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Abstract
The purpose of this study was to develop a recursive algorithm for computing
a maximum a posteriori (MAP) estimate of a binary Markov random field
(MRF) by using the MAP-MRF framework. We also discuss how to include
an approximation in the recursive scheme, so that the algorithm becomes
computationally feasible also for larger problems. In particular, we discuss
how our algorithm can be used in an image analysis setting. We consider
a situation where an unobserved latent field is assumed to follow a Markov
random field prior model, a Gaussian noise-corrupted version of the latent
field is observed, and we estimate the unobserved field by the MAP estimator.
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1 Introduction

1 Introduction

Markov random field (MRF) theory is often used in conjunction with statis-
tical decision and estimation theories so as to formulate an objective function
in terms of established optimality principles. One of the main problems un-
derlying many applications of MRFs amounts to inferring the hidden state
x based on a Gaussian noise-corrupted observation y. This is often done
through a maximum a posterior (MAP) approach which finds x̂MAP by max-
imizing the posterior probability P (x|y). i.e.

x̂MAP = argmax
x

P (x|y). (1)

The Maximum a posteriori (MAP) algorithm applied to Markov random
field determines the most likely value of each state of the Markov random
field with respect to its Markovian neighbourhood system. This is achieved
by computing an a-posteriori probability (APP) for each state sequentially.

Estimation of binary Markov random field‘s state by MAP is formulated
using the Bayesian setting despite the difficulty of the existing intractable
normalizing constant in the binary MRF prior model. See Tjelmeland and
Austad (2010) for several ways of dealing with the intractable normalizing
constant. In this thesis, we focus on developing a recursive algorithm for
MAP estimate of a hidden binary Markov random field by assuming the
prior model, P (x), to be a Markov random field and a Gaussian likelihood
P (x|y) with constant variance σ2. In the course of computing the recur-
sive MAP estimation algorithm we adopt a canonical representation of the
Markov random field.

Note that one of the famous models related to image analysis is the Ising
model which is first proposed by Dr. Earnest Ising, which is a model defined
for a binary Markov random field with a 2D n× n lattice. Most theories of
the binary MRF including the neighbourhood system examples used in this
thesis are defined related to the Ising model.

Basically, we have developed the estimation algorithm for an n-dimensional
binary Markov random field using MAP-MRF framework (Geman and Ge-
man 1984). An approximation is done by approximating every interaction
parameter to zero if they got a value less than a given threshold value ε and
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also the approximation to zero applies for higher order interaction parame-
ters if all the corresponding lower order interactions are zero (approximated
to zero). Note that the approximation is done in parallel with the recursive
computation. As a scope of the algorithm we can apply it for estimating
a unobserved latent state of a binary MRF from a noise-corrupted observa-
tion with a binary MRF prior model. In this thesis, image restoration from
a Gaussian noise-corrupted observation with constant variance is the main
application area of the MAP estimation method by considering prior distri-
bution of the true image to be MRF.

This thesis is organized as follows. Section 2 contains MRF theory and
properties including the MAP-MRF framework specifically for a binary MRF.
Section 3 discusses the most important area of application for MRFs, which
is Bayesian image analysis. In Section 4 we explain in detail the recursive
computation of MAP for a binary MRF. Section 5 discusses approximations
necessary to make the recursive computations feasible for larger lattices. The
last section provides the closing remarks.

2 Markov random field (MRF)

Markov random field theory is a branch of probability theory. It provides a
foundation for the characterization of contextual constraints and the deriva-
tion of the probability distribution of interacting features. MRF theory is
often used in conjunction with statistical decision and estimation theories so
as to formulate objective functions in terms of established optimality princi-
ples. Maximum a posteriori (MAP) estimation is a popular choice in MRF
modeling. MRFs have been used widely to solve problems like image restora-
tion and segmentation (Bouman, 1995), edge detection (Tardón, et al, 2006),
object matching and recognition (Li, 1994) etc, including restoration of an
unobserved image from noisy data which is going to be discussed in detail in
this thesis.

MRFs and the MAP criterion together give rise to the MAP-MRF frame-
work which is recommended in Geman and Geman (1984). In the MAP-
MRF framework, the objective is to compute the joint posterior distribution
of the MRF sites. From the prior distribution and the conditional proba-
bility distribution of the observed data, the form and the parameters of the

2



2 Markov random field (MRF)

posterior distribution are determined. Two major parts of the MAP-MRF
modeling framework are to derive the form of the posterior distribution and
to determine the parameters in it so as to completely define the a posterior
probability (APP). Another important use of the MAP-MRF framework is
to design an optimization algorithm for finding the maximum of the poste-
rior distribution. In this thesis we consider how the MAP-MRF framework
algorithm is developed to restore an unobserved image from noisy data.

The concept of MRFs is a generalization of a Markov process, which are
widely used in sequence analysis. A Markov process is a sequence (chain) of
random variables (x1, ..., xn) defined on the time indices 1, ..., n. A Markov
process is defined on a time domain, whereas an MRF is defined in space.
We start by defining a random field.

Definition 1. Let x = (x1, ..., xn) be a family of random variables defined
on the set S = {1, ..., n} in which each random variable takes a value xi in a
domain D. Then the family x is called a Random Field.

An MRF is also defined on a set S = {1, ..., n}. Moreover, it is defined
with respect to a so called neighbourhood system. When setting up MRF in
practice we shall require quite specific information on the relative positions
of sites, in order to assess the likely interdependency between the associ-
ated random variables. The sites in S are related to one another via the
neighbourhood system.

Definition 2. A neighbourhood system for S is defined as: N = {Ni| ∀i ∈
S} where Ni is the set of sites neighbouring i. The neighbouring relationship
is required to have the following properties:

1. A site is not neighbouring itself: i /∈ Ni.

2. The neighbouring relationship is mutual for all distinct pairs of sites
i, i‘ ∈ S: i ∈ Ni‘ ⇔ i‘ ∈ Ni.

As the simplest example, suppose that {x1, ..., xn} is a Markov chain.
Then it can be shown that site i (2 ≤ i ≤ n − 1) has neighbours i − 1 and
i+ 1 whilst the sites 1 and n have the single neighbours 2 and n− 1, respec-
tively.
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Figure 1: The 1st, 2nd and nth order (n = 1, 2, 3, 4, 5) neighbourhood structure
for imaging.

Commonly used neighbourhood structures in imaging, i.e. when the sites
form a finite rectangular lattice S = {(u, v), 1 ≤ u, v ≤ n} corresponding to
the pixels of an n× n image in the 2D plane, are

• First order neighbourhood system (4-neighbourhood) when every inte-
rior site have four neighbours, see Figure 1 a.

• Second order neighbourhood system (8-neighbourhood) when every in-
terior site have eight neighbours, see Figure 1 b.

Generally, for n = 1, ..., 5 order neighbourhood system see Figure 1 c. The
numbers n = 1, ..., 5 in Figure 1 c show the outermost neighbouring sites to
the black site in the nth order neighbourhood system. For example, in case of
n = 3 which is the 3rd order neighbourhood to the black site, all sites assigned
with 3, 2 and 1 are elements of the 3rd order neighbourhood to the black site.

For a regular lattice (a lattice with sites distributed regularly) S, we can
generally define the neighbouring site to i as follows.
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Figure 2: An undirected graph V = (S,E) visualizing the neighbourhood
system for a toy example of a Markov random field with S = {1, 2, 3, 4} and
N = {N1, ...,N4} = {{2, 3, 4}, {1}, {1, 4}, {1, 3}}.

Definition 3. For a regular lattice S, the set of neighbours of i is defined as
the set of sites within a radius of

√
r from i, i.e.

Ni = {i‘ ∈ S | [dist(site i‘, site i)]2 ≤ r, i‘ 6= i}, (2)

where dist(a, b) denotes the Euclidean distance between a and b while r takes
a positive value.

According to Hurn et al (2003), we can have a graphical display of a
neighbourhood system N by an undirected graph V = (S,E) which has one
vertex corresponding to each site in S and an edge between any pairs of sites
that are neighbours, i.e. E = {(k, l)| k ∈ Nl}. For a site without any neigh-
bours we just put it as a vertex with no edge to other sites. For example,
let us consider a toy example with S = {1, 2, 3, 4} and N = {N1, ...,N4} =
{{2, 3, 4}, {1}, {1, 4}, {1, 3}}, then see the undirected graph V = (S,E) in
Figure 2 for the toy example.

According to the above explanation of the nth order neighbourhood, sites
at the boundary, at the corner and those at the interior of the lattice may
have different number of neighbours despite of having same order of neigh-
bourhoods. For example in a first order neighbourhood of a rectangular
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lattice the interior sites have four neighbours whereas sites at the boundary
have three neighbouring sites and those at the corner have two. According
to Hurn et al (2003), the value at the boundary may have a significant effect
on the marginal distribution of interior sites. Thus we can use the upcoming
Torus boundary condition to solve this unequal number of neighbours.

The torus boundary condition for a rectangular lattice allows any site
in the lattice to have equal number of neighbours regardless of its position
during a given order of neighbourhood. For example, in the first order neigh-
bourhood of an n×n lattice the four neighbours of sites (u, n), (u 6= 1 and n)
are (u − 1, n), (u + 1, n), (u, n − 1) and (u, 1). Similarly, the site at (1, n)
has four neighbours i.e. (2, n), (n, n), (1, n− 1) and (1, 1).

In addition to the neighbourhood system, we have another set of sites
property which is called a clique, see the upcoming definition of clique.

Definition 4. Any set of sites which either consists of a single site or in
which every site is a neighbour of every other site in the set is called a clique.

According to Definition 4, a clique consists of either a single site, c1 = {i},
a pair of neighbouring sites, c2 = {{i, j}; j ∈ Ni}, a triple of neigh-
bouring sites, c3 = {i, j, k; i, j, k are neighbours to one another} and
so on depending on the size of S and existence of the clique combina-
tions. The collection of all cliques for (S,N ) is called the clique system
and is denoted as C. The cliques of the toy example given above are C =
{∅, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {3, 4}, {1, 3, 4}}.

Using the definition of a neighbourhood system given above, we define a
Markov random field as follows.

Definition 5. A random field x = (x1, ..., xn) is said to be a Markov random
field (MRF) on S = {1, ..., n} with respect to a neighbourhood system N if
and only if the following holds true

• P (x) > 0, ∀x ∈ Dn , (positivity condition)

• P (xi| xS\{i}) = P (xi|xNi
) , (Markovian condition)

where xS\{i} = (x1, ..., xi−1, xi+1, ..., xn) and xNi
= (xj, j ∈ Ni).

6



2.1 Binary Markov random fields

The Markovian condition is the most essential and needs to be checked or
validated in MRF before further use. Besag (1974) discusses the positivity
condition as follows. If values x1, ..., xn individually occur at the sites 1, ..., n,
respectively then, the configuration (x1, ...xn) also must have a positive prob-
ability for occurring. Formally, if P (xi) > 0 for each i, then P (x1, ..., xn) > 0.
In other words, when the positivity condition is satisfied, the joint probabil-
ity of any random field in the domain is uniquely determined by its local
conditional probability (Besag 1974).

The Hammersley-Clifford theorem gives then the most general definition
form of an MRF.

Theorem 1. (Hammersley-Clifford): A distribution satisfying P (x) > 0 for
all configurations x ∈ Dn is a Markov random field if, and only if, it has a
joint distribution of the form

P (x) = Const exp

(
−
∑
c∈C

Zc(xc)

)
. (3)

for some set of functions Zc(xc), c ∈ C, where C is the set of all cliques and
Const is the normalizing constant.

To prove this theorem, one must show two things. The first and easiest
one is to let the joint distribution of x be given by (3) then, compute the full
conditional and show that the full conditional fulfills the Markov property.
The second way, which is the tough one, is to let the full conditional be the
expression of an MRF and then, compute the joint distribution and see that
it must be look like (3). For this we refer to Besag (1974) and Hurn et al
(2003).

2.1 Binary Markov random fields

Above we have introduced MRFs in general. In this section we will consider
in detail binary MRFs. Let, as above, S = {1, ..., n} be a discrete set of n
sites. To each site i ∈ S we associate a binary variable xi ∈ D = {0, 1}, which
is the reason to say an MRF is binary and let x = (x1, ...xn) ∈ Dn = {0, 1}n.
We also use the notation xΛ = (xi, i ∈ Λ) and x−Λ = xS\Λ for Λ ⊂ S,
and x−i = xS\{i} for i ∈ S. Note that xΛ and x−Λ are disjoint and that
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Figure 3: The graph G(P(S)) for S = {1, 2, 3, 4}.

x = (xΛ, x−Λ).

Given a set S, the power set of S, P(S), is the set of all subsets of
S including the empty set and the set S itself i.e. P(S) = {Λ| Λ ⊆
S}. For example let us again consider our toy example of S={1, 2, 3, 4}.
Then P(S) = {∅, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4},
{1, 2, 3}, {1,2,4}, {1, 3,4}, {2,3, 4}, {1, 2, 3, 4}}. See Figure 3 for a graphical
representation of the power set of the toy example.

An important aspect of MRFs in image analysis is to simplify the chal-
lenge we face when modeling the legitimate joint distribution of the sites of
an image. The MRF modeling approach this issue through the full condi-
tionals, the conditional distribution of a site given the rest, and breaks down
the problem into a more manageable task. Using an MRF we focus on the
behavior of the ith site if we know the configuration of its neighbours. For
example, the probability of xi to be zero may increase with the increase num-
ber of neighbouring sites to site i that are zero. One possibility would be to
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2.1 Binary Markov random fields

express this by

P (xi = 0| k zero labeled neighbours) ∝ exp(βk), (4)

where β is a positive parameter.

Although we might therefore approach the MRF modeling by specifying a
neighbourhood and the full conditionals for each site like (4), the uniqueness
and legitimacy of the joint distribution is questionable. By the Hammersely-
Clifford theorem one is ensured a legitimate joint distribution by specifying
the model via the set of functions Zc(xc), c ∈ C.

Let us assume we are given a probability distribution for x denoted by
P (x), x ∈ Dn = {0, 1}n. We may express P (x) as

P (x) = Const exp
(
− U(x)

)
, (5)

where the sum to one property of P (x) with respect to x is maintained by
Const which is called a normalizing constant.

The positivity condition, P (x) > 0, is maintained by using the expo-
nential, exp(.),of the expression of the energy function U(x). A canonical
representation of the energy function in terms of a set of interaction param-
eters, β = {β(Λ),Λ ⊆ S}, is defined as

U(x) =
∑
Λ⊆S

β(Λ)
∏
i∈Λ

xi. (6)

Theorem 2. Let x be a Markov random field with respect to a neighbourhood
system N , let C be the corresponding set of all cliques, and let {β(Λ),Λ ⊆ S}
be the interaction parameter between or among the subset of S. Then β(Λ) =
0 for all Λ /∈ C.

A proof is given in Tjelmeland and Austad (2010).

In (6) we define the energy function U(x) in terms of a set of interaction
parameters, β = {β(Λ),Λ ⊆ S}. According to Theorem 2, if x is known to
be Markov with respect to a neighbourhood system N , there will be set of
Λ, Λ ⊆ S such that β(Λ) = 0. In short β(Λ) = 0 for all Λ /∈ C. If β(Λ) = 0
for a given Λ, Λ ⊆ S, including those zero valued interaction parameter in
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(6) have no use. Deducting those zero valued interaction parameters from
(6) we get

U(x) =
∑
Λ⊆B

β(Λ)
∏
i∈Λ

xi, (7)

where
B =

⋃
Λ∈P(S):β(Λ) 6=0

P(Λ). (8)

2.2 Computation of interaction parameters

We have seen before that the joint distribution of the MRF can be expressed
like (5) using the energy function (7). To compute the MAP estimate we
first have to represent the given energy function U(x) on the form (7) and
then using this U(x) we have to compute the interaction parameters β(Λ)
for all Λ ∈ C.

As before, let x = (x1, ..., xn) where xi ∈ D = {0, 1} for i ∈ S = {1, ..., n}
and let x(Λ) = (I(1 ∈ Λ), ..., I(n ∈ Λ)) where I(·) is an indicator function
defined as

I(a) =

{
1, if condition of "a" is true,
0, if condition of "a" is false.

(9)

Note that, according to the definition of I(·), if Λ = S we have x(Λ) =
(1, ..., 1) and similarly if Λ = ∅ we have x(Λ) = (0, ..., 0).

To compute the interaction parameter β(·) from (6), insert x(Λ) in place
of x in (6) to get

U
(
x(Λ)

)
=
∑
A ⊆Λ

β(A)
∏
i∈A

I(i ∈ A). (10)

Note that in (10) we get I(i ∈ Λ) = 1 because A ⊆ Λ. Thereby we can
rewrite the expression to get

U
(
x(Λ)

)
=
∑
A⊂Λ

β(A) + β(Λ). (11)

Finaly, the interaction parameter of a given Λ, Λ ⊆ S becomes

β(Λ) = U
(
x(Λ)

)
−
∑
A⊂Λ

β(A). (12)
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2.3 Graphical representation of Markov random field

When we compute the interaction parameters using (12) we have to com-
pute them recursively depending on the element size in Λ and go in increasing
order. We first compute β(∅), next β(Λ) for |Λ| = 1 and then next for |Λ| = 2
and goes till |Λ| = n. On the course of computation of the interaction pa-
rameters by the above method we can note that it is not computationally
efficient because the same sum will be computed repeatedly. We recommend
to have a look in Tjelmeland and Austad (2010) for a computationally more
efficient method for computing the interaction parameters from the given
energy function.

2.3 Graphical representation of Markov random field

Using all Λ, Λ ∈ P(S), we can have a graphical representation of P(S)
denoted as G(P(S)) with every Λ represented as a vertex in the graph,
G(P(S)). See Figure 3 for the toy example of S = {1, 2 , 3 , 4}. For ev-
ery Λ ∈ P(S) there is a corresponding interaction parameter value β(Λ)
which is computed from the energy function U(x) using (12). By computing,
storing and assigning the corresponding interaction parameter value of each
vertex of the graph G(P(S)) we form a new named graph called a vertex-
weighted graph G(P(S), β). Principally and according to Tjelmeland and
Austad (2010) the joint distribution P (x) can be represented by the vertex-
weighted graph, G(P(S), β).

According to the definition that x is Markov random field and the use of
Theorem 2, β(Λ) = 0 if Λ /∈ C where C is the clique system and Λ ∈ P(S)
which reduces the vertex size of the vertex-weighted graph G(P(S), β) and
also substantiate the usefulness of defining B as we did in (8). Using the ver-
texes, Λ ∈ B we can re-define a new vertex-weighted graph, G(B, β), which
is used to represent our joint distribution of the Markov random field x.

Figure 4 shows the unweighted graph G(B) for the toy example S =
{1, 2, 3, 4} when β(Λ) 6= 0 for Λ ∈ {{1, 2}, {1, 3}, {1, 4}, {3, 4}} and β(Λ) = 0
for Λ ∈ {{2, 3}, {2, 4},{1,2,3}, {1,2,4},{1, 3, 4}, {2, 3, 4}}. Note that in case
of G(B), which is the reduced version of G(S) by assuming Markovianity,
we should always contain the vertexes having ∅ and {i}, i ∈ S in the graph
G(B).
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Figure 4: The unweighted graph G(B) for the toy example.

3 Image analysis problem
One unifying theme for the different types of imaging problems, according
to Hurn et al (2003), is that they may generally be regarded as being of the
forms

Signal = Image⊗Noise (13)

or
Signal = f(Image)⊗Noise (14)

where ⊗ represents a suitable combination operator and the function f(·)
indicates that the signal is not of the same format as the original image.

In this thesis we are assuming that the signals have the same format as
the original image with additive effect of the noise on the image i.e.

Signal = Image + Noise. (15)

We also assume that the images are degraded by additive Gaussian noise
and that the noises are uncorrelated to each other with zero mean and con-
stant variance σ2. To make the understanding and computational repre-
sentation easy we denote the signal which is the data by y = (y1, ..., yn)
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3.1 Markov random field prior model

and the underlying unobserved image by x = (x1, ..., xn), and the noise by
ε = (ε1, ..., εn), where

εi
iid∼ N(0, σ2). (16)

Thus the observed data, y = x+ ε, have a Gaussian property i.e

yi ∼ N(xi, σ
2), (17)

for i ∈ S. Note that ∀{i, j} ∈ S and i 6= j then yi and yj are uncorrelated.

Remembering our main objective of the thesis, we are looking to apply
the MAP estimation method on the unobserved latent state of an image x.
We have assumed the noise (error) to be Gaussian with zero mean and con-
stant variance σ2 and the data is given or is observed from the latent hidden
state of the image. MAP estimation method differs from the maximum like-
lihood very basically because of the prior information that we have in case of
MAP estimation method. Choosing the prior model is one of the most criti-
cal aspects of Bayesian analysis. The Bayesian approach for estimating the
unobserved state of the image has a benefit in image analysis and interpre-
tation because it permits the use of prior knowledge concerning the situation
under study and incorporates that prior knowledge into data analysis. Ac-
cording to Hanson (1993), MAP estimation has been successfully employed
in spatial settings and his opinion also support that the MAP formulation
(Bayes approach in general) is well-suited to the restoration of images.

3.1 Markov random field prior model

The prior model expresses the degree of certainty concerning the situation
before the data are taken. The model we select for the prior has a very
direct influence on the outcome we expect. If the prior is too specific and
too strong, the restoration of the unobserved image can only closely resem-
ble what is expected, see in Hanson (1993). Furthermore, departures from
what is anticipated may be missed. The strength of the prior relative to the
likelihood is a critical parameter in any Bayesian analysis. How the strength
of the prior distribution is being determined, is a basic question in Bayesian
analysis. According to Hanson (1993), as the strength of the prior is in-
creased, the MAP solution is biased. However, using a very weak prior to
solve the biasedness the effect of the prior becomes negligible. Gull (1989)
has offered a mean to determine the prior‘s strength based on the posterior,
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viewed as a function of the strength of the entropic prior.

In this particular thesis, we deal with restoration of an unobserved image
x which is assumed to be an MRF from the specified prior. Thus we assume
that the prior is an MRF. Therefore, we are assuming our prior model to be
an MRF expressed as (5). i.e.

P (x) = Const exp

{
−
∑
Λ⊆S

β(Λ)
∏
i∈Λ

xi

}
. (18)

3.2 The likelihood model

The likelihood model encompasses the information contained in the new data.
As we have assumed before, the data is Gaussian with zero mean, constant
variance σ2 and uncorrelated additive noise terms,

y = x+ ε. (19)

Applying the Gaussian distribution and the conditioning on x it can be
shown that the observed data y will have a Gaussian distribution with mean
x and variance σ2 i.e. y ∼ N(x, σ2). Therefore our likelihood model can be
expressed as

P (y|x) = Const exp

{
−1

2σ2

n∑
i=1

(yi − xi)2

}
. (20)

3.3 The posterior model

When both the prior and likelihood models are known, the best result is
achieved by maximizing a Bayes criterion. MAP is the most popular estima-
tion method if both the likelihood and prior models are defined. However,
If the knowledge about the data is available but not the prior model, the
maximum likelihood estimation can be used.

The Bayes law states that the posterior probability distribution is pro-
portional to the product of the likelihood and the prior distributions. From
(18) and (20) we get the posterior distribution model P (x|y) to be
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4 Recursive computation of maximum a posteriori probability
(MAP) for a binary MRF

P (x|y) = const P (y|x)P (x) (21)

= const exp

{ n∑
i=1

(
− β(i) +

2yi − 1

2σ2

)
xi −

∑
Λ⊆S
|Λ|6=1

β(Λ)
∏
k∈Λ

xk

}
.

The expression in the exponent can be rewritten in the canonical or stan-
dard form discussed above. This representation will help us to understand
the expression better. Thus, we denote the posterior interaction parameter
by β?(Λ) and get

β?(Λ) =

{
β(Λ)− 2yi−1

2σ2 if Λ = {i}, i ∈ S,
β(Λ) if |Λ| 6= 1.

(22)

Note here that β(Λ) denotes the interaction parameter given in the prior
distribution P (x), that is before the observation effect have been observed,
whereas β?(Λ) is going to be the new interaction parameter, that is the inter-
action parameter after the effect of the observation. Note that the interaction
parameter of the prior model β(Λ) only differ from the interaction parameter
of the posterior β?(Λ) when the number of element in Λ equals one.

Applying the new interaction parameter β?(Λ) in (21), we can rewrite the
posterior distribution as

P (x|y) = const exp

{
−
∑
Λ⊆S

β?(Λ)
∏
k∈Λ

xk

}
. (23)

We see that P (x|y) is of the same form as the prior P (x).

4 Recursive computation of maximum a poste-
riori probability (MAP) for a binary MRF

Maximum a posteriori probability (MAP) is a common image estimation
method in image analysis. In Bayesian analysis, maximum a posteriori prob-
ability (MAP) estimate is the mode of the posterior distribution. In this
thesis we are in need of estimating an image x whose posterior distribution
is given by (23) using MAP estimation method. Note that we are dealing
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with MRFs thus we can use (7) to redefine the energy function of (23) and
using this we compute MAP as follows.

The MAP estimator of P (x|y) is given as

x̂MAP = argmax
x

P (x|y)

= argmax
x

exp

{
−
[∑

Λ∈B

β?(Λ)
∏
i∈Λ

xi

]}
. (24)

We can redefine the maximum a posterior probability estimation method
of the image x for the specific expression given above as

x̂MAP = argmin
x

∑
Λ∈B

β?(Λ)
∏
i∈Λ

xi. (25)

Though we define the MAP estimation of a binary MRF by (24) or (25),
due to the Markovian neighbourhood character of each xi : i ∈ S the compu-
tation needs an ordered recursive step. To compute x̂MAP we recursively have
to maximize P (x|y) with respect to each state (x1, ..., xn) to get (x̂1, ..., x̂n)
and these as a whole gives x̂MAP . However, each xi at every ith step is in-
fluenced by its neighbouring sites which are not yet been estimated since we
start the estimation from i = 1, till i = n in increasing order.

To compute an estimate of xi, we first have to find and store the result-
ing estimate of xi for all possible combination of values for the neighbouring
sites. Let ψi(xNi

) denote this estimate of xi. This can also be organized in a
table where the first |Ni| columns gives the values of xNi

and the last column
gives ψi(xi). See Table 1 for the toy examples distribution maximized with
respect to x1.

Let us consider the toy example again. We know from the toy example
that N1 = {2, 3, 4}. We start by computing expression (25) with respect to
x1 and denote the result as ψ1(xN1) i.e.
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4 Recursive computation of maximum a posteriori probability
(MAP) for a binary MRF

x2 x3 x4 ψ1(xN1)

0 0 0 ψ1(0, 0, 0)
0 0 1 ψ1(0, 0, 1)
0 1 0 ψ1(0, 1, 0)
1 0 0 ψ1(1, 0, 0)
0 1 1 ψ1(0, 1, 1)
1 0 1 ψ1(1, 0, 1)
1 1 0 ψ1(1, 1, 0)
1 1 1 ψ1(1, 1, 1)

Table 1: Combination of xN1 = {0, 1}|N1| with estimate of x1, x̂1 = ψ1(xN1)

ψ1(xN1) = argmin
x1

{ ∑
Λ∈B−1

β?(Λ)
∏
i∈Λ

xi +
∑

Λ∈B1

β?(Λ)
∏
i∈Λ

xi

}
= argmin

x1

{ ∑
Λ∈B1

β?(Λ)
∏
i∈Λ

xi

}
. (26)

where B1 = {Λ ∈ B| 1 ∈ Λ} and B−1 = {Λ ∈ B| 1 6∈ Λ}. We know from the
toy example that x1 is a neighbour of x2, x3 and x4 which gives that ψ1(xN1)
of (26) is a function of x2, x3 and x4.

To store the value of ψ1(xN1) we define a table to contain all the possible
combinations of xN1 and concatenate one last column for storing ψ1(xN1) i.e.
for each combination of (x2, x3, x4) given in Table 1 we compute and store
the MAP estimate of x1, ψ1(xN1). To see how ψ1(xN1) is computed we define
a function f(·) representing the kernel of (26) i.e.

f(xN1 , x1) =
∑

Λ∈B1

β?(Λ)
∏
i∈Λ

xi, (27)

where xN1 = (x2, x3, x4). Taking all possible values of xN1 from Table 1
we compute and compare f(xN1 , x1 = 0) and f(xN1 , x1 = 1) for each row.
We assign ψ1(xN1) = 1 if f(xN1 , x1 = 1) < f(xN1 , x1 = 0), otherwise
ψ1(xN1) = 0. For example, comparing the results obtained for (x2 = 1, x3 =
0, x4 = 0 and x1 = 0) versus (x2 = 1, x3 = 0, x4 = 0 and x1 = 1) at (27) we
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come up with the result of x1 with the smaller f(·) to be stored at ψ1(1, 0, 0).
In other words, ψ1(1, 0, 0) at Table 1 is the maximum probable value of x1

when (x2 = 1, x3 = 0, x4 = 0). Note that there may be a possibility of
f(xN1 , x1 = 0) and f(xN1 , x1 = 1) to be equal. In such a case we recommend
to prefer one of them freely for ψ1(xN1).

Once we have computed all ψ1(xN1) as we did in Table 1 for the toy
example, we are done finding the estimate value of x1 which maximize P (x|y)
with respect to the others. According to the MAP recursive property, once we
are done with x1 we should proceed to the next. Once we have found ψ1(xN1),
the value of x1 which maximize P (x|y) with respect to the neighbours, we
insert that estimated value of x1 in P (x|y) in place of x1 and update P (x|y)
for the next step of estimation or maximization. Thus, we get

max
x1

P (x|y) = P
(
x1 = ψ1(xN1), x2, ..., xn|y

)
. (28)

We proceed by computing P (x1 = ψ1(xN1), x2, ..., xn|y). Note that a more
detailed derivation of the following expressions are given in Section 4.1. We
get that (28) can be reexpressed as

max
x1

P (x|y) = const exp

{
−
[ ∑

Λ∈B−1

β?1(Λ)
∏
i∈Λ

xi

]
− A

}
, (29)

where

A =

{ ∑
Λ∈B1

β?1(Λ)
∏
j∈Λ
x1=1

xj

}[
ψ1(0, ..., 0)

∏
j∈N1

(1− xj) + ...+ ψ1(1, ..., 1)
∏
j∈N1

xj

]
(30)

and β?1(Λ) = β?(Λ), Λ ⊆ S. For the toy example, A will be
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4 Recursive computation of maximum a posteriori probability
(MAP) for a binary MRF

A =

{ ∑
Λ∈B1

β?(Λ)
∏
i∈Λ
x1=1

xi

}
×
{
ψ1(0, 0, 0)(1− x2)(1− x3)(1− x4) (31)

+ ψ1(1, 0, 0)x2(1− x3)(1− x4) + ψ1(0, 1, 0)x3(1− x2)(1− x4)

+ ψ1(0, 0, 1)x4(1− x2)(1− x3) + ψ1(1, 1, 0)x2x3(1− x4)

+ ψ1(1, 0, 1)x2x4(1− x3) + ψ1(0, 1, 1)x3x4(1− x2)

+ ψ1(1, 1, 1)x2x3x4

}
.

Expression (29) can again be written in the canonical form as

max
x1

P (x|y) = C exp

{
−
∑

Λ∈B−1

β?2(Λ)
∏
i∈Λ

xi

}
, (32)

where C is a constant and β?2(·) is the new interaction parameter value re-
sulted after we maximize P (x|y) with respect to x1. Alternatively, one may
consider β?2(·) as an interaction parameter of Λ ⊆ S \{1} resulted from MAP
estimation of P (x|y) with respect to x1. See Figure 5 for the unweighted
graphical representation of (32) for our toy example resulted after maximiza-
tion with respect to x1. Note here that, after we maximize P (x|y) with
respect to x1 we comeup with (32). However, note that C is no longer be a
normalizing constant just it is any constant.

We should note that some of β?2(·) may get a non-zero value for the first
time which mean, their value was zero before we maximize P (x|y) with re-
spect to x1, in another word during the vertex-weighted graph of P (x|y) those
β?2(·) were not existing. This is true for β?2({2, 3}), β?2({2, 4}) and β?2({2, 3, 4})
for our toy example. Thus after we maximize P (x|y) with respect to x1, we
come up with a new set of interaction parameters β?2(·) and with a new neigh-
bourhood system. According to expression (32) we can possibly define a new
neighbourhood notation i.e.

N 2 = {N 2
j }, j ∈ S \ {1} = (2, ..., n). (33)

Note that N 1 = N = {Ni}, i ∈ S, was the neighbourhood system before
we maximize P (x|y) with respect to x1. Implementing expression (32) in
our toy example, it results in a new neighbourhood as defined in (33) i.e.
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Figure 5: The unweighted graph G(S \ {1}) of the toy example with S =
{1, ..., 4}.

N 2 = (N 2
2 ,N 2

3 ,N 2
4 ) where N 2

2 = {3, 4}, N 2
3 = {2, 4} and N 2

4 = {2, 3}.
In a similar way we continue for x2 and compute

ψ2(xN 2
2
) = argmax

x2

[
max
x1

P (x|y)
]

(34)

= argmax
x2

[
P (x1 = ψ1(xN1), x2, ..., xn|y)

]
. (35)

After we compute ψ2(xN 2
2
) for each combination of x2‘s neighbouring

value arranged in table format as we did for x1 we get a new function i.e.

max
x2

(
max
x1

P (x|y)
)

= P
(
x1 = ψ1(xN1), x2 = ψ2(xN2

2
), x3, ..., xn|y

)
. (36)

After we have maximized over x1 and x2 we continue to maximize over
each of xi, i = 3, ..., n in turn. Thus we get ψi(xN i

i
) for i = 1, 2, ..., n. Note

that ψn is not a function of any variable, it is a constant.

When the forward recursion (computation of ψi(xN i
i
), i = 1, ..., n) is fin-

ished we can find the MAP estimate via a backward recursion (computation
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4.1 Beta (β(Λ)) computation

of x̂i, i = 1, ..., n). First we get x̂n = ψn. Next we insert x̂n for xn in
ψn−1(xNn−1

n−1
) and get x̂n−1 = ψn−1(xNn−1

n−1
). Then we insert x̂n for xn and

x̂n−1 for xn−1 in ψn−2(xNn−2
n−2

) to get x̂n−2. We continue in this way until we
have all x̂1, ..., x̂n. Putting these together we get

x̂MAP = (x̂1, ..., x̂n). (37)

Note that during the backward recursion for computing x̂j, we only insert
x̂i in ψj(xN j

j
) for j < i where i ∈ N j

j since the non-neighbouring sites to j
have no influence during the computation of x̂j.

4.1 Beta (β(Λ)) computation

Due to the Markovian property, we can write (23) as follows

P (x|y) = const exp

{
−
[ ∑

Λ∈B−1

β?1(Λ)
∏
j∈Λ

xj +
∑

Λ∈B1

β?1(Λ)
∏
j∈Λ

xj

]}
, (38)

where β?1(Λ) = β?(Λ). Using the ψ1(xN1) resulted from (26) we could write
(38) replacing x1 by ψ1(xN1) as

max
x1

P (x|y) = P
(
x1 = ψ1(xN1), x2, ..., xn|y

)
= const exp

{
−
∑

Λ∈B−1

β?1(Λ)
∏
j∈Λ

xj︸ ︷︷ ︸
part I

+
[
−
∑

Λ∈B1

β?1(Λ)
∏

j∈Λ\{1}

xjψ1(xN1)︸ ︷︷ ︸
part II

]}
.

(39)

We first focuse on part II of this expression. As we have discussed before,
ψ1(xN1) is a function of xN1 . Note that it can be written in an expanded
form as follows
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ψ1(xN1) =
∑

Λ∈P(N1)

{
ψ1

(
xΛ = 0, xN1\Λ = 1

)∏
j∈Λ

(1− xj)
∏

j∈N1\Λ

xj

}
. (40)

After a bit manipulation we can rewrite (40) as

ψ1(xN1) =
∑

Λ∈P(N1)

[ ∑
z∈{0,1}|Λ|

(
(−1)(

∑
z)+|Λ|

)
ψ1

(
xN1\Λ = 0, xΛ = z

)]
︸ ︷︷ ︸

part III

∏
j∈Λ

xj.

(41)
Note that in the above expression z is dependent only on |Λ|, not about

what element Λ contains. For example if |Λ| = 1, always z ∈ {0, 1}. Also
if |Λ| = 2, Z ∈ {{0, 0}, {0, 1}, {1, 0}, {1, 1}}. Let us reconsider the toy
example to elaborate these. From the toy example we know that xN1 =
(x2, x3, x4). Thus one possibility of Λ is Λ = {2}. In this case z ∈ {0, 1}
and also ψ1(xN1) is equal to ψ1(x2 = 0, x3 = 0, x4 = 0) or ψ1(x2 = 1, x3 =
0, x4 = 0) when z = {0} and z = {1} respectively. When Λ = {2, 4},
zΛ ∈ {{0, 0}, {1, 0}, {0, 1}, {1, 1}} and then ψ1(xN1) ∈ {{x3 = 0, x2 = 0, x4 =
0}, {x3 = 0, x2 = 1, x4 = 0}, {x3 = 0, x2 = 0, x4 = 1}, {x3 = 0, x2 = 1, x4 =
1}}. Inserting (41) in part II of (39) and after some mathematical rearrange-
ments of this we get

part II =
∑

Λ∈P (N1)

(
sum(Λ)

∑
Λ?∈B1

(
β?1(Λ?)

∏
j∈(Λ∪Λ?)\{1}

xj

))
, (42)

where

sum(Λ) =
∑

z∈{0,1}|Λ|

(
(−1)(

∑
z)+|Λ|

)
ψ1

(
xN1\Λ = 0, xΛ = z

)
. (43)

During maximization of P (x|y) with respect to x1, the interaction pa-
rameters of the neighbours of x1 will be updated, but not the interaction
parameters of the sites which were not neighbour to x1. To manage this
mathematically let us split part I as with and without neighbour to x1 i.e.

part I =
∑

Λ∈B−1\P(N1)

β?1(Λ)
∏
j∈Λ

xj +
∑

Λ∈P(N1)

β?1(Λ)
∏
j∈Λ

xj. (44)

22



5 Approximate recursive computation

Remember that the combination of expression (42), which is part II, and
expression (44), which is part I, gives expression (39). Therefore, we can
collect similar variable coefficients from expressions (42) and (44) to get the
result of maxP (x|y) with respect to x1 with the new energy function defined
below.

U(x) =
∑

Λ∈B−1\P(N1)

β?1(Λ)
∏
j∈Λ

xj +
∑

Λ∈P(N1)

[
β?1(Λ)

+
∑

Λ?∈P(Λ)

[
sum(Λ?)

∑
A∈P(Λ?)

β?1(Λ ∪ {1} \ A)

]]∏
j∈Λ

xk. (45)

We can again write (45) in a canonical form as

U(x) =
∑

Λ∈B−1

β?2(Λ)
∏
k∈Λ

xk, (46)

where

β?2(Λ) =

{
β?1(Λ), if Λ ∈ B−1 \ P(N1)

β?1(Λ) +
∑

Λ?∈P(Λ) sum(Λ?)
∑

A∈P(Λ?) β
?
1

(
Λ ∪ {1} \ A

)
if Λ ∈ P(N1)

(47)
Thus, once we have computed maxP (x|y) with respect to x1 then next

we will compute (36) with the neighbourhood definition given at (33) where
x = {xj}, j ∈ S = {2, ..., n}.

In a similar way we continue computing the rest (with respect to x3,...,xn)
recursively.

5 Approximate recursive computation
As we have seen in the previous sections, we must work a computation for
every row of a 2|Ni| × |Ni|, i ∈ S table to get the exact recursive computa-
tional estimate of P (x), x = (xi, ..., xn) with respect to xi. We can easily see
as the size of n and (or) Ni increase, it requires too much computation time
and computer memory to perform the computation for x. Due to this, the
demand to have an approximate version of the MAP estimation method is
essential. For this a strategy similar to the one adopted in Tjelmeland and
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Austad (2010) can be used.

The approximation method is implemented in two steps by giving atten-
tion to (12). According to (12), we first compute β(Λ) for Λ ⊆ P (S) with
|Λ| = 1 from the given energy function U(x), then next for β(Λ) with |Λ| = 2
and so on in increasing number of element in Λ. Again using β(Λ) computed
from (12) we get β?(Λ) using (22). The approximation is not going to be
implemented at this stage yet i.e. not for β(Λ) or not for β?(Λ) (= β?1(Λ)).
However the approximation is done for β?i (Λ), 2 ≤ i ≤ n. The first step
of approximation is to set all β?2(Λ) to zero for those having value less than
a given threshold value ε i.e. β?2(Λ) = 0 if |β?2(Λ)| < ε. The second step of
approximation is to set β?2(Λ) to zero if β?2(A) was approximated to zero (was
zero) ∀A ⊂ Λ and |A| = |Λ| − 1. Once we done approximating β?2(Λ), we
get a set of interaction parameters which have interaction value great than
Epselon ε. Using this new set of interaction parameters we apply all the pre-
vious section computations to get β?3(Λ) and then, next the approximation
continues for this β?3(·) interaction parameter groups. This computation goes
till end β?n(·).

Note that, the first step of approximation reduces the computer storage
problem whereas, the second step of approximation is the frequently used
assumption in statistics that is higher order effects can be present only if
corresponding lower order effects are present. Therefore, by implementing
the combination of the two approximation steps we come up with an efficient
(both in computer memory requirement and run time) recursive algorithm
for MAP estimation method.

6 Concluding remarks

In this thesis, we have carried out a detailed recursive computation of MAP
estimate of a MRF using the MAP-MRF framework. In addition, we are
also able to write every recursively resulted MRFs in a canonical form. Thus
the ability to write the MRFs in a canonical form make it easy to under-
stand and compute for any size n which becomes just repeating the same
technique over and over again. By applying MAP estimation method at a
noise-corrupted image, we are capable of estimating the true image without
much worry about the intractability of the normalizing constant exist in the
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6 Concluding remarks

assumed MRF prior distribution. Due to large size of MRFs and (or) the
quality (in run time and computer memory) of the algorithm, the approx-
imation of the interaction parameters during the MAP estimation method
plays a significant role.

Today it is common to consider images with more colours. Thus, it is
desirable to generalize the procedure we discuss in this thesis to such a sit-
uation. Note that the skeleton of the algorithm will be unchanged, but the
computational complexity of the algorithm grows rapidly with the number
of colours in question. However, also in the k-colour case the computations
repeat in a similar fashion for each site i.

Note that, the threshold value ε is not yet suggested since it need a
practical situation which need to be fixed accordingly by considering the cost
limit both in computer memory and run time of the algorithm. However,
we still need a prior knowledge or a pilot study for finding an averagely
acceptable range of ε for a similar image family and work the approximation
by considering this Epsilon ε.
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