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Abstract

An isogeometric analysis formulation for simulating red blood cell (RBC) electro-deformation
is presented. Electrically-induced cell deformation experiments are receiving increasing at-
tention as an attractive strategy for single-cell mechanical phenotyping. As the RBC struc-
ture consists in a very thin biological membrane enclosing a nearly-incompressible fluid, (i) a
surface shell kinematic model and (ii) the imposition of the shell enclosed-volume conserva-
tion constraint are proposed within the isogeometric analysis framework. With regard to the
electro-deformation, an accurate evaluation of the electric-field induced forces is achieved
by the Maxwell stress tensor approach. A staggered fixed-point iteration scheme is then
proposed for performing the electro-mechanical coupling, in order to use reliable mechanical
and electrical problem solvers sequentially. Supported by the comparison with experimental
results and reference solutions, numerical simulations concerning the large deformation of a
RBC by optical tweezers and an in silico electro-deformation experiment prove the accuracy
and the effectiveness of the proposed formulation.

Keywords: Isogeometric analysis, Thin shell, Biological membrane, Electro-deformation,
Strong coupling

1. Introduction

Cell mechanical properties have been recognized by the biophysics community to be useful
markers of cell state. In particular, the growing evidence that cell deformability may provide
a label-free biomarker for determining e.g. metastatic potential, degree of differentiation, or
cell activation [1], has prompted the development of a wide range of experimental tech-
niques aiming at cell mechanical phenotyping (reviews can be found in [2, 3, 4]). Increasing
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attention has been recently devoted to electrically-induced cell deformation in microfluidic
systems, which is especially attractive for being a potentially high-throughput technique.
Among the cell types whose mechanical characterization has been explored through electro-
deformation experiments [5, 6, 7, 8], a prominent position is taken by erythrocyte or red
blood cell (RBC), due to the importance of its deformability in physiology and pathophysi-
ology [9]. In fact erythrocyte deformability is crucial to microvascular function and becomes
altered in various blood-related hereditary and non-hereditary diseases, such as malaria,
sickle cell anemia, diabete mellitus, and cardiovascular disease [10]. As both the interpreta-
tion of experimental results and the identification of optimal experimental assay design call
for aid from modeling and simulation strategies, the focus is here on the development of a
computational approach to the RBC electro-deformation experiment.

From a structural standpoint, a RBC consists in a liquid capsule enclosed by a bio-
logical membrane, the latter being composed of a phospholipid bilayer and an underlying
cytoskeleton, coupled to each other. The biological membrane behaves as a very thin shell
(its thickness is less than 10 nm, while its diameter is about 8 µm), which derives its bend-
ing stiffness from the phospholipid bilayer and its membrane stiffness from the cytoskeleton.
Additionally, the phospholipid bilayer enforces a local surface area conservation constraint.
In turn, the nearly incompressible cytosol inside the biological membrane determines an
enclosed-volume conservation constraint [11].

A standard approach to capture the mechanical behavior of biological membranes, of-
ten undergoing large rotations and deformations, is the use of Kirchhoff–Love shell finite
element formulations [10, 12, 7]. Apart for the need of fine discretizations for an accurate
description of the problem geometry, such a strategy suffers from computational issues re-
lated to the explicit use of nodal rotations as degrees of freedom in presence of the very
small bending stiffness exhibited by biomembranes. A possible remedy within the context
of the finite element method (FEM) relies on rotation-free shell formulations (see, e.g. [13]),
not involving nodal rotations and approximating the element curvature on the basis of the
transversal displacements of adjacent elements. Departing from shell models, alternative
strategies are represented by the dissipative particle dynamics method [14, 15], whose appli-
cation might be limited by computational demand, and element-free formulations, recently
addressed in [16, 17, 18], although not considering the local surface area constraint nor
the enclosed-volume conservation constraint. In the slightly different context of simulating
the mechanical behavior of biological vesicles, i.e. biomembranes only exhibiting bending
stiffness, also under the interaction with a surrounding medium, it is worth mentioning
phase-field formulations [19, 20] and level-set methods [21, 22], which describe the vesicle in
the fashion of a smeared interface. However, the extension of such approaches to account for
the membrane stiffness does not appear completely straightforward. Moreover, their com-
putational cost only appears justified by the flexibility of phase-field approaches in dealing
with topological changes in the cell, which do not occur during RBC deformation.

Many of the drawbacks emerging from the above discussion are naturally overcome by
isogeometric analysis (IGA), originally proposed in [23] as an extension of the standard
FEM and typically adopting Non-Uniform Rational B-Splines (NURBS) as basis functions
for both geometry and solution discretization. The most attractive advantages with respect
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to standard FEM formulations for the present application are: (i) the ability to exactly
describe complex geometries even at the coarsest level of refinement without requiring a
meshing process, and (ii) the natural fulfillment of the C1–continuity requirement of the
spatial discretization to be used in the Kirchhoff–Love shell model. Several Kirchhoff–Love
shell isogeometric formulations have been proposed to date (for instance, see [24, 25]), and
their applications to biological membranes have been considered as well [26]. Yet, compared
to biological membranes, the description of the RBC mechanical behavior further requires
the imposition of local surface area and enclosed-volume conservation constraints.

With respect to the electro-mechanical coupling, the attractive ability of IGA to accu-
rately represent smooth exact geometries with a relatively low number of degrees of freedom
and avoiding typical issues of FEM such as mesh distortion during simulations (as suggested
from the application of IGA to the analogous multi-physics problem of fluid-structure in-
teraction [27, 28]), does not seem to have been exploited so far. In particular, the coupling
might benefit from an accurate estimate of the mechanical forces induced by the electric
field.

Aim of the present work is to develop a robust IGA formulation for simulating RBC
electro-deformation. The RBC biological membrane is modeled resorting to a surface shell
formulation which is similar to the Kirchhoff–Love shell formulation discussed in [25]. A
homogenized microstructurally-based constitutive law, based on the (first-order) Cauchy–
Born rule [29], is adopted for the membrane behavior (generalized Cauchy-Born rules, as
discussed in [30, 31, 32, 33], might be alternatively considered, although computationally
more demanding [16]). Local surface area conservation constraint is here explicitly involved.
Thanks to such a multiscale framework, on the one hand the specific mechanical nature of
the biomembrane principal constituents is accurately accounted for, on the other hand the
computational efficiency of a continuum approach is enjoyed [11, 34, 15, 16]. The Helfrich
model is assumed for the bending behavior [35]. The RBC mechanical description is com-
pleted by the enclosed-volume conservation constraint, which is enforced through a penalty
method at structural level. In order to determine the electric field distribution in the domain
of the electro-deformation experiment, conforming parametrizations of intracellular space,
biological membrane and suspending fluid are considered. The mechanical forces induced
by the electric field acting upon the RBC are evaluated adopting the Maxwell stress tensor
approach [36, 7, 8]. A staggered fixed-point iteration scheme is then applied to implement
the electro-mechanical (strong) coupling. Consequently, electrical and mechanical problems
are solved sequentially. The electrical problem consists in the computation of the mechan-
ical forces induced by the electric field for a prescribed geometry of the RBC, whereas the
mechanical problem consists in the computation of the RBC configuration in equilibrium
for prescribed load.
Numerical simulations are reported for assessing accuracy, robustness and effectiveness of the
proposed isogeometric formulation. A purely mechanical application consists in reproducing
experiments of RBC large deformation by optical tweezers available in the literature [34].
An in silico RBC electro-deformation experiment is then discussed. From the comparison
of numerical results with experimental evidences and reference solutions, the capabilities
and potentialities of the present formulation, along with a reduction in computational cost
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compared to the FEM alternative, are highlighted.
The present paper is organized as follows. In Section 2 the mechanical problem is

discussed, dealing with the surface shell kinematic model, the RBC constitutive law, the
variational formulation of the equilibrium problem and its isogeometric discretization. In
Section 3 the electrical problem of RBC immersed in a suspending fluid and subjected to an
applied electrical field is presented, including the derivation of the mechanical loads induced
by the electric field acting over the cell. In Section 4 the proposed staggered fixed-point
scheme for performing the electro-mechanical coupling is described. Numerical simulations
are reported in Section 5 and conclusions are outlined in Section 6. Finally, details on the
mechanical problem linearization are given in Appendix A.

2. Mechanical problem

The structure of a RBC consists in a liquid capsule enclosed by a biological membrane.
The biological membrane can be modeled as a shell surface, exhibiting both membrane and
bending stiffnesses. Because of the near-incompressibility of the inner liquid (cytosol), such
shell surface is subjected to an enclosed-volume conservation constraint. In this section,
after presenting the shell surface kinematic model, a variational formulation of the RBC
mechanical evolution problem is presented. Moreover, its isogeometric discretization is dis-
cussed.
In the following, unless otherwise stated, greek and latin indices take respectively values in
{1, 2} and {1, 2, 3}, and Einstein summation convention is used.

2.1. Kinematic model

Let the shell reference surface Γ be parametrized by a map X ∈ H2(Ω̂)3, where Ω̂ ⊂ R
2

is a domain representing the parameter set and H2 denotes the space of square integrable
functions along with their first and second weak derivatives. It is assumed that the two
vectors:

Gα(ξ) = X,α(ξ) , (1)

in which the notation (·),α is introduced for the partial derivative with respect to the pa-
rameter coordinate ξα, are linearly independent at a.e. point ξ ∈ Ω̂. Accordingly, these two
vectors span the tangent plane to Γ at X(ξ) and it is possible to consider the director to Γ
at X(ξ), i.e. the unit normal vector, as given by:

G3(ξ) =
G̃3(ξ)

A(ξ)
, G̃3(ξ) = G1(ξ)×G2(ξ) , A(ξ) = ‖G̃3(ξ)‖, (2)

where × denotes cross product and G̃3(ξ) and A(ξ) are respectively referred to as the normal
vector and the area element at X(ξ). The three vectors Gi(ξ) constitute the covariant basis
at point X(ξ), whereas the three vectors defined by the relationships:

Gi(ξ) ·Gj(ξ) = δij, (3)
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with · denoting scalar product and δij denoting the Kronecker symbol, constitute the con-
travariant basis at point X(ξ) (for instance, see [37]).

Within the present kinematic model, a displacement field u ∈ H2(Ω̂)3, mapping the
shell reference surface Γ onto the shell current surface γ, is considered. Accordingly, γ is
parametrized by a map x ∈ H2(Ω̂)3, given by:

x(ξ) = X(ξ) + u(ξ) , (4)

with u as the surface displacement field. It is required that the two vectors gα(ξ) = x,α(ξ)
are linearly independent at a.e. point ξ ∈ Ω̂. Equations analogous to (1), (2) and (3)
yield the covariant basis gi(ξ), the contravariant basis gi(ξ) and the area element a(ξ) at
point x(ξ).

The surface deformation is completely described in terms of the Green-Lagrange strain
tensor, i.e. the change of metric tensor :

ε(ξ) =
1

2

[

gα(ξ) · gβ(ξ)−Gα(ξ) ·Gβ(ξ)
]

Gα(ξ)⊗Gβ(ξ) , (5)

and of the change of curvature tensor:

χ(ξ) = −
[

gα,β(ξ) · g3(ξ)−Gα,β(ξ) ·G3(ξ)
]

Gα(ξ)⊗Gβ(ξ) , (6)

where ⊗ denotes tensor product (e.g., see [38]). In particular, the stretch λe(ξ) along a
prescribed unit vector e lying in the shell surface tangent plane and the areal stretch Λ(ξ)
are:

λe(ξ) =
√

1 + 2ε(ξ)e · e, Λ(ξ) = a(ξ) /A(ξ) . (7)

The following developments also require the computation of the volume enclosed by the
shell in reference configuration V and in current configuration v. Applying the divergence
theorem, they result to be:

V =
1

3

∫

Γ

X ·G3 dΓ, v =
1

3

∫

Γ

x · g3 ΛdΓ, (8)

whence the change of enclosed volume is v − V .
For the variational formulation to be discussed in Section 2.3, the variation of the change

of metric tensor δε, of the change of curvature tensor δχ and of the change of enclosed
volume δv with respect to a variation of the displacement field δu needs to be computed.
As a preliminary step, on observing that the reference surface configuration X does not
depend on the displacement field u, the variation of the current surface configuration x is
investigated. In particular, equations (4), (1) and (2) yield:

δx(ξ) = δu(ξ) , δgα(ξ) = δu,α(ξ) , δg3(ξ) = [I − g3(ξ)⊗ g3(ξ)]
δg̃3(ξ)

a(ξ)
, (9)

where I denotes the identity tensor and the following relationships hold true:

δg̃3(ξ) = δg1(ξ)× g2(ξ) + g1(ξ)× δg2(ξ) , δa(ξ) = g3(ξ) · δg̃3(ξ) . (10)
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Consequently, equations (5) and (6) give:

δε(ξ) =
1

2

[

δgα(ξ) · gβ(ξ) + gα(ξ) · δgβ(ξ)
]

Gα(ξ)⊗Gβ(ξ) , (11)

δχ(ξ) = −
[

δgα,β(ξ) · g3(ξ) + gα,β(ξ) · δg3(ξ)
]

Gα(ξ)⊗Gβ(ξ) , (12)

whereas from equations (8):

δv =
1

3

∫

Γ

[δx · g3 Λ+ x · (δg3 Λ + g3 δΛ)] dΓ, (13)

in which, from equation (7)2:
δΛ(ξ) = δa(ξ) /A(ξ) . (14)

2.2. Constitutive model

For an accurate constitutive modeling of a RBC, the contribution of its constituents,
i.e. biological membrane and cytosol, has to be accounted for. As schematically depicted in
Figure 1(a), the biological membrane itself is a composite structure, composed of a phospho-
lipid bilayer and an underlying spectrin network (cytoskeleton), coupled to each other by
integral membrane proteins. The biological membrane exhibits both membrane and bending
stiffnesses, whereas the cytosol is responsible of an enclosed-volume conservation constraint.
Accordingly, the following internal free energy potential, similar to the one adopted in [13],
is considered:

Wint =Wm +Wb +Wv, (15)

whereWm is the shell membrane contribution, Wb is the shell bending contribution andWv

is the volume contribution. In this section, each energy contribution is discussed in detail.

2.2.1. Membrane behavior

The membrane stiffness of the biological membrane arises from the spectrin network
structure. Following the approach discussed in [39, 40, 11, 41], the spectrin network is mod-
eled as a regular triangular network (Figure 1(b)), whose constituents are actin junction
complexes (vertices), spectrin links (sides) and triangular plaquettes attached to phospho-
lipid bilayer (triangles).

In order to determine the homogenized membrane energy of the biological membrane,
a single equilateral triangle is considered as Repetitive Unit Cell. Let ψ = {0, 2π/3, 4π/3}
denote the polar angles along which the spectrin links lie and e(ψ) the relevant directions
(Figure 1(c)). Upon neglecting fluctuations due to local inhomogeneities, the triangle un-
dergoes an in-plane (uniform) strain described by the macroscopic Green-Lagrange strain
tensor ε. According to the worm-like chain model [42, 43, 13], the free energy stored in each
spectrin link turns out to be:

wsl(ψ) =
kBTL

2
0

4pLmax

[3Lmax − 2λe(ψ)L0]λe(ψ)
2

Lmax − λe(ψ)L0

, λe(ψ) <
Lmax

L0

, (16)
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Figure 1: RBC biological membrane: (a) schematic illustration of biomembrane constituents (not to scale),
(b) regular triangular network model and (c) relevant repetitive unit cell, reprinted with permission from [13].

where kB is the Boltzmann constant, T is the absolute temperature, p is the persistence
length, Lmax is the contour chain maximum length and L0 is the undeformed network chain
length. It is remarked that the free energy wsl blows up to infinity as the spectrin link
stretch λe approaches unity. As a consequence, condition (16)2 requires the current network
chain length λe(ψ)L0 to be bounded by the contour chain maximum length Lmax. By
equation (7)1, that amounts at the imposition of a constraint on the Green-Lagrange strain
tensor ε. On the other hand, the free energy stored in the triangular plaquette can be
estimated as [11]:

wtp =
Cq

(ΛAtp)
q , (17)

where Atp = L2
0

√
3/4 is the network triangular plaquette reference area, q is a suitable

exponent and the constant Cq is determined by imposing that the triangular network is
stress-free for a vanishing applied Green-Lagrange strain tensor ε:

Cq =
3

16

kBTA
q
tpLmax

pq

(6− 9x0 + 4x20)

(1− x0)2
, x0 =

L0

Lmax

. (18)

Due to the conservation of the total number of lipid molecules over the biomembrane, surface
area modifications are locally prevented. Such constraint is accounted for by considering an
additional energy term [11]:

ws =
1

2
ksAtp (Λ− 1)2 , (19)

7



in which ks is a suitable penalty parameter.
Finally, according to the Cauchy–Born rule [29], the membrane free energy density wm

(homogenized with respect to the shell reference surface area) and the corresponding mem-
brane free energy Wm result to be:

wm =
1

Atp

[

∑

ψ wsl(ψ) + wtp + ws

]

, Wm =

∫

Γ

wm dΓ. (20)

The shell membrane forces (acting on an area element in the reference configuration) are
finally introduced by:

n =
∂wm

∂ε
. (21)

2.2.2. Bending behavior

The bending stiffness of the biological membrane arises from the phospholipid bilayer.
Adopting the Helfrich model [35], the bending free energy density wb (with respect to the
shell current surface area) and the corresponding bending free energy Wb can be evaluated
as:

wb =
kc
2
J2 + kgK, Wb =

∫

Γ

wb ΛdΓ, (22)

where, denoting by tr and det the trace and determinant operators respectively, J = trχ is
the change of total curvature and K = detχ is related to the change of Gaussian curvature.
Accordingly, the shell bending forces (acting on an area element in the current configuration)
are given by:

m =
∂wb

∂χ
. (23)

2.2.3. Enclosed-volume conservation constraint

The RBC enclosed-volume conservation constraint arises from the near-incompressibility
of the cytosol. Resorting to the penalty method, the volume energy contribution is [11]:

Wv =
1

2

kv
V

(v − V )2 , (24)

where kv is a suitable penalty parameter and V [resp., v] has been introduced in equation (8)
for the volume enclosed by the shell in reference [resp., current] configuration. The following
definition is finally considered:

p =
∂Wv

∂v
, (25)

with the meaning of shell inner pressure.

2.3. Variational formulation

A standard displacement-based variational formulation for the mechanical evolution of
the RBC is considered. Consequently, the structural equilibrium condition is derived by
imposing the stationarity of the total energy:

W =Wint −Wext, (26)
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where Wint is the internal free energy defined in Section 2.2 and Wext is the potential of
external loads, with respect to any variation of the displacement field δu:

0 = δW = δWint − δWext. (27)

In particular, the variation of the internal free energy δWint is derived from equations (20),
(22) and (24):

δWint =

∫

Γ

n : δε dΓ +

∫

Γ

(m : δχΛ + wb δΛ) dΓ + p δv, (28)

where : denotes tensor contraction, the variations of the change of metric tensor δε, of the
change of curvature tensor δχ and of the change of enclosed volume δv are given in equa-
tions (11)–(13), respectively, and the shell membrane forces n, the shell bending forces m
and the shell inner pressure p are introduced in equations (21), (23) and (25), respectively.

2.4. Isogeometric discretization

Basic idea of IGA is to assume basis functions used in CAD (typically NURBS) for ap-
proximating both geometry and solution. Accordingly, the reference surface parametrization
and the surface displacement are expressed by:

X(ξ) = RI(ξ) X̂I , u(ξ) = RI(ξ) ûI , (29)

where RI is the basis function associated to the control point I (e.g. see [44]), and X̂I and ûI
denote its reference coordinate and displacement, respectively. Correspondingly, the current
surface parametrization results to be:

x(ξ) = RI(ξ)
(

X̂I + ûI

)

. (30)

It is noted that the parametric coordinates ξ are here identified with the isogeometric natural
coordinates and the parameter space Ω̂ descends from suitable knot vectors. Henceforth,
the dependence on ξ will be omitted whenever no confusion may arise.
From reference and current surface discretizations, respectively in (29) and (30), the relevant
discretized covariant bases can be derived. In particular, the tangent planes are spanned by:

Gα = RI,αX̂I , gα = RI,α

(

X̂I + ûI

)

, (31)

whence discretized normal vectors, area elements and directors can be computed for both
reference and current surface using equations (2). As a consequence, the discretizations of
the change of metric tensor ε, of the change of curvature tensor χ and of the change of
enclosed volume v − V follow from equations (5), (6) and (8), respectively.
Analogously, the discretized variations of the current surface configuration are derived from
equations (9)1–2:

δx = RI δûI , δgα = RI,α δûI , (32)
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Figure 2: Electrical problem.

and the discretized variations of the change of metric tensor δε, of the change of curvature
tensor δχ and of the change of enclosed volume δv follow from equations (9)–(14).

The structural equilibrium condition (27) can be finally put in a customary residual form:

0 = r = qext − qint, (33)

where the control point internal and external forces, qint and qext respectively, are defined
by:

qint · δû = δWint, qext · δû = δWext. (34)

Here, the discretized variation of the internal free energy δWint follows from equation (28). It
is also remarked that the control point external forces qext relevant to the electro-deformation
problem have to be derived from the forces induced by the electric field (Section 3).
In Appendix A the linearization of the structural equilibrium equations (33) with respect to
the control point displacements û, needed e.g. for adopting Newton’s method of solution, is
performed.

3. Electrical problem

In this section, the electrical problem of a RBC inside a suspending fluid, subjected to
an applied electric field, is considered. Attention is also devoted to the derivation of the
forces induced by the electric field over the erythrocyte. Finally, some details concerning
the isogeometric formulation are discussed.

3.1. Governing equations and weak formulation

As depicted in Figure 2, the electrical problem domain consists in the union of two ho-
mogeneous conductive regions Ω1 and Ω2, respectively modeling the intracellular space and
a suspending fluid. Each region is characterized by relative permittivity εk and conductiv-
ity σk, with k = 1, 2. The biological membrane γ separating the intracellular space from
the suspending fluid is modeled as a two-dimensional interface, with conductance G and
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capacitance C per unit area. The boundary of the domain is divided into an insulating
part ∂Ωne, and a part covered by electrodes ∂Ωe, which generate the electric field and are
characterized by conductance Ge and capacitance Ce per unit area.

Under the quasistatic approximation, let ϕ denote the electric potential, from which the
electric field can be derived as e = −∇ϕ, with ∇ as the spatial gradient operator. In the
following, time-harmonic fields are considered. Accordingly, let Φ denote the phasor of the
electric potential ϕ = ℜ

(

Φeiωt
)

, where i is the imaginary unit, ω is the circular frequency and
ℜ is the real part operator. The electrical problem can be then stated in the Fourier domain.
In particular, the electric conduction in the whole domain is governed by the divergence of
the Maxwell–Ampère law:

− div (σ∗∇Φ) = 0 in Ω1 ∪ Ω2, (35)

where div denotes the spatial divergence operator and σ∗ = σk+iεkε0 is the complex conduc-
tivity of the region Ωk, with ε0 as the vacuum permittivity. The continuity of the current
flux density through the interface and the interface admittance behavior are respectively
accounted for by the conditions:

0 = Jσ∗∇Φ · nK on γ,

Y JΦK = σ∗∇Φ · n on γ,
(36)

in which J·K denotes the jump operator across the interface, Y = G + iωC is the interface
admittance per unit area and n is the interface outward normal, coinciding with the basis
vector g3 in the notation of Section 2. Finally, the insulating (natural) boundary condition
on ∂Ωne results to be:

σ∗∇Φ · n = 0 on ∂Ωne, (37)

whereas the (Robin) boundary condition for the i-th electrode is [45]:

Ye (Φi − Φ) = σ∗∇Φ · n on ∂Ωei , (38)

with Ye = Ge + iωCe as the electrode admittance per unit area and Φi as the phasor of the
electrode potential ϕi = ℜ

(

Φie
iωt
)

. In both equations (37) and (38), n denotes the outward
normal to the domain boundary.

As starting point for an isogeometric discretization of the electrical problem (35)–(38),
its weak formulation is derived in the following form:
∫

Ω1∪Ω2

σ∗∇Φ · ∇δΦdΩ +

∫

γ

Y JΦK
q
δΦ

y
dγ +

∑

i

∫

∂Ωei

YeΦ δΦdS =
∑

i

∫

∂Ωei

YeΦi δΦdS,

(39)
where δΦ is an arbitrary variation of the electric potential phasor Φ and the overline denotes
complex conjugation. As discussed in Section 3.3, once the electric potential phasor Φ is
computed, the electric field phasor E can be derived:

E = −∇Φ, (40)

whence the electric field follows by e = ℜ
(

Eeiωt
)

.
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3.2. Mechanical loads induced by the electric field

Following the variational approach discussed in [36, 46], the mechanical loads induced
by the electric field can be derived by computing the variation of the electric field energy
with respect to a variation of the configuration. The electric field energy corresponding to
the formulation in Section 3.1 results to be:

Wel =

∫

Ω1∪Ω2

1

2
ε |e|2 dΩ +

∫

γ

1

2
CJϕK2 dγ +

∑

i

∫

∂Ωei

1

2
Ce (ϕ− ϕi)2 dS, (41)

in which | · | denotes the vector euclidean norm. By resorting to the notion of configurational
derivative, the variation of the energy δWel with respect to a variation of the configuration δs
is shown to be [47, 48, 13]:

δWel =

∫

Ω1∪Ω2

τ : ∇̂δsdΩ +

∫

γ

tγ (divτ δs) dγ, (42)

where ∇̂ and divτ respectively denote spatial symmetric gradient and surface divergence
operators, and the following positions are introduced:

τ = ε

[

e⊗ e− 1

2
|e|2I

]

, tγ = −
1

2
C JϕK2 . (43)

Specifically, τ is the Maxwell stress tensor, whereas tγ is an hydrostatic membrane stress
acting on the interface γ and dual to local area variations. Because of the constraint which
locally prevents surface area modifications of the biological membrane, accounted for in
Section 2.2.1, the hydrostatic membrane stress tγ does not induce any deformation and
can be neglected. Upon integrating by parts the Maxwell stress tensor contribution in
equation (42), the electric field energy variation can be recast as:

δWel =

∫

Ω1∪Ω2

−f · δs dΩ +

∫

γ

−f γ · δs dγ, (44)

in which the volume and surface densities of the induced forces are respectively given by:

f = div τ , fγ = JτnK . (45)

An explicit computation shows that, for vanishing free charges, the volume density is [36]:

f = −1
2
|e|2∇ε, (46)

and indeed vanishes within homogeneous regions. Accordingly, the mechanical loads induced
by the electric field to be considered in the solution of the mechanical problem boil down to
the surface force density over the biological membrane fγ , as given in equation (45)2.

As in the following developments high-frequency time-harmonic fields are considered, the
Maxwell stress tensor τ can be replaced by its time-averaged counterpart 〈τ 〉. From the
discussion in [49, 50], the latter can be expressed in terms of the electric field phasor E by:

〈τ 〉 = 1

4
ε
[(

E ⊗E +E ⊗E
)

− |E|2I
]

. (47)
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3.3. Isogeometric discretization

An IGA formulation of the electrical problem (39) is considered. In particular, a multi-
patch conforming discretization is adopted to describe the problem domain, which is com-
posed of the intracellular space region Ω1, the suspending fluid region Ω2, the biological
membrane γ and the electroded regions ∂Ωei. Over each patch, the geometry and the solu-
tion are approximated by:

x = RI x̂I , Φ = RI Φ̂I , (48)

where RI is the basis function associated to the control point I, x̂I denotes the control
point coordinates and Φ̂I denotes the control point electric potential phasor. Standard
derivations, not discussed here, yield the problem stiffness matrix and the force vector (for
instance, see [51]). From the solution of the corresponding linear system of equilibrium
equations, the approximation of the electric potential phasor Φ is derived.

For the computation of the surface force density over the biological membrane fγ , the
electric field phasor E is required on both sides of the interface. Conveniently, the following
decomposition is considered:

E = Eτ + Enn, (49)

in which Eτ is the projection onto the interface tangent plane and En is the relevant normal
component. According to equation (40), the surface projectionEτ is computed as the surface
gradient of the electric potential phasor Φ over the interface γ. Adopting the notation of
Section 2 and exploiting the solution approximation (48)2, it follows that:

Eτ = ∇τ Φ = RI,α g
α Φ̂I , (50)

where ∇τ denotes the spatial surface gradient operator. An analogous derivation can be
performed to derive the normal component En. However, instead of resorting to the gradient
of a discretized quantity, that would yield less accurate results, the interface admittance
behavior (36)2 can be exploited and it straightforwardly turns out that:

En = − Y
σ∗

JϕK . (51)

It is noted that neither the surface projection Eτ nor the normal component En of the
electric field phasor E is continuous across the interface γ. Indeed, relevant values of the
control point electric potential phasor Φ̂I and of the complex conductivity σ∗ are respectively
considered in equations (50) and (51). Finally, equation (47) gives the time-averaged
Maxwell stress tensor, whence the surface force density over the biological membrane follows
from equation (45)2.

4. Electro-mechanical coupling

In this section, the numerical procedure adopted for investigating the electro-deformation
of a RBC, immersed in a suspending fluid and subjected to an applied electric field, is
discussed. Specifically, the electro-mechanical strong coupling is addressed by resorting
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to a staggered fixed-point iteration procedure. This approach allows to solve mechanical
and electrical problems sequentially, relying on the two solvers respectively developed in
Sections 2 and 3.

A loading history conducted under electrical potential control is considered. Let n =
0, 1, . . . denote the last converged loading step and let γn denote the corresponding RBC
current shell surface, with γ0 = Γ. A prescribed electrode potential ϕn+1

ei
is assumed to

be applied on the i-th electrode at the loading step n + 1. Furthermore, let j = 0, 1, . . .
denote the last fixed-point iteration. The electrical problem (39) is solved assuming the
RBC in the configuration γn+1,j, with γn+1,0 = γn. Accordingly, the forces induced by
the electric field fn+1,j

γ acting on the RBC biological membrane can be computed from

equation (45)2, whence the control point external forces q
n+1,j
ext follow by equation (34)2.

Correspondingly, the solution of the mechanical problem (27) yields an updated RBC cur-
rent shell surface γn+1,j+1. The fixed-point iteration convergence is achieved when a global
measure of the distance between γn+1,j+1 and γn+1,j, i.e. the distance of the corresponding
control points, is lower than a given relative tolerance. The present procedure is summarized
in Algorithm 1.

In order to facilitate the convergence of the numerical procedure, an adaptive substepping
scheme, that automatically reduces the loading step whenever convergence is not achieved
within a reasonable number of iterations, is also implemented. Moreover, the RBC current
surface resulting from the last fixed point iteration, i.e. γn+1,j, is assumed as initial guess of
Newton’s method.

Algorithm 1: Fixed point iteration scheme for electro-mechanical coupling.

/* Initialization */

input i-th electrode potential ϕn+1
ei

at next loading step;
initialize j = 0;
initialize γn+1,0 = γn;
initialize converged = false;
while ∼converged do

/* Solve electrical problem for RBC current surface γn+1,j */

compute electric potential phasor Φn+1,j (equation (39));

compute forces induced by the electric field fn+1,j
γ (equations (49), (47), (45));

/* Solve mechanical problem for current electric forces fn+1,j
γ */

compute updated RBC current surface γn+1,j+1 (equation (27));
/* Convergence check */

if ‖γn+1,j+1 − γn+1,j‖ / ‖γn+1,j‖ > Tol then
j + 1← j;

else

set converged = true;
end if

end while
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Table 1: Numerical parameters of the RBC geometric model [52].

R [µm] c0 c1 c2
3.91 0.207161 2.002558 −1.122762

Table 2: Sets of constitutive parameters of the RBC mechanical model. Here β = (kBT )
−1

, with kB as the
Boltzmann constant.

Lmax [nm] L0 [nm] p [nm] q T [K] βkc kg/kc βAtpks βV kv
set 1 [15, 53] 166.1 75.5 18.7 1 296 48.9 −4/3 263.3 1.34× 108

set 2 [34, 16] 238 75 7.5 1 296 48.9 −4/3 263.3 1.34× 108

set 3 [16] 238 87 8.5 1 296 48.9 −4/3 263.3 1.34× 108

set 4 [16] 238 91 9.5 1 296 48.9 −4/3 263.3 1.34× 108

5. Numerical simulations

In this section, numerical simulations are reported for assessing accuracy, robustness and
effectiveness of the proposed isogeometric formulation. First, a purely mechanical applica-
tion, dealing with the large deformation of a RBC by optical tweezers is presented. The
comparison with experimental results available in the literature [34] is used for validating the
mechanical problem solution (Section 2). Then, the simulation of a RBC electro-deformation
experiment, also relying on the electrical problem solution (Section 3) and the proposed
electro-mechanical coupling scheme (Section 4), is discussed.

For both simulations, the RBC geometric model is obtained by revolution of the following
meridional section [52]:

f(r) =
R

2

√

1−
( r

R

)2
[

c0 + c1

( r

R

)2

+ c2

( r

R

)4
]

, r ∈ [0, R] , (52)

where the axial radius R and the shape coefficients c0, c1, c2 are reported in Table 1.
On such a basis, a polar NURBS surface is generated (a strategy for achieving optimal
global convergence rates in a polar spline framework is discussed in [54]). Several sets of
numerical parameters characterizing the RBC mechanical constitutive law (Section 2.2) are
reported in Table 2. Details on their determination from experimental results are discussed
in [11, 53, 15, 34].

All numerical experiments have been performed by means of an in-house MATLABR©

code, and the computations have been done on a single machine with an IntelR© XeonR©

CPU processor E5-2660 v3 @ 2.60 GHz and 128 GB RAM.

5.1. RBC large deformation by optical tweezers

Among the experimental techniques explored for single-cell mechanical characterization,
the deformation by optical tweezers has proved to be a powerful tool for studying the cell
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Figure 3: RBC large deformation by optical tweezers: (a) schematic representation of axial, transverse and
polar diameters and (b) sketch of the experimental setup, assuming one bead to be optically trapped and
the other one to be anchored to the surface of a moving glass slide, reprinted with permission from [13].
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Figure 4: RBC large deformation by optical tweezers: h- and p- convergence analysis (k-refinement) in terms
of deformed axial diameter at the end of the loading history versus square root number of control points.
Results relevant to the FEM formulation in [13] are reported for comparison, with Nctrl to be intended as
the number of nodes.
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Figure 5: RBC large deformation by optical tweezers: (a) reference configuration and (b) deformed config-

uration under maximum applied load. A discretization with N
1/2
ctrl
≈ 24 and p = 3.
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Figure 6: RBC large deformation by optical tweezers: axial, transverse and polar diameters versus stretching
force for the sets of constitutive parameters in Table 2. Numerical results are compared with the experimental
data reported in [12] (not including the polar diameter).
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response under a variety of well-controlled stress states [12]. The experimental procedure,
sketched in Figure 3, requires to attach two silica microbeads to the RBC at diametrically
opposite points. While one microbead is fixed to the surface of a glass slide, the other
one is optically trapped by means of a highly focused laser beam. As the trapped bead
remains stationary, stretching forces can be applied in the RBC axial direction by moving
the glass slide. Even if early studies primarily concerned small elastic deformation at low
applied forces, the possibility of inducing large elastic deformation in RBCs was investigated
in [10, 55, 56, 12]. In particular, considering a stretching force increasing up to a value of
193 ± 20 pN, overall axial stretches (i.e. relative changes in the axial diameter between de-
formed and undeformed configurations) in the order of 100% were recorded. Here, numerical
simulations of the RBC large deformation by optical tweezers are performed by means of
the proposed isogeometric formulation.

The stretching force imposed by the silica microbeads is modeled as a uniformly dis-
tributed force on a circular contact area of diameter D = 1.1µm. The force resultant is
linearly increased up to a maximum value Fmax = 200 pN in Ns = 16 loading steps. Con-
stitutive parameters of set 1 in Table 2 are considered for the RBC mechanical constitutive
law. Because of problem symmetry, only one-eight of the RBC is modeled and appropriate
boundary conditions are applied on the symmetry planes (rotational constraints are imposed
by assuming coincident displacements for the control points on the symmetry planes and
their adjacent ones). In order to explore h- and p-convergence properties of the present
formulation, the problem is solved adopting discretizations corresponding to different levels
of mesh refinement and different NURBS degrees. Specifically, each mesh is characterized
by the square root of the total number of its control points Nctrl, approximately ranging
from 7 to 80, and its polynomial degree p, ranging from 2 to 5.

In Figure 4 the results of h- and p-convergence analysis (with refinement conducted by
degree elevation followed by knot insertion, i.e. with k-refinement) are reported in terms of
the deformed axial diameter at the end of the loading history. The expected convergence
is achieved (the solution at convergence of the k-refinement analysis is 15.894µm), with
increasing velocity for increasing polynomial degree. For comparison, results relevant to
h-convergence analysis of the rotation-free finite element shell proposed in [13] are also re-
ported, by interpreting Nctrl as the number of nodes. As expected, a much faster convergence
of the present IGA formulation can be observed with respect to the FEM approximation.

Considering a discretization with N
1/2
ctrl ≈ 24 and p = 3, the reference and deformed

configuration under maximum load level are respectively depicted in Figure 5(a) and Fig-
ure 5(b). For the same discretization, in Figure 6 the behavior of axial, transverse and polar
diameters is shown as a function of the stretching force. For investigating how the results
depend on the RBC constitutive parameters, curves corresponding to the parameter sets in
Table 2 are shown. In addition, experimental results from [34] are reported for comparison.
Excellent agreement is observed in the axial diameter prediction, whereas slight differences
can be noticed in the transverse diameter prediction (experimental results relevant to polar
diameter are not available). As noted in [15], that is probably due to an underestimation in
the experimental results, because optical measurements are performed from a single obser-
vation angle only and the RBC can rotate during the test. Nevertheless, numerical results
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Table 3: RBC electro-deformation: constitutive parameters of the electrical model adopted for RBC [57],
electrodes [57], and suspending fluid [9].

σ1 [S/m] ε1 σ2 [S/m] ε2 C [mF/m2] Ce [mF/m2]
0.5 60 0.05 80 10 144

Figure 7: RBC electro-deformation: an erythrocyte is immersed in a suspending fluid and subjected to
an applied electric field. Multipatch conforming discretization is adopted to describe the problem domain,
composed of the biological membrane and of the intracellular space region (red), of the suspending fluid
region (light blue) and of the electroded regions (dark blue).

remain within the experimental error bars. It is remarked that the RBC biconcave shape
progressively turns into a more rounded shape under the simultaneous effect of the stretching
forces and of the enclosed-volume conservation constraint. Moreover, a hardening behavior
is exhibited by the RBC structure during the deformation process, as it is expected by the
nonlinear constitutive properties of the spectrin network.

5.2. RBC electro-deformation

With the aim of performing an in silico RBC electro-deformation experiment, the setup
depicted in Figure 7 is considered. Specifically, a RBC is immersed in a suspending fluid and
placed between two facing electrodes, of dimensions 50µm × 50µm and at 20µm distance
from each other. On the top electrode a voltage at frequency f = 500 kHz and increasing up
to a maximum value Vmax = 2.0V is applied in Ns = 16 loading steps, whereas the bottom

Table 4: RBC electro-deformation: overall CPU time needed for the electro-mechanical coupling. A dis-

cretization with N
1/2
ctrl
≈ 24 [resp., N

1/3
ctrl
≈ 28] for the mechanical [resp., electrical] problem and p = 3 is

assumed. Data relevant to the converged mesh for the FEM formulation in [13] are reported for comparison.

Mechanical problem Electrical problem

Discretization N
1/2
ctrl Ndof N

1/3
ctrl Ndof CPU time

NURBS, p = 3 24 1, 740 28 22, 040 4, 959 s
FEM [13] 49 7, 032 54 159, 329 48, 075 s
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Figure 8: RBC electro-deformation: h- and p- convergence analysis (k-refinement) in terms of deformed
axial diameter under the maximum applied electric potential versus square root number of control points
of the mechanical problem discretization. Results relevant to the FEM formulation in [13] are reported for
comparison, with Nctrl to be intended as the number of nodes of the mechanical problem discretization.
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Figure 9: RBC electro-deformation: (a) reference configuration and (b) deformed configuration under the

maximum applied electric potential. A discretization with N
1/2
ctrl
≈ 24 [resp., N

1/3
ctrl
≈ 28] for the mechanical

[resp., electrical] problem and p = 3 is assumed.
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Figure 10: RBC electro-deformation: axial, transverse, polar diameters and half-cell resultant force in z-
direction versus applied electric potential. Results relevant to the converged mesh for the FEM formulation
in [13] are reported for comparison.

electrode is grounded.
Set 1 of constitutive parameters in Table 2 is considered for the RBC mechanical constitu-
tive law. The electrical constitutive parameters characterizing the biological membrane, the
intracellular space, the suspending fluid and the electrodes are reported in Table 3, adopting
the notation introduced in Section 3. As typical in electro-deformation experiments, a poorly
conductive suspending fluid is considered, in such a way that positive dielectrophoretic forces
are generated [9]. Moreover, in the present radio-frequency range, the biological membrane
[resp. electrode] conductance per unit area G [resp. Ge] is assumed to be vanishing, since
it is negligible compared to ωC [resp. ωCe]. Accordingly, the biological membrane and the
electrode behave as capacitors.
Due to problem symmetry, only one-eight of the computational domain is modeled. In
particular, four conforming patches are adopted for describing the intracellular space and
the suspending fluid regions (volumetric patches), the biological membrane and the top
electrode (surface patches). For investigating h- and p-convergence properties of the present
formulation, discretizations characterized by different levels of mesh refinement and different
NURBS degrees are considered. In particular, the meshes adopted for the biological mem-
brane [resp., for the intracellular space and the suspending fluid regions] involve a number
of control points Nctrl such that its square [resp., cubic] root approximately ranges from 7 to
50 [resp., from 6 to 55], with polynomial degree p ranging from 2 to 5. The relative tolerance
assumed for detecting the convergence of the staggered fixed-point iteration scheme is set
to 0.001.

Figure 8 shows the results of h- and p-convergence analysis (k-refinement) in terms of the
deformed axial diameter under the maximum applied electric potential. The convergence at
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the solution 12.05µm is reached with increasing velocity for increasing polynomial degree.
Results relevant to h-convergence analysis of the rotation-free finite element shell proposed
in [13] are also reported. Similarly to the purely mechanical application discussed in the
previous section, the present IGA formulation exhibits faster convergence than the FEM
alternative.

Considering a discretization with N
1/2
ctrl ≈ 24 [resp., N

1/3
ctrl ≈ 28] for the mechanical [resp.,

electrical] problem and p = 3, which is already at convergence, the RBC reference and
deformed configuration under maximum applied voltage are shown in Figure 9(a) and Fig-
ure 9(b), respectively. In Figure 10, axial, transverse and polar diameters, along with the
resultant force along z-direction over half cell, are reported versus the applied electric poten-
tial. Under the maximum applied electric potential, a resultant force of 140.8 pN is computed
and the corresponding RBC deformed configuration exhibits axial diameter of 12.05µm,
transverse diameter of 5.56µm and polar diameter of 1.90µm. The number of fixed-point
iterations in each loading step, needed to reach convergence in the electro-mechanical cou-
pling scheme, ranges between 2 and 5, with average value of 3.1. For comparison, the
solution obtained by the converged mesh for the FEM formulation in [13], characterized by

a number of nodes N
1/2
ctrl ≈ 49 [resp., N

1/3
ctrl ≈ 54] for the mechanical [resp., electrical] prob-

lem, is also reported. Slight differences, due to the more accurate geometric model provided
by IGA framework compared to FEM, can be observed. In Table 4 a comparison on the
overall CPU time needed to perform the electro-mechanical coupling is reported between
such IGA and FEM discretizations. Superior performances of the present IGA formulation
can be highlighted.

As suggested in [9], electro-deformation experiments can be used in conjunction with
microfluidic systems as quantitative, high-throughput characterization techniques of the
biomechanical properties of a large number of single cells. Accordingly, label-free biomarkers
might be derived for distinguishing healthy from pathological states of human cells. In this
context, the present isogeometric analysis formulation, thanks to its robustness, accuracy
and effectiveness, represents a valuable tool for an inverse analysis approach aiming at such
microstructural biomechanical properties characterization. In addition, it might be exploited
for assisting the design of optimal electro-deformation systems, in terms of geometry, medium
properties and voltage frequency.

6. Conclusions

An isogeometric formulation for modeling the electro-deformation of a red blood cell has
been presented. The mechanical description of the RBC behavior has been based on the
understanding that its structure is composed of a biological membrane enclosing a nearly-
incompressible fluid. A surface shell model, similar to the Kirchhoff–Love model but not
involving the shell thickness, has been proposed for capturing the RBC kinematics. A ho-
mogenized microstructurally-based constitutive law, based on the Cauchy–Born rule, has
been adopted for the membrane behavior of the biological membrane, in order to accurately
account for all its constituents, yet enjoying the computational efficiency of a continuum
approach. The Helfrich model has been assumed for the bending behavior of the biological
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membrane. Finally, an enclosed-volume conservation constraint has been enforced at struc-
tural level to model the volumetric behavior arising from the nearly-incompressible fluid
inside the biomembrane. For the electrical problem, dealing with a RBC immersed in a
suspending fluid and subjected to an applied electric field, conforming patches have been
employed for describing the biological membrane, the intracellular space and the suspend-
ing fluid regions. An accurate computation of the mechanical forces induced by the electric
field acting upon the RBC has been performed resorting to the Maxwell stress tensor for-
mulation. A staggered fixed-point iteration scheme has been presented for performing the
electro-mechanical strong coupling, in such a way that electrical and mechanical problems
can be solved in an uncoupled way by means of respective reliable solvers. Specifically, the
two solvers communicate through the biological membrane current configuration (computed
by the mechanical solver) and the mechanical forces induced by the electric field (computed
by the electrical solver). The convergence is achieved when the current configuration is
in equilibrium under the relevant forces. Numerical simulations reproducing RBC large
deformation by optical tweezers and RBC electro-deformation have been performed. The
comparison with experimental evidences and reference solutions proves accuracy, robust-
ness and effectiveness of the proposed isogeometric formulation. In addition, a reduction
in computational cost with respect to a typical finite element discretization available in the
literature, due to the ability of the isogeometric formulation to attain convergence for a
lower number of degrees of freedom, is highlighted.

Appendix A. Mechanical problem linearization

The structural equilibrium conditions for the mechanical evolution of a RBC have been
derived within IGA framework in equation (33). For adopting Newton’s method of solution,
their linearization with respect to the control point displacements û is needed.

With regard to the control point internal forces qint, the structural consistent stiffness
matrix K int is introduced by:

K int∆û · δû = ∆qint · δû = ∆δWint

=

∫

Γ

(∆n : δε+ n : ∆δε) dΓ

+

∫

Γ

{(∆m : δχ+m : ∆δχ) Λ +m : δχ∆Λ+m : ∆χ δΛ + wb ∆δΛ} dΓ

+ (∆p δv + p∆δv) ,

(A.1)

where ∆ denotes the linearization operator and the linearization of the shell membrane
forces n, of the shell bending forcesm and of the shell inner pressure p, respectively following
from equations (21), (23) and (25), reads:

∆n =
∂2wm

∂ε2
∆ε, ∆m =

∂2wb

∂χ2
∆χ, ∆p =

∂2Wv

∂v2
∆v. (A.2)
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Analogously to the derivation of the weak equilibrium formulation, the linearization of the
variations of the change of metric tensor ∆δε, of the change of curvature tensor ∆δχ and
of the change of enclosed volume ∆δv is required. To this end, first the linearization of
the variation of the current surface configuration is performed. From equations (32) it is
observed that:

∆δx = 0, ∆δgα = 0, (A.3)

whereas from equation (9)3:

∆δg3 = − (∆g3 ⊗ g3 + g3 ⊗∆g3)
δg̃3

a
+ (I − g3 ⊗ g3)

(

∆δg̃3

a
− δg̃3∆a

a2

)

, (A.4)

in which from equation (10):

∆δg̃3 = δg1 ×∆g2 +∆g1 × δg2, ∆δa = ∆g3 · δg̃3 + g3 ·∆δg̃3. (A.5)

Next, from equations (11) and (12):

∆δε =
1

2

(

δgα ·∆gβ +∆gα · δgβ
)

Gα ⊗Gβ, (A.6)

∆δχ = −
(

δgα,β ·∆g3 +∆gα,β · δg3 + gα,β ·∆δg3

)

Gα ⊗Gβ, (A.7)

and from equation (13):

∆δv =
1

3

∫

Γ

[δx · (∆g3 Λ + g3∆Λ) + ∆x · (δg3 Λ + g3 δΛ)+

x · (∆δg3 Λ+ δg3∆Λ +∆g3 δΛ + g3∆δΛ)] dΓ, (A.8)

in which from equation (14):
∆δΛ = ∆δa/A. (A.9)

A similar treament for the control point external forces qext leads to the introduction of an
external stiffness matrix Kext. However, in the present work, the coupling between electrical
and mechanical modules is treated through the fixed-point iteration scheme discussed in
Section 4 and such stiffness contribution needs not be accounted for. On the other hand, its
computation would be necessary for a monolithic solution strategy of the coupled problem
adopting Newton’s method.
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