employed. The 
anisotropy of the single-crystal silicon was defined by the three material constants [11] reported in 
Fig. 3, viz., C11 = 167.4 GPa, C22 = 65.23 GPa, and C44 = 79.57 GPa. The load was applied at the end 
of the cantilever following the configurations and loads reported in [36] (see Table 1). Coarse and 
accurate meshes were realised to verify the mesh independence of the SED at the nanoscale. Two 
procedures were followed: 

i. 

First, the experimental loads reported in Table 1 were applied to the models; then, the averaged SED 
was determined over a control volume of 1.4 nm. The aim was to verify the constancy of the 
averaged SED at incipient failure and to compare this value to the theoretical critical strain energy 
density modified by the TCD of Eq. (12), i.e. 0.7431 GJ/m3. This step was necessary to verify the 
main assumption of the SED method, i.e., that failure occurs when the SED over a control volume 
reaches a critical value. The results were also compared to the analytical formulation, i.e. Eq. (7). 

 

ii. 

Upon verification of (i), the theoretical critical SED (0.7431 GJ/m3) was assumed as input parameter 
instead, and the respective loads were evaluated a posteriori only for the cases that showed the 
highest percentage difference in (i). These values were then compared to the experimental loads in 
Table 1. The aim was to highlight the effect of the scatter/discrepancy between the experimental 
averaged SED at failure and Eq. (12) on the determination of the load at failure. 

 

 

4. Results 

4.1. Static assessment through the averaged SED approach 

Fig. 4 compares the normalised SED at failure evaluated by FE analyses and by Eq. (7) to the critical 
SED of Eq. (12). The FE analysis results show excellent agreement, which proves that the SED 
averaged over the proposed control volume can predict the load at failure reported in [36]. All 
values are well aligned with the theoretical critical SED modified with the TCD inherent strength, i.e., 
Eq. (12). The scatter is minimal, and it is mainly due to the unavoidable uncertainty in the definition 
and measurement of the geometry in [36]. More comments are provided in the discussion in Section 
5. Surprisingly, also the theoretical averaged SED, as defined by Eq. (7), shows excellent agreement 
with critical SED and FE results. Indeed, for all the specimens, the normalised SED ratio is very close 



to the theoretical value of 1. However, specimen 3 shows a slight deviation. This can be easily 
explained. Parameters F and H were provided in [29] for limited opening angles and Poisson’s ratios; 
the geometries under consideration in the present paper were not included. Thus, the present 
authors derived these parameters by linear interpolation on the basis of the values reported in Table 
A1, Table A2 in the Appendix, for a Poisson’s ratio ν of 0.3. The approximations made during the 
derivation lead to unavoidable but minimal discrepancies. Even with these approximations, the 
results are excellent. For the sake of clarity, the FE analysis results are summarised in Table 2, while 
Table 3 lists the parameters employed in Eq. (7) and the theoretical SED values. The σnom is the 
maximum bending stress according to the Euler-Bernoulli beam bending theory for the geometry 
presented in [36]. 
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Fig. 4. Static failure data in terms of normalised strain energy density. 

 

Table 2. Static failure data in terms of strain energy density and percentage difference between FE 
analyses and critical SED of Eq. (12). 

 

Spec. R0 (nm) 2α (deg) r0 (nm)  (GJ/m3) Wc (GJ/m3) Δ% 

1 1.4 33 4.59 0.7720 0.7431 4% 

2 1.4 68 2.42 0.7830 0.7431 5% 

3 1.4 59 8.12 0.7700 0.7431 4% 

4 1.4 48 5.84 0.8249 0.7431 10% 

Table 3. Theoretical SED obtained from Eq. (7) and parameters H, and F. 

 

Spec. R0/ρ 2α (deg) H F (2α) σnom (GPa) E (GPa)  (GJ/m3) 

1 0.1 33 0.5107 0.6917 3.83 130 0.7359 

2 0.2 68 0.4425 0.6720 3.66 130 0.7262 

3 0.07 59 0.5850 0.6620 5.26 130 0.6937 

4 0.1 48 0.5204 0.6760 4.47 130 0.7408 

Clearly, the difference between the experimental SED at failure and the critical SED Wc is negligible 
for all specimens. In Table 2, the percentage difference is minimal for specimens 1, 2, and 3, 
reaching a maximum of 10% for specimen 4. However, these differences are expected to be reduced 
when the nominal loads at failure are evaluated because of the mathematical relationship between 
stresses and SED. As an example, let us consider specimen 4, which exhibits the highest discrepancy. 
By following the procedure engineers would follow in practical applications for determining the load 
at fracture, the Wc value of 0.7431 GJ/m3 is assumed as a reference, and the external load is then 



determined by FE analysis, by using the same model as in Section 3.2. The results show that Wc is 
generated by an external load P of 80.9 μN, while the experiments (see Table 1) give a load at 
fracture Pf of 84.80 μN. The percentage difference between these two values is only 4.7% and within 
safety limits since the load is slightly underestimated. 

 

4.2. Mesh independence 

Different meshes have been used in the FE simulations described in Section 3.2. Fig. 5 shows an 
example of the mesh refinement levels of specimen 1′s control volume. Others models are omitted 
for the sake of brevity since they are very similar. Essential details on all models are given in Table 4, 
Table 5, Table 6, Table 7. These include the number of elements used to model the control volume, 
the averaged SED, and the percentage difference between coarse meshes and the reference fine 
mesh. The tables show that all the meshes yield an accurate estimation of the averaged SED over the 
control volume (area) for all specimens, regardless of the notch radius and/or opening angle. The 
maximum difference between models with very refined and coarse meshes is 1.1% (Table 6, 
specimen 3) and thus negligible. It is well known that other approaches based on stresses or stress 
intensity factors are highly mesh-sensitive. The SED approach offers a significant advantage over 
these other approaches, enabling rapid calculation with very simple and coarse meshes. 
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Fig. 5. Control volume of specimen 1 FE model for different mesh refinements. 

 

Table 4. Averaged values of the SED of specimen 1 for different mesh refinements. 

 

Specimen 1 Number of FEs in R0  (GJ/m3) Δ% 

Reference Mesh 15,211 0.7720 – 

Coarse Mesh I 795 0.7721 0 

Coarse Mesh II 117 0.7798 1 

Table 5. Averaged values of the SED of specimen 2 for different mesh refinements. 

 

Specimen 2 Number of FEs in R0  (GJ/m3) Δ% 

Reference Mesh 14,732 0.7830 – 

Coarse Mesh I 636 0.7799 0.4 

Coarse Mesh II 94 0.7821 0.1 

Table 6. Averaged values of the SED of specimen 3 for different mesh refinements. 

 



Specimen 3 Number of FEs in R0  (GJ/m3) Δ% 

Reference Mesh 16,835 0.7700 – 

Coarse Mesh I 891 0.7712 0.2 

Coarse Mesh II 112 0.7789 1.1 

Table 7. Averaged values of the SED of specimen 4 for different mesh refinements. 

 

Specimen 4 Number of FEs in R0  (GJ/m3) Δ% 

Reference Mesh 15,839 0.8249 – 

Coarse Mesh I 734 0.8198 0.6 

Coarse Mesh II 89 0.8317 0.8 

The mesh insensitivity of the averaged SED is easily explained by considering the theoretical basis of 
the FE method: The strain energy is determined numerically from nodal displacements, without any 
calculation of stresses and strains. Consequently, the degree of accuracy depends only on the 
element type, i.e., the shape function. On the other hand, the numerical evaluation of stresses 
involves derivation and/or integration processes that vary significantly with mesh size [47]. 

 

5. Discussion 

Micro- and nanosize components invariably present experimental difficulties, in particular, during 
mechanical characterization. These difficulties arise because the realization of an accurate geometry 
becomes problematic at very small scales, while, at the same time, it also becomes critically 
important. Even when the mechanical properties are defined, size dependence plays a fundamental 
role and cannot be neglected, unlike in large bodies and macro components. This is exemplified by 
the fracture toughness of single-crystal silicon. Ando et al. [8] and Li et al. [9] found that the KIC of 
nano-Si was in some cases twice as large as its macro counterpart. Sumigawa et al. [11] found that 
such discrepancies were due to the small radius of the crack tip, which had a significant effect on the 
final fracture toughness value. Sumigawa et al. [11] then conducted mechanical tests on pre-cracked 
samples, making sure that an effective crack tip was realized. The results yielded a nano-Si KIC of 
1 MPa⋅m0.5, in agreement with the macro scale [11]. The application of any method for design or 
characterization at the nano- and microscales involves the definitions of the mechanical properties; 
thus, all the difficulties and uncertainties reported above apply. The SED approach seems to present 
the very same problems in terms of the definitions of the control volume and the critical SED. 
However, the present study showed that some difficulties can be overcome by exploiting the TCD, 
which brings two main advantages: (i) it eliminates the need for strict control of the geometry (i.e., 
KIC is derived by using notches of generic “different sharpnesses”); (ii) the fracture toughness and 
the so-called inherent material strength are defined simultaneously. These benefits also affect the 
SED method once the TCD is introduced into its formulation by modifying Wc, as shown in Eq. (12), 
and by determining the control volume as a function of the material characteristic length L. With this 
strategy, the main parameters of the SED, i.e., R0 and Wc, are completely defined and can be easily 
employed for static assessment. The results showed that by employing a control volume of 1.4 nm, 
the method gives an excellent estimation of the load at fracture. Indeed, all specimens showed an 



averaged SED at failure very close to Wc (see Fig. 4). The maximum discrepancy was 10% in terms of 
SED (specimen 4 in Table 2), which corresponds to 4.7% in terms of load. 

 

The control volume proposed in the present paper, 1.4 nm, is considerably smaller than the value 
given previously in [31], 0.84 μm. However, this does not invalidate either value. Indeed, the 
difference may be explained by considering a significant factor: the specimen size (scale). Bulk 
components have indeed a large volume which contains a large number of small cracks (defects), 
and therefore the fracture stress decreases. On the other hand, as the component size goes down, 
the volume, the number of small cracks and the maximum defect size (that governs the fracture 
stress) also decreases. At very small scales (such as nanoscale components), there is ideally no 
crack/defects in the considered volume, and the ideal strength σ0 is reached. At this point, σ0 should 
not be affected by further changes in the specimen size, and it can be related to the atomic level 
interactions [34]. In [31] the specimens were larger and the ultimate tensile strenght value of 2 GPa 
was only an estimation. This parameter, as shown in Eqs. (1), (2), dramatically changes the control 
volume. The same consideration is valid for the fracture toughness. Indeed, it is shown that KIC is 
inherent in the case of single-crystal silicon, but this property has yet to be proved for other 
materials. In contrast to the macroscale, where the control volume depends only on the mechanical 
properties, the scale and size of the specimen affect the control volume as an additional variable. 
The solution proposed in the present work aims to correlate the control volume to the scale effect 
by the TCD. The TCD lies between continuum mechanics theories and micro-mechanistic 
approaches, which attempt to model the physical mechanics of the fracture/failure at very small 
scales. The material characteristic length L can be considered to be a representative length scale 
parameter that assumes different values as the micromechanisms of fracture change scale [48], 
while σ0 is representative of the ideal fracture stress on the basis of the relationship between 
fracture stress and component volume. Even though these considerations seem in contrast with the 
definition of L as a “material property”, Taylor [42] extensively showed how the TCD is capable of 
predicting the size effect, and how, for smaller scales on the order of L, the latter may become a 
variable quantity [49]. Therefore, when these two parameters are introduced into the theoretical 
formulation of the SED, as shown in Section 3.1, the critical SED and the control volume are implicitly 
modified to take into account the scale effect. First, the critical SED is redefined through the TCD 
inherent material strength σ0, which is representative of the specimens (and scale) being 
considered. By so doing, any uncertainty in the assumption of static strength is overcome. 
Subsequently, the control volume is defined in terms of L and thus may vary with L and the 
micromechanisms involved in the fracture process. The excellent results obtained here demonstrate 
that the combination of the two approaches is a winning choice. 

 

Surprisingly, the excellent agreement is not limited to the SED evaluated through FE analysis but is 
also valid for its theoretical formulation, i.e. Eq. (7), as shown in Fig. 4. All the normalised SED ratios 
are very close to the theoretical value of 1. The small scatter is clearly due to approximations in the 
parameters F and H. These were provided in [29] for limited geometries, and have thus been derived 
in the present work by linear interpolation on the basis of the values reported in the Appendix (refer 
to ν = 0.3). These approximations are reasonable, but a better estimation (left for future work) 
should include new definitions for F and H, by following the procedure reported in [29]. It is more 
interesting instead to dwell on the fact that the theoretical formulation presented in Section 2 was 
developed for large bodies (large volume-to-surface ratio) and continuum models. Clearly, those 
assumptions become questionable as the micro and nanoscales are approached. However, the 



theoretical formulation of the SED (see Fig. 4) still gives excellent results when applied to the nano-
cantilevers considered here [36]. This can be explained by taking into account the low limit of 
continuum fracture mechanics and the scale at which Si micromechanisms of fracture occur. 
Sumigawa et al. [15] analyzed single-crystal Si at the atomic level by using density functional theory 
(DFT) calculations and showed that the initiation of nano-cracking is dominated by the cleavage of 
atomic bonds at the crack tip, and thus occurs at smaller scales than the one considered in the 
present paper. These micromechanisms govern not only the fracture of Si at small scales but at the 
macroscale as well. It seems, therefore, that the control volume proposed in the present work is still 
representative of the fracture process, despite the scale effect. Shimada et al. [13] evaluated the 
ultimate dimensional limit of fracture mechanics at the nanoscale by considering only several atoms 
in a singular stress field of several nanometers near a crack tip. They found that the singular stress 
field still governed the fracture, but classic approaches such as those involving the stress intensity 
factor failed below a specific length scale. On the basis of classical atomic simulations and first-
principles density-functional theory calculations, Shimada et al. [13] identified a fracture process 
zone Λf of 0.4–0.6 nm, and a stress intensity factor dominant region Λk of 1.2–3.6 nm. For values of 
the singular stress field close to the lower limit of Λk, continuum fracture mechanics breaks down. 
While the relationship between these values and the TCD material characteristic length has already 
been addressed in the recent literature [36], the results of the present paper lead to a further 
discussion that also considers the SED control volume. Interestingly, the control volume R0 = 1.4 nm 
falls within the range of Λk, and, more importantly, it is larger than and contains the fracture process 
zone. It is thus demonstrated that the control volume employed in the present work is 
representative of the micromechanisms of fracture and yet still falls within the range of validity of 
continuum fracture mechanics. If the high level of homogeneity of single-crystal Si is considered as 
well, it is possible to conclude that the central assumptions of the SED theory are verified. In other 
words, once the lower limit of continuum fracture mechanics is identified and until that limit is 
reached effectively, the SED method remains valid, provided that the control volume and critical SED 
are calibrated correctly. Indeed, even though the lower limit of continuum theory is not reached, a 
scale effect still clearly exists, and parameters become variable quantities. By contrast, at smaller 
scales, continuum mechanics fails and one must deal with atomic structure. In this case, energy 
criterions seem more flexible than others in adapting to discrete models [13], [14], [15]. 

 

In the present work, the SED has been combined with the TCD. For the sake of clarity, it should be 
pointed out that Berto at al. [50] proposed an additional method to determine the control volume. 
In [50], brittle fracture of sharp and blunt V-notches in isostatic graphite under pure compression 
loading was investigated by using the averaged SED criterion. Because of the impossibility of defining 
the fracture toughness under a compressive load, the equations presented in Section 2 could not be 
used to derive critical SED and control volume. Therefore, Berto at al. [50] employed an empirical 
approach. Similarly to the TCD procedure in determining the critical length, the SED of at least two 
notches having different sharpnesses were plotted in the same graph by varying the control volume. 
The critical SED and the final control volume were defined by the point at which the two curves 
crossed over. This empirical procedure showed excellent results [50], but it did not give information 
on other mechanical properties and micromechanics of fracture. Lastly, it involved additional FEM 
models. By the way, since the present paper has finally given proves of the validity of the SED at the 
nanoscale and defined the length scale of the control volume, nothing prohibits to apply this 
alternative procedure in the future. 

 



The SED approach has been applied here to static loads. Given the excellent results and essential 
properties such as mesh-insensitivity, a further extension to fatigue loads at small scales may have a 
relevant technological impact. Moreover, it could be interesting to extend others well-known 
fracture models to micro- and nanoscale, e.g. cohesive crack model [51], [52], and finite fracture 
mechanics (FFM) [53], [54], [55] which has many similarities with the TCD. 

 

6. Conclusion 

This study extended the averaged Strain Energy Density (SED) method to the static assessment of 
notched components at the nanoscale. An alternative strategy based on the Theory of Critical 
Distances is employed to evaluate the correct SED control volume and critical SED. The method is 
later verified against experiments [36] and FE analyses. The following conclusions can be drawn: 

• 

The theoretical critical SED is redefined by using the ideal fracture stress (the limit of components 
having no defects) σ0 provided by the TCD; this solution allows the critical SED to be correlated 
implicitly to the size of the component. 

 

• 

The control volume is evaluated by using the TCD characteristic length evaluated in [36] and the El 
Haddad-Smith-Topper parameter [39]. 

 

• 

The control volume proposed is 1.4 nm (plane strain), while the critical SED is 0.7431 GJ/m3. 

 

• 

The SED averaged over the control volume obtained by using the TCD successfully estimates the 
static load at fracture of nanoscale notched specimens; the maximum discrepancy is found to be 
4.7% in terms of load and 10% in terms of SED. 

 

• 

The theoretical SED also yields excellent results, and the normalised SED ratio is close to the 
theoretical value of 1; the small discrepancies are undoubtedly due to the use of approximated 
values for the parameters H and F. 

 

• 

The method is mesh-independent, and therefore very coarse meshes can be employed in numerical 
analyses. 



 

• 

The extension of the SED approach at the micro- and nanoscales provides a fast and simple tool for 
the design of micro- and nanodevices since it can be applied easily to various geometries, from 
cracks to notches. 

 

• 

It is shown that, within the limits of continuum fracture mechanics, LEFM approaches such as the 
SED can be easily scaled down to the nanoscale, provided that the main parameters (that become 
variables) are calibrated to take into account the scale effect. 


