
Contents lists available at ScienceDirect

Reliability Engineering and System Safety

journal homepage: www.elsevier.com/locate/ress

Remaining useful life predictions for turbofan engine degradation using
semi-supervised deep architecture
André Listou Ellefsen⁎,a, Emil Bjørlykhauga, Vilmar Æsøya, Sergey Ushakovb, Houxiang Zhanga

a Department of Ocean Operations and Civil Engineering, Norwegian University of Science and Technology, Aalesund 6009, Norway
b Department of Marine Technology, Norwegian University of Science and Technology, Trondheim 7491, Norway

A R T I C L E I N F O

Keywords:
C-MAPSS
Deep learning
Genetic algorithm
Prognostics and health management
Remaining useful life
Semi-supervised learning

A B S T R A C T

In recent years, research has proposed several deep learning (DL) approaches to providing reliable remaining
useful life (RUL) predictions in Prognostics and Health Management (PHM) applications. Although supervised
DL techniques, such as Convolutional Neural Network and Long-Short Term Memory, have outperformed tra-
ditional prognosis algorithms, they are still dependent on large labeled training datasets. With respect to real-life
PHM applications, high-quality labeled training data might be both challenging and time-consuming to acquire.
Alternatively, unsupervised DL techniques introduce an initial pre-training stage to extract degradation related
features from raw unlabeled training data automatically. Thus, the combination of unsupervised and supervised
(semi-supervised) learning has the potential to provide high RUL prediction accuracy even with reduced
amounts of labeled training data. This paper investigates the effect of unsupervised pre-training in RUL pre-
dictions utilizing a semi-supervised setup. Additionally, a Genetic Algorithm (GA) approach is applied in order to
tune the diverse amount of hyper-parameters in the training procedure. The advantages of the proposed semi-
supervised setup have been verified on the popular C-MAPSS dataset. The experimental study, compares this
approach to purely supervised training, both when the training data is completely labeled and when the labeled
training data is reduced, and to the most robust results in the literature. The results suggest that unsupervised
pre-training is a promising feature in RUL predictions subjected to multiple operating conditions and fault
modes.

1. Introduction

The remaining useful life (RUL) is a technical term used to describe
the progression of faults in Prognostics and Health Management (PHM)
applications [1]. Prognosis algorithms tend ideally to achieve the ideal
maintenance policy through predictions of the available time before a
failure occurs within a component or sub-component, that is RUL [2].
In this way, RUL predictions have the potential to prevent critical
failures, and hence, becomes an important measurement to achieve the
ultimate goal of zero-downtime performance in industrial systems.
However, traditional prognosis algorithms suffer from a decreased ca-
pacity to process the increased complexity in today’s sequential data
with accuracy.

Recently, deep learning (DL) has emerged as a potent area to pro-
cess highly non-linear and varying sequential data with minimal human
input within the PHM domain [3]. Today, DL is an extremely active
sub-field of machine learning. With increased processing power and

continuous developments in graphics processors, DL has the potential to
improve prediction tasks as the computational burden reduces sig-
nificantly [4]. However, deep architectures introduce many diverse
hyper-parameters, which are challenging to optimize in the training
process. Thus, this study proposes a Genetic Algorithm (GA) approach
in order to optimize the hyper-parameters in an efficient manner.

DL techniques, such as Convolutional Neural Network (CNN) and
Long-Short Term Memory (LSTM), have shown rapid developments and
outperformed traditional prognosis algorithms in RUL predictions for
turbofan engine degradation [5–7]. DL techniques predict the RUL
without any prior knowledge of engine degradation mechanics. Thus,
data analysts today apply their knowledge about the RUL prediction
problem to the selection and design of DL techniques, rather than to
feature engineering. However, both CNN and LSTM depend on purely
supervised learning. In other words, they require large labeled training
datasets in the training procedure. Thus, the RUL prediction accuracy
strongly depends on the quality of the constructed run-to-failure

https://doi.org/10.1016/j.ress.2018.11.027
Received 18 June 2018; Received in revised form 16 November 2018; Accepted 24 November 2018

⁎ Corresponding author.
E-mail addresses: andre.ellefsen@ntnu.no (A. Listou Ellefsen), emil.bjorlykhaug@ntnu.no (E. Bjørlykhaug), vilmar.aesoy@ntnu.no (V. Æsøy),

sergey.ushakov@ntnu.no (S. Ushakov), hozh@ntnu.no (H. Zhang).

Reliability Engineering and System Safety 183 (2019) 240–251

Available online 26 November 2018
0951-8320/ © 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/BY/4.0/).

T

http://www.sciencedirect.com/science/journal/09518320
https://www.elsevier.com/locate/ress
https://doi.org/10.1016/j.ress.2018.11.027
https://doi.org/10.1016/j.ress.2018.11.027
mailto:andre.ellefsen@ntnu.no
mailto:emil.bjorlykhaug@ntnu.no
mailto:vilmar.aesoy@ntnu.no
mailto:sergey.ushakov@ntnu.no
mailto:hozh@ntnu.no
https://doi.org/10.1016/j.ress.2018.11.027
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ress.2018.11.027&domain=pdf

training data labels.
In contrast, unsupervised DL techniques introduce an initial pre-

training stage to extract high-level abstract features from raw unlabeled
training data automatically. Thus, the combination of unsupervised and
supervised (semi-supervised) learning has the potential for even higher
RUL prediction accuracy since the weights are initialized in a region
near a good local minimum before supervised fine-tuning is conducted
to minimize the global training objective [8].

More advanced and recent activation functions [9], learning rate
methods [10], regularization techniques [11], and weight initializa-
tions [12,13] have indeed reduced the need for unsupervised pre-
training in a variety of domains when the training data is completely
labeled. Nevertheless, in real-life PHM applications, high-quality run-
to-failure labeled training data is not easily obtained, especially from
new equipment. However, unsupervised pre-training in semi-su-
pervised setups has the potential to perform with high RUL prediction
accuracy even with reduced amounts of labeled training data in the
fine-tuning procedure. Additionally, most data collected in real-life
PHM applications is subjected to several operating conditions and fault
modes. This increases the inherent degradation complexity, which
makes it more difficult for the prognosis algorithm to discover clear
trends in the input data directly. To cope with this issue, the initial
unsupervised pre-training stage can be utilized. Unsupervised pre-
training extracts more degradation related features before supervised
fine-tuning, and hence, has the potential to support the whole archi-
tecture to better understand the underlying degradation phenomena.

The aim of this paper is to show the effect of unsupervised pre-
training in RUL predictions utilizing a semi-supervised setup. The re-
sults are verified on the four different simulated turbofan engine de-
gradation datasets in the publicly available Commercial Modular Aero-
Propulsion System Simulation (C-MAPSS) dataset, produced and pro-
vided by NASA [14]. This study’s main contributions are as follows:

• The GA approach effectively tunes hyper-parameters in deep ar-
chitectures.

• Semi-supervised learning improves the RUL prediction accuracy
compared to supervised learning in multivariate time series data
with several operating conditions and fault modes when the training
data is completely labeled.

• Semi-supervised learning performs higher RUL prediction accuracy
compared to supervised learning when the labeled training data in
the fine-tuning procedure is reduced.

The overall organization of the paper is as follows. Section 2 in-
troduces recent and related work on the C-MAPSS dataset. Section 3
introduces the necessary background on GAs and the proposed semi-
supervised setup. The experimental approach, results, and discussions
are considered in Section 4. Finally, Section 5 concludes and closes the
paper and provides directions for future work.

2. Related work

The C-MAPSS dataset has been extensively used to evaluate several
DL approaches to RUL predictions. This section reviews the most recent
studies applied on the C-MAPSS dataset. The selected studies either
utilize a Convolutional Neural Network (CNN), a Deep Belief Network
(DBN) or Long-Short Term Memory (LSTM) in the proposed deep ar-
chitecture.

In most PHM applications, sequential data is a standard format of
the input data, for example pressure and temperature time series data.
LSTM is a well-established DL technique to process sequential data. The
original LSTM [15] was developed after the early 1990s, when re-
searchers discovered a vanishing and exploding gradient issue in tra-
ditional Recurrent Neural Networks (RNNs) [16]. This issue confirmed
that traditional RNNs had difficulty learning long-term dependencies.
To cope with this issue, the LSTM introduces a memory cell that

regulates the information flow in and out of the cell. Consequently, the
memory cell is able to preserve its state over long durations, that is
learning long-term dependencies that may influence future predictions.
Yuan et al. proposed an LSTM approach for several different faults [17].
The proposed approach was compared with traditional RNN, Gated
Recurrent Unit LSTM (GRU-LSTM) and AdaBoost-LSTM. It showed
improved performance in all cases. Another LSTM approach was pro-
vided by Zheng et al. [6]. The proposed approach provides RUL pre-
dictions using two LSTM layers, two Feed-forward Neural Network
(FNN) layers, and an output layer. The LSTM layers were able to reveal
hidden patterns in the C-MAPSS dataset and achieved higher accuracy
compared to the Hidden Markov Model or traditional RNN. A similar
study was provided by Wu et al. [18]. In this study, an LSTM was
combined with a dynamic difference method in order to extract new
features from several operating conditions before the training proce-
dure. These features contain important degradation information, which
improves the LSTM to better control the underlying physical process.
The proposed approach showed enhanced performance compared to
traditional RNN and GRU-LSTM.

Although CNNs have performed excellently on 2D and 3D grid-
structured topology data, such as object recognition [20] and face re-
cognition [21], respectively, CNNs can also be applied to 1D grid-
structured topology sequential data in PHM applications. Babu et al.
proposed a novel CNN approach for RUL predictions [5]. This CNN
approach includes two layers with convolution and average-pooling
steps, and a final FNN layer to perform RUL predictions. The proposed
approach indicated improved accuracy compared to the Multilayer
Perceptron (MLP), Support Vector Machine (SVM), and Relevance
Vector Machine. More recently, [7] takes a CNN approach. In this
study, Li et al. achieved even higher accuracy on the C-MAPSS dataset
compared to both the LSTM approach in [6] and the CNN approach in
[5]. They employed the recently developed, proven regularization
technique “dropout” [11] and the adaptive learning rate method
“adam” [10].

Hinton et al. introduced the greedy layer-wise unsupervised
learning algorithm in 2006, designing it for DBNs [22]. A DBN consists
of stacked Restricted Boltzmann Machines (RBMs) where the hidden
layer in the previous RBM will serve as the input layer for the current
RBM. The algorithm performs an initial unsupervised pre-training stage
to learn internal representations from the input data automatically.
Next, supervised fine-tuning is performed to minimize the training
objective. Zhang et al. have proposed a multiobjective DBN ensemble
approach [19]. This approach combines a multiobjective evolutionary
ensemble learning framework with the DBN training process. Accord-
ingly, the proposed approach creates multiple DBNs of varying accu-
racy and diversity before the evolved DBNs are combined to perform
RUL predictions. The combined DBNs are optimized through differ-
ential evolution where the average training error is the single objective.
The proposed approach outperformed several traditional machine
learning algorithms, such as SVM and MLP. The recent studies are
summarized in Table 1.

These studies all utilize a completely labeled run-to-failure training
dataset in the training procedure. However, in real-life PHM scenarios,
most data accumulated is unstructured and unlabeled from the start.

Table 1
Recent DL approaches proposed for RUL predictions on the C-MAPSS dataset
[14] (the years between 2016 and 2018).

Author & Refs. Year Approach

Li et al. [7] 2018 CNN + FNN
Wu et al. [18] 2018 LSTM
Zheng et al. [6] 2017 LSTM + FNN
Yuan et al. [17] 2016 LSTM
Zhang et al. [19] 2016 MODBNE
Babu et al. [5] 2016 CNN + FNN

A. Listou Ellefsen et al. Reliability Engineering and System Safety 183 (2019) 240–251

241

Valuable domain knowledge is required to construct run-to-failure data
labels. This is both a time-consuming and challenging process. Thus,
this study will investigate the effect of unsupervised pre-training in a
semi-supervised setup both with reduced and completely labeled
training datasets.

3. Proposed semi-supervised setup

This section will introduce the necessary background on the pro-
posed semi-supervised setup. First, the main DL techniques included,
RBM and LSTM, are defined. Next, the proposed deep architecture
structure as well as the GA approach for hyper-parameter tuning are
elaborated.

3.1. Restricted Boltzmann machine

RBMs were originally developed using binary stochastic visible
units, v, in the input layer and binary stochastic hidden units, h, in the
hidden layer [23]. However, in real-value data applications, like the C-
MAPSS dataset, linear Gaussian units replace the binary visible units
and rectified linear units replace the binary hidden units [24]. RBMs are
symmetrical bipartite graphs since the visible and hidden units are fully
connected and units in the same layer have zero connections.

RBMs are energy-based models with the joint probability distribu-
tion specified by their energy function [25]:

=P v h
Z

e(,) 1 E v h(,)
(1)

where Z is the partition function that ensures that the distribution is
normalized:

=Z e
v h

E v h(,)

(2)

The energy function for RBMs with Gaussian visible units is given by:

=
= = = =

E v h v b c h v h w(,) ()
2i

V
i i

i j

H

j j
i

V

j

H
i

i
j ij

1

2

2
1 1 1 (3)

where wij denotes the weight between the visible unit vi and hidden unit
hj, bi and cj represents the bias terms, V and H expresses the numbers of
visible and hidden units, respectively, and γi is the standard deviation of
vi. As recommended by Hinton [25], zero mean and unit variance

normalization should be applied to the input data. Contrastive diver-
gence is used to train RBMs:

=w v h v h()ij i j data i j recon (4)

where ϵ is the learning rate. First, the data distribution samples visible
units based on hidden units. Then, the input data is reconstructed,
generated by Gibbs sampling, which samples hidden units based on
visible units. This process continues until the parameters converge, that
is, the hidden layer approximates the input layer. In this way, RBMs are
able to model data distributions without any label knowledge. Typi-
cally, after the pre-training stage, the reconstruction part of the RBM is
omitted and the pre-trained weights facilitate a subsequent supervised
fine-tuning procedure.

3.2. Long-Short term memory

Modifications by Gers et al. [26] have been included in the original
LSTM, and researchers generally refer to this LSTM setup as the “vanilla
LSTM.” Although several variants of the vanilla LSTM have been pro-
posed, Greff et al. have shown that none of the variants can improve the
vanilla LSTM significantly [27]. Thus, the proposed semi-supervised
setup uses the vanilla LSTM.

The memory cell, as illustrated in Fig. 1, consists of three non-linear
gating units that protect and regulate the cell state, St [28]:

= + +f W x R h b()t f t f t f1 (5)

= + +i W x R h b()t i t i t i1 (6)

= + +o W x R h b()t o t o t o1 (7)

where σ is the sigmoid gate activation function in order to obtain a
scaled value between 0 and 1, W is the input weight, R is the recurrent
weight, and b is the bias weight.

The new candidate state values, S̃ ,t are created by the tanh layer:

= + +S tanh W x R h b˜ ()t s t s t s1 (8)

The previous cell state, S ,t 1 is updated into the new cell state, St, by:

= +S f S i S̃t t t t t1 (9)

where ⊗ denotes element-wise multiplication of two vectors. First, the
forget layer, ft, determines which historical information the memory
cell removes from St. Then, the input layer, it, decides what new

Fig. 1. Vanilla LSTM, adopted from Olah [28]. The blue rectangle represents the memory cell. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

A. Listou Ellefsen et al. Reliability Engineering and System Safety 183 (2019) 240–251

242

information in S̃t the memory cell will update and store in St.
The output layer, ot, determines which parts of St the memory cell

will output. St is filtered in order to push the values between −1 and 1:

=h o tanh S()t t t (10)

Through these steps, the vanilla LSTM has the ability to remove or add
information to St.

3.3. The proposed deep architecture structure and the genetic algorithm
approach

The proposed semi-supervised deep architecture structure is shown
in Fig. 2. In the first layer (L1), a RBM will be utilized as an un-
supervised pre-training stage in order to learn abstract features from
raw unlabeled input data automatically. These features might contain
important degradation information, and hence, initialize the weights in
a region near a good local minimum before supervised fine-tuning of
the whole architecture is conducted. In both the second and the third
layer (L2 and L3), an LSTM layer is used to reveal hidden information
and learn long-term dependencies in sequential data with multiple
operating and fault conditions [6]. Next, an FNN layer is used in the
fourth layer (L4) in order to map all extracted features. In the final layer
(L5), a time distributed fully connected output layer is attached to
handle error calculations and perform RUL predictions.

The GA is a metaheuristic inspired by the natural selection found in
nature [29]. It is a powerful tool for finding a near-optimal solution in a
big search space. In this work, a GA approach is proposed to tune hyper-
parameters. First, the GA approach selects random hyper-parameters
for the proposed semi-supervised deep architecture within a given
search space. One such set of random hyper-parameters is called an
individual and a set of individuals is called a population. Next, the

accuracy of each of the individuals in the population are evaluated by
training networks with the individuals hyper-parameters. The best re-
sults from the training are then kept and used as parents for the next
generation of hyper-parameters. Additionally, some random mutation
is performed after the crossover for increasing the exploration of the
algorithm.

4. Experimental study

In the following experimental study, the proposed semi-supervised
deep architecture will be compared to recent studies in the literature as
well as purely supervised training. The latter comparison will be per-
formed with and without the initial pre-training stage utilizing the
proposed semi-supervised deep architecture when the labeled training
data in the fine-tuning procedure is reduced. Experiments are per-
formed on the four subsets provided in the benchmark C-MAPSS da-
taset: FD001, FD002, FD003, and FD004. All experiments are run on
NIVIDIA GeForce GTX 1060 6 GB and the Microsoft Windows 10 op-
erating system. The programming language is Java 8 with deep learning
library “deeplearning4j” (DL4J) version 0.9.1 [30].

4.1. The benchmark C-MAPSS dataset and performance evaluation

The C-MAPSS dataset is divided into four subsets, as shown in
Table 2, and each subset is further divided into training and test sets of
multiple multivariate time series. Each time series is from a different
aircraft gas turbine engine and starts with different degrees of initial
wear and manufacturing variation, which is unknown to the data
analyzer. All engines operate in normal condition at the start, then
begin to degrade at some point during the time series. The degradation
in the training sets grows in magnitude until failure, while the

Fig. 2. The proposed semi-supervised deep architecture structure.

A. Listou Ellefsen et al. Reliability Engineering and System Safety 183 (2019) 240–251

243

degradation in the test sets ends sometime prior to failure, that is the
RUL. That is, the last time step for each engine in the test sets provides
the true RUL targets. Thus, the main objective is to predict the correct
RUL value for each engine in the test sets. The four subsets vary in
operating and fault conditions and the data is contaminated with sensor
noise. Each subset includes 26 columns: engine number, time step,
three operational sensor settings, and 21 sensor measurements. See
[14,31] for a deeper understanding of the C-MAPSS dataset.

The scoring function (S) provided in Saxena et al. [31] and the root
mean square error (RMSE) are used in this study to evaluate the per-
formance of the proposed semi-supervised setup:

=
<=

=

S
e d

e d

1, for 0

1, for 0
i
n

i

i
n

i

1
()

1
()

di

di

13

10 (11)

=
=

RMSE
n

d1

i

n

i
1

2

(12)

where n is the total number of true RUL targets in the respective test set
and =d RUL RULi predicted true. As shown in Fig. 3, the RMSE gives equal
penalty to early and late predictions. In the asymmetric scoring func-
tion, however, the penalty for late predictions is larger. Late predictions
could cause serious system failures in real-life PHM applications as the
maintenance procedure will be scheduled too late. On the other hand,
early predictions pose less risk since the maintenance procedure will be
scheduled too early, and hence, there is still time to perform main-
tenance. Nevertheless, the main objective is to achieve the smallest
value possible for both S and RMSE, that is, when =d 0i .

Only evaluating performance at the last time step for each engine in

the test sets has both advantages and disadvantages. High and reliable
RUL prediction accuracy at the very end of components and sub-com-
ponents lifetime have of course great industrial significance, as this
period is critical for PHM applications. However, this evaluation ap-
proach could hide the true overall prognostics accuracy as the prog-
nostics horizon of the algorithm is not considered. The prognostics
horizon is critical in order to achieve trustworthy confidence intervals
for the corresponding RUL prediction. These confidence intervals are
important due to both inherent uncertainties with the degradation
process and potential flaws in the prognosis algorithm [32].

Table 2
The C-MAPSS dataset [14].

Dataset FD001 FD002 FD003 FD004

Time series training set 100 260 100 249
Time series test set 100 259 100 248
Operating conditions 1 6 1 6
Fault conditions 1 1 2 2

Fig. 3. Simple illustration of the scoring function vs. RMSE, where =d RUL RULi predicted true.

Table 3
Genes in the GA approach.

Gene Hyper-parameter Values

1 Rc 115, 120, 125, 130, 135, 140
2 Learning rate RBM layer 10 ,1 10 ,2 10 3

3 Learning rate remaining layers 10 ,2 10 ,3 10 4

4 L2 Regularization 10 ,4 10 ,5 10 6

5 miniBatch 5, 10
6 n L1 32, 64, 128
7 n L2 32, 64, 128
8 n L3 32, 64, 128
9 n L4 8, 16
10 p L2 0.5, 0.6, 0.7, 0.8, 0.9
11 p L3 0.5, 0.6, 0.7, 0.8, 0.9
12 p L4 0.5, 0.6, 0.7, 0.8, 0.9
13 I/O activation function LSTM sigmoid, tanh
14 Activation function FNN sigmoid, tanh

Table 4
Parameters of the GA approach.

Parameter Value

Population size 20
Nr of elite 3
Mutation rate 0.5
Mutation gain 0.3
Evolution iterations 3

A. Listou Ellefsen et al. Reliability Engineering and System Safety 183 (2019) 240–251

244

Data Prepara�on

Ini�alize Popula�on

Done. Evalua�on of
best network on test

set

For each Individual in Popula�on:
Train Networks on train set with Individuals hyper-parameters.

ES on cross valida�on set

No

Yes

1 Epoch Unsupervised
Pre-Training

ES or max
epochs?

No

Yes

1 Epoch Supervised
Fine-Tuning

ES or max
epochs?

Evaluate and sort

ES or max
epochs?

Eli�sm, selec�on,
crossover and
muta�on

Fig. 4. Flowchart of the GA approach.

A. Listou Ellefsen et al. Reliability Engineering and System Safety 183 (2019) 240–251

245

4.2. Data preparation

4.2.1. Masking and padding
The DL4J library provides a “CSVSequenceRecordReader” to handle

time series data. It reads time series data, where each time series is
defined in its own file. Each line in the files represents one time step.
Consequently, each time series (engine) in the four training sets are
split into their own file. The input training data has the following shape:
[miniBatchSize, inputSize, timeSeriesLength], where miniBatchSize is
the number of engines in the mini batch, input size is the number of
columns, and timeSeriesLength is the total number of time steps in the

mini batch. The engines have variable time step lengths, and hence, the
shorter engines in a mini batch are padded with zeros such that the time
step lengths are equal to the longest among them. Accordingly, mask
arrays are used during training. These additional arrays record whether
a time step is actually present, or whether it is just padding. In all
performance evaluations, mask arrays are considered.

4.2.2. Feature selection
Sensor 1, 5, 6, 10, 16, 18, and 19 in subset FD001 and FD003 exhibit

constant sensor measurements throughout the engineâ;;s lifetime.
Constant sensor measurements does not provide any useful degradation

Table 5
GA individuals.

FD001 Layer index DL technique nIn nOut Dropout Activation function

1 RBM 14 64 1.0 ReLU
2 LSTM 64 64 0.9 Sigmoid
3 LSTM 64 64 0.6 Sigmoid
4 FNN 64 8 0.6 Sigmoid
5 Output 8 1 1.0 Identity
Rc Learning rate RBM layer Learning rate remaining layers L2 regularization mini batch size RMSE cross-validation set
115 10 2 10 3 10 6 5 8.49

FD002 Layer index DL technique nIn nOut Dropout Activation function

1 RBM 24 64 1.0 ReLU
2 LSTM 64 128 0.7 Sigmoid
3 LSTM 128 32 0.8 Sigmoid
4 FNN 32 8 0.6 Sigmoid
5 Output 8 1 1.0 Identity
Rc Learning rate RBM layer Learning rate remaining layers L2 regularization mini batch size RMSE cross-validation set
135 10 2 10 3 10 5 10 9.60

FD003 Layer index DL technique nIn nOut Dropout Activation function

1 RBM 14 32 1.0 ReLU
2 LSTM 32 128 0.9 Sigmoid
3 LSTM 128 64 0.9 Sigmoid
4 FNN 64 8 0.9 Sigmoid
5 Output 8 1 1.0 Identity
Rc Learning rate RBM layer Learning rate remaining layers L2 regularization mini batch size RMSE cross-validation set
125 10 2 10 3 10 6 5 8.59

FD004 Layer index DL technique nIn nOut Dropout Activation function

1 RBM 24 64 1.0 ReLU
2 LSTM 64 128 0.8 Sigmoid
3 LSTM 128 32 0.7 Sigmoid
4 FNN 32 8 0.6 Sigmoid
5 Output 8 1 1.0 Identity
Rc Learning rate RBM layer Learning rate remaining layers L2 regularization mini batch size RMSE cross-validation set
135 10 2 10 3 10 5 10 10.45

Table 6
The proposed semi-supervised deep architecture with and without unsupervised pre-training on subset FD004 when the labeled training data is reduced from 100%
to 10%. Improvement = (1)Semi supervised

Supervised .

RMSE 100% 80% 60% 40% 20% 10%

Semi-supervised with 100% training features in the pre-training stage 22.66 23.04 24.07 25.46 30.26 34.19
Supervised 23.62 23.45 24.14 26.40 30.27 34.90
Improvement 4.06% 1.75% 0.29% 3.56% 0.03% 2.03%

S 100% 80% 60% 40% 20% 10%

Semi-supervised with 100% training features in the pre-training stage 2840 3175 3576 5522 9562 22,476
Supervised 3234 3427 3650 6536 15,612 27,138
Improvement 12.18% 7.35% 2.03% 15.51% 38.75% 17.18%

Average training time per epoch (s) 100% 80% 60% 40% 20% 10%

Pre-training stage 7.08 7.08 7.08 7.08 7.08 7.08
Fine-tuning procedure 34.14 28.97 22.39 15.2 9.74 5.93

A. Listou Ellefsen et al. Reliability Engineering and System Safety 183 (2019) 240–251

246

information regarding RUL predictions [19,33]. In addition, subset
FD001 and FD003 are subjected to a single operating condition [5].
Hence, the three operational settings are excluded. Accordingly, sensor
2, 3, 4, 7, 8, 9, 11, 12, 13, 14, 15, 17, 20, and 21 are used as the input
features for subset FD001 and FD003.

Subset FD002 and FD004 are more complex due to six operating
conditions [18]. Six operating conditions make it challenging for the
prognosis algorithm to detect clear degradation patterns in the input
data directly. However, two LSTM layers were able to find hidden
patterns in Zheng et al. [6]. Additionally, the initial unsupervised pre-
training stage is able to capture hierarchically statistical patterns before
the supervised fine-tuning procedure. Consequently, these patterns will
enable the whole architecture to cope with the complexity inherent in
degradation. Thus, all three operational sensor settings and all sensor
measurements are used as the input features for subset FD002 and
FD004.

4.2.3. RUL targets
True RUL targets are only provided at the last time step for each

engine in the test sets. In order to construct labels for every time step for
each engine in the training sets, Heimes et al. [33] used an MLP func-
tion estimator to show that it is reasonable to estimate RUL as a con-
stant value when the engines operate in normal condition. Based on
their experiments, a degradation model was proposed with a constant
RUL value (Rc) of 130 and a minimum value of 0. This piece-wise linear
RUL target function is still the most common approach in the literature
[5–7,18,19]. However, Rc varies among the different studies. For this
study, the GA approach is used to test different Rc since it has a notable
impact on the experimental performance for the different subsets in the
C-MAPSS dataset.

4.2.4. Data normalization
All input features and labels are normalized with zero mean unit

variance (z-score) normalization:

=z x µ
(13)

where μ is the mean and σ is the corresponding standard deviation.

4.3. Deep architecture configuration and training

In the initial RBM layer, a rectified linear unit (ReLU) is used as the
activation function as ReLUs improve the performance of RBMs com-
pared to the tanh activation function [9]. Stochastic gradient descent is
the selected optimization algorithm and adaptive moment estimation
(Adam) [10] is the learning rate method applied to the deep archi-
tecture. Recently, Adam has shown great results on the C-MAPSS da-
taset [7,18]. To better preserve the information in the pre-trained
weights, the learning rate in the initial RBM layer is one order of
magnitude higher than the learning rate in the remaining layers. ReLU
weight initialization [13] is applied to the RBM layer while Xavier
weight initialization [12] is applied to the remaining layers in the
proposed semi-supervised deep architecture.

Truncated backpropagation through time (TBPTT) is used in this
study due to a large amount of time steps in the training sets. TBPTT
performs more frequent parameter updates compared to standard
backpropagation through time. This both reduces computational com-
plexity and improves learning of temporal dependencies [34]. The
forward and backward passes are set to 100 time steps, as the shortest
time series in the C-MAPSS dataset contains 128 time steps.

In the training procedure, each complete training subset is split into
a training set and a cross-validation set. In subset FD001 and FD003,

Fig. 5. RMSE comparison on subset FD004 when the labeled training data is reduced from 100% to 10%.

A. Listou Ellefsen et al. Reliability Engineering and System Safety 183 (2019) 240–251

247

20% of the total engines in the complete training subsets are randomly
selected for cross-validation. The remaining 80% are designated as the
training sets. Due to an increased complete training subset size in subset
FD002 and FD004, 10% of the total engines are randomly selected for
cross-validation while the remaining 90% are designated as the training
sets.

Table 3shows all the hyper-parameters which the GA approach
needs to optimize for each subset. The recent and well-proven reg-
ularization technique dropout [11] is applied to the deep architecture.
Dropout introduces the hyper-parameter, p, which randomly drops
units during training. In this way, dropout approximately combines an
exponential number of different architectures. Thus, the deep archi-
tecture learns to make generalized representations of the input data,
which enhances the feature extraction ability. In Table 3, n and p refer
to the number of hidden units and the probability of retaining each
hidden unit in the coupled hidden layer L, respectively. A p value of 1.0
is functionally equivalent to zero dropout, i.e. 100% probability of re-
taining each hidden unit. A typical value for p used in the literature is
0.5 [7,18]. However, p depends on n. In this study, the GA approach is
able to test different values of n in both L1, L2, L3, and L4, and hence, it
is also able to test different values of p in the range from 0.5 to 0.9. As
Patterson and Gibson [35] recommend, to preserve important features
in the input data, dropout is disabled in the first layer, L1. Additionally,
dropout is not used in the output layer, L5. It should be noted that
dropout is only applied to the non-recurrent connections in the LSTM
layers.

The GA approach is run once for each subset. It trains a diverse
number of individuals on the training sets and evaluates the RMSE,
Eq. 12, on the cross-validation set as its objective function. In this way,
the GA approach optimizes the hyper-parameters for each subset. To
limit the time consumed during the optimization process, the popula-
tion size is restricted to 20 individuals and the population is evolved
three times with the selected GA parameters as shown in Table 4. This

results in an average training time of 60 hours for each subset. How-
ever, the training time will reduce significantly along with future de-
velopments in GPUs. Additionally, to prevent overfitting, early stopping
(ES) is applied to monitor the performance during the training process
of each individual. In the unsupervised pre-training stage, ES is used to
monitor the reconstruction error on the training set. If the number of
epochs with no improvement exceeds nine, the unsupervised pre-
training procedure is terminated. In the fine-tuning procedure, ES is
used to monitor the RMSE accuracy on the cross-validation set. If the
number of epochs with no improvement exceeds four, the fine-tuning
procedure is terminated. Finally, the top five GA individuals for each
subset are evaluated on the test sets where both RMSE and S are cal-
culated. A complete flowchart of the GA approach is shown in Fig. 4
and the best GA individuals for each subset are shown in Table 5. In
Table 5, nIn and nOut represents the number of input and output
(hidden) units for each layer, respectively.

4.4. Experimental results and discussions

The aim of this paper is to show increased RUL prediction accuracy
in multivariate time series data subjected to several operating condi-
tions and fault modes utilizing a semi-supervised setup. The experi-
ments conducted in this study shows the effect of unsupervised pre-
training both when the training data is completely labeled and when
the labeled training data in the fine-tuning procedure is reduced.

4.4.1. The effect of unsupervised pre-training in RUL predictions
Subset FD004 is chosen for this experiment due to the complexity

inherent in its six operating conditions and two fault modes. As shown
in Table 6, semi-supervised learning provides higher RUL prediction
accuracy compared to supervised learning when the training data is
100% labeled. This indicates that the unsupervised pre-training stage
initializes the weights using a more suitable local minimum than

Fig. 6. S comparison on subset FD004 when the labeled training data is reduced from 100% to 10%.

A. Listou Ellefsen et al. Reliability Engineering and System Safety 183 (2019) 240–251

248

weights that are randomly initialized. Consequently, unsupervised pre-
training supports better comprehension of the inherent degradation
complexity in the whole architecture.

In real-life PHM scenarios, high-quality labeled training data is hard
to acquire. To address this problem, this study has performed an ex-
periment where only reduced parts of the training data in subset FD004
contains labels. The labels in the training set are randomly reduced into
fractions of 20%, 40%, 60%, 80%, and 90%, respectively. To minimize
any selection bias, the random selection process is repeated five times
for each fraction. Each random selection is then trained on the training
set and evaluated on the test set where RMSE and S are calculated.
Finally, the top three performance results are averaged as shown in
Table 6. It should be noted that a similar experiment, which has made
interesting and valuable results using a variational autoencoder (VAE),
is conducted on subset FD001 in [36].

To show the effect of unsupervised pre-training, the proposed deep
architecture is trained with and without the initial pre-training stage. In
the initial pre-training stage, the proposed deep architecture is trained
with 100% training features. The ES procedure is used to monitor the
performance. As shown in Figs. 5 and 6, the proposed semi-supervised
deep architecture provides the overall highest RUL prediction accuracy
when trained with the initial unsupervised pre-training stage. It should
be noted that the proposed deep architecture, when trained in a purely
supervised manner, also provides satisfactory RUL prediction accuracy,
especially when more than 60% of the training labels are included. This
proves that recent weight initializations and regularization techniques,
such as Xavier and dropout, have indeed reduced the need for un-
supervised pre-training. Dropout in particular improves the feature
extraction ability by approximately combining several different archi-
tectures in the fine-tuning procedure. However, the improvement of
utilizing semi-supervised learning is noticeable when more than 40% of

the training labels are removed, as shown in Table 6.
Additionally, as shown in Fig. 7, the average training time per epoch

will almost linearly decrease with decreasing training labels, e.g. 15.2 s
training time at 40% labels, which is =15.2 s/34.14 s 44.5% training
time per epoch compared to 100% labels. Also, as seen in Figs. 5 and 6,
the RUL prediction accuracy is satisfactory when more than 60%
training labels are included. Depending on the reliability and safety
requirements of the application, the trade-off of reduced RUL prediction
accuracy might be acceptable if the training time is critical.

4.4.2. Comparison with the literature
Studies that have reported results on all four subsets in the C-MAPSS

dataset have been selected for comparison. Although the initial Rc va-
lues are somewhat different, the results are still comparable. As shown
in Tables 7 and 8, the proposed semi-supervised deep architecture has
achieved promising results compared to the recent studies when the
training data is completely labeled. The CNN approach in Li et al. [7]
achieved slightly higher RMSE prediction accuracy on subset FD002.
However, the proposed semi-supervised deep architecture indicates
substantially improved S prediction accuracy on all subsets. Conse-
quently, the proposed semi-supervised deep architecture reduces the

Fig. 7. Average training time in seconds per epoch in the fine-tuning procedure when the labeled training data is reduced from 100% to 10%.

Table 7
RMSE comparison with the literature on the C-MAPSS dataset.

DL approach & refs. FD001 FD002 FD003 FD004

CNN + FNN [5] 18.45 30.29 19.82 29.16
LSTM + FNN [6] 16.14 24.49 16.18 28.17
MODBNE [19] 15.04 25.05 12.51 28.66
CNN + FNN [7] 12.61 22.36 12.64 23.31
Proposed semi-supervised setup 12.56 22.73 12.10 22.66

A. Listou Ellefsen et al. Reliability Engineering and System Safety 183 (2019) 240–251

249

average number of late predictions across the test sets considerably.
This is because the unsupervised pre-training stage extracts more de-
gradation related features before supervised fine-tuning. Thus, this
stage supports the whole architecture to better understand the under-
lying degradation trends. Late predictions impose a serious threat to
reliability and safety in real-life PHM applications as the maintenance
procedure will be scheduled too late. Therefore, semi-supervised
learning is a promising approach in RUL predictions tasks both sub-
jected to a single and multiple operating conditions and fault modes.

5. Conclusion and future work

This paper has investigated the effect of unsupervised pre-training
in RUL predictions utilizing a semi-supervised setup. The experiments
are performed on the publicly available C-MAPSS dataset. Additionally,
a GA approach was proposed to tune the number of diverse hyper-
parameters in deep architectures. Combining all the hyper-parameters
in Table 3 results in a total of 8 748 000 combinations. Although, the
GA approach only used 20 individuals and three evolutions, it was able
to optimize hyper-parameters for each subset in the C-MAPSS dataset
effectively. This is a promising approach compared to using a time
consuming, exhaustive search. However, the average training time of
60 hours for each subset will be further optimized in future work.

In the experimental study, the proposed semi-supervised setup is
compared to purely supervised training as well as recent studies in the
literature. The proposed semi-supervised setup achieved promising RUL
prediction accuracy with both completely and reduced amounts of la-
beled training data. Hence, unsupervised pre-training is indeed a pro-
mising feature in real-life PHM applications subjected to multiple op-
erating conditions and fault modes, as large amounts of high-quality
labeled training data might be both challenging and time-consuming to
acquire. Unsupervised pre-training supports the deep architecture to
improve our understanding of the inherent complexity by extracting
more features that contain important degradation information.

In this study, an RBM was utilized as the initial unsupervised pre-
training stage. However, RBM is a rather old, unsupervised DL tech-
nique. Today, more powerful unsupervised DL techniques are available.
For instance, the VAE [36,37] seems promising. The VAE models the
underlying probability distribution of the training data using varia-
tional inference. It is possible to extend to a wide range of model ar-
chitectures, and this is one of its key advantages compared to RBM,
which requires careful model design to maintain tractability [38].

In RUL predictions based on data-driven approaches, such as DL, the
accuracy strongly depends on the quality of the constructed run-to-
failure training data labels. This study confirms that Rc has a notable
impact on the RUL prediction accuracy for each subset. Nevertheless,
the piece-wise linear degradation model used in this study is considered
a major limitation as each engine in each subset has, in fact, an in-
dividual degradation pattern. Recently, the VAE has been used for
unsupervised reconstruction based anomaly detection by applying a
reconstruction error as an anomaly score [39]. Thus, in future work, the
VAE will also be used in order to create an unsupervised fault detector
to optimize Rc for each engine in each subset in the C-MAPSS dataset.

Normally, tanh is used as the input and output (I/O) activation
function in LSTMs. However, in this study it was discovered that sig-
moid performed better than tanh as the LSTM I/O activation function in

combination with the initial RBM layer with ReLU as the activation
function. A novel rectified LSTM I/O activation function would be a
positive contribution to be included in future work.

Acknowledgment

This work was supported by the Norwegian University of Science
and Technology within the Department of Ocean Operations and Civil
Engineering under project no. 90329106 and funded by the Research
Council of Norway, grant no. 245613/O30. The authors would like to
thank Digital Twins For Vessel Life Cycle Service (DigiTwin) NFR
280703.

Supplementary material

Supplementary material associated with this article can be found, in
the online version, at 10.1016/j.ress.2018.11.027

References

[1] Kalgren PW, Byington CS, Roemer MJ, Watson MJ. Defining phm, a lexical evolu-
tion of maintenance and logistics. 2006 IEEE Autotestcon. 2006. p. 353–8. https://
doi.org/10.1109/AUTEST.2006.283685.

[2] Peng Y, Wang Y, Zi Y. Switching state-space degradation model with recursive
filter/smoother for prognostics of remaining useful life. IEEE Trans Ind Inf 2018.
https://doi.org/10.1109/TII.2018.2810284. 1–1

[3] Zhao G, Zhang G, Ge Q, Liu X. Research advances in fault diagnosis and prognostic
based on deep learning. Prognostics and System Health Management Conference
(PHM-Chengdu). IEEE; 2016. p. 1–6. https://doi.org/10.1109/PHM.2016.7819786.

[4] Chen XW, Lin X. Big data deep learning: challenges and perspectives. IEEE Access
2014;2:514–25. https://doi.org/10.1109/ACCESS.2014.2325029.

[5] Sateesh Babu G, Zhao P, Li X-L. Deep convolutional neural network based regression
approach for estimation of remaining useful life. Cham: Springer International
Publishing; 2016. p. 214–28. https://doi.org/10.1007/978-3-319-32025-0_14. ISBN
978-3-319-32025-0

[6] Zheng S, Ristovski K, Farahat A, Gupta C. Long short-term memory network for
remaining useful life estimation. 2017 IEEE International Conference on Prognostics
and Health Management (ICPHM). IEEE; 2017. p. 88–95.

[7] Li X, Ding Q, Sun J-Q. Remaining useful life estimation in prognostics using deep
convolution neural networks. Reliab Eng Syst Saf 2018;172:1–11.

[8] Erhan D, Manzagol P-A, Bengio Y, Bengio S, Vincent P. The difficulty of training
deep architectures and the effect of unsupervised pre-training. Artificial Intelligence
and Statistics. 2009. p. 153–60.

[9] Glorot X, Bordes A, Bengio Y. Deep sparse rectifier neural networks. In: Gordon G,
Dunson D, DudÃk M, editors. Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Statistics; vol. 15 of Proceedings of
Machine Learning Research. Fort Lauderdale, FL, USA: PMLR; 2011. p. 315–23.

[10] Kingma D.P., Ba J.. Adam: a method for stochastic optimization.
arXiv:141269802014;.

[11] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a
simple way to prevent neural networks from overfitting. J Mach Learn Res
2014;15(1):1929–58.

[12] Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward
neural networks. Proceedings of the 13th International Conference on Artificial
Intelligence and Statistics. 2010. p. 249–56.

[13] He K, Zhang X, Ren S, Sun J. Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification. Proceedings of the IEEE international
conference on computer vision. 2015. p. 1026–34.

[14] Saxena A., Goebel K.. Turbofan engine degradation simulation data set. NASA Ames
Prognostics Data Repository (https://tiarcnasagov/tech/dash/groups/pcoe/
prognostic-data-repository/), NASA Ames Research Center, Moffett Field, CA2008;.

[15] Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput
1997;9(8):1735–80. https://doi.org/10.1162/neco.1997.9.8.1735.

[16] Bengio Y, Simard P, Frasconi P. Learning long-term dependencies with gradient
descent is difficult. IEEE Trans Neural Netw 1994;5(2):157–66. https://doi.org/10.
1109/72.279181.

[17] Yuan M, Wu Y, Lin L. Fault diagnosis and remaining useful life estimation of aero
engine using lstm neural network. IEEE International Conference on Aircraft Utility
Systems (AUS). IEEE; 2016. p. 135–40.

[18] Wu Y, Yuan M, Dong S, Lin L, Liu Y. Remaining useful life estimation of engineered
systems using vanilla lstm neural networks. Neurocomputing 2018;275:167–79.

[19] Zhang C, Lim P, Qin AK, Tan KC. Multiobjective deep belief networks ensemble for
remaining useful life estimation in prognostics. IEEE Trans Neural Netw Learn Syst
2017;28(10):2306–18. https://doi.org/10.1109/TNNLS.2016.2582798.

[20] Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolu-
tional neural networks. In: Pereira F, Burges CJC, Bottou L, Weinberger KQ, editors.
Advances in Neural Information Processing Systems 25. Curran Associates, Inc.;
2012. p. 1097–105.

[21] Taigman Y, Yang M, Ranzato M, Wolf L. Deepface: closing the gap to human-level
performance in face verification. 2014 IEEE Conference on Computer Vision and

Table 8
Score function comparison with the literature on the C-MAPSS dataset.

DL approach & Refs. FD001 FD002 FD003 FD004

CNN + FNN [5] 1287 13,570 1596 7886
LSTM + FNN [6] 338 4450 852 5550
MODBNE [19] 334 5585 422 6558
CNN + FNN [7] 274 10,412 284 12,466
Proposed semi-supervised setup 231 3366 251 2840

A. Listou Ellefsen et al. Reliability Engineering and System Safety 183 (2019) 240–251

250

https://doi.org/10.1016/j.ress.2018.11.027
https://doi.org/10.1109/AUTEST.2006.283685
https://doi.org/10.1109/AUTEST.2006.283685
https://doi.org/10.1109/TII.2018.2810284
https://doi.org/10.1109/PHM.2016.7819786
https://doi.org/10.1109/ACCESS.2014.2325029
https://doi.org/10.1007/978-3-319-32025-0_14
https://doi.org/10.1007/978-3-319-32025-0_14
http://refhub.elsevier.com/S0951-8320(18)30750-6/sbref0006
http://refhub.elsevier.com/S0951-8320(18)30750-6/sbref0006
http://refhub.elsevier.com/S0951-8320(18)30750-6/sbref0006
http://refhub.elsevier.com/S0951-8320(18)30750-6/sbref0007
http://refhub.elsevier.com/S0951-8320(18)30750-6/sbref0007
http://refhub.elsevier.com/S0951-8320(18)30750-6/sbref0008
http://refhub.elsevier.com/S0951-8320(18)30750-6/sbref0008
http://refhub.elsevier.com/S0951-8320(18)30750-6/sbref0008
http://refhub.elsevier.com/S0951-8320(18)30750-6/sbref0009
http://refhub.elsevier.com/S0951-8320(18)30750-6/sbref0009
http://refhub.elsevier.com/S0951-8320(18)30750-6/sbref0009
http://refhub.elsevier.com/S0951-8320(18)30750-6/sbref0009
http://arxiv.org/abs/14126980
http://refhub.elsevier.com/S0951-8320(18)30750-6/sbref0010
http://refhub.elsevier.com/S0951-8320(18)30750-6/sbref0010
http://refhub.elsevier.com/S0951-8320(18)30750-6/sbref0010
http://refhub.elsevier.com/S0951-8320(18)30750-6/sbref0011
http://refhub.elsevier.com/S0951-8320(18)30750-6/sbref0011
http://refhub.elsevier.com/S0951-8320(18)30750-6/sbref0011
http://refhub.elsevier.com/S0951-8320(18)30750-6/sbref0012
http://refhub.elsevier.com/S0951-8320(18)30750-6/sbref0012
http://refhub.elsevier.com/S0951-8320(18)30750-6/sbref0012
https://www.tiarcnasagov/tech/dash/groups/pcoe/prognostic-data-repository/
https://www.tiarcnasagov/tech/dash/groups/pcoe/prognostic-data-repository/
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/72.279181
https://doi.org/10.1109/72.279181
http://refhub.elsevier.com/S0951-8320(18)30750-6/sbref0015
http://refhub.elsevier.com/S0951-8320(18)30750-6/sbref0015
http://refhub.elsevier.com/S0951-8320(18)30750-6/sbref0015
http://refhub.elsevier.com/S0951-8320(18)30750-6/sbref0016
http://refhub.elsevier.com/S0951-8320(18)30750-6/sbref0016
https://doi.org/10.1109/TNNLS.2016.2582798
http://refhub.elsevier.com/S0951-8320(18)30750-6/sbref0018
http://refhub.elsevier.com/S0951-8320(18)30750-6/sbref0018
http://refhub.elsevier.com/S0951-8320(18)30750-6/sbref0018
http://refhub.elsevier.com/S0951-8320(18)30750-6/sbref0018

Pattern Recognition. 2014. p. 1701–8. https://doi.org/10.1109/CVPR.2014.220.
[22] Hinton GE, Osindero S, Teh Y-W. A fast learning algorithm for deep belief nets.

Neural Comput 2006;18(7):1527–54. https://doi.org/10.1162/neco.2006.18.7.
1527.

[23] Freund Y, Haussler D. Unsupervised learning of distributions on binary vectors
using two layer networks. In: Moody JE, Hanson SJ, Lippmann RP, editors.
Advances in Neural Information Processing Systems 4. Morgan-Kaufmann; 1992. p.
912–9.

[24] Nair V, Hinton GE. Rectified linear units improve restricted Boltzmann machines.
Proceedings of the 27th international conference on machine learning (ICML-10).
2010. p. 807–14.

[25] Hinton GE. A practical guide to training restricted Boltzmann machines. Neural
Networks: Tricks of the Trade. Springer; 2012. p. 599–619.

[26] Gers FA, Schmidhuber JA, Cummins FA. Learning to forget: continual prediction
with lstm. Neural Comput 2000;12(10):2451–71. https://doi.org/10.1162/
089976600300015015.

[27] Greff K, Srivastava RK, Koutník J, Steunebrink BR, Schmidhuber J. Lstm: a search
space odyssey. IEEE Trans Neural Netw Learn Syst 2017;28(10):2222–32. https://
doi.org/10.1109/TNNLS.2016.2582924.

[28] Olah C. Understanding lstm networks. 2015. 2015. URL http://colahgithubio/
posts/2015-08-Understanding-LSTMs/img/LSTM3-chainpng

[29] Roberge V, Tarbouchi M, Labonté G. Comparison of parallel genetic algorithm and
particle swarm optimization for real-time uav path planning. IEEE Trans Ind Inf
2013;9(1):132–41.

[30] Eclipse deeplearning4j development team, deeplearning4j: open-source distributed
deep learning for the jvm. Apache Software Foundation License 20 http://
deeplearning4jorg 2018;.

[31] Saxena A, Goebel K, Simon D, Eklund N. Damage propagation modeling for aircraft
engine run-to-failure simulation. 2008 International Conference on Prognostics and
Health Management. IEEE; 2008. p. 1–9.

[32] Sikorska JZ, Hodkiewicz M, Ma L. Prognostic modelling options for remaining
useful life estimation by industry. Mech Syst Signal Process 2011;25(5):1803–36.
https://doi.org/10.1016/j.ymssp.2010.11.018.

[33] Heimes FO. Recurrent neural networks for remaining useful life estimation.
International Conference on Prognostics and Health Management, PHM 2008..
IEEE; 2008. p. 1–6.

[34] Sutskever I. Training recurrent neural networks. Toronto, Ont, Canada: University
of Toronto; 2013.

[35] Patterson J, Gibson A. Deep learning: a practitioner’s approach. “O’Reilly Media,
Inc.”; 2017.

[36] Yoon AS, Lee T, Lim Y, Jung D, Kang P, Kim D, et al. Semi-supervised learning with
deep generative models for asset failure prediction. CoRR 2017. abs/1709.00845

[37] Kingma D.P., Welling M.. Auto-encoding variational bayes. arXiv:131261142013;.
[38] Goodfellow I, Bengio Y, Courville A. Deep learning. MIT Press; 2016. http://www.

deeplearningbook.org
[39] Park D, Hoshi Y, Kemp CC. A multimodal anomaly detector for robot-assisted

feeding using an lstm-based variational autoencoder. IEEE Rob Autom Lett
2018;3(3):1544–51.

A. Listou Ellefsen et al. Reliability Engineering and System Safety 183 (2019) 240–251

251

https://doi.org/10.1109/CVPR.2014.220
https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.1162/neco.2006.18.7.1527
http://refhub.elsevier.com/S0951-8320(18)30750-6/sbref0021
http://refhub.elsevier.com/S0951-8320(18)30750-6/sbref0021
http://refhub.elsevier.com/S0951-8320(18)30750-6/sbref0021
http://refhub.elsevier.com/S0951-8320(18)30750-6/sbref0021
http://refhub.elsevier.com/S0951-8320(18)30750-6/sbref0022
http://refhub.elsevier.com/S0951-8320(18)30750-6/sbref0022
http://refhub.elsevier.com/S0951-8320(18)30750-6/sbref0022
http://refhub.elsevier.com/S0951-8320(18)30750-6/sbref0023
http://refhub.elsevier.com/S0951-8320(18)30750-6/sbref0023
https://doi.org/10.1162/089976600300015015
https://doi.org/10.1162/089976600300015015
https://doi.org/10.1109/TNNLS.2016.2582924
https://doi.org/10.1109/TNNLS.2016.2582924
http://refhub.elsevier.com/S0951-8320(18)30750-6/sbref0026
http://www.colahgithubio/posts/2015-08-Understanding-LSTMs/img/LSTM3-chainpng
http://refhub.elsevier.com/S0951-8320(18)30750-6/sbref0027
http://refhub.elsevier.com/S0951-8320(18)30750-6/sbref0027
http://refhub.elsevier.com/S0951-8320(18)30750-6/sbref0027
http://www.deeplearning4jorg
http://www.deeplearning4jorg
http://refhub.elsevier.com/S0951-8320(18)30750-6/sbref0028
http://refhub.elsevier.com/S0951-8320(18)30750-6/sbref0028
http://refhub.elsevier.com/S0951-8320(18)30750-6/sbref0028
https://doi.org/10.1016/j.ymssp.2010.11.018
http://refhub.elsevier.com/S0951-8320(18)30750-6/sbref0030
http://refhub.elsevier.com/S0951-8320(18)30750-6/sbref0030
http://refhub.elsevier.com/S0951-8320(18)30750-6/sbref0030
http://refhub.elsevier.com/S0951-8320(18)30750-6/sbref0031
http://refhub.elsevier.com/S0951-8320(18)30750-6/sbref0031
http://refhub.elsevier.com/S0951-8320(18)30750-6/sbref0032
http://refhub.elsevier.com/S0951-8320(18)30750-6/sbref0032
http://refhub.elsevier.com/S0951-8320(18)30750-6/sbref0033
http://refhub.elsevier.com/S0951-8320(18)30750-6/sbref0033
http://arxiv.org/abs/13126114
http://refhub.elsevier.com/S0951-8320(18)30750-6/sbref0034
http://www.deeplearningbook.org
http://refhub.elsevier.com/S0951-8320(18)30750-6/sbref0035
http://refhub.elsevier.com/S0951-8320(18)30750-6/sbref0035
http://refhub.elsevier.com/S0951-8320(18)30750-6/sbref0035

	Remaining useful life predictions for turbofan engine degradation using semi-supervised deep architecture
	Introduction
	Related work
	Proposed semi-supervised setup
	Restricted Boltzmann machine
	Long-Short term memory
	The proposed deep architecture structure and the genetic algorithm approach

	Experimental study
	The benchmark C-MAPSS dataset and performance evaluation
	Data preparation
	Masking and padding
	Feature selection
	RUL targets
	Data normalization

	Deep architecture configuration and training
	Experimental results and discussions
	The effect of unsupervised pre-training in RUL predictions
	Comparison with the literature

	Conclusion and future work
	Acknowledgment
	Supplementary material
	References

