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Abstract

An inertially modi�ed long-wave model is used to analyze the stability of inclined saturated �lm boiling. By performing
quasi-parallel linear stability analysis on this model and combining the result with a heat-transfer model, an explicit
expression for the heat-transfer coe�cient is obtained. The results appear to �t all relevant data for �lm-boiling heat-
transfer coe�cient within an error of 15%.

Keywords: Film boiling, Vapor thin-�lm, Inertial instabilities, Heat transfer, Inclination angle

1. Introduction

When a liquid is put in contact with a solid surface that
is ∆T degrees hotter than the liquid's saturation temper-
ature there is a resulting boiling heat �ux q. The plot of
q vs. ∆T is called the boiling curve, which was �rst char-
acterized by Nukiyama (1934). At superheat values (∆T )
beyond the conventional nucleate boiling regime, one �nds
the �lm-boiling regime (Dhir, 1998). This is characterized
by a relatively low heat �ux due to the formation of a
continuous vapor �lm between the surface and the liquid,
which leads to two issues of practical concern: The lim-
its of the �lm-boiling regime (Leidenfrost point) and the
heat transfer in the �lm-boiling regime. The present work
is concerned with the latter, in the context of saturated
natural-convection non-horizontal �lm boiling.

The heat transfer coe�cient (HTC) of vertical/inclined
�lm boiling was �rst studied by Bromley (1950), and the
resulting model has come to be known as the laminar
smooth interface (LSI) model. The model was later ex-
panded to include liquid drag e�ects by authors such as
Koh (1962) and Kaneyasu and Takehiro (1966), creating
the two-layer models. These LSI models are based on
a steady-state balance between vapor buoyancy and sur-
face/interface drag, while neglecting inertial e�ects and as-
suming that evaporation is purely due to conductive heat
transfer. The result is that the vapor-�lm thickness grows
as h(x) ∼ x1/4, where x is the distance along the solid sur-
face starting from the leading edge. Since the heat transfer
occurs mainly by conduction across the �lm, this implies
that the local heat �ux decreases as q(x) ∼ x−1/4 and it
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follows that the average HTC of a plate of length ` would
be

H(`) =
4kv

3h(`)
∼ `−1/4, (1)

with kv being the vapor conductivity. However, further re-
search showed that this is only true for very short plates/rods
(about ` < 1 cm). For longer surfaces it has been estab-
lished that the time-averaged heat �ux has practically no
dependence on distance from the leading edge. Conse-
quently, the average HTC is independent of total surface
length ` and severely underpredicted by the smooth in-
terface model (Hsu and Westwater, 1958; Suryanarayana
and Merte, 1972; Bui and Dhir, 1985; Nishio and Chan-
dratilleke, 1991; Nishio and Ohtake, 1993; Vijaykumar and
Dhir, 1992). It is evident that the liquid�vapor interface
pro�le is unsteady and far from smooth, with waves/crests
running in the direction dictated by buoyancy.

These discoveries seemed to imply that the LSI solution
has a limit to its stability, in the sense that it may only
grow to a certain critical thickness before collapsing and
thus yielding an average �lm thickness smaller than one
would expect. This led to the proposal of laminar vapor-
�lm unit (LVFU) type models by authors such as Bui and
Dhir (1985) and Nishio and Chandratilleke (1991). These
models assume that the LSI solution only grows across a
certain critical length scale λc before collapsing to a near-
zero �lm thickness and giving way to the next identical
unit. While these crests will in reality move along the
surface, the time-averaged HTC will be close to the cor-
responding stationary pro�le. Given these assumptions,
the measured time/space averaged HTC for a long plate
(`� λc) would be

H = H(λc), (2)

Preprint submitted to International Journal of Multiphase Flow December 4, 2018

https://doi.org/10.1016/j.ijmultiphaseflow.2018.11.017


with H given by the LSI solution Eq. (1). Since λc is not
dependent on the total plate length, this would explain the
apparent non-dependence on ` in the case of long plates.
Thus, in the context of the LVFUmodel the main challenge
is to determine the length scale λc, which is essentially an
issue of hydrodynamic stability. There have typically been
two approaches to determining λc in the literature:

• Semi-empirical models: Derive the model based on
LSI-type solutions with the critical Reynolds number
as an empirical parameter, and �t it to a series of
experiments. Make further predictions by assuming
that the critical Reynolds number is constant under
di�erent conditions (e.g. Kim and Suh (2013)).

• Hybrid models: Apply classical potential-�ow sta-
bility analysis to investigate the stability of the in-
terface implied by the LSI solution (e.g. Bui and
Dhir (1985); Nishio and Chandratilleke (1991); Kolev
(1998); Aursand (2018)). Such an analysis generally
includes a mixture of Kelvin�Helmholtz and Rayleigh�
Taylor e�ects, depending on plate inclination.

Both of these methods have some issues: The former uses
empirical �tting and thus does not provide any insight
into why the vapor-�lm breaks down at a certain Reynolds
number. The latter combines potential-�ow (irrotational)
analysis with a base state from the lubrication approxima-
tion that is far from irrotational. Despite this, both meth-
ods demonstrate clearly that inertial (Reynolds-number
dependent) instabilities are central to the problem. The
present work suggests a third method which is able to
predict the dominant instabilities of inclined �lm-boiling
based on a set of partial di�erential equations related to
the long-wave approximation methods for thin-�lm �ow.
In this way, both the base state and the stability anal-
ysis stem from the same formalism, and this avoids the
inconsistent addition of potential-�ow theory.

The use of long-wave approximation methods to de-
scribe the transient dynamics of thin liquid �lms has a long
history, as reviewed by Oron et al. (1997), Myers (1998)
and Craster and Matar (2009). Similar use for thin va-
por �lms is somewhat less developed, but the method has
been applied to horizontal �lm boiling by authors such as
Panzarella et al. (2000) and Aursand et al. (2018).

The long-wave (lubrication) approximation relies on a
�lm aspect-ratio ε, which is essentially the ratio between
�lm thickness and disturbance wavelength. Terms of order
O
(
ε2
)
and O (εRe) are then neglected, which vastly sim-

pli�es the Navier�Stokes equation. Simple integration of
the continuity equation across the �lm then allows for the
derivation of a highly-nonlinear equation for the �lm thick-
ness. Crucially, this method does not merely require that
ε is small but also that the Reynolds number (Re) is small
enough. This is easily valid for horizontal �lm boiling, but
as shown in Aursand (2018), applying this method to ver-
tical �lm boiling fails to predict the all-important inertial
instability. This is because the strong buoyancy greatly

increases the Reynolds number in the vapor �lm, and the
εRe-terms are no longer negligible.

In Sec. 2 the standard long-wave method is extended
by only neglecting terms O

(
ε2
)
while retaining the in-

ertial terms O (εRe). The resulting governing equations
and boundary conditions are similar to the ones formu-
lated in Burelbach et al. (1988) and Joo et al. (1991) for
horizontal/falling liquid �lms and more recently in Aur-
sand et al. (2018) for horizontal vapor �lms, except there
are additional O (εRe) inertial terms. These additional
terms signi�cantly complicate the momentum equation,
and the problem may no longer be reduced to a single
equation for the �lm thickness. Following the Karman-
Pohlhausen type integral boundary-layer methods of Alek-
seenko et al. (1985) and Prokopiou et al. (1991), the mo-
mentum equation is integrated across the �lm while as-
suming a parabolic velocity pro�le. As discussed in the
reviews Oron et al. (1997, Sec 6B) and Chang (1994),
this inevitably leads to a complicated system of coupled
partial di�erential equations (PDE) in two variables: The
�lm thickness and the vapor �ow rate.

In Sec. 3 quasi-parallel linear stability analysis is ap-
plied to the model in order to �nd a complex dispersion
relation for harmonic disturbances. This allows the deter-
mination of a stability condition for given case-parameters
and �lm thickness. Speci�cally it allows the determination
of the critical Reynolds number for the onset of inertial in-
stabilities and the wavelength of the resulting waves. Pre-
dicting the critical Reynolds number within the long-wave
formalism is one of the signi�cant novelties of the present
work, as it previously has had to be empirically estimated
in works such as Kim and Suh (2013). In Sec. 4 the es-
timated disturbance wavelength λc is combined with the
LVFU heat-transfer model in Eq. (2) to make a prediction
for the long-plate heat-transfer coe�cient. This predic-
tion is subsequently compared with experimental data in
Sec. 5. Finally, the validity and implications of the �nd-
ings herein are discussed in Sec. 6, before the conclusions
are summarized in Sec. 7.

2. Model

2.1. Problem description

The physical problem to be considered is that of in-
clined planar saturated �lm-boiling, as illustrated in Fig. 1.
The problem involves a large heated solid surface sub-
merged in a liquid at an angle α. A local coordinate
system (x, z) is aligned with the solid surface, and the
liquid�vapor interface is located at z = h(x, t), with t be-
ing time. The goal is to predict the dynamics of the �lm-
thickness function h(x, t), and under what conditions the
time-independent solutions are stable.

A case is de�ned by the (assumed constant) �uid prop-
erties, the plate angle α and the characteristic temperature
di�erence ∆T = Tw−Ts, where Tw is a given solid surface
temperature and Ts is the �uid's saturation temperature.
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The liquid bulk (z � h) is assumed to be held at the
liquid's saturation temperature Ts.
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Figure 1: Illustration of the planar �lm-boiling problem. A wall at
angle α supplies heat to a boiling liquid, which feeds vapor into the
vapor �lm between. Buoyancy then drives vapor �ow along the wall.
The goal is to predict the dynamics of the �lm thickness function
h(x, t).

2.2. Long-wave approximation with inertia

2.2.1. Governing equations and boundary conditions

The derivation and non-dimensionalization of the gov-
erning equations is covered in Appendix A, and only the
core principles behind the derivation will be summarized
below. The derivation is a generalization of the one in Aur-
sand et al. (2018) for non-horizontal con�gurations, which
in turn was inspired by the work of Burelbach et al. (1988)
for evaporating liquid �lms. The dimensionless variables
describing the system are summarized in Table 1.

The expansion parameter in the long-wave approxima-
tion is the aspect-ratio of the disturbances,

ε =
h0

x0
� 1, (3)

where h0 is the typical �lm thickness and x0 = λ/(2π)
is the longitudinal scale given from the disturbance wave-
length λ. According to the long-wave approach, x0 is used
as the scale for x, and h0 is used as the scale for z and h.
The velocity scale is set to

u0 =
gh2

0∆ρ

12µv
, (4)

as explained in Appendix B. The tangential velocity u is
scaled with u0. Continuity then implies that the normal
velocity w should be scaled by w0 = εu0. With this choice
of u0 the relevant dimensionless parameters more generally

de�ned in Appendix A.3 may be written as

Re =
ρv∆ρgh3

0

12µ2
v

(Reynolds number),

E =
12µvkv∆T

ρv∆ρgL̂h3
0

(Evaporation number),

Ca =
∆ρgh2

0

12σ0
(Capillary number),

K =
K̃kv

h0L̂
(Disequilibrium number),

M =
12γ∆T

∆ρgh2
0

(Marangoni number),

S =
kv∆T

µvL̂
(Vapor-thrust number),

Pr =
µvcp,v
kv

(Vapor Prandtl number),

Ψ = µv/µl (Viscosity ratio),

Gv =
12ρv

∆ρ
(Vapor gravity number),

Gl =
12ρl

∆ρ
(Liquid gravity number),

G = Gl −Gv = 12 (Gravity number).

(5)

Here, ρv is the vapor density, ρl is the liquid density,
∆ρ = ρl − ρv, g is the gravitational acceleration, µv is
the vapor viscosity, µl is the liquid viscosity, cp,v is the
vapor heat capacity, kv is the vapor thermal conductivity,
L̂ is the e�ective latent heat of vaporization, K̃ is a con-
stant from the kinetic theory evaporation model, σ0 is the
surface tension at saturation, and γ is the temperature sen-
sitivity of surface tension. The e�ective latent-heat is used
to account for the sensible-heat e�ect. It modi�es the con-
ventional latent heat (L) according to L̂ = L+ cp,v∆T/2,
as used in Bui and Dhir (1985). This only has a signi�cant
e�ect for large superheats (∆T > Ts).

Given these dimensionless numbers and the scaling de-
scribed in Appendix A, the governing equations may be
written as

UX +WZ = 0, (6)

εRe (Uτ + UUX +WUZ) = −(P + Φ)X + UZZ , (7)

(P + Φ)Z = 0, (8)

εRePr (θτ + UθX +WθZ) = θZZ , (9)

where Eq. (6) is the continuity equation, Eqs. (7) and (8)
are the momentum equations, and Eq. (9) is the energy
equation. Note that a subscript of either X, Z or τ implies
di�erentiation with respect to that variable. The body-
force potential is given by

Φ = Φ0 +Gv (aX + εbZ) , (10)

where we, as opposed to the more general formulation in
Appendix A.1, have neglected the van der Waals inter-
action term. Here, the parameters a and b are simply
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Table 1: Overview of dimensionless variables in the governing equations. By default variables describe the vapor, and a subscript � l� indicates
the corresponding liquid variable outside the vapor �lm.

Variable Description Scaling

X Parallel coordinate X = x/x0

Z Perpendicular coordinate Z = z/h0

τ Time τ = t/t0 t0 = x0/u0

H(X, τ) Film thickness H = h/h0

U(X,Z, τ) Velocity (X-component) U = u/u0

W (X,Z, τ) Velocity (Z-component) W = w/w0 w0 = εu0

P (X,Z, τ) Pressure P = p/p0 p0 = µvu0/(εh0)
Φ(X,Z, τ) Body-force potential Φ = φ/p0

θ(X,Z, τ) Temperature θ = (T − Ts)/∆T
J(X, τ) Evaporation mass �ux J = j/j0 j0 = kv∆T/(h0L)
θi(X, τ) Interface temperature θi = (Ti − Ts)/∆T

shorthands for the inclination e�ects, a = sin(α) and b =
− cos(α), respectively. Additionally, the kinetic-theory evap-
oration model relates the evaporation rate to the interface
superheat,

KJ = θi. (11)

The parameterK indicates the relative importance of non-
equilibrium evaporation e�ects, with the limit K → 0 rep-
resenting the quasi-equilibrium approximation (interface
at saturation). The boundary conditions at the wall are
simply no-slip and a given temperature

[U ]Z=0 = [W ]Z=0 = 0, (12)

[θ]Z=0 = 1. (13)

At the liquid�vapor interface, the standard boundary con-
ditions are

[U − Ul]Z=H = 0, (14)

ε [Hτ + UHX −W ]Z=H = EJ, (15)

[P − Pl]Z=H = −εESJ2 − ε3Ca−1HXX , (16)[
UZ −Ψ−1Ul,Z

]
Z=H

= −εM [θi]X , (17)

− [θZ ]Z=H = J (18)

where Eq. (14) is the no-slip condition, Eq. (15) is the
kinetic boundary condition (with evaporation), Eq. (16) is
the normal stress balance, Eq. (17) is the tangential stress
balance, and Eq. (18) is the energy balance. Compared to
the more general formulation in Appendix A.1, we have
neglected the heat transfer between interface and liquid
bulk. As shown in Aursand et al. (2018), its e�ect is very
small regardless of �lm thickness.

In the εRe→ 0 and horizontal limits, the above equa-
tions are equivalent to the work in Burelbach et al. (1988)
for evaporating liquid thin �lms, given the necessary ad-
justments due to the liquid�vapor role reversal. However,
due to the fact that the outside bulk phase is now dense
compared to the thin �lm, some additional assumptions
are required to still arrive at a closed one-sided model

which avoids having to solve a separate set of PDEs for
the liquid dynamics:

• Liquid pressure closure: Assume that the liquid pres-
sure at a given position may be approximated by the
hydrostatic pressure corresponding to that position.
This provides the unknown [Pl]Z=H in Eq. (16):

[Pl]Z=H = −Gl (aX + εbH) , (19)

• Liquid shear closure: The tangential stress balance
Eq. (17) can not initially be used due to the unknown
liquid shear Ul,Z at the interface. However, this
term vanishes in the hypothetical free-surface case
(Ψ→∞), and this yields a solvable problem. Since
it is known that this case should represent the max-
imum possible interface velocity due to the absence
of liquid drag, one may make the assumption that
the actual interface velocity [U ]Z=H is some fraction
of this hypothetical maximum value. By introduc-
ing the constant factor η ∈ [0, 1], which should only
depend on �uid properties, the liquid shear closure
may formally be expressed as

[U ]Z=H = η
(

lim
Ψ→∞

[U ]Z=H

)
. (20)

The above two assumptions are essentially the same as
those made for the case of horizontal �lm-boiling in Aur-
sand et al. (2018). For consistency, η must have the prop-
erty that

η →
{

1 Ψ→∞ (Maximum interface velocity.)

0 Ψ→ 0 (Zero interface velocity.)
(21)

In practice, the problem in the free-surface case is solved
�rst, and then Eq. (20) is used to include the e�ects of
liquid drag on the vapor �lm. As shown in Appendix C,
earlier models indicate that η may be estimated from

η =
3

16

(
ρvµv

ρlµl

)1/4

, (22)
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which means that η will typically be in the range of 0.01�
0.05.

2.2.2. General considerations

The following relations derived from the equations in
the previous section are valid in both the low-Re and the
high-Re cases. First, note that the reduced pressure, de-
�ned as P = P + Φ, is independent of Z according to
Eq. (8). This means that for a given X it may be evalu-
ated at any Z, and by choosing to evaluate it at Z = H,
one �nds that

PX(X) =−G (a+ εbHX)︸ ︷︷ ︸
gravity

− ε3Ca−1HXXX︸ ︷︷ ︸
capillary

− εES(J2)X︸ ︷︷ ︸
vapor thrust

,

(23)

which is needed for the right-hand side of Eq. (7). This
expression captures not only the conventional gravity and
capillary (surface tension) contributions, but also vapor
thrust e�ect due to strong evaporation. Second, one may
integrate Eq. (6) across the �lm while applying Leibniz's
integral rule and the boundary conditions Eqs. (12) and (15)
to �nd the general mass-conservation PDE,

Hτ +

(∫ H

0

UdZ

)
X

=
E

ε
J. (24)

Eq. (24) is the sought-after PDE for the �lm thickness
H(X, τ). However, it requires two additional pieces: The
velocity pro�le U and the evaporation rate J , both as func-
tions of H. If it may be assumed that εRe� 1, it is rela-
tively simple to proceed, and one retains a single PDE for
H, as shown in Sec. 2.3. If not, it will couple to a second
PDE for the mass-�ow rate, as shown in Sec. 2.4

2.3. The εRe� 1 approximation

2.3.1. PDE for �lm thickness

In the classical lubrication theory, it is assumed that
Re is so small that terms O (εRe) may be neglected, which
leads to the X-momentum and energy equations, Eqs. (7)
and (9), being vastly simpli�ed. Since P is independent of
Z, the velocity pro�le may be found by integrating Eq. (7)
twice and applying the velocity boundary conditions,

U =
1

2
PX

(
Z2 − (1 + η)HZ

)
− εηKMJXZ. (25)

The corresponding mass �ow rate is∫ H

0

UdZ = − ξ

12
PXH

3 − 1

2
εηKMJXH

2, (26)

with the shorthand ξ = 1 + 3η. Similarly, in this approxi-
mation the temperature pro�le

θ = 1− 1− θi

H
Z (27)

satis�es Eq. (9) and the temperature boundary conditions.
When combined with the energy balance Eq. (18) and the
evaporation model Eq. (11), this leads to the evaporation
rate being

J =
1

H +K
. (28)

By inserting Eqs. (23), (26) and (28) into Eq. (24), one
obtains a nonlinear PDE for H(X, τ),

εHτ +
ξG

12
ε
[
H3 (a+ εbHX)

]
X

− ξES

6
ε2

[(
H

H +K

)3

HX

]
X

+
ξ

12Ca
ε4
[
H3HXXX

]
X

+
1

2
ε2ηKM

[(
H

H +K

)2

HX

]
X

= E
1

H +K
. (29)

Eq. (29) is a generalization of Aursand et al. (2018, Eq.
2.66) from horizontal �lm boiling to arbitrary orientation.
However, as will be shown, this equation does not capture
the essential inertial instabilities arising in non-horizontal
�lm boiling.

2.3.2. Approximate steady-state solution

The steady state is expected to have a very smooth in-
terface, which would imply a very small ε. If one keeps only
�rst order ε-terms from Eq. (29), set the time-derivative
to zero, and assume that the �lm has grown so thick that
K � H, the following ODE is found for the steady-state
solution H̄(X),

εH̄X =
4E

ξGa

1

H̄3
. (30)

With the assumption that H = 0 at the leading edge X =
0, Eq. (30) may be integrated to �nd the explicit expression

H̄(X) =

(
16E

εξGa
X

)1/4

. (31)

The corresponding dimensional form is

h̄(x) =

(
16µvkv∆T

ξaρv∆ρgL̂
x

)1/4

, (32)

which reveals that this is the common LSI-type solution
introduced in Sec. 1. This solution will be used to ap-
proximate the actual steady state in the following stability
analysis.

Let the �lm thickness scale h0 be given by the steady
solution Eq. (32) in the vertical case. The Reynolds num-
ber as given by Eq. (5) then grows as Re ∼ x3/4, and
thus, it will eventually grow too large for the εRe � 1
approximation. However, a longer distance from the lead-
ing edge will also accommodate longer disturbance waves,
i.e. a smaller ε. If the longest disturbance wavelength that
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�ts is equal to x, the distance from the leading edge, the
smallest allowed ε is ε̄ = h0(x)/x. The product of this and
Re is surprisingly simple,

ε̄Re =
4

3

kv∆T

ξµvL̂
=

4

3

S

ξ
∼ O

(
10−1

)
. (33)

Since ε > ε̄, this is actually a lower bound for εRe, and
thus, one must conclude that no allowed disturbance to
the steady state may actually satisfy εRe� 1.

The above does not imply that εRe� 1 is invalid in the
commonly studied case of horizontal �lm-boiling since the
velocity scale in Eq. (4) is not appropriate in such cases.
However, for the purposes of non-horizontal �lm-boiling,
the inertial εRe terms must be retained. The next section
shows how.

2.4. εRe ∼ O (1)

2.4.1. Averaged momentum equation

If one integrates the X-momentum equation, Eq. (7),
across the layer while applying the continuity equation,
Eq. (6), the wall boundary condition, Eq. (12), and the
kinetic boundary condition, Eq. (15), the result is

εRe

([∫ H

0

UdZ

]
τ

+

[∫ H

0

U2dZ

]
X

− E

ε
[U ]Z=HJ

)
= −PXH + [UZ ]Z=H − [UZ ]Z=0. (34)

This result is similar to the one on liquid �lms by Alek-
seenko et al. (1985, Eq. 15), except that Eq. (34) is compli-
cated by the inclusion of evaporation, interface drag (not
a free surface), and a driving force PX that includes vapor
thrust and vdW forces in addition to gravity and surface
tension.

The left-hand side of Eq. (34) constitutes the inertia
correction, and this would be zero in the conventional lu-
brication approximation. In order to evaluate the integrals
in Eq. (34) and obtain a PDE for scalar quantities, it is
necessary to model the velocity pro�le U(Z). This is done
in the next section.

2.4.2. Assumed velocity pro�le

In Sec. 2.3 it was shown how the low-Re case leads to a
parabolic velocity pro�le Eq. (25) that is zero at the wall
and small but non-zero at the interface. It is now assumed
that the general velocity-pro�le has the same shape, and
this will be used to compute the inertial corrections at
higher Re. Such a generic pro�le may be written as

U(X,Z) = Û(X)

[
(1 + s(X))

Z

H
−
(
Z

H

)2
]
, (35)

where the overall �ow-speed is given by the function Û(X),
and the relative speed at the interface is given by the
function s(X) � 1. The boundary conditions Eqs. (17)

and (20) provide a solution for s in terms of η and the
thermocapillary e�ect,

s(X) = η

(
1− εKMHJX

Û

)
(36)

where the evaporation model Eq. (11) has been used to
represent the interface temperature in terms of J . By then
de�ning a �ow rate function Q,

Q =
ξ

6
HÛ, (37)

and some short-hand functions of η,

ξ = 1 + 3η, (38)

ζ =
10η2 + 5η + 1

ξ2
= 1− η +O

(
η2
)
, (39)

χ =
ξ + η

ξ
= 1 + η +O

(
η2
)
, (40)

the integrals needed in Eq. (34) may be calculated as∫ H

0

UdZ =Q− 1

2
εηKMH2JX , (41)∫ H

0

U2dZ =
6

5
ζ
Q2

H
− χKεηMHQJX

+
1

3
(KεηM)

2
H3 (JX)

2
, (42)

and the right-hand side friction term as

[UZ ]Z=H − [UZ ]Z=0 = −12

ξ

Q

H2
. (43)

The vapor �lm dynamics are now described by two func-
tions in 1 + 1 dimensions: H(X, τ) for the �lm thick-
ness and Q(X, τ) for the volumetric �ow rate. As will
be shown in the next section, the integrated continuity-
equation Eq. (24) and the integrated momentum-equation
Eq. (34) provide two coupled PDEs for these functions.

2.4.3. Coupled PDEs governing �lm behavior

It is assumed that the most important inertial correc-
tions happen through the momentum equation, not the
energy equation. This means that Eq. (28) is also used
as a model for the evaporation mass �ux J in the general
case. The thermocapillary e�ect scales with the overall
strength of evaporation and thus, the �lm thickness. Its
relative strength is indicated by the �lm-thickness inde-
pendent constant M̂ , de�ned as

M̂ =
KM

E
=
ρvγK̃

µv
. (44)

Then, it is assumed that

E � 1, K � 1, , (45)
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so that terms O
(
E2
)
, O

(
K2
)
and O (EK) may be ne-

glected. This greatly simpli�es governing equations and
will be justi�ed in the next section. One may now insert
Eqs. (28) and (41) into the integrated continuity-equation
Eq. (24) to yield the �rst PDE,

εHτ + εQX︸ ︷︷ ︸
mass advection

+
1

2
ηEM̂ε2HXX︸ ︷︷ ︸
thermocapillary

= E
1

H︸︷︷︸
evap.

. (46)

Similarly, one may combine Eqs. (28), (36), (41) and (42)
with the integrated momentum-equation Eq. (34) to yield
the second PDE,

εRe

(
Qτ +

6ζ

5

[
Q2

H

]
X︸ ︷︷ ︸

advection

+ ηEM̂

[
1

2
εHXτ + χε

[
Q

H
HX

]
X

]
︸ ︷︷ ︸

thermocapillary

− E

ε

6η

ξ

Q

H2︸ ︷︷ ︸
mom. injection

)
= −PXH −

12

ξ

Q

H2︸ ︷︷ ︸
friction balance

. (47)

with Eq. (23) reduced to

PX =−G (a+ bεHX)︸ ︷︷ ︸
gravity

+ 2SEε
HX

H3︸ ︷︷ ︸
vapor thrust

−Ca−1ε3HXXX︸ ︷︷ ︸
capillary

(48)

The inertia correction is the left-hand side of Eq. (47).
Note also how all non-equilibrium evaporation e�ects (K-
terms) are negligible under the approximation Eq. (45),
except for their part in the thermocapillary e�ect, which
is collected into the parameter M̂ .

Eqs. (46) and (47) with Eq. (48) constitute the main
result of this section, and the following content concerns
the conditions under which they allow for a stable steady-
state solution.

2.5. Magnitudes of dimensionless constants

According to Eqs. (46) to (48), the dynamics of the un-
known variables H and Q at a given inclination are gov-
erned by the following dimensionless numbers:

• Re: Strength of inertial e�ects.

• E: Strength of evaporation e�ects.

• Ca−1: Strength of surface tension.

• M̂ : Strength of thermocapillary e�ect relative to
evaporation e�ects.

• S: Strength of vapor thrust e�ect relative to evapo-
ration e�ects.

• η: Fraction of actual interface velocity to the hypo-
thetical maximum.

The latter three (M̂ , S and η) are only dependent on �uid
properties and ∆T , and will in most cases be

M̂ ∼ O (1) , S ∼ O
(
10−1

)
, η ∼ O

(
10−2

)
, (49)

Whereas the governing equations depend on G as well, one
sees from Eq. (5) that with the chosen velocity scale it is
simply constant and equal to 12. The �rst four dimension-
less numbers in the list are dependent on �lm-thickness
scale h0. Fig. 2 shows these four parameters, as well as K,
as functions of h0. It indicates that the present approxi-
mation, Eq. (45), can be expected to be valid in the region
where h0 > 100 µm. The following stability analysis will
apply to this regime (shaded in Fig. 2).

3. Quasi-parallel stability analysis

3.1. Base state

The task now is to examine under which conditions
stable steady-state solutions to the governing equations
Eqs. (46) and (47) exist. This base state is denoted by
functions H̄(X) and Q̄(X) corresponding to H and Q, re-
spectively. While these functions are generally not known
analytically, when explicit expressions are required they
will be approximated by the low-Re solution in Eq. (31).
Under the same approximation, the momentum equation
tells us that the base state �ow rate Q̄ is

Q̄ =
ξGa

12
H̄3. (50)

The stability analysis that will follow is applied locally at
a speci�c position X0, and at that point the base state
is used to de�ne the �lm thickness scale h0. In order to
have an orientation-independent scale, it is de�ned such
that H̄(X0) = 1 in the vertical con�guration, and thus,
Eq. (31) implies that

H̄(X0) = a−1/4. (51)

3.2. Quasi-parallel perturbation analysis

The disturbances Ĥ and Q̂ are de�ned by

H(X, τ) = H̄(X) + cĤ(X, τ), (52)

Q(X, τ) = Q̄(X) + cQ̂(X, τ), (53)

and this combined solution is inserted into the nonlinear
governing equations Eqs. (46) and (47). By approximat-
ing to �rst order in the perturbation magnitude, O

(
c1
)
,

and subtracting the zeroth order (steady state) equations,
one arrives at a set of two linear and homogeneous PDEs
for the perturbations Ĥ and Q̂. However, a complica-
tion arises due to the fact that the coe�cients of these
linear PDEs depend on H̄(X), Q̄(X), and their deriva-
tives. This means that the coe�cients are X-dependent,
and standard normal-mode analysis would not apply for
the X-dimension.

This situation may be remedied (in approximation)
by applying quasi-parallel analysis. This entails assum-
ing that the base state H̄(X) is locally constant for the
purposes of the stability analysis. This procedure yields
PDEs for the perturbations Ĥ and Q̂ that formally have
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Figure 2: Magnitude of h0-dependent dimensionless numbers. This example is made from water boiling at ∆T = 200 K. The shading marks
the region of model validity, i.e. where h0 is such that both E and K are small.

constant coe�cients, though the value of these coe�cients
will depend on the �lm thickness at which stability is ex-
amined. The quasi-constant �lm thickness at the loca-
tion under consideration is denoted as H0, and due to the
choice of scaling, it depends on orientation according to
H0 = a−1/4. Note that since H0 is de�ned as such, the ef-
fect of position X on the stability analysis enters through
changes in the �lm thickness scale h0, which in turn a�ect
the dimensionless parameters shown in Fig. 2.

Since the equations for the perturbations now are lin-
ear, homogeneous, and with constant coe�cients, an arbi-
trary disturbance may be represented by a linear combi-
nation of normal-modes such as the following,

Ĥ = H̃ exp

(
i
kX − ωτ

ε

)
, Q̂ = Q̃ exp

(
i
kX − ωτ

ε

)
.

(54)

The division by ε in the exponent simply means that the
dimensionless wavenumber k and frequency ω are de�ned
according to the spatial and temporal scales h0 and h0/u0,
respectively. The long-wave approximation then implies
that k must be small. The following task is to exam-
ine temporal stability, which means considering the real
wavenumber k as an input and observing the e�ect on the
resulting complex frequency ω. A positive imaginary part
of ω implies an exponentially growing instability.

3.3. General solution

When performing the above described quasi-parallel
stability analysis on the governing equations Eqs. (46)
and (47), the result is a quadratic equation for ω(k),

c2ω
2 + c1ω + c0 = 0 (55)

with complex coe�cients

c2 =Re, (56)

c1 =
12i

H2
0ξ

+ Re

(
iE

H2
0

[
1− 6η

ξ

]
− GaH2

0ξζ

5
k

)
, (57)

c0 =H0Gbk
2 − 3iGak − H0

Ca
k4

+
12E

ξ

(
M̂η

2H2
0

k2 − ξS

6H2
0

k2 − 1

H4
0

)

+ Re

(
H4

0ζG
2a2ξ2

120
k2 + iEGH2

0M̂aηξ

[
ζ

10
− χ

12

]
k3

− iEGaξζ

5
k

)
. (58)

While Eq. (55) may be solved directly, the resulting ex-
pression does not allow for easy inspection of qualitative
e�ects. Its general behavior must be revealed by repeated
numerical solutions.

3.4. Low Reynolds number limit

In the limit of negligible inertial e�ect (Re → 0), just
like in the classical lubrication approximation, Eq. (55)
is simpli�ed to a �rst-order equation that may be solved
explicitly for the complex frequency, here labeled as ω0.
The imaginary part turns out to be

I (ω0) =− H3
0ξ

12Ca
k4︸ ︷︷ ︸

capillary

− ξES

6
k2︸ ︷︷ ︸

Vapor thrust

+
ηEM̂

2
k2︸ ︷︷ ︸

Thermocap.

+
GbξH3

0

12
k2︸ ︷︷ ︸

Gravity

− E

H2
0︸︷︷︸

Evap.

. (59)

This result, while missing the essential inertial e�ect, is
still useful. From Eq. (59) it is clear that the system is
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stable at k → ∞ by capillarity and as k → 0 by evapo-
ration. At intermediate wavenumbers, stability is a mat-
ter of balance between the k2 terms: a stabilizing vapor
thrust, a destabilizing thermocapillary e�ect, and a grav-
itational (Rayleigh�Taylor) e�ect, whose sign depends on
inclination.

An important note about Eq. (59) is that in the vertical
case the only destabilizing in�uence is thermocapillarity,
which is unable to explain the instabilities seen in experi-
ments on vertical plates. The missing piece is the inertial
(Kelvin�Helmholtz) instabilities, and these are captured
when using the full coe�cients in Sec. 3.3.

3.5. Limits of stability: Critical Reynolds number

The goal is to evaluate stability as a function of �lm-
thickness scale h0. As found in Sec. 3.2, the stability anal-
ysis depends on a number of dimensionless parameters,
some of which are h0-dependent:

Re ∝ h3
0, E ∝ h−3

0 , Ca ∝ h2
0. (60)

It is convenient to isolate the h0-dependence into a single
parameter. Here, this is achieved by choosing Re as that
parameter and letting E and Ca be functions of Re through
some h0-independent relations. These relations are

E(Re) =
S

Re
, Ca(Re) =

Re2/3

B
, (61)

where the h0-independent parameters S and B are de�ned
by Eq. (5) and

B = Ca−1Re2/3 = 12σ0

(
ρ2

v

144∆ρgµ4
v

)1/3

∼ O
(
104
)
,

(62)

respectively. This has the convenient e�ect that for a given
case (�uid, ∆T and inclination) stability may be evaluated
as a function of the Reynolds number alone.

Since the dispersion relation Eq. (55) is a quadratic
equation, it will generally yield two values of ω for every
given value of k; call these ω+ and ω−. The typical shapes
of these two branches in the vertical case are shown in
Fig. 3. It is generally the case that the ω− branch has
no potential for instability, and from now on, the interest-
ing branch ω+ will simply be labeled as ω. Fig. 3 reveals
that while the system is stable at both wavenumber ex-
tremes, there is a potential for instability at intermediate
wavenumbers. that is almost completely due to inertial
(Kelvin�Helmholtz type) instabilities. Note also how the
low-Re model (ω0) fails at predicting this instability.

A plot like Fig. 3 can be made for a range of Re val-
ues, and this allows the construction of neutral-curve plots,
such as in Fig. 4. The neutral curve also indicates the crit-
ical Reynolds number and wavenumber, formally de�ned
by:

De�nition. The critical Reynolds number (Rec) is the
smallest Reynolds number (Re) for which I (ω(k)) = 0
for some value of k. The corresponding value of k is the
critical wavenumber (kc).

These two properties, Rec and kc, are the most important
results from the stability analysis. Their values depend on
S, B, M̂ , α and η, though in practice it is found that the
thermocapillary e�ect (M̂ -terms) is too weak to matter in
the regime where the present approximation (E � 1) ap-
plies. In contrast, the parameters S ∝ ∆T and B ∝ σ0

both have appreciable e�ects and may vary much between
cases. Their typical ranges for real cases are S ∈ (0.1, 1.0)
and B ∈ (5000, 30000). Throughout this range it is found
that the critical wavenumber kc, and thus ε, is approxi-
mately 0.1 or less. This justi�es the neglection of terms ε2

in the long-wave approximation.
Generally, it is necessary to solve iteratively for Rec and

kc in each case. However, in the vertical case it was discov-
ered through inspection of numerous numerical solutions
that the results may be captured to good approximation
by the relations

Rec⊥ ≈
3

2
(SB)

1/4
, (63)

kc⊥ ≈
3

2

(
S

B

)1/4

, (64)

where the subscript⊥ implies vertical con�guration. Given
the typical ranges of S and B, Eqs. (63) and (64) imply
that Rec⊥ ∈ (5, 20) and kc⊥ ∈ (0.05, 0.2). For non-vertical
con�gurations the results are too complicated to be cap-
tured in simple power-laws.

The base state Eq. (32) has a monotonically growing
�lm thickness and thus a monotonically growing Reynolds
number, which eventually crosses the critical value Rec.
The resulting disturbance is predicted to have the dimen-
sionless wavenumber kc, and the corresponding dimen-
sional wavelength is

λc =
2π

kc
h0(Rec) =

2π

kc

(
12µ2

v

ρv∆ρg
Rec

)1/3

=
2πRe1/3

c

kc
λ0,

(65)

with the de�nition

λ0 =

(
12µ2

v

ρv∆ρg

)1/3

. (66)

The �uid-dependent length scale λ0 is usually in the range
of 10�100 µm. In the vertical case, one may insert Eqs. (63)
and (64) into Eq. (70) to �nd the expression

λc⊥ = 2π

(
2

3

)2/3(
B2

S

)1/6

︸ ︷︷ ︸
∼O(10)

λ0, (67)

i.e. the critical wavelength will be about 100 times longer
than λ0.
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Figure 3: Imaginary part of typical solutions of Eq. (55) (ω+,ω−) and Eq. (59) (ω0) as functions of dimensionless wavenumber k, for the
vertical case (α = π/2). Red shading marks the region where I (ω) > 0, i.e. predicted instabilities. This example is made based on Re = 25,

S = 1, M̂ = 1, B = 15000 and η = 0.025.

0 5 10 15 20 25 30
Re

0.00

0.05

0.10

0.15

0.20

0.25

k

Rec

kc

Stable Unstable
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wavenumber.
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4. Predicting the long-plate heat-transfer coe�-

cient

Now that a model for the loss of stability has been
found, this may be combined with the laminar vapor-�lm
unit (LVFU) model to predict the heat-transfer coe�cient
(HTC). Given the LVFU model, Eq. (2), the HTC may be
found as

H =
4kv

3h̄(λc)
= H0Nu, (68)

with the function h̄(x) according to Eq. (32). The last
equality shows how this may be split into a reference HTC
(H0) and a Nusselt number (Nu). The reference HTC is
commonly de�ned simply as the conductivity divided by
some known thickness. However, the present case presents
the problem that there is no obvious ab initio known length
scale. The only emergent easily calculable length scale so
far is λ0, so here we choose to de�ne H0 as the conduc-
tive heat transfer across a uniform vapor �lm of thickness
h̄(λ0),

H0 =
kv

h̄(λ0)
= kv

(
ξaρv∆ρgL̂

16µvkv∆Tλ0

)1/4

. (69)

This de�nition has the advantage of letting H0 be cal-
culable from known case/�uid properties alone, and thus
independent of the speci�c solution of the stability prob-
lem. Of course, there are many possible de�nitions with
this property, but this one allows for Nu ∼ O (1). Given
the choice of Eq. (69), the Nusselt number is

Nu =
H
H0

=
4

3

(
λ0

λc

)1/4

=
4

3

(
kc

2πRe1/3
c

)1/4

. (70)

Here, Eq. (65) has been used for the critical wavelength.
In the general case, one must solve numerically for Rec

and kc using Eq. (55) and insert the result into Eq. (70).
However, as shown earlier, in the vertical case one may use
the �tted power laws Eqs. (63) and (64), and this gives

Nu⊥ =
4

3

(
3

2

)1/6(
1

2π

)1/4

︸ ︷︷ ︸
=0.9010...

(
S

B2

)1/24

︸ ︷︷ ︸
∼ 0.4 � 0.5

. (71)

This reveals a very weak dependence on S and B, making
the Nusselt number nearly constant/universal. The Nus-
selt number has been calculated from Eq. (70) for many
combinations of S and B and plotted against the single pa-
rameter S/B2 in Fig. 5. This plot illustrates how Eq. (71)
is a good approximation to the full calculation in the ver-
tical case. It also reveals that Nu follows the (S/B2)1/24

dependency in non-vertical inclinations as well. However,
its reduction when deviating from the vertical con�gura-
tion is asymmetric. The reason for the asymmetry is that
the gravitational (Rayleigh�Taylor) e�ect is a stabilizing

in�uence on one side and a destabilizing in�uence on the
other.

The inclination dependence of Rec and kc from solving
the full model is too complicated to be well estimated by
simple power laws such as Eqs. (63) and (64), and thus,
an accurate expression like Eq. (71) could not be derived
for the general case. However, numerical computations of
the resulting Nusselt number with the use of Eq. (70) for a
wide variety of S and B showed that on the liquid-below-
vapor side the Nusselt number may to a decent approxi-
mation be given by

Nu ≈ a1/6Nu⊥, (for α ≤ π/2). (72)

Note that for the total HTC this a1/6 dependence combines
with the a1/4 dependence of H0 in Eq. (69), giving a total
inclination dependence of a5/12.

5. Experimental validation

The predictions for the HTC described in Sec. 4 may
now be tested against experimental data. Relevant exper-
iments are long-plate �lm-boiling heat-transfer measure-
ments with a liquid bulk that is stationary and saturated.
Note that when making predictions using the model it is
crucial to evaluate the vapor properties µv, ρv, kv and cp,v
at some average �lm-temperature, not simply at Ts. In the
present work, the common choice of Ts + ∆T/2 is made
for the �lm temperature. The liquid properties are simply
evaluated at the saturation temperature.

Series of HTC measurements on vertical plates un-
der di�erent values of ∆T for a variety of �uids were
found in the works of Bui and Dhir (1985); Okkonen et al.
(1996); Vijaykumar and Dhir (1992); Nishio and Chan-
dratilleke (1991); Hsu and Westwater (1958); Nishio and
Chandratilleke (1989); Liaw and Dhir (1986). Given an
orientation and a speci�c �uid, the only remaining vari-
able is the surface superheat ∆T . The HTC data are plot-
ted against relative superheat (∆T/Ts) in Fig. 6. For each
�uid, three model curves are shown. They all use Eq. (68)
but with di�erent methods for �nding Nu: The result from
numerically solving for Rec and kc and inserting these into
Eq. (70), the result from using the simpli�ed model for
vertical Nusselt number in Eq. (71), and the result from
using a constant Nu = 0.4. It is revealed that the full
model predicts virtually all the data within a 15% HTC
uncertainty and that the simpli�cation in Eq. (71) gives
almost identical results.

By dividing the measured HTC by the corresponding
H0, one may also �nd the Nusselt numbers of the data. In
Fig. 7 these are compared to the dependence on S/B2 im-
plied by Eq. (71). This con�rms that the Nusselt number
is nearly constant/universal and that the weak variations
are according to (S/B2)1/24 is as predicted.

A series of HTC measurements with water on a plate of
varying inclinations was provided by Kim and Suh (2013).
The inclination-dependence of the HTC is compared with
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Figure 5: Calculation of the Nusselt number according to Eq. (70) throughout the range S ∈ (0.1, 1.0), B ∈ (5000, 30000), plotted as a
function of S/B2. This is repeated for a number of di�erent inclination angles α. Also shown is the vertical approximation according to
Eq. (71).
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prediction by Eq. (71).

the predictions of the present model in Fig. 8. Both the
full model (numerical solution), and the approximation im-
plied by the combined angular dependence of Eq. (69) and
Eq. (72), are shown. As expected, the two are practi-
cally identical in the α ≤ π/2 region, but the approxima-
tion does not capture the asymmetry in Nu and thus, fails
slightly in the α > π/2 region. For comparison, the a1/4

dependence of the LSI-type model (H0) is also shown. It is
seen that this is considerably less successful in predicting
the observed angular dependence.

The implications of these comparisons with experimen-
tal data will be further discussed in the next section.

6. Discussion

6.1. Inertial instabilities and the critical Reynolds number

It should now be clear that the classical lubrication ap-
proximation with the assumption of εRe� 1 is insu�cient
for predicting the loss of stability in vertical/inclined �lm
boiling, and by extension, that it is insu�cient for predict-
ing the heat transfer coe�cient. As shown in Sec. 2.3.2,
the approximation is not self-consistent. Additionally, as
seen in Sec. 3.4, the approximation yields a dispersion rela-
tion that has no signi�cant mechanism for instability in the
vertical case, which would incorrectly predict a vapor �lm
that remains smooth inde�nitely. Note that this does not
discredit the εRe� 1 approximations made in works such
as Panzarella et al. (2000); Aursand et al. (2018), since
those are concerned with horizontal �lm-boiling with no
strong buoyancy-induced net vapor-�ow.

By retaining the inertial terms and using an integral
method, it is possible to derive a valid long-wave model.

Linear stability analysis of said model results in a disper-
sion relation, Eq. (55), that reveals neutral curves such
as Fig. 4 and by extension predicted values for the crit-
ical Reynolds number and wavenumber. Characterizing
�lm boiling stability through a critical Reynolds number
has been suggested before by authors such as Kim and
Suh (2013), though they �tted a value to a combination of
HTC and velocity measurements, as opposed to theoreti-
cally predicting it. As seen in Fig. 4, in the present work a
value of Rec ≈ 10 is predicted for water. This theoretical
prediction is consistent with the experimental �ndings of
Kim and Suh (2013).

As shown in Sec. 3.5, for the vertical case the predicted
critical Reynolds number and wavenumber for any case
may to a good approximation be represented by simple
power laws with weak dependencies on the parameters S
and B. The only result of the stability analysis that carries
over into the HTC model is the dimensional wavelength of
the resulting disturbances, called the critical wavelength
λc. Since Re grows very fast as the �lm thickness grows
(∼ h3

0), λc depends only weakly on the critical Reynolds

number, as seen in Eq. (65) (∼ Re1/3
c ). As seen in Eq. (67),

the overall result for the vertical case is that this wave-
length is only weakly dependent on S and B and that it
is accurately predicted by the �uid-dependent wavelength
λ0 multiplied with a relatively constant (≈ 100) factor.

6.2. Validity of the model and its approximations

While inertial terms were retained, the present long-
wave approximation still assumes that the O

(
ε2
)
terms

could be neglected, and it is necessary for self-consistency
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Figure 8: Experimentally measured heat transfer coe�cients for water with ∆T = 150 K at varying inclination angles, relative to the value
in the vertical orientation. The solid line shows the prediction of the present model. The dashed line shows the approximation resulting from
Eq. (72) (a5/12). The dotted line shows the angular dependence of the Bromley-type models (a1/4).

that the predicted instabilities from the model have wave-
lengths that satisfy this assumption. According to the def-
initions in Sec. 3.2, the condition of ε� 1 is equivalent to
k � 1. As seen from Fig. 4 and Eq. (64), the �rst occurring
instability generally has k ∼ 0.1 in the vertical cases, and
for other orientations k is smaller. Thus, the O

(
ε2
)
terms

may safely be neglected compared to the O (1) terms.
Additionally, in order to simplify the model, it was

assumed in Sec. 2.4.3 that E � 1. Since the value of
E becomes smaller as the vapor �lm grows thicker, self-
consistency would require that the predicted onset of in-
stabilities occurs after E becomes small. The value of E
along the growing base state is E(x) = S/Re(x). Since
S ∼ 0.1 and Rec ∼ 10, one can expect that E ∼ 0.01
by the time instabilities occur, which is certainly small
enough to make the approximation reasonable.

6.3. Heat-transfer coe�cient

In order to predict the heat-transfer coe�cient, the
premise of the LVFU model was accepted at face value,
and the only result needed from the model herein was the
critical wavelength λc in Eq. (65) inserted into Eq. (2).
The result was the general expression, Eq. (68), where the
critical wavelength's dependence on λ0 carried over into
the reference HTC (H0), while the relatively weak depen-
dence on S/B2 carried over into the corresponding Nusselt
number.

As seen in Fig. 6, the present model appears to work
very well for vertical �lm boiling. It is interesting to note
how most of the variation in the HTC between di�erent
�uids and ∆T values is accounted for by H0 alone. Such a

constant-Nu model, seen in the dotted line in Fig. 6, seems
quite su�cient for small to moderate superheat (∆T/Ts <
1). This means that the wavelength λ0 combined with the
LVFU model is a good predictor for the HTC and that
variations in the Nusselt number, as de�ned here, only
accounts for a moderate adjustment. This is con�rmed
experimentally in Fig. 7 by the fact that every single mea-
surement shows approximately the same Nusselt number,

Nu⊥ ≈ 0.4± 0.1, (73)

regardless of �uid and ∆T . For the little variation in Nu
there is, Fig. 7 shows that the predicted weak power-law
(S/B2)1/24 �ts quite well.

The reason for the almost universal Nusselt number,
Nu ≈ 0.4, seems to be due to the fact that the critical
Reynolds number Rec and the corresponding dimension-
less wavenumber kc vary little from case to case, as seen
from the weak S and B power-laws in Eqs. (63) and (64).
This leads to the critical wavelength in Eq. (67) having a
weak dependence on S and B and essentially being just
λ0 times a slightly varying factor. Since the dependence
on λ0 is absorbed into the de�nition of H0, the Nusselt
number is left to only account for a small adjustment.

For the vertical case, it is apparent from Fig. 6 that the
di�erence between the full model and the approximation
in Eq. (71) is virtually zero, so there is little reason to not
use the latter. In the case of general inclination, one must
either solve the full stability problem, or combine Eq. (71)
with the approximation Eq. (72). As seen in Fig. 8, the
two give practically identical results in the cases where
α ≤ π/2. It is also apparent from Fig. 8 that the classical
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inclination dependence of a1/4 from LSI-type models are
less accurate at predicting the observations. Overall there
is too little data to draw strong conclusions regarding the
inclination dependence. In the α > π/2 con�gurations,
there seems to be no data at all, and it is not even clear
if LVFU-type models apply at all due to the possibility of
bubble detachment.

7. Conclusions

From the present work the following may be concluded:

• Retaining the inertial (εRe) terms in the long-wave
approximation is crucial for correctly predicting sta-
bility in non-horizontal �lm boiling.

• When applying an integral boundary layer method to
the long-wave approximation with inertial terms, the
result is the two coupled nonlinear partial di�erential
equations in Eqs. (46) and (47).

• Linear stability analysis of this model indicates that
the critical Reynolds number for the onset of the in-
ertial instabilities is Rec ≈ 10 and that the resulting
waves are much longer than the �lm thickness.

• Before the critical Reynolds number is reached, the
stabilizing evaporation e�ect seems to dominate. Af-
ter it is reached, the �lm is so thick that vapor thrust,
non-equilibrium and thermocapillary e�ects are neg-
ligible.

• For inclination angles α ≤ π/2, as de�ned in Fig. 1,
the present model implies that the long-plate �lm-
boiling heat-transfer coe�cient may be quite accu-
rately predicted by

H = 0.901 (sinα)
5/12

(
S

B2

)1/24
(
ξk3

vρv∆ρgL̂

16µv∆Tλ0

)1/4

,

(74)

with S and B given by Eqs. (5) and (62), and the
vapor properties evaluated at the �lm-temperature.
This model could predict all relevant heat transfer
coe�cient data within an error of 15%. The model is
non-empirical, in the sense that the pre-factor 0.9010
comes from expressions generated by numerical so-
lutions of Rec and kc, and not from experimental
data.

The full nonlinear model Eqs. (46) and (47), and the
subsequent results derived thereof, are all made under the
assumption of E � 1, which implies that the vapor �lm
thickness h̄(x) has grown to be at least 100 µm and is quite
parallel to the solid wall. As possible further work, it
would be interesting to explore the properties of vapor
�lm stability in the regime where E ≈ 1. This could in-
volve either solving the full nonlinear model numerically,
or performing some nonparallel stability analysis akin to
Saric and Nayfeh (1975).
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Appendix A. Derivation of dimensionless equations

The following derivation is similar to the one in Aur-
sand et al. (2018) for horizontal �lm boiling, but gener-
alized for any orientation. Readers are directed there for
more detailed comments on the model assumptions that
do not relate to the generalization.

Appendix A.1. Governing equations

The two-dimensional vapor �ow in Fig. 1 is character-
ized by a velocity �eld v = ux̂ + wẑ, a temperature �eld
T , and a pressure �eld p. The governing equations are the
standard continuity equation, x and z momentum equa-
tions, and the energy equation (Kundu et al., 2007),

ux + wz = 0, (A.1)

ρv (ut + uux + wuz) = −px + µv (uxx + uzz)− φx,
(A.2)

ρv (wt + uwx + wwz) = −pz + µv (wxx + wzz)− φz,
(A.3)

ρvcp,v (Tt + uTx + wTz) = kv (Txx + Tzz) , (A.4)

where subscripts t, x and z imply di�erentiation. The
body-force potential φ,

φ = φ0 + ρvg (ax+ bz) +
Ã

6πh3(x)
, (A.5)

includes not only the gravitational potential, but also a dis-
joining pressure term (Oron et al., 1997) that represents
the van der Waals interaction. Here φ0 is a constant refer-
ence potential, g is the gravitational acceleration, Ã is the
Hamaker constant. The quantities a and b are the inclina-
tion dependent shorthands a = sin(α) and b = − cos(α).

Appendix A.2. Boundary conditions

At the solid wall we have zero velocity and a given
temperature Tw,

[v]z=0 = 0, (A.6)

[T ]z=0 = Tw. (A.7)

At the liquid�vapor interface z = h(x, t) the boundary
conditions are continuity of tangential velocity, the kine-
matic boundary condition (with evaporation), the normal
stress balance, the tangential stress balance, and the en-
ergy balance. In this order, these may be formally written
as [

(v − vl) · t̂
]
z=h

= 0, (A.8)

ρv [(vi − v) · n̂]z=h = j (A.9)

[j (vl − v) · n̂− ([T − Tl] · n̂) · n̂]z=h = −κσ (A.10)[
((T − Tl) · n̂) · t̂−∇σ · t̂

]
z=h

= 0 (A.11)

−kv [∇T · n̂]z=h = Hl (Ti − Ts) + jL̂.
(A.12)

Here a subscript � l� indicates the corresponding property
on the liquid side of the interface. The symbol T is the
Newtonian �ow viscous stress tensor, j is the evaporation
mass �ux, and L̂ is the e�ective latent heat of vaporiza-
tion (modi�ed for the sensible heat e�ect according to Bui
and Dhir (1985)). The interface has unit vectors n̂ and
t̂ de�ned according to Fig. 1, a velocity given by vi, and
a temperature Ti = T (x, z = h) which during evapora-
tion is slightly higher than the saturation (and liquid bulk)
temperature Ts. The heat transfer coe�cient between the
interface and the liquid bulk is Hl. The surface tension
of the interface, σ, depends on the interface temperature.
This dependence is approximated as a linearization around
a value σ0 at Ts (Davis, 1987),

σ(T ) = σ0 − γ [T − Ts] . (A.13)

As discussed in Aursand et al. (2018) the evaporation mass
�ux may be modelled according to kinetic theory,

Ti − Ts = K̃j, (A.14)
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with

K̃ =

(
1− 1

2αe

αe

) √
2πRsT

3/2
s

ρvL
, (A.15)

where αe is the evaporation coe�cient with an assumed
value of 0.85.

Finally, in order to avoid having to compute the de-
tailed dynamics of the bulk liquid outside the vapor �lm,
some additional simplifying assumptions are made. First,
it is assumed that the liquid pressure is given by hydro-
statics alone, so that the liquid pressure pl outside the
interface is

[pl]z=h = −ρlg(ax+ bh). (A.16)

Second, it is assumed that the tangential interface veloc-
ity must be somewhere between zero and the hypothetical
maximum (free surface, µl → 0),

[
v · t̂

]
z=h

= η

(
lim
µl→0

[
v · t̂

]
z=h

)
(A.17)

with the �uid-dependent constant η ∈ (0, 1) specifying the
position within this range.

Appendix A.3. Scales and dimensionless numbers

As commonly done in the long-wave approximation,
a �lm thickness scale h0 is used to de�ne dimensionless
equivalents Z = z/h0 and H = h/h0. The dimensionless
parallel distance is scaled according to the wavelength λ of
the vapor �lm disturbances, X = x/x0 with x0 = λ/(2π).
The aspect ratio central to this approximation is simply
the ratio between these two scales, ε = h0/x0. For the
velocity components a scale u0 is used to de�ne dimen-
sionless equivalents U = u/u0 and W = w/w0, where
continuity implies that w0 = εu0. Time is scaled accord-
ing to t0 = x0/u0, which is used to de�ne the dimension-
less time τ . The dimensionless pressure P and potential
Φ are de�ned using the pressure scale implied by viscous
pressure-drop in a channel, p0 = µvu0/(εh0). The evap-
oration rate J = j/j0 is scaled with j0 = kv∆T/(h0L),
where ∆T = Tw − Ts. Finally, the dimensionless temper-
ature is θ = (T − Ts)/∆T .

Without any further knowledge about the velocity scale
u0, the dimensionless numbers listed in Sec. 2.2.1 may now

generally be written as

Re =
ρvu0h0

µv
(Reynolds number),

E =
kv∆T

ρvu0h0L
(Evaporation number),

Ca =
µvu0

σ0
(Capillary number),

K =
K̃kv

h0L̂
(Disequilibrium number),

M =
∆Tγ

µvu0
(Marangoni number),

S =
kv∆T

µvL̂
(Vapor-thrust number),

Pr =
µvcp,v
kv

(Vapor Prandtl number),

Ψ = µv/µl (Viscosity ratio),

Gv =
ρvgh

2
0

µvu0
(Vapor gravity number),

Gl =
ρlgh

2
0

µvu0
(Liquid gravity number),

G =
∆ρgh2

0

µvu0
(Gravity number).

(A.18)

The dimensionless governing equations and boundary
conditions listed in Sec. 2.2.1 result from combining the
governing equations of Appendix A.1 and the boundary
conditions of Appendix A.2 with the dimensionless scalings
and numbers herein. In this process, the e�ects of van der
Waals interactions in Eq. (A.5) and liquid heat transfer in
Eq. (A.12) are neglected.

Appendix B. Base state velocity pro�le

According to total mass conservation, a steady state
solution must have the same rate of vapor �owing out at
x as the rate of vapor that is supplied through evapora-
tion along the entire length of 0 → x. This means that
the average vapor velocity corresponding to the simpli�ed
steady state in Eq. (32) may be written as a function of
the growing �lm thickness,

〈ū〉 =
1

ρvh̄

∫ x

0

kv∆T

L̂h̄(x′)
dx′,

=
aξ∆ρgh̄2

12µv
. (B.1)

The special case of Eq. (B.1) with a = 0 and ξ = 1 is what
inspired the choice of velocity scale u0 in Eq. (4). With
this scaling the dimensionless velocity pro�le of the base
state is

Ū =
Ga

2

[
(1 + η)H̄Z − Z2

]
, (B.2)
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which means that the interface velocity and maximum ve-
locity are

Ūi =
Ga

2
ηH̄2, Ūmax =

Ga

2

[
1

4
(1 + η)2

]
H̄2, (B.3)

respectively.

Appendix C. The value of η

As seen from Eq. (B.3), information on the velocity
pro�le in �lm boiling may give insight into what the value
of η should be. From the theoretical calculations by Koh
(1962) on the velocity pro�le in smooth steady solutions
one can see that

Ui

Umax

≈ 3

4

(
ρvµv

ρlµl

)1/4

. (C.1)

Since Eq. (B.3) implies that

Ūi

Ūmax

= 4
η

(1 + η)2
≈ 4η, (C.2)

the value of η may then be approximated by

η ≈ 1

4

Umax

Ui
≈ 3

16

(
ρvµv

ρlµl

)1/4

. (C.3)
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