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Abstract

We present a general approach for Monte Carlo computation of conditional expectations
of the form E[φ(T )|S = s] given a su�cient statistic S.

The idea of the method was �rst introduced by Lillegård and Engen [4], and has been
further developed by Lindqvist and Taraldsen [7, 8, 9].

If a certain pivotal structure is satis�ed in our model, the simulation could be done by
direct sampling from the conditional distribution, by a simple parameter adjustment of
the original statistical model. In general it is shown by Lindqvist and Taraldsen [7, 8]
that a weighted sampling scheme needs to be used.

The method is in particular applied to the non-homogeneous Poisson process, in order
to develop exact goodness-of-�t tests for the null hypothesis that a set of observed fail-
ure times follow the NHPP of a speci�c parametric form. In addition exact con�dence
intervals for unknown parameters in the NHPP model are considered [6].

Di�erent test statistics W ≡ W (T ) designed in order to reveal departure from the null
model are presented [1, 10, 11]. By the method given in the following, the conditional
expectation of these test statistics could be simulated in the absence of the pivotal struc-
ture mentioned above. This extends results given in [10, 11], and answers a question
stated in [1].

We present a power comparison of 5 of the test statistics considered under the nullhy-
pothesis that a set of observed failure times are from a NHPP with log linear intensity,
under the alternative hypothesis of power law intensity.

Finally a convergence comparison of the method presented here and an alternative ap-
proach of Gibbs sampling is given.



ii

Preface

The Master Thesis presented is performed during the spring 2007, and completes the 5
year programme �Sivilingeniør, Fysikk og Matematikk�, at the Norwegian University of
Science and Technology (NTNU). The thesis was written at the Department of Mathe-
matical Sciences, with Professor Bo Henry Lindqvist as the professional supervisor.

I would especially like to thank Professor Bo Lindqvist for all the help and guidance
throughout the semester, which has been highly appreciated.

I would also like to thank my fellow students for 5 good years together in Trondheim.



Contents

1 Introduction 1

2 Su�cient Statistics 3

3 De�nition & Su�cient Statistics of NHPP Models 7

3.1 De�nition NHPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 Su�cient Statistics of NHPP Models . . . . . . . . . . . . . . . . . . . . . 8

3.2.1 Power Law Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2.2 Log Linear Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Conditional Testing given a Su�cient Statistic 11

5 Conditional Monte Carlo Based on Su�cient Statistics 13

5.1 Setup and basic algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5.2 General algorithm for unique θ̂(u, t), Eucledian Case . . . . . . . . . . . . 15

6 Conditional Simulation for Parametric NHPP Models 17

6.1 Power Law Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6.2 Log Linear Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6.3 Gibbs Sampling, Log Linear Intensity . . . . . . . . . . . . . . . . . . . . . 24

7 Statistical Inference in NHPP Models 29

7.1 Test Statistics Failure Censoring . . . . . . . . . . . . . . . . . . . . . . . 29

7.2 Test Statistics Time Censoring . . . . . . . . . . . . . . . . . . . . . . . . 31

7.3 Power Law Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7.4 Log Linear Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

8 Implementation NHPP Models 35

8.1 Power Law Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

8.1.1 Simulating Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

8.1.2 Goodness of �t testing . . . . . . . . . . . . . . . . . . . . . . . . . 35

8.1.3 Exact Con�dence Intervals . . . . . . . . . . . . . . . . . . . . . . 40

8.1.4 Discussion of Results . . . . . . . . . . . . . . . . . . . . . . . . . . 43

iii



iv CONTENTS

8.2 Log Linear Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
8.2.1 Simulating Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
8.2.2 Goodness of �t testing . . . . . . . . . . . . . . . . . . . . . . . . . 43
8.2.3 Exact Con�dence Intervals . . . . . . . . . . . . . . . . . . . . . . 48
8.2.4 Discussion of Results . . . . . . . . . . . . . . . . . . . . . . . . . . 49

8.3 Power Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
8.3.1 Discussion of results . . . . . . . . . . . . . . . . . . . . . . . . . . 53

8.4 Convergence Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
8.4.1 Discussion of results . . . . . . . . . . . . . . . . . . . . . . . . . . 55

9 Concluding Remarks 57

A Datasets 61



Chapter 1

Introduction

Assume a repairable system is observed in a time interval [0,t]. The system may fail
many times during this time interval resulting in the failure times T = (T1, ..., Tn).

Understanding and ability to model the systems failure behaviour might be of great
interest from an economical, manufacturing, planning and/or other viewpoints.

Assume that the observed failure times T comes from a speci�c model with unknown
parameters θ. A test statistic W ≡ W (T ) is designed in order to reveal departure from
the model under the assumption. Now S ≡ S(T ) is the su�cient statistics for the
unknown parameters of our model. Then if wobs is the value of W based on the observed
failure times T , the aim is to determine the conditional probability:

PH0(W (T ) ≥ wobs|S = s) (for all s) (1.1)

in order to make statistical inference concerning our assumed model. In the following
we will see that equation (1.1), by the proper de�nition of a function φ(T ), could be
expressed as:

PH0(W (T ) ≥ wobs|S = s) = E[φ(T )|S = s]

This conditional extectation is by su�ciency independent of the unknown parameters of
the assumed model, and in principle it could be found. However, in practical cases this
might be very di�cult or even impossible, and hence one has to rely on simulations.

We present a method of how to simulate such conditional expectations conditioned on
the value of the su�cient statistic S, and in particular we apply it to the nonhomogeneous
Poisson process.

The method could be applied to make exact statistical inference, including goodness-
of-�t testing and parameter estimation, concerning the model under the assumption.
This could provide better results than existing asymptotic methods, especially when the
observed number of failures is small.
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2 CHAPTER 1. INTRODUCTION

Chapter 2 : In this chapter we give a short introduction to the term su�cient statistics.
In particular the Factorization Theorem is stated, followed by an example of how to
apply it.

Chapter 3 : The de�nition of the non-homogeneous Poisson process (NHPP) is stated
together with the two popular parametrizations power law and log linear law, of this
model. The Factorization Theorem is then applied to identify the su�cient statistics for
these two parametrizations.

Chapter 4 : In chapter 4 we outline a framework for an α-level conditional test of the
nullhypothesis that a set of observed failure times T = (T1, ..., Tn) comes from a NHPP
model of a speci�c parametric type.

Chapter 5 : A general method of Monte Carlo simulation of conditional expectations
based on su�cient statistics is presented. The method was �rst introduced by Lillegård
and Engen [4], and was further developed by Lindqvist and Taraldsen [7, 8, 9]. In the
following this method is referred to as LT (2006).

Chapter 6 : We adjust the LT (2006) method to the two parametrizations of the NHPP
model considered in chapter 3. An alternative procedure for simulating conditional ex-
pectations based on su�cient statistics is considered for the log linear parametrization.
This is done by Gibbs sampling, and 3 alternative Gibbs algorithms are presented.

Chapter 7 : In this chapter di�erent test statistics W ≡ W (T ) are considered. The
statistics are from [1, 10, 11]. We extend the test statistics to a more general situation
in the absence of a certain pivotal structure in our assumed model, which answers a
question given in [1]. The test statistics given in [10, 11] are also extended to the new
situation of time censoring.

Chapter 8 : The LT (2006) method and Gibbs sampling is applied in practice, to make
exact statistical inference in NHPP models, with power law and log linear intensity
function. In [10, 11] a power comparison of the test statistics are given under the nullhy-
pothesis of power law NHPP with alternative hypothesis that data comes from a NHPP
with log linear intensity. In this chapter we present a power comparison under the null-
hypothesis of log linear intensity NHPP with alternative hypothesis that failure data
comes from power law NHPP, which is a new result. Finally a convergence comparison
of the Gibbs sampling and the LT (2006) method is presented.



Chapter 2

Su�cient Statistics

In this chapter we introduce the term su�cient statistic. The material is from [3]

Suppose a random sample X = (X1, X2, ..., Xn) is drawn from a population. The pop-
ulation contains one or more unknown parameters θ=(θ1, θ2, ..., θk) which could be of
interest to estimate for various reasons. A statistic is a function T = r(X1, X2, ..., Xn)
of the random sample drawn from the population. Examples of such functions are:

T1 = X̄n =
1
n

n∑
i=1

Xi (sample mean)

T2 = s2 =
1

n− 1

n∑
i=1

(Xi − X̄n)2 (sample variance)

T3 = max{X1, X2, ..., Xn}

A statistic T is said to be an estimator of the population parameter θ if T is usually close
to θ. If we look at the statistics given above the sample mean and the sample variance
are estimators of the population mean and the population variance, respectively.

Obviously there are lots of functions and so lots of statistics of the random sample that
could be computed, in order to estimate unknown parameters of a population. Now the
challenge is to �nd a small set of statistics, if they exist, which by themselves exctracts
all the information the sample contains about the population. Suppose one calculates
the mean and variance of a sample. Does the sample contain any more information about
the population than this?

It is important to remember that the population is always assumed to be described by
a certain distribution. This could be the normal distribution, the exponential distribu-
tion, the gamma distribution or one of the other known distributions with one or more
unknown parameters. Hence, the answer to the above question depends on what family
of distributions we assume describes the population.

3



4 CHAPTER 2. SUFFICIENT STATISTICS

We give two de�nitions of su�ciency [3]:

De�nition 1. (Heuristic de�nition) �We say T1, T2, ..., Tk are jointly su�cient statistics

if the statistician who knows the values of T1, T2, ..., Tk can do just as good a job of esti-

mating the unknown parameters θ as a statistician who knows the entire random sample.

In this setting θ typically represents several parameters and the number of statistics, k,
is equal to the number of unknown parameters�.

De�nition 2. (Mathematical de�nition) �The statistics T1, T2, ..., Tk are jointly su�cient

if for each t1, t2, ..., tk, the conditional distribution of X1, X2, ..., Xn given Ti = ti for

i = 1, ..., k and θ does not depend on θ�.

To motivate the mathematical de�nition we consider an �experiment�. Suppose there are
two statisticians, we call them A and B. A random sample X = (X1, X2, ..., Xn) is drawn
from a population. Statistician A knows this entire random sample, while statistician B
only knows the values t1, t2, ..., tk of the su�cient statistics Ti = ri(X1, X2, ..., Xn) for
i = 1, ..., k. Now the conditional distribution of X1, X2, ..., Xn given (T1, T2, ..., Tk) =
(t1, t2, ..., tk) and θ does not depend on θ. This implies that statistician B knows this
distribution. Hence by the use of a computer statistician B is able to generate a random
sample Xt = (X ′

1, X
′
2, ..., X

′
n) which has this conditional distribution. Then Xt has the

same distribution as a random sample drawn from the population, and statistician B can
use this random sample to compute whatever statistician A computes by the random
sample X drawn from the population. On average statistician B will do as well as A on
estimating unknown parameters of the population. Thus the mathematical de�nition of
su�cient statistics implies the heuristic de�nition [3].

We illustrate the fact that the conditional distribution of X given T = t, is independent
of θ by an example:

Example 2.1 Suppose one has conducted n Bernoulli trials with outcome
X = (X1, X2, ..., Xn)∼Bernoulli(θ). Statistician A knows the outcome of each of these
trials, while statistician B only knows the value of the su�cient statistic T =

∑n
i=1 Xi.

Now the conditional distribution of X = (X1, X2, ..., Xn) given T =
∑n

i=1 Xi = t and θ
is seen to be independent of θ by the following:

P (X = x|T = t) = P (X1 = x1, X2 = x2, ..., Xn = xn|
n∑

i=1

Xi = t)

=
P (X1 = x1, X2 = x2, ..., Xn = xn,

∑n
i=1 Xi = t)

P (
∑n

i=1 Xi = t)

=
P (X1 = x1, X2 = x2, ..., Xn = xn)(

n
t

)
θt(1− θ)n−t

=
θx1(1− θ)x1 ...θxn(1− θ)xn(

n
t

)
θt(1− θ)n−t
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=
θt(1− θ)n−t(
n
t

)
θt(1− θ)n−t

=
1(
n
t

)
It is di�cult to check if a set of statistics are su�cient or to �nd such a set in terms of
the mathematical de�nition. But there is a theorem that could be applied [3]:

Theorem 1. (Factorization Theorem) Let X1, X2, ..., Xn be a random sample with joint

density f(x1, x2, ..., xn|θ). The statistics

Ti = ri(X1, X2, ..., Xn) (for i = 1, ..., k)

are jointly su�cient if and only if the joint density can be factored as follows:

f(x1, x2, ..., xn|θ) = u(x1, x2, ..., xn)v(r1(x1, x2, ..., xn), r2(x1, x2, ..., xn), ..., rk(x1, x2, ..., xn), θ)

where u and v are non-negative functions. The function u can depend on the full random

sample x1, x2, ..., xn but not the unknown parameter θ. The function v can depend on

θ, but can depend on the random sample only through the values of ri(x1, x2, ..., xn), for

i = 1, ..., k.

�Let g(t1, t2, ..., tk) be a function whose values are in Rk and which is one to one. Also
let gi(t1, t2, ..., tk), i = 1, ..., k be the component functions of g. Then if T1, T2, ..., Tk are
jointly su�cient, then gi(T1, T2, ..., Tk) are jointly su�cient� [3]. This result will be used
in the next chapter when we identify su�cient statistics of the non-homogeneous Poisson
process.

We now apply Theorem 1 to an example concerning a normal distributed population,
with a single unknown population parameter [3]:

Example 2.2 We consider a normal population for which the mean µ is unknown, but
the variance σ2 is known. The joint density is

f(x1, x2, ..., xn|µ) =(2π)−n/2σ−nexp(
−1
2σ2

n∑
i=1

(ti − µ)2)

=(2π)−n/2σ−nexp(
−1
2σ2

n∑
i=1

x2
i +

µ

σ2

n∑
i=1

xi −
nµ2

2σ2
)

(2.1)

Since σ2 is known, we can let

u(x1, x2, ..., xn) = (2π)−n/2σ−nexp(
−1
2σ2

n∑
i=1

x2
i )

and

v(r(x1, x2, ..., xn), µ) = exp(
−nµ2

2σ2
+

µ

σ2
r(x1, x2, ..., xn))
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where

r(x1, x2, ..., xn) =
n∑

i=1

xi

By the Factorization Theorem this shows that T =
∑n

i=1 Xi is a su�cient statistic. It
follows that the sample mean X̄ = 1

n

∑n
i=1 Xi is also a su�cient statistic in this case.

Now if both the mean and the variance where unknown parameters of the population,
the sample mean is not a su�cient statistic. In this case we need to use more than one
statistic to get su�ciency. It is seen from equation( 2.1) that:

T1 =
n∑

i=1

Xi T2 =
n∑

i=1

X2
i

are jointly su�cient statistics in this case.



Chapter 3

De�nition & Su�cient Statistics of

NHPP Models

In this chapter we identify the su�cient statistic in the NHPP model. This is done in
accordance with the de�nitions of the previous chapter and in particular by applying the
Factorization Theorem.

3.1 De�nition NHPP

[13] A counting process {N(t), t ≥ 0} is said to be a non-homogeneous Poisson process
with intensity function λ(t), t ≥ 0, if:

(i) N(0) = 0
(ii) {N(t), t ≥ 0} has independent increments.
(iii) P{N(t + ∆t)−N(t) = 1} = λ(t)∆t + o(∆t)
(iv) P{N(t + ∆t)−N(t) ≥ 2} = o(∆t)

The CROCOF (�cumulative rate of occurence of failures�) for a NHPP is usually denoted
Λ(t) and de�ned as [12]:

Λ(t) =
∫ t

0
λ(u)du

We are concerned with two di�erent parametrizations of the non-homogeneous Poisson
process, which is the power law process and the log linear process with intensity functions
and belonging CROCOF functions given below [2]:

Power Law Intensity

λ(t) =abtb−1, (a, b > 0, t ≥ 0) (3.1)

Λ(t) =atb (3.2)

7
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Log Linear Intensity

λ(t) =ea+bt (−∞ < a, b < ∞, t ≥ 0) (3.3)

Λ(t) =

{
ea(ebt−1)

b b 6= 0
eat b=0

(3.4)

3.2 Su�cient Statistics of NHPP Models

Suppose a failure process T1, T2, ..., Tn is modelled by a NHPP with intensity function
λ(t). In accordance with the Factorization Theorem (given in the previous chapter) we
will identify the joint denstity function resulting from the observed failure times {Tj} in
order to �nd the su�cient statistics for both power law intensity and log linear intensity.
We will take into account that the failure times could be failure censored or time censored:

1. Failure censoring : A system is observed from time t = 0 until the n'th failure at
time Tn, resulting in failure times T1, T2, ..., Tn. In this case the length of the observation
interval is stochastic.

2. Time censoring : A system is observed from time t = 0 until a predetermined time
τ , with failures occuring at T1, T2, ..., Tn. In this case the number of observed failures,
N(τ) = n, in the time interval [0,τ ] is stochastic.

In case of a failure censored dataset the joint density function is [2]:

f(t1, t2, ..., tn|θ) = {
n∏

j=1

λ(tj)}e−Λ(tn) (3.5)

And in the case of a time censored dataset the joint density of T1, T2, ..., Tn is [2]:

f(t1, t2, ..., tn, n|θ) = {
n∏

j=1

λ(tj)}e−Λ(τ) (3.6)

3.2.1 Power Law Intensity

Failure censoring

We start with the case of failure censored data, and put equations (3.1) and (3.2) into
equation (3.5) to obtain the joint density function:

f(t1, t2, ..., tn|θ) ={
n∏

j=1

λ(tj)}e−Λ(tn)

=
n∏

j=1

abtb−1
j e−atbn
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Then by applying the Factorization Theorem and let u(t1, t2, ..., tn)=1, we see that the
statistics (Tn,

∏n−1
j=1 Tj) are jointly su�cient. This implies (since log(T ) is a 1-1 function)

that we can take

S = (log Tn,
n−1∑
j=1

log Tj)

as the su�cient statistics.

Time Censoring

If we turn to the case of time censored data and put equations (3.1) and (3.2) into
equation( 3.6) to obtain the the joint density function which is now:

f(t1, t2, ..., tn, n|θ) ={
n∏

j=1

λ(tj)}e−Λ(τ)

=
n∏

j=1

abtb−1
j e−aτb

Again we apply the Factorization Theorem and let u(t1, t2, ..., tn)=1, to obtain the jointly
su�cient statistics (N(τ) = n,

∏n
j=1 Tj). This implies by the same argument as above

that

S = (N(τ) = n,
n∑

j=1

log Tj)

are jointly su�cient in this case.

3.2.2 Log Linear Intensity

Failure Censoring

We start with the failure censored data and put equation (3.3) and (3.4) into equa-
tion( 3.5), assuming b 6= 0, to obtain the joint density function:

f(t1, t2, ..., tn|θ) ={
n∏

j=1

λ(tj)}e−Λ(tn)

=
n∏

j=1

(ea+btj )e−(
ea(ebtn−1)

b
)

By applying the Factorization Theorem we obtain the jointly su�cient statistics

S = (Tn,

n−1∑
j=1

Tj)
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Time Censoring

In order to obtain the su�cient statistics for the time censored data we put equations
(3.3) and (3.4) into equation( 3.6), assuming b 6= 0, and obtain the joint density function:

f(t1, t2, ..., tn, n|θ) ={
n∏

j=1

λ(tj)}e−Λ(τ)

=
n∏

j=1

(ea+btj )e−(
ea(ebτ−1)

b
)

Hence by the Factorization Theorem the jointly su�cient statistics in this case is:

S = (N(τ) = n,
n∑

j=1

Tj)

Table( 3.1) displays the su�cient statistic for these four cases.

Table 3.1: Su�cient Statistics for power law and log linear NHPP

Intensity Power-law Log linear

Failure Censoring (log Tn,
∑n−1

j=1 log Tj) (Tn,
∑n−1

j=1 Tj)

Time Censoring (N(τ) = n,
∑n

j=1 log Tj) (N(τ) = n,
∑n

j=1 Tj)



Chapter 4

Conditional Testing given a

Su�cient Statistic

This chapter is based on [6]. Suppose T = (T1, T2, ..., Tn) is a vector of observed failure
times of a system. One is interested in testing the nullhypothesis H0 that these data
come from a non-homogeneous Poisson process of a speci�c parametric type:

H0 :Observed failure times T1, T2, ..., Tn comes from a non-homogeneous Poisson

process of a speci�c parametric type.

We design a test statistic W ≡ W (T ) which is a function of the failures times T1, T2, ..., Tn

and aims to reveal departure from the nullhypothesis. Suppose that S ≡ S(T ) are the
su�cient statistics for the unknown parameters in the assumed model of H0.

An α-level conditional test of the nullhypothesis is obtained if H0 is rejected for given
S = s, when W ≥ k(s),where k(s) is a critical value chosen such that:

PH0(W ≥ k(s)|S = s) = α (for all s)

Thus, in order to �nd the critical value k(s) and being able to make statisitcal infer-
ence concerning the nullhypothesis one needs to know the conditional distribution of W
given S = s. As we have demonstrated in chapter 2 this distribution is by su�ciency
independent of the unknown parameters of the model, and in principle it can be found.
However, this might be very di�cult or even impossible in many practical cases and we
have to rely on simulations.

Suppose we are able to simulate the conditional distribution of W given S = s. We are
then able to calculate the conditional p-value:

pobs = PH0(W ≥ wobs|S = s) (4.1)

11
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where wobs is the value of the test stasticic W (T ) based on the observed failure times
T1, T2, ..., Tn. We reject the nullhypothesis if pobs ≤ α, since if

pobs = PH0(W ≥ wobs|S = s) ≤ α

and
PH0(W ≥ k(s)|S = s) = α

then
wobs ≥ k(s)

which would lead to rejection of H0.

We give an algorithm for this procedure:

Algorithm 1 : Conditional Testing of T given S = s

(1) Start with observed failure times T = (T1, T2, ..., Tn) of a system.
(2) Choose a suitable test statistic W ≡ W (T ), and calculate wobs.
(3) Calculate the su�cient statistics S ≡ S(T ) = s
(4) Simulate the conditional distribution of W given S = s.
(5) Calculate pobs as in equation( 4.1) .
(6) Reject H0 if pobs ≤ α
where α is a predetermined level of signi�cance.

In order to complete algorithm 1, and make statistical inference concerning our nullhy-
pothesis, we need a method for simulating the conditional distribution of W given S = s.
In the next chapter we present a general method for how one can simulate this condi-
tional distribution, and then in chapter 6 we apply this method to our speci�c problem
concerning the non-homogeneous Poisson processes.

Notice:

The conditional test described above is also an unconditional α-level test, since we must
have

PH0(reject H0) =
∫

PH0(reject H0|S = s)fs(s)ds

=
∫

PH0(W ≥ k(s)|S = s)fs(s)ds

=
∫

αfs(s)ds = α

where the last equality follows from
∫

fs(s)ds=1 (integral of density). Thus if H0 holds,
the probability of rejection is α.



Chapter 5

Conditional Monte Carlo Based on

Su�cient Statistics

In this chapter we present a general approach for Monte Carlo computations of condi-
tional expectations given a su�cient statistic.

The test statistic W = W (X) introduced in the previous chapter, is a function of the
observations X = (X1, X2, ..., Xn). We de�ne a function φ(X) such that

φ(X) =

{
1 if W (X) ≥ wobs

0 if W (X) < wobs

where wobs is the value of W based on the observed values of X. This implies that the
conditional p-value in algorithm 1 (previous chapter) could be expressed as:

pobs = PH0(W (X) ≥ wobs|T = t) = E[φ(X)|T = t]

In this chapter we present a general method for how one can simulate such conditional
expectations given the su�cient statistic T , in order to complete algorithm 1.

The method presented in this chapter was �rst introduced by Lillegård and Engen (1997)
[4], and was further developed by Lindqvist and Taraldsen [7, 8, 9].

The ability of direct sampling from the conditional distiribution would be particularly
useful. It is demonstrated by Lindqvist and Taraldsen that if a certain condition, the
pivotal condition, is satis�ed this could be done by a simple parameter adjustment of
the original statistical model. But in general one needs to apply a weighting scheme in
order to obtain the correct conditional expectation. The coming sections are based on
work by Lindqvist and Taraldsen [7, 8, 9].

13
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5.1 Setup and basic algorithm

We consider a general pair (X, T ) of a random vector consisting of the observations
X = (X1, X2, ..., Xn) and a su�cient statistic T , with joint distribution indexed by
a parameter θ. Suppose there is a given random vector U , with known distribution
function f(u) such that (X, T ) could be simulated by means of U . �More precisely one
assumes the existence of functions χ and τ , such that, for each θ, the joint distribution
of (χ(U, θ), τ(U, θ)) equals the joint distribution of (X, T )� [8]. We consider an example
[8]:

Example 5.1:

Exponential distribution. Suppose X = (X1, X2, ..., Xn) are i.i.d. from the exponential
distribution with hazard rate θ, denoted Exp(θ). Then T =

∑n
i=1 Xi is su�cient for θ.

Letting U = (U1, U2, ..., Un) be i.i.d. Exp(1) variables we can put

χ(U, θ) =(U1/θ, ..., Un/θ)

τ(U, θ) =
n∑

j=1

Uj/θ

The aim is to obtain a sample Xt of the conditional distribution of X given T = t. Since
this distribution is independent of θ, it is reasonable to assume that it can be described
in some simple way by means of U . According to [8] a suggestive method for this would
be to �rst draw U from its known distribution, then to determine a parameter value θ̂
such that τ(U, θ̂) = t. Then �nally Xt(U) = χ(U, θ̂) could be used as the desired sample.
By applying this procedure we obtain a sample of X with the corresponding T having
the correct value t. The question whether or not Xt(U) really is a sample from the
conditional distribution of X given T = t then remains.

Example 5.1 (continued):

For given t and U there is a unique θ̂ ≡ θ̂(U, t) with τ(U, θ̂) = t, namely

θ̂(U, t) =
∑n

i=1 Ui

t

This leads to the sample

Xt(U) = χ{U, θ̂(U, t)} = (
tU1∑n
i=1 Ui

, ...,
tUn∑n
i=1 Ui

)

and it is well known [8] that the distribution of Xt(U) indeed coincides with the condi-
tional distribution of X given T = t.

The algorithm used in the example above could more generally be described as:
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Algorithm 1 : Conditional sampling of X given T = t.

(1) Generate U from its density f(u)
(2) Solve τ(U, θ) = t for θ. The (unique) solution is θ̂(U, t).
(3) Return Xt(U) = χ{U, θ̂(U, t)}

The Pivotal Condition

In addtion to uniqueness of θ̂(U, t) in step 2, a pivotal condition needs to be satis�ed to
ensure that algorithm 1 produce a sample Xt(U) from the conditional distribution of X
given T = t. �Assume that τ(U, θ) depends on u only through a function r(u), where the
value of r(u) can be uniquely recovered from the equation τ(U, θ) = t for given θ and t.
This means that there is a function τ̃ such that τ(U, θ) = τ̃{r(u), θ} for all (u, θ) and a
function ṽ such that τ̃{r(u), θ} = t implies r(u) = ṽ(θ, t). Note that in this case ṽ(θ, T )
is a pivotal quantity in the classical meaning that its distribution does not depend on θ�
[8].

Example 5.1 (Continued) :

The pivotal condition is satis�ed here with r(U) =
∑n

i=1 Ui. Thus Algorithm 1 is valid,
as veri�ed earlier by a direct method [8].

Hence, when the pivotal condition is satis�ed the conditional expectation of φ(X) given
the su�cient statistic T = t could be simulated by means of U using:

E[φ(X)|T = t] = E[φ(Xt)]

since the samples Xt are known functions of U .

5.2 General algorithm for unique θ̂(u, t), Eucledian Case

In general algorithm 1 will not produce samples from the correct conditional distribution,
even if the solution θ̂ of τ(U, θ) = t is unique. This fact is proven by a counterexample
in [9]

Hence a modi�ed algorithm has to be constructed when the pivotal condition is not
satis�ed in the model we consider. The main idea is to consider the parameter θ as a
random variable Θ, independent of U , and with some conveniently chosen distribution π
[7].

This idea leads to the result that the conditional distribution of X given T = t could be
simulated by:

E{φ(X)|T = t} =
E[φ(Xt(U))Wt(U)]

E[Wt(U)]

where Wt(U) acts as a weight function for a sample U from f(u).
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In the Eucledian case the weight function Wt(U) is given by [8]:

Wt(U) = | π(θ)
det∂θτ(U, θ)

|θ=θ̂(U,t)



Chapter 6

Conditional Simulation for

Parametric NHPP Models

An argument (somewhat heuristic) [13] shows that given n events of a non-homogeneous
Poisson process with intensity function λ(t) by time τ , the n events are distributed as
the ordering of n independent observations with a common density function:

f(t) =
λ(t)
Λ(τ)

(for 0 ≤ t ≤ τ) (6.1)

Similarly in the case of failure censoring, given n events of a NHPP with intensity function
λ(t), with its last failure occuring at time Tn, the (n−1) earlier events will be distributed
as the ordering of (n− 1) independent observations with a common density function:

f(t) =
λ(t)

Λ(Tn)
(for 0 ≤ t ≤ Tn) (6.2)

Hence by applying these results together with the method presented in the previous
chapter (algorithm 1, chapter 5) we are able to simulate samples of a non-homogeneous
Poisson process with intensity function λ(t), given the su�cient statistic S. In accordance
with the previous chapter these samples are then to be used to determine the conditional
expectation of φ(T ) given the su�cient statistic S = s.

Both parametrizations of the NHPP, considered in chapter 3, have a parameter vector
of two unknowns θ = (a, b), with jointly su�cient statistics S = (s1, s2). The su�cient
statistics are given in table( 3.1). The method we present in this chapter is divided in
two steps concerning S = (s1, s2).

Failure Censoring

1. We condition on the �rst element of the su�cient statistic, s1. From table( 3.1) it is
seen that s1 = log Tn for the power law parametrization and s1 = Tn for the log linear
parametrization.

17
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2. Then by the argument above it is known that the (n− 1) �rst failures are distributed
as the ordering of (n− 1) independent observations with common density function given
by equation (6.2). Hence one is able to simulate these (n − 1) observations by the
inversion method, conditioned on the second element of S, s2, which is now seen to be
su�cient for this model. From table (3.1) we see that s2 =

∑n−1
j=1 log Tj for the power

law parametrization, and s2 =
∑n−1

j=1 Tj for the log linear parametrization.

Time Censoring

1. Again we condition on the �rst element of the su�cient statistic, s1. From table( 3.1)
we see that s1 = N(τ) = n, for both parametrizations.

2. Then by the argument above it is known that these n failures are distributed as the
ordering of n independent observations with a common density function given by equa-
tion (6.1). Hence one is able to simulate these n observations by the inversion method,
conditioned on the second element of S, s2, which is now seen to be su�cient for this
model. From table( 3.1) we see that s2 =

∑n
j=1 log Tj for the power law parametrization,

and s2 =
∑n

j=1 Tj for the log linear parametrization.

Pivotal Condition

In accordance with chapter 5, we then have to check if the pivotal condition is satis�ed,
for both parametrizations, in order to simulate the conditional expectation

E[φ(T )|S = s]

6.1 Power Law Intensity

Failure Censoring

Suppose a system is observed from time t = 0, until the n'th failure occurs at time Tn.
Assuming that the observed failure times T = (T1, T2, ..., Tn) are NHPP with power law
intensity, we present a method for simulating a sample Ts = (T ′

1, T
′
2, ..., T

′
n) of T given

the su�cient statistic S = (log Tn,
∑n−1

j=1 Tj). The method is divided in two steps:

1. We condition on the �rst element of S, s1 = log Tn = log T ′
n.

2. From the argument above we know that the (n − 1) �rst failures are distributed as
the ordering of (n− 1) independent observations with common density function given by
equation (6.2):

f(t) =
λ(t)

Λ(Tn)
=

btb−1

T b
n

(for 0 ≤ t ≤ Tn)

with one unknown parameter b. This implies that we have to do (n−1) simulations from
the distribution f(t) conditioned on s2 =

∑n−1
j=1 log Tj , which is seen to be su�cient for

b in this model. Following the method presented in the previous chapter (algorithm 1,
chapter 5) we search for functions χ(U, b) and τ(U, b) such that ((T1, ..., Tn−1), s2) could
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be simulated by means of a random vector U with known distribution, for given values
of b. The cumulative distribution function of f(t) is given by:

F (t) =
∫ t

0
f(y)dy = (

t

Tn
)b = U

with inverse function
F−1(U) = TnU

1
b = t

We let U = (U1, U2, ..., Un−1) ∼uniform[0,1], and

χ(U, b) = ((TnU
1
b
1 ), (TnU

1
b
2 ), ..., (TnU

1
b
n−1))

τ(U, b) =
n−1∑
j=1

log(χ(Uj , b)) = (
n−1∑
j=1

log Tn +
1
b

log Uj)

=(n− 1) log Tn +
1
b

n−1∑
j=1

log Uj

(6.3)

Now by solving the equation

(n− 1) log Tn +
1
b

n−1∑
j=1

log Uj =
n−1∑
j=1

log Tj = s2

with respect to b yields:

b̂ =

∑n−1
j=1 log Uj

s2 − (n− 1) log Tn

and we are able to simulate the (n−1) �rst events of T , which by su�ciency is independent
of the value of b, by means of U:

T ′
j = χ(Uj , b̂) = TnU

1

b̂
j (for j=1,..,n-1)

which then satis�es
∑n−1

j=1 log T ′
j = s2.

Pivotal Condition :

From equation (6.3) we see that the pivotal condition holds with r(u) =
∑n−1

j=1 log Uj

and the method does indeed produce a sample Ts from the conditional distribution of T
given S = (s1, s2).

Hence the conditional expectation of φ(T ) given the su�cient statistic S = (s1, s2) could
now be simulated by means of U , using:

E[φ(T )|S = (s1, s2)] = E[φ(Ts)]
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Time Censoring:

Suppose a system is observed with N(τ) = n failures in the time interval [0,τ ]. Assuming
the observed failure times T = (T1, T2, ..., Tn) are NHPP with power law intensity, we
present a method for simulating a sample Ts = (T ′

1, T
′
2, ..., T

′
n) of T given the su�cient

statistic S = (N(τ) = n,
∑n

j=1 log Tj). The method is divided in two steps:

1. We condition on the �rst element of S, s1 = N(τ) = n, which means that our sample
should contain n failures in the time interval [0,τ ].

2. By the argument given above we know that the n events should be the ordering of n
independent observations with a common density function given by equation (6.1):

f(t) =
λ(t)
Λ(τ)

=
btb−1

τ b
(for 0≤t ≤ τ)

with one unknown parameter b. This implies that we have to do n simulations from the
distribution f(t) conditioned on s2 =

∑n
j=1 log Tj , which is seen to be su�cient for b in

this model. The cumulative distribution function is now:

F (t) =
∫ t

0
f(y)dy = (

t

τ
)b = U

with inverse function
F−1(U) = τU

1
b = t

We let U = (U1, U2, ..., Un) ∼uniform[0,1], and

χ(U, b) = ((τU
1
b
1 ), (τU

1
b
2 ), ..., (τU

1
b
n ))

τ(U, b) =
n∑

j=1

log(χ(Uj , b)) = (
n∑

j=1

log τ +
1
b

log Uj)

=n log τ +
1
b

n∑
j=1

log Uj

(6.4)

By solving the equation:

n log τ +
1
b

n∑
j=1

log Uj =
n∑

j=1

log Tj = s2

with respect to b yields:

b̂ =

∑n
j=1 log Uj

s2 − n log τ

and we are able to simulate the n events of T , which by su�ciency is independent of the
value of b, by means of U:

T ′
j = χ(Uj , b̂) = τU

1

b̂
j (for j=1,..,n)
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which then satis�es
∑n

j=1 log Tj = s2.

Pivotal Condition :

From equation (6.4) we see that the pivotal condition holds with r(u) =
∑n

j=1 log Uj

and the method produces a sample Ts from the conditional distribution of T given S =
(s1, s2).

Hence the conditional expectation of φ(T ) given the su�cient statistic S = (s1, s2) could
now be simulated by means of U , using:

E[φ(T )|S = (s1, s2)] = E[φ(Ts)]

6.2 Log Linear Intensity

Failure Censoring

Suppose a system is observed from time t = 0, until the n'th failure occurs at time Tn.
Assuming that the observed failure times T = (T1, T2, ..., Tn) are NHPP with log linear
intensity we present a method for simulating a sample Ts of T given the su�cient statistic
S = (Tn,

∑n−1
j=1 Tj). Again the method is divided in two steps:

1. We condition on the �rst element of S, s1 = Tn = T ′
n.

2. By the same argument as used previously we know that the (n− 1) �rst failure times
are distributed as the ordering of (n−1) independent observations with common density
function:

f(t) =
λ(t)

Λ(Tn)
=

bebt

ebTn − 1
(for 0 ≤ t ≤ Tn)

with one unknown parameter b. This implies that we have to do (n−1) simulations from
the distribution f(t) conditioned on s2 =

∑n−1
j=1 Tj , which is seen to be su�cient for b in

this model. The cumulative distribution function F (t) is:

F (t) =
∫ t

0
f(y)dy =

ebt − 1
ebTn − 1

= U

with inverse function

F−1(U) =
log (1 + U(ebTn − 1))

b
= t

We let U = (U1, U2, ..., Un−1) ∼uniform[0,1], and

χ(U, b) = [(
log (1 + U1(ebTn − 1))

b
), ..., (

log (1 + Un−1(ebTn − 1))
b

)]

τ(U, b) =
n−1∑
j=1

χ(Uj , b) =
n−1∑
j=1

log (1 + Uj(ebTn − 1))
b

(6.5)
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To obtain an estimate for b, we have to solve the equation:

n−1∑
j=1

log (1 + Uj(ebTn − 1))
b

=
n−1∑
j=1

Tj = s2

which means that we have to solve the equation:

g(b) =
n−1∑
j=1

log (1 + Uj(ebTn − 1))− bs2 = 0

for b. The equation is seen to convex by di�erentiating it twice with respect to b, and
in addition to the trivial solution b = 0, it has a unique additional solution b = b̂, which
is the one we look for. This solution could be found by di�erent numerical techniques,
such as the bisection method for instance.

When an estimate b̂ is obatined we are able to simulate the (n − 1) �rst events of T ,
which by su�ciency is independent of the value of b, by means of U:

T ′
j = χ(Uj , b̂) =

log (1 + Uj(eb̂Tn − 1))

b̂
(for j=1,..,n-1)

which then satis�es
∑n−1

j=1 T ′
j = s2.

Pivotal Condition and Weights

It is clear from the equation (6.5) that the pivotal condition is not satis�ed here. Hence,
in order to simulate the conditional expectation of φ(T ) given S = (s1, s2), we need to
evaluate the weights given by:

Ws(U) =| π(θ)
det∂θτ(U, θ)

|θ=θ̂(U,s)

=| π(b)
∂bτ(U, b)

|b=b̂(U,s2)

where π(b) is some arbitrarily chosen function of b, and

∂bτ(U, b) =
n−1∑
j=1

bUjTnebTn

(1+Uj(ebTn−1))
− log(1 + Uj(ebTn − 1))

b2

Hence the conditional expectation of φ(T ) given the su�cient statistic S = (s1, s2) could
now be simulated by means of U , using:

E[φ(T )|S = (s1, s2)] =
E[φ(Ts)| π(b)

∂bτ(U,b) |b=b̂(U,s2)]

E[| π(b)
∂bτ(U,b) |b=b̂(U,s2)]
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Time Censoring

Suppose a system is observed with N(τ) = n failures in the time interval [0,τ ]. Assuming
the failure times T = (T1, T2, ..., Tn) are NHPP with log linear intensity we present
a method for simulating a sample Ts of T given the su�cient statistic S = (N(τ) =
n,

∑n
j=1 Tj). Again the method is divided in two steps:

1. We condition on the �rst element of S, s1 = N(τ) = n, which means that our sample
should contain n failures in the time interval [0,τ ]

2. By the same argument as used previously we know that the n failure times are
distributed as the ordering of n independent observations with common density function:

f(t) =
λ(t)
Λ(τ)

=
bebt

ebτ − 1
(for 0≤t ≤ τ)

with one unknown parameter b. This implies that we have to do n simulations from the
distribution of f(t) conditioned on s2 =

∑n
j=1 Tj , which is seen to be su�cient for b in

this model. The cumulative distribution function F (t) is in this case:

F (t) =
∫ t

0
f(y)dy =

ebt − 1
ebτ − 1

= U

with inverse function

F−1(U) =
log (1 + U(ebτ − 1))

b
= t

We let U = (U1, U2, ..., Un) ∼uniform[0,1],and

χ(U, b) = [(
log (1 + U1(ebτ − 1))

b
), ..., (

log (1 + Un(ebτ − 1))
b

)]

τ(U, b) =
n∑

j=1

χ(Uj , b) =
n∑

j=1

log (1 + Uj(ebτ − 1))
b

(6.6)

To obtain an estimate for b, we have to solve the equation:

n∑
j=1

log (1 + Uj(ebτ − 1))
b

=
n∑

j=1

Tj = s2

which means that we have to solve the equation:

g(b) =
n∑

j=1

log (1 + Uj(ebτ − 1))− bs2 = 0

for b. The equation is seen to convex by di�erentiating it twice with respect to b, and in
addition to the trivial solution b = 0, it has a unique additional solution b = b̂, which is
the one we look for. This solution could be found by di�erent numerical techniques, as
the bisection method for instance.
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When an estimate b̂ is obatined we are able to simulate the n events of T , which by
su�ciency is independent of the value of b, by means of U:

T ′
j = χ(Uj , b̂) =

log (1 + Uj(eb̂τ − 1))

b̂
(for j=1,..,n)

which then satis�es
∑n

j=1 T ′
j = s2.

Pivotal Condition and Weights

It is clear from the equation (6.6) that the pivotal condition is not satis�ed here. Hence,
in order to simulate the conditional expectation of φ(T ) given S = (s1, s2), we need to
evaluate the weights given by:

Ws(U) =| π(θ)
det∂θτ(U, θ)

|θ=θ̂(U,s)

=| π(b)
∂bτ(U, b)

|b=b̂(U,s2)

where π(b) is some arbitrarily chosen function of b, and

∂bτ(U, b) =
n∑

j=1

bUjτebτ

(1+Uj(ebτ−1))
− log(1 + Uj(ebτ − 1))

b2

Hence the conditional expectation of φ(T ) given the su�cient statistic S = (s1, s2) could
now be simulated by means of U , using:

E[φ(T )|S = (s1, s2)] =
E[φ(Ts)| π(b)

∂bτ(U,b) |b=b̂(U,s2)]

E[| π(b)
∂bτ(U,b) |b=b̂(U,s2)]

6.3 Gibbs Sampling, Log Linear Intensity

We consider an alternative method for simulating samples Ts of a NHPP with log-linear
intensity function given by λ(t) = ea+bt. These samples could then be applied to deter-
mine the conditional expectation:

E[φ(T )|S = s]

Failure Censoring

Suppose a system is observed from time t = 0, until the n'th failure occurs at time Tn.
Assuming that the observed failure times T = (T1, T2, ..., Tn) are NHPP with log linear
intensity we present a method for simulating a sample Ts of T given the su�cient statistic
S = (Tn,

∑n−1
j=1 Tj). The key to the new approach is that the conditional distribution of
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T given S = s does not depend on the unknown parameter θ = (a, b) of the model, which
implies that we are able to set the parameters a=b=0. This gives intensity function:

λ(t) = 1

and cumulative intensity function:

Λ(t) = t

We follow the same procedure as before by dividing our simulation in two steps concerning
the two elements of the su�cient statistic S = (s1, s2).

1. We condition on the �rst element of S, s1 = Tn = T ′
n

2. Then the (n− 1) �rst failures are distributed as the ordering of (n− 1) independent
observations with common density function:

f(t) =
λ(t)

Λ(Tn)
=

1
Tn

which is seen to be uniform on [0,Tn]. Then one has to do (n− 1) simulations from the
distribution f(t) given the statistic s2 =

∑n−1
j=1 Tj . The cumulative distribution function

is now given by:

F (t) =
∫ t

0
f(t) =

1
Tn

t = U

with inverse function:

F−1(U) = TnU = t

Thus we let U = (U1, ..., Un−1) ∼uniform [0,1], and

χ(U) =(TnU1, ..., TnUn−1)

τ(U) =Tn

n−1∑
j=1

Uj

Hence the (n − 1) �rst events of T given
∑n−1

j=1 Tj = s2 may be simulated by drawing

Ts = (T ′
1, ..., T

′
n−1) ∼uniform [0,Tn] conditoned that

∑n−1
j=1 T ′

j = s2.

Time Censoring

Suppose a system is observed with N(τ) = n failures in the time interval [0,τ ]. Assuming
the failure times T = (T1, T2, ..., Tn) are NHPP with log linear intensity we present
a method for simulating a sample Ts of T given the su�cient statistic S = (N(τ) =
n,

∑n
j=1 Tj). The key to the new approach is that the conditional distribution of T given

S = s does not depend on the unknown parameter θ = (a, b) of the model, which implies
that we are able to set the parameters a = b = 0. This gives intensity function:

λ(t) = 1
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and cumulative intensity function:
Λ(t) = t

We follow the same procedure as before by dividing our simulation in two steps concerning
the two elements of the su�cient statistic S = (s1, s2).

1. We condition that N(τ) = n failures should occur in the time interval [0,τ ].

2. Then the n failures are distributed as the ordering of n independent observations with
a common density function:

f(t) =
λ(t)
Λ(τ)

=
1
τ

which is seen to be uniform on [0,τ ]. Then one has to do n simulations from the dis-
tribution f(t) given the statistic s2 =

∑n
j=1 Tj . The cumulative distribution function is

now given by:

F (t) =
∫ t

0
f(t) =

1
τ
t = U

with inverse function:

F−1(U) = τU = t

Thus we let U = (U1, ..., Un) ∼uniform [0,1], and

χ(U) =(τU1, ..., τUn)

τ(U) =τ
n∑

j=1

Uj

Hence the n events of T given
∑n

j=1 Tj = s2 may be simulated by drawing Ts =
(T ′

1, ..., T
′
n) ∼uniform [0,τ ] conditoned that

∑n
j=1 T ′

j = s2.

We present 3 algorithms for how one can simulate T = (T1, ..., Tn) ∼uniform [0,τ ] given
the statistic S =

∑n
j=1 Tj = s.

Algorithm 1 : Rue′s Algorithm:

(1) Start with Ti = s
n for i = 1, ..., n

(2) Draw integers j1 and j2 between 1 and n, j1 6= j2.
(3) Draw d ∼uniform [0,τ ].
(4) Calculate

T ′
j1 = Tj1 + d and T ′

j2 = Tj2 − d

if

T ′
j1 ≤ τ, and 0 ≤ T ′

j2
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then

T new

j1 = T ′
j1 , and T new

j2 = T ′
j2

else

T new

j1 = Tj1 , and T new

j2 = Tj2

endif
(5) Return to step 2.

Algorithm 2 : Gibbs Algorithm:

(1) Start with Ti = s
n for i = 2, ..., n

(2) Given (Tm
2 , ..., Tm

n ) with s− τ ≤
∑n

i=2 Tm
i ≤ s.

(3) Draw j ∈ {2, ..., n} randomly.
(4) Calculate

z =
n∑

i=2,i6=j

Tm
i

Replace Tm
j by

Tm+1
j =

{
uniform[0, s− τ ] if z ≥ s− τ

uniform[s− τ − z, τ ] if z < s− τ

(5) Return to step 2.

Algorithm 3 : Gibbs Block Algorithm:

(1) Start with Ti = s
n for i = 1, ..., n

(2) Given (Tm
1 , ..., Tm

n ) with
∑n

i=1 Tm
i = s.

(3) Draw integers i < j randomly
(4) Draw

Tm+1
i =

{
uniform[0, Tm

i + Tm
j ] if Tm

i + Tm
j ≤ τ

uniform[Tm
i + Tm

j − τ, τ ] if Tm
i + Tm

j > τ

Let

Tm+1
j = Tm

i + Tm
j − Tm+1

i

(5) Return to step 2.
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Chapter 7

Statistical Inference in NHPP

Models

In this chapter we present di�erent test statistics developed in order to reveal departure
from the nulllhypothesis that a given set of observed failure times T = (T1, ..., Tn) are
from a NHPP with power law or log linear intensity function.

7.1 Test Statistics Failure Censoring

In the previous chapter it was seen that the (n − 1) �rst failures were distributed as
the ordering of (n − 1) independent observations with a common density function, and
cumulative density function given by:

f(t) =
λ(t)

Λ(Tn)
(for 0 ≤ t ≤ Tn)

F (t) =
∫ t

0
f(t) =

Λ(t)
Λ(Tn)

which has one unknown parameter b. Hence if we let

Vj = F (Tj) =
Λ(Tj)
Λ(Tn)

(for j = 1, ..., n− 1)

it is seen that the vector V is distributed as the order statistic of (n − 1) independent
and identically distributed variables on [0,1].

Now the Vj are, however, nonobservable since Λ depends on unknown parameters. Thus,
suppose Λ∗ is an estimate of Λ. Then we de�ne

V ∗
j =

Λ∗(Tj)
Λ∗(Tn)

(for j = 1, ..., n− 1)

29
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One then anticipates V ∗ = (V ∗
1 , ..., V ∗

n−1) to behave much similar to uniform variables on
[0,1].

In the following V ∗ is based on the maximum likelihood estimate for the unkonwn pa-
rameter b. We now present 7 di�erent test statistics, one of these is a two-sided test
statistic from [1], while the 6 others are all one-sided and is found in [10, 11]. All these
test statistics are based on the assumed uniform behaviour of V ∗.

Greenwood Test Statistic [1]

G =
n∑

j=1

(V ∗
j − V ∗

j−1)
2

where V ∗
n=1 and V ∗

0 =0. This is a two-sided test statistic and the null hypothesis of
NHPP is rejected for either too small or too large values of this statistic.

Modified Cramer− von Mises Statistic [10]

W 2 =
n−1∑
j=1

[V ∗
j −

(2j − 1)
2(n− 1)

]2 +
1

12(n− 1)

Modified Kolmogorov − Smirnov Statistic [10]

D = max {D+, D−}

where

D+ ≡ max
1≤j≤(n−1)

(
j

n− 1
− V ∗

j )

and

D− ≡ max
1≤j≤(n−1)

(V ∗
j −

(j − 1)
(n− 1)

)

Modified Anderson Darlington Statistic [10]

A2 =
−{

∑n−1
j=1 (2j − 1)[log V ∗

j + log(1− V ∗
n−j)]}

(n− 1)
− (n− 1)

Modified Kuiper Statistic [11]

V = D+ + D−

where D+ and D− are de�ned as above.

Modified Watson Statistic [11]

U2 =
1

12(n− 1)
+

n−1∑
j=1

[
(2j − 1)
2(n− 1)

− V ∗
j ]2 − (n− 1)(V̄ − 0.5)2
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where

V̄ ≡ 1
(n− 1)

n−1∑
j=1

V ∗
j

Modified Weighted Watson Statistic [11]

J = (n− 1)2
n−1∑
j=1

d2
j − (n− 1)(

n−1∑
j=1

dj)2

where

dj ≡
[V ∗

j −
j
n ]

[j(n− j)]
1
2

7.2 Test Statistics Time Censoring

In the previous section it was seen that the N(τ) = n failures in the time interval [0,τ ]
were distributed as the ordering of n independent observations with a common density
function, and cumulative density function given by:

f(t) =
λ(t)
Λ(τ)

(for 0 ≤ t ≤ τ)

F (t) =
∫ t

0
f(t) =

Λ(t)
Λ(τ)

which has one unknown parameter b. Hence if we let

Vj = F (Tj) =
Λ(Tj)
Λ(τ)

(for j = 1, ..., n)

it is seen that the vector V is distributed as the order statistic of n independent and
identically distributed variables on [0,1].

Now the Vj are, however, nonobservable since Λ depends on unknown parameters. Thus,
suppose Λ∗ is an estimate of Λ. Then we de�ne

V ∗
j =

Λ∗(Tj)
Λ∗(τ)

(for j = 1, ..., n)

One then anticipates V ∗ = (V ∗
1 , ..., V ∗

n ) to behave much similar to uniform variables on
[0,1]. In the following V ∗ is based on the maximum likelihood estimate for the unkonwn
parameter b, and we are able to adjust the test statistics given above for the new situation
of time censoring:

Greenwood Test Statistic

G =
n+1∑
j=1

(V ∗
j − V ∗

j−1)
2
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where V ∗
n+1=1 and V ∗

0 =0. This is a two-sided test statistic and the null hypothesis of
NHPP is rejected for either too small or too large values of this statistic.

Modified Cramer− von Mises Statistic

W 2 =
n∑

j=1

[V ∗
j −

(2j − 1)
2n

]2 +
1

12n

Modified Kolmogorov − Smirnov Statistic

D = max [D+, D−]

where

D+ ≡ max
1≤j≤n

(
j

n
− V ∗

j )

and

D− ≡ max
1≤j≤n

(V ∗
j −

(j − 1)
n

)

Modified Anderson Darlington Statistic

A2 =
−{

∑n
j=1(2j − 1)[log V ∗

j + log(1− V ∗
n+1−j)]}

n
− n

Modified Kuiper Statistic
V = D+ + D−

where D+ and D− are de�ned as above.

Modified Watson Statistic

U2 =
1

12n
+

n∑
j=1

[
(2j − 1)

2n
− V ∗

j ]2 − n(V̄ − 0.5)2

where

V̄ ≡ 1
n

n∑
j=1

V ∗
j

Modified Weighted Watson Statistic

J = n2
n∑

j=1

d2
j − n(

n∑
j=1

dj)2

where

dj ≡
[V ∗

j −
j

n+1 ]

[j(n + 1− j)]
1
2
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7.3 Power Law Intensity

Failure Censoring

In this situation the vector V is de�ned by:

Vj = F (Tj) =
Λ(Tj)
Λ(Tn)

= (
Tj

Tn
)b (for j = 1, ..., n− 1)

The maximum likelihood estimate b∗ based on the observed failure times T is:

b∗ =
−n∑n−1

j=1 log Tj

Tn

and our estimated transformed times V ∗
j becomes:

V ∗
j = (

Tj

Tn
)b∗ (for j = 1, ..., n− 1)

Notice :

By the theoretical representation Tj = TnU
1
b
j it is seen that our estimated transformed

times V ∗
j in this particular situation becomes:

V ∗
j = (

Tj

Tn
)b∗ = U

b∗
b

j = U

−n∑n−1
j=1

log Uj

j (for j = 1, ..., n− 1)

which is seen to independent of the unknown parameters of the model. This implies that
for the power law NHPP, the V ∗

j have a distribution which is independent of the unknown
parameters (a, b), and could be simulated by means of a random vector U ∼uniform[0,1].
It turns out that this is not the case for the log linear NHPP.

Time Censoring

In this situation the vector V is de�ned by:

Vj = F (Tj) =
Λ(Tj)
Λ(τ)

= (
Tj

τ
)b (for j = 1, ..., n)

The maximum likelihood estimate b∗ based on the observed failure times T is:

b∗ =
−n∑n

j=1 log Tj

τ

and our estimated transformed times V ∗
j becomes:

V ∗
j = (

Tj

τ
)b∗ (for j = 1, ..., n)
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Notice :

As above it is seen by the theoretical representation Tj = τU
1
b
j that our estimated

transformed times V ∗
j becomes:

V ∗
j = (

Tj

τ
)b∗ = U

b∗
b

j = U

−n∑n
j=1

log Uj

j (for j = 1, ..., n)

which as above is seen to independent of the parameters a and b, and could be simulated
by means of a random vector U ∼uniform[0,1].

7.4 Log Linear Intensity

Failure Censoring

In this situation the vector V is de�ned by:

Vj = F (Tj) =
Λ(Tj)
Λ(Tn)

=
ebTj − 1
ebTn − 1

(for j = 1, ..., n− 1)

The maximum likelihood estimate b∗ is found by solving the equation [2]:

n∑
j=1

Tj +
n

b
− nTn(

1
1− e−bTn

) = 0

with respect to b. This needs to be done by a numerical method such as the repeated
bisection method. Then our estimated transformed times V ∗

j becomes:

V ∗
j =

eb∗Tj − 1
eb∗Tn − 1

(for j = 1, ..., n− 1)

Time Censoring

In this situation the vector V is de�ned by:

Vj = F (Tj) =
Λ(Tj)
Λ(τ)

=
ebTj − 1
ebτ − 1

(for j = 1, ..., n)

The maximum likelihood estimate b∗ is found by solving the equation [2]:

n∑
j=1

Tj +
n

b
− nτ(

1
1− e−bτ

) = 0

with respect to b. As above this needs to be done by a numerical method. Then our
estimated transformed times V ∗

j becomes:

V ∗
j =

eb∗Tj − 1
eb∗τ − 1

(for j = 1, ..., n)



Chapter 8

Implementation NHPP Models

In this chapter we apply the LT (2006) method and Gibbs sampling in order to make
exact statistical inference concerning NHPP models. We consider both goodness of �t
testing and also exact con�dence intervals for the unknown parameter b in our models
when applying the LT (2006) method. This con�dence interval could not be found using
the Gibbs sampling. We then present the results of a power comparison between 5 of the
di�erent test statistics given in chapter 7. We also compare the LT (2006) method to
the Gibbs Block algorithm, concerning how fast they converge. In the following we only
consider the case of failure censoring, but all the reults are easily obtained in the case of
time censoring.

8.1 Power Law Intensity

8.1.1 Simulating Samples

Assuming that the observed failure times T = (T1, ..., Tn) comes from a NHPP with
power law intensity function, we are able to simulate samples Ts = (T ′

1, ..., T
′
n) of the

failure times T given the su�cient statistic S=(log Tn,
∑n−1

j=1 log Tj), by the LT (2006)
method. In �gure (8.1a) we see a plot of the failure times T = (T1, ..., T10) of dataset
a, in addition to 5 such conditional simulations of T . From the plot it seems that the
observed failure times T of dataset a, are more �regularly� distributed througout the time
interval than the simulated samples Ts.

8.1.2 Goodness of �t testing

It is now of interest to test if our two datasets are compatible with power law NHPP,
by the LT (2006) method and by applying 5 of the test statistics given in the previous
chapter. All the test statistics are functions of the V ∗

j , which are expected to behave

35
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much similar to uniform variables. Figure (8.1b) gives a plot of V ∗(T )=(V ∗
1 , ..., V ∗

10) for
dataset a, in addition to 5 simulations of V ∗. From the plot it seems that the V ∗

j (T )
based on dataset a are more �regularly� distributed in the interval [0,1] than the simulated
V ∗

j (U).

In chapter 6 it was demonstrated that in the power law case V ∗
j was not dependent

on the unknown parameter b and could be simulated by means of a random vector
U ∼uniform[0,1]. Thus in the power law case we are able to simulate the unconditional
distribution of the test statistics which are all functions of the V ∗

j .

Dataset a

We start by applying Greenwoods two-sided test statistic to check if dataset a is consistent
with power law NHPP. The simulated (unconditional) distribution of Greenwoods test
statistic under the nullhypothesis that dataset a comes from a power law NHPP can be
seen in �gure (8.2).

We calculate gobs=0.1263, which is seen to fall on the left tale of the distribution, and
the resulting observed p-value is obtained by:

pobs = 2 · PH0(G ≤ 0.1263) = 2 · 0.02435 = 0.0480

Hence the Greenwood test statistic imply some evidence against the power law assump-
tion for dataset a. This is the same result as obtained in [6].

It is now of interest to check if the other test statistics given in chapter 7 would imply
the same results concerning dataset a. Hence 4 other test statistics are picked: Cramer-
von Mises (W2), Modi�ed Kolmogorov Smirnov (D), Modi�ed Kuiper (V) and Modi�ed
Watson U2. The simulated (unconditional) distribution of these statistics under the
nullhypothesis of power law NHPP are given in �gure (8.3).

These are all one-sided tests and the nullhypothesis is rejected if:

pobs = PH0(W (T ) ≥ wobs) ≤ α

The value for each test statistic based on the observed failure times T is calculated, and
the resulting p-values are given in table (8.1).

Table 8.1: Simulated (unconditional) p-values assuming dataset a is from power law NHPP

Test Statistic W2 D V U2 G

pobs 0.6621 0.5066 0.8069 0.8937 0.048

Neither of these 4 other test statistics imply any evidence against power law NHPP for
dataset a, and the observed p-values are seen to deviate remarkebly from the Greenwood
test statistic, which leads to the question of why this happens?

In order to answer this question we need to take a closer look at the test statistics.
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(a) Displays the failure times T = (T1, ..., T10) for dataset a, in addition to 5 simulations, Ts, of T
conditioned on the su�cient statistics S = (log Tn,

∑n−1
j=1 log Tj) by the LT (2006) method.

(b) Displays V ∗(T ) = (V ∗
1 , ..., V ∗

10) for dataset a, in addition to 5 simulations V ∗(U), of V ∗(T ), simulated
by means of a random vector U ∼uiform(0,1).

Figure 8.1
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Figure 8.2: The simulated (unconditional) distribution of Greenwoods test statistic (G)
under the nullhypothesis that dataset a comes from power law NHPP.

If the model under the nullhypothesis is correct the set V ∗(T ) = (V ∗
1 , ..., Vn−1) based on

the observed failure times is expected to behave much similar to uniform [0,1] variables.

If we consider the Greenwood test statistic it is seen that if the V ∗
j are too �regularly�

distributed gobs would be too small and hence lead to rejection. On the other hand if
the V ∗

j are too much �clumped� together in the interval [0,1], gobs would be too large and
also lead to rejection.

If we consider the 4 other test statistics, it is seen that these are all one-sided tests and
the nullhypothesis is rejected only when the observed value of the test statistic is too
large. This occurs if the V ∗

j are too much �clumped� together as for the Greenwood
statistic.

If we again consider the plot of V ∗ in �gure (8.1b) it is seen that V ∗(T ) based on the
observed failure times T are much more �regularly� distributed throughout the interval
[0,1] (almost equally spaced), than what is the case for the simualated V ∗.

This explains why only Greenwood test statistic imply evidence against the nullhypoth-
esis that dataset a comes from power law NHPP.
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(a) W2 (b) D

(c) V (d) U2

Figure 8.3: The simulated (unconditional) distribution of the test statistics a) Cramer-
von Mises (W2) b) Modi�ed Kolmogorov-Smirnov (D) c) Modi�ed Kuiper (V) and d)
Modi�ed Watson (U2), under the nullhypothesis of power law NHPP for dataset a.
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Dataset USS Halfbeak

We now want to check if dataset d is consistent with power law NHPP. We follow the
same procedure as given above for dataset a. The simulated (unconditional) distribution
of the test statistics Greenwood (G), Cramer-von Mises (W 2), Modi�ed Kolmogorov
Smirnov (D), Modi�ed Kuiper (V ) and Modi�ed Watson U2, under the nullhypothesis
that dataset d comes from power law NHPP are given in �gure (8.4).

We calculate the the corresponding value wobs for each of the 5 statistics and the observed
p-values are given in table (8.2).

It is clear that all the test statistics implies strong evidence against the nullhypothesis
that dataset d comes from a power law NHPP.

Table 8.2: Simulated (unconditional) p-values assuming dataset d is from power law NHPP

Test Statistic W2 D V U2 G

pobs 0.0001 0.0001 0.0005 0 0.01

8.1.3 Exact Con�dence Intervals

When applying the LT (2006) method to simulate samples of T given S = s we estimate
the parameter b(U, s) for each sample. Hence if we order the m estimates b̂ for b, b̃1 <
... < b̃m, then (b̃k, b̃m−k+1) is an exact 1-2k/(m+1) con�dence interval for b [6]. In [6]
it is seen that for the power law NHPP the above interval (for m→ ∞) is the same as
the classical one based on the pivotal statistic 2nb/b∗ which is known to be chi-square
distributed with 2(n-1) degrees of freedom.

Dataset a

Figure (8.5a) shows the distribution of the estimated values b̂ for dataset a under the
assumption of power law intensity, applying LT (2006). The resulting 90% con�dence
interval for b is [0.2914, 0.8949]. This interval agrees with the one obtained in [6] calcu-
lated by the classical approach (as m→ ∞). Since the interval does not contain 1, this
indicates reliability growth [6].

Dataset USS Halfbeak

Figure (8.5b) shows the distribution of the estimated values b̂ for dataset d, under the
assumption of power law NHPP, applying LT (2006). The resulting 90% con�dence
interval for b is [2.2123, 3.2995]. This interval indicates reliability reduction.
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(a) G (b) W2

(c) D (d) V

(e) U2

Figure 8.4: The simulated (unconditional) distribution of the test statistics a) Green-
wood, b) Cramer-von Mises c) Kolmogorov-Smirnov d) Modi�ed Kuiper and e) Modi�ed
Watson, under the nullhypothesis of power law NHPP for dataset d.
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(a) Distribution of b̂ under the nullhypothesis of power law NHPP for dataset a, simulated by LT (2006).

(b) Distribution of b̂ under the nullhypothesis of power law NHPP for dataset d, simulated by LT (2006).

Figure 8.5
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8.1.4 Discussion of Results

The test statistics implies that both dataset a and d are not compatible with power
law NHPP. For dataset a, it was only Greenwoods test statistic that indicated that
the nullhypothesis should be rejected. For dataset d, all the test statistics lead to the
conclusion that these data where not compatible with the nullhypothesis of power law
NHPP. The estimated con�dence intervals of the parameter b implies that dataset a has
reliability growth, and dataset d has reliability reduction.

From the study of the datasets it is seen that it is important to understand the test
statistics applied, and their characteristics. This agrees with a statement in [1] which
deals with choosing test statistics. It is argued that engineering insight and understanding
of the test statistics and their characteristics should provide as a basis for choosing the
�correct� test statistic, or even construct �purpose built� tests for the speci�c data at
hand.

Also by various plots of the data (simulations of T , V ∗, con�dence intervals etc.) such
as demonstrated might lead to a better understanding of the observed failure times T ,
and better statistical inference.

8.2 Log Linear Intensity

Having concluded that the datasets are not consistent with power law NHPP we want to
test if they are consistent with log linear NHPP. In order to compute conditional p-values
(by simulation) we have applied both the LT (2006) method and Gibbs sampling in this
section.

8.2.1 Simulating Samples

Assuming the observed failure times T = (T1, ..., Tn) are NHPP with log linear intensity
we are able to simulate samples Ts = (T ′

1, ..., T
′
n) of the failure times T given the su�cient

statistic S=(Tn,
∑n−1

j=1 Tj), by the LT (2006) method. Figure (8.6a) shows 5 such samples,
together with the observed failure times T = (T1, ..., T10) for dataset a. From the plot
it is again seen that dataset a looks more �regularly� distributed throughout the time
interval, than the simulated samples Ts.

8.2.2 Goodness of �t testing

It is now of interest to check if our two datasets are compatible with the log linear NHPP
assumption. As we have seen all the test statistics are functions of the V ∗

j , which are
claimed to behave much similar to the uniform[0,1] distribution. Figure (8.6b) gives a
plot of V ∗(T ) for dataset a, in addition to V ∗(Ts) for 5 simulated samples Ts of T given
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S = (Tn,
∑n−1

j=1 Tj), applying the LT (2006) method. The plot indicates that the V ∗
j based

on dataset a are more �regularly� distributed on the interval [0,1] than the simulated V ∗
j ,

but less signi�cant than in the power law case.

Dataset a

We start by considering Greenwoods test statistic, and calculate wobs=0.1466. In order
to simulate (by LT 2006) the conditional p-value:

pobs = PH0(W ≤ 0.1466|S = s) =
E[φ(Ts)| π(b)

∂bτ(U,b) |b=b̂(U,s2)]

E[| π(b)
∂bτ(U,b) |b=b̂(U,s2)]

we have to consider the weights determined by the choice of the arbitrary function π(b).
We try two di�erent choices for the function π(b):

Suggested by [8] :

We choose the function π(b)= 1
|b| , and compute (by simulation) the conditional p-value 5

times with 10 000 samples for each simulation. This resulted in the p-values [0.7834,
0.2134, 0.6230, 0.5840, 0.7472.] Hence the convergence seems to be very slow. By
evalutaing the weights by a plot it is seen that most of them are close to 1, but there
are a few weights that are very large. The reason is that when the estimated value
b̂ approaches 0 the corresponding weight will become very large and hence dominate
the resulting conditional p-value. This explains the large variations in the simulated
conditional p-value obtained above.

This problem could be avoided by putting a restriction on the weights. Hence we only ac-
cept a sample if the corresponding weight is less than 10. We run 5 new simulations with
this new restriction imposed, again with 10 000 samples for each simulation. The corre-
sponding p-values were [0.4703, 0.4747, 0.4579, 0.4706, 0.4570] with number of discardes
samples [151,174,163,167,154]. Figure (8.7a) displays the distribution of the weights with
this new restriction imposed.

Jeffrey′s Prior

We now choose the function π(b)=
√

1
b2

+ 1
2−(eb+e−b)

, which is known as Je�rey's prior.

We simulate the conditional p-value 5 times with 10 000 samples for each simulation. This
resulted in the p-values [0.4611,0.4714, 0.4671, 0.4803, 0.4655]. Figure (8.7b) displays
the distribution of the weights by using Je�rey's prior as the choice for the arbitrary
function π(b). We see that there are a few weights that are slightly larger than the other,
and we try to impose the restriction that only weights<0.6 are counted for.

We simulate the conditional p-value 5 new times with 10 000 samples for each simula-
tion.This resulted in the p-values [0.4835, 0.4724, 0.4694, 0.4803, 0.4776] with number
of discarded samples [167, 174, 157, 164, 165]. Hence this does not seem to improve the
convergence, and the restriction does not seem necessary for this choice of π(b).
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(a) Displays the failure times T = (T1, ..., T10) for dataset a, in addition to 5 simulations, Ts, of T
conditioned on the su�cient statistics S = (Tn,

∑n−1
j=1 Tj) by the LT (2006) method.

(b) Displays V ∗(T ) = (V ∗
1 , ..., V ∗

10) for dataset a, in addition to 5 simulations V ∗(Ts), of V ∗(T ), applying
the LT (2006) method.

Figure 8.6
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From the two plots in �gure (8.7) it is seen that the Je�rey's prior results in more even
distributed weights and seems to be the better choice of the two functions considered.

Figure (8.8) displays the conditional distribution of Greenwoods test statistic assuming
dataset a is log linear NHPP,using Je�rey's Prior. The conditional p-value is 0.4599 and
this does not imply any evidence against the nullhypothesis that dataset a is consistent
with a log linear NHPP. In [6] the conditional p-value:

pobs = 2 · PH0(W ≤ 0.1466|S = s) = 2 · 0.217 = 0.434

which is seen to be a little bit o� the p-value obtained here for dataset a. The choice
of π(b) in [6] could be the reason for this small deviation between the results. The
number of simulations could be another reason. As it is seen from the calculations above
the conditional p-value has small variations using 10 000 samples. More samples would
increase the accuracy, and decrease the variation between each simulation.

It is now of interest to check if the other test statistics given in chapter 7 would imply the
same results concerning the assumption that dataset a comes from a log linear NHPP.
Again the 4 statistics Cramer-von Mises (W2), Modi�ed Kolmogorov-Smirnov (D), Mod-
i�ed Kuiper (V) and Modi�ed Watson (U2) are considered. The conditional p-values
are now simulated by the alternative approach of Gibbs sampling, applying the Gibbs
Block algorithm, given in chapter 6.

The resulting p-values are given in table (8.3).

Hence neither of these test statistics would reject the nullhypothesis that dataset a is
consistent with log linear NHPP, either.

Table 8.3: Conditional p-values assuming dataset a is from log linear NHPP, simulated by Gibbs Block
algorithm.

Test Statistic W2 D V U2

pobs 0.4255 0.2824 0.6521 0.7063

Datasett USS Halfbeak

We now want to test if dataset d is consistent with a log linear NHPP. Again the test
statistics Greenwood (G), Cramer-von Mises (W2), Modi�ed Kolmogorov-Smirnov (D),
Modi�ed Kuiper (V) and Modi�ed Watson (U2) are chosen.

The conditional distribution of the Greenwood test statistic is simulated by the LT (2006)
method, while the distribution of the 4 other test statistics are simulated by the Gibbs
Block algorithm. The resulting obtained p-values are given in table 8.4.

From the conditional p-values it is seen that all the test statistics imply evidence that
dataset d is not consistent with log linear NHPP. It is worth to notice that the p-values for
the statistics Greenwood (G) and Modi�ed Kolmogorov Smirnov (D) has less signi�cant
p-values than the other statistics.
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(a) Distribution of weights for π(b) = 1
|b| for 10 000 samples with restriction that only weights<10 are

counted for.

(b) Distribution of weights by applying Je�rey's prior for 10 000 samples

Figure 8.7
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Figure 8.8: The simulated (LT 2006) conditional distribution of Greenwoods test statis-
tics (G) under the nullhypothesis that dataset a comes from log linear NHPP, using
Je�reys prior.

If we compare these p-values compared to the p-values under the assumption that dataset
d is from a power law NHPP, it is clear that the log linear assumption seems more rea-
sonable. This agrees with results given in [2], where the USS Halfbeak data is considered
by various plots and likelihood ratio tests based on asymptotic chi-square distributions,
to determine whether the power law or log linear law �ts the data better.

Table 8.4: Conditional p-values assuming dataset d is from log linear NHPP, Greenwood simulated by
LT (2006), while the 4 others are simulated by Gibbs Block algorithm.

Test Statistic W2 D V U2 G

pobs 0.0087 0.0457 0.0034 0.0012 0.0404

8.2.3 Exact Con�dence Intervals

When applying the LT (2006) method to simulate samples of T given S = s we estimate
the parameter b(U, s) for each sample. Hence if order the m estimates b̂ for b, b̃1 < ... <
b̃m, then (b̃k, b̃m−k+1) is an exact 1-2k/(m+1) con�dence interval for b [6].

Dataset a

Figure (8.9a) shows the distribution of the estimated values b̂ for dataset a under the
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assumption of log linear intensity. The resulting 90% con�dence interval for b is [−5.58 ·
10−4, −3.99 · 10−5] which agrees with the interval obtained by [6]. This also indicates
realiability growth for dataset a.

Dataset USS Halfbeak

Figure (8.9b) shows the distribution of the estimated values b̂ for dataset d, under the
assumption of log linear NHPP. The resulting 90% con�dence interval for b is [1.121 ·
10−4, 1.832 · 10−4]. This interval indicates reliability reduction.

8.2.4 Discussion of Results

It is seen that the test statistics does not imply any evidence against the nullhypothesis
that dataset a is consistent with log linear NHPP. For dataset d, all the test statistics
imply evidence against the nullhypothesis that dataset d is consistent with log linear
NHPP. But the p-values are less signi�cant than for the assumption that dataset d is
power law NHPP. This result is consistent with a discussion in [2].

When the p-values are obtained by simulating the distribution of the test statistics by
the LT (2006) method, we need to choose the arbitrary function π(b), such that the
weigths for each sample could be calculated. We considered two choices for this function.
It was demonstrated that Je�rey's prior seemed to be the better choice of these two, due
to more even distribution of the weights and less �uctuation in the calculated observed
p-value for each simulation.

An exact con�cence interval for the unknown parameter b was obtained for both datasets.
These indicated reliability growth of dataset a, and reliability reduction for the USS
Halfbeak dataset.
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(a) Distribution of b̂ under the nullhypothesis of log linear NHPP for dataset a, applying LT (2006).

(b) Distribution of b̂ under the nullhypothesis of log linear NHPP for dataset dapplying LT (2006)

Figure 8.9
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8.3 Power Comparison

In this section we present new results of a power comparison of 5 of the test statistics
presented in the previous chapter. The statistics considered are Cramer-von Mises (W2),
Modi�ed Kolmogorov-Smirnov (D), Modi�ed Kuiper (V), Modi�ed Watson (U2) and
Greenwood (G).

The nullhypothesis is that a set of observed failure times T = (T1, ..., Tn) are compatible
with log linear NHPP. Now we simulate the observed failure times T from a power law
NHPP, with intensity function λ(t) = abtb−1 and check if the nullhypothesis is rejected,
by applying the 5 di�erent test statistics given above.

This could be done for di�erent values of the parameters a and b in the power law model,
and a comparison for various sample sizes are also possible. This study can provide as a
guide in selecting test statistic and sample size.

For each set of simulated failure times T = (T1, ..., Tn) from the power law NHPP, 10
000 samples Ts conditioned on S = (Tn,

∑n−1
j=1 Tj) are simulated, under the assumption

that T comes from the log linear NHPP, applying the Gibbs Block algorithm given in
chapter 6. These samples are used to determine the conditional observed p-value:

pobs = PH0(W (T ) ≥ wobs|S = s)

This is done for 1 000 di�erent sets of simulated failure times T , and the frequencies of
pobs ≤ α=0.05 is counted. This process was repeated 3 times and the average values of
the frequencies (power) were obtained. This is done for di�erent values of the parameter
b in the power law model, while the parameter a=1 is held constant.

In [10, 11] the �opposite� study is performed. The main di�erence is that the nullhypoth-
esis is that the observed failure times are power law NHPP and the power comparison
study is performed under the alternative hypothesis of log linear NHPP.

Table (8.5) shows the result of the study when the parameter b=0.1, and for di�erent
sample sizes n. It is seen that all the test statistics has high a high power for n ≥10
(W2),n ≥12 (D, V, U2) and n ≥15 (G). The Cramer-von Mises statistic has the highest
power for n ≥10. All the test statistics have rather low power for sample size n=5, but
the Greenwood test is seen to have the highest power for this sample size. For n ≥10 the
Greenwood test is seen have the lowest power.

Table (8.6) displays the results of the study when the parameter b=0.3. It is seen that
the power for all the statistics are remarkebly lower in this situation. The Cramer-von
Mises statistic is still seen to have the highest power for n ≥10. But larger sample sizes
are required in order for the tests to have an acceptable power, than was needed for b=0.1
above.

Table (8.7) gives the results when the parameter b=0.5. Again the power for all the test
statistics is lower than for the two situations given above. The Cramer-von Mises, Modi-
�ed Kolmogorov-Smirnov, Modi�ed Kuiper and Modi�ed Watson still has an acceptable
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power for sample size n=100, but for smaller sample sizes the power is low for all the
statistics. The Greenwood statistic is again seen to have the lowest power.

Table 8.5: Power comparison simualating samples from power law NHPP with intensity function
λ(t) = abtb−1, b=0.1, a=1

n W2 D V U2 G

5 0.38 0.24 0.10 0.14 0.50

10 0.84 0.77 0.65 0.65 0.67

12 0.91 0.85 0.80 0.81 0.70

15 0.97 0.94 0.91 0.90 0.79

20 1 0.99 0.98 0.99 0.90

30 1 1 1 1 0.98

50 1 1 1 1 1

100 1 1 1 1 1

Table 8.6: Power comparison simualating samples from power law NHPP with intensity function
λ(t) = abtb−1, b=0.3, a=1

n W2 D V U2 G

5 0.17 0.13 0.08 0.09 0.20

10 0.54 0.42 0.28 0.26 0.26

12 0.56 0.53 0.35 0.38 0.30

15 0.75 0.62 0.48 0.50 0.32

20 0.86 0.77 0.64 0.67 0.39

30 0.95 0.94 0.85 0.89 0.47

50 0.99 0.98 0.98 0.99 0.64

100 1 1 1 1 0.85

Table 8.7: Power comparison simualating samples from power law NHPP with intensity function
λ(t) = abtb−1, b=0.5, a=1

n W2 D V U2 G

5 0.08 0.07 0.05 0.04 0.08

10 0.18 0.15 0.09 0.09 0.11

12 0.20 0.18 0.12 0.10 0.11

15 0.25 0.21 0.16 0.15 0.12

20 0.33 0.29 0.22 0.23 0.13

30 0.47 0.43 0.33 0.30 0.15

50 0.66 0.63 0.50 0.54 0.15

100 0.89 0.88 0.82 0.87 0.20
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Table (8.8) displays the results for b=1.5. It is seen that neither statistics have an
acceptable power for any sample size n between 5 and 100, in this situation.

Table 8.8: Power comparison simualating samples from power law NHPP with intensity function
λ(t) = abtb−1, b=1.5, a=1

n W2 D V U2 G

5 0.07 0.07 0.06 0.05 0.05

10 0.07 0.07 0.06 0.07 0.05

12 0.08 0.07 0.06 0.06 0.04

15 0.09 0.08 0.07 0.07 0.05

20 0.09 0.09 0.09 0.08 0.04

30 0.09 0.09 0.09 0.08 0.05

50 0.12 0.10 0.09 0.09 0.04

100 0.15 0.13 0.12 0.14 0.04

8.3.1 Discussion of results

From the results given above it is seen that the test statistics have an acceptable power
for various parameter values b. Another, but expected characteristic, is that the power
increases with larger sample size n.

For b=[0.1, 0.3] all the statistics have a high power of rejecting the simulated failure
times T under the nullhypothesis of log linear NHPP, with Cramer-von Mises being the
strongest and requiring the lowest sample size (n ≥10).

For b=[0.5, 1.5] neither of the tests have an acceptable power for n ≤50, and trying with
values of b in the range of [2, 8] reveals that the power remains at this low level for all
the statistics.

These results are in agreement with the ones obtained in [10, 11] which demonstrates that
the power test has an acceptable power for b in the range of [-2.5, -2.0], in the log linear
NHPP (remember that this is the �opposite� situation with regards to the hypothesis).

This is reasonable since that for some parameter values b the log linear intensity (λ(t) =
ea+bt) function can be well approximated by a power law intensity (λ(t) = abtb−1) func-
tion [10].

8.4 Convergence Comparison

Suppose T = (T1, ..., Tn) is a set of observed failure times. Assuming that T is consistent
with log linear NHPP, we have seen that this could be tested by choosing a test statistic
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W (T ) and simulating the conditional p-value:

pobs = PH0(W (T ) ≥ wobs|S = s) (8.1)

and reject the nullhypothesis if pobs ≤ α where α is a predetermined level of signi�cance.
In this paper we have presented two di�erent approaches of how this conditional p-value
could be be simulated. These are the LT (2006) method, which is the main focus in this
paper in addition to Gibbs sampling which was introduced in chapter 6.

In this section we compare the two methods for the situation described above concerning
how fast they converge to the �correct� conditional p-value.

We have applied two measures in order check the speed of convergence. These are

e = y0 −
1
n

m∑
j=1

pj

and

MSE =
1
n

m∑
j=1

(pj − y0)2

where y0 is the �correct� value of pobs, and pj is the conditional p-value obtained for
simulation number j. In the following tests the number of simulations m=10.

In this paper we have tested the convergence applying dataset a, and the test statistic
W (T ) is chosen to be Greenwoods test statistic (G), given in chapter 7. Remember that
this is a two-sided test statistic, and the conditional p-value given in equation (8.1) is
found by pobs = 2 · {min(pobs, 1− pobs)}.

The �correct� conditional p-value is set to y0=0.4673. This is found by applying the
LT (2006) method. I simulated 2 million samples under the nullhypothesis that dataset
a was log linear NHPP given the su�cient statistic S = (Tn,

∑n−1
j=1 Tj) and calculated

the conditional p-value pobs. This procedure was repeated 3 times, and the �correct�
conditional p-value y0 was set to be the average of these 3 simulations.

When applying the LT (2006) method Je�reys prior is chosen as the arbitrary function
π(b) in the weighting scheme. When simulating by Gibbs sampling this is done by
Gibbs Block algorithm given in chapter 6, which is seen to be the fastest of the 3 Gibbs
algorithms.

In the �rst test the two methods were compared with regards to how well they performed
in 1 minute. It was seen that the LT (2006) method could simulate 15 000 samples for
each of the m=10 conditional p-values, resulting in the corresponding measures e = 10−3

and MSE=10−5. The Gibbs Block algorithm could simulate 1 100 000 samples for each
of the 10 conditional p-values resulting in the corresponding measures e = 10−4 and
MSE=10−6. These results are given in table (8.9).
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The second test was applied to see how long the two methods would need in order to
obtain an accuracy of MSE=10−5 and MSE=10−6. The LT (2006) method needed ap-
proximately 35 seconds to obtain accuracy of MSE=10−5, and approximately 315 seconds
to obtain accuracy of MSE=10−6. The Gibbs Block algorithm needed approximately 3.5
seconds to obtain accuracy of MSE=10−5, and approximately 36 seconds to obtain ac-
curacy of MSE=10−6. The results of this test is given in table (8.10).

Table 8.9: Performance of LT (2006) and Gibbs Block algorithm in 1 minute

Simulation Method LT (2006) Gibbs Block alg.

e 10−3 10−4

MSE 10−5 10−6

Table 8.10: Performance of LT (2006) and Gibbs Block algorithm by the measure MSE

Simulation Method LT (2006) Gibbs Block alg.

MSE= 10−5 ≈35 s. ≈3.5 s.
MSE= 10−6 ≈315 s. ≈36 s.

8.4.1 Discussion of results

It is seen that the Gibbs block algorithm converges faster to the �correct� conditional
p-value, under the assumption that the observed failure times T are log linear NHPP.

In the LT (2006) method the parameter b̂ needs to found by solving the equation (given
in chapter 6):

g(b) =
n−1∑
j=1

log(1 + Uj(ebTn − 1))− bs2 = 0

with respect to b, in order to simulate a sample Ts. This needs to be done by a numerical
technique and for the results given above the solution was obtained by the repeated
bisection method.

When applying the bisection method a tolerance criterion needs to be set. Concerning
the results given above the tolerance was such that the bisection method was terminated
when tol=10−5 or the number of bisections exceeded 50 if b > 0 and 500 if b<0. This
parameter estimation is time consuming and most certain the main reason why the LT
(2006) converges slower than the Gibbs Block algorithm where such estimation is not
necessary. Hence, there could be a potential for improving the LT (2006) method by
performing this parameter estimation by faster methods. Also the tolerance limit in the
bisection method could be less strict, but this might detoriate the convergence of the
method.

There is also a need to calculate the weights in the LT (2006) method which is also time
consuming when performing a large number of simulations.
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Notice :

There is not performed a comparison of LT (2006) and Gibbs Block algorithm under
the nullhypothesis of power law NHPP. All the test statistics considered here were inde-
pendent of the unknown parameters θ = (a, b) in this model and could be simulated by
means of a random vector U ∼uniform[0,1].

Also if one considers a general test statistic W ≡ W (T ) the LT (2006) method is not
expected to be any slower with respect to the convergence than by Gibbs sampling.
In order to simulate a sample Ts applying the LT (2006) method in this situation, the
parameter b̂ is found by a single calculation of the equation (given in chapter 6):

b̂ =

∑n−1
j=1 log Uj

s2 − (n− 1) log Tn

(The Gibbs sampling is di�erent for the power law NHPP than log linear NHPP but this
is not considered here.)



Chapter 9

Concluding Remarks

We have presented a general method for Monte Carlo computation of conditional expec-
tations of the form E[φ(T )|S = s] given a su�cient statistic S. The method is referred
to as LT (2006).

The method was adjusted to the parametrizations power law and log linear law of the
NHPP model, such that exact statistical inference could be made in these models. This
included goodness-of-�t testing in addition to simulating exact con�dence intervals of
unknown parameters in our model.

In the power law NHPP model a certain pivotal condition was satis�ed and the condi-
tional expectation given above could be found by direct sampling by a simple parameter
adjustment of the original statistical model.

Other characteristics for the power law parametrization was that the expectation of the
test statistics considered in chapter 7, were seen to be independent of the unknown
parameters θ = (a, b) in this model and could be simulated unconditionally by a random
vector U ∼uniform[0,1].

In the log linear NHPP model the pivotal condition was not satis�ed, and in order to
obtain the correct conditional expectation of the form given above a weighted sampling
scheme was required. The convergence of the method was seen to be dependent on
the choice of an arbitrarily chosen function π(b) in the weighting scheme. Two di�erent
choices for this function was considered. Although Je�rey's prior seemed to be the better
choice of these two, the function suggested in [8] could very well be applied if one imposed
a restriction on the weights.

There is a large potential for studying di�erent test statistics and their applicability, for
various situations. In [1] the choice of a suitable test statistic for a set of observed failure
times T is considered, and in particular under the assumption of power law NHPP. It
is argued that engineering experience should provide as a basis for choosing the �cor-
rect� statistic, and a single statistic can not detect all deviations from the NHPP model

57
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by itself. Constructing �purpose built� statistics would be the best option in certain
situations, which requires a good theoretical and practical understanding.

A power comparison was presented for 5 of the test statistics considered, under the
nullhypothesis that a set of observed failure times T = (T1, ..., Tn) comes from a log
linear NHPP and the alternative hypothesis of power law NHPP. This is a new result
which extends the work done in [10, 11]. For some parameter values the power was high
for all the statistics, with Cramer-von Mises being the strongest for sample sizes n ≥10.
The power increased as a function of the sample size n. However the most interesting
results are for small sample sizes since the method of exact testing could provide accurate
results when the use of existing asymptotic methods could not be justi�ed.

A speed of convergence comparison of the method LT (2006) and the alternative ap-
proach of Gibbs sampling is given. This is performed under the assumption that the
failure times T are consistent with log linear NHPP, and it was seen that the Gibbs
sampling converged faster to the �correct� conditional p-value. In the LT (2006) method
a parameter estimation of the unknown parameter b is required for each simulated sam-
ple Ts, which is the main reason that Gibbs sampling is seen to be the fastest. This
estimation needs to be done by a numerical method, and we have applied the repeated
bisection. Hence there could be a potential for improving the speed of this estimation by
di�erent numerical techniques.

Considering further work it could be of interest to adjust the LT (2006) method to more
general processes such as the modulated power law with intensity function given by
λ(t) = abtb−1eβt [2].

In addition the method LT (2006) could be adjusted to other than the NHPP model
which is considered here.
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Appendix A

Datasets

I have worked with two di�erent datasets in the implementation. Dataset a is from [6]
with n=10 observed failure times. The USS Halfbeak (also referred to as dataset d) is
from [2], with n=71 observed failure times. Both datasets are failure censored.

Dataset a [6]

[103 315 801 1183 1345 2957 3909 5702 7261 8245]

USS Halfbeak Data [2]

[1382 2990 4124 6827 7472 7567 8845 9450 9794 10848 11993 12300 15413 16497 17352
17632 18122 19067 19172 19229 19360 19686 19940 19944 20121 20132 20431 20525 21057
21061 21309 21310 21378 21391 21456 21461 21603 21658 21688 21750 21815 21820 21822
21888 21930 21943 21946 22181 22311 22634 22635 22669 22691 22846 22947 23149 23305
23491 23526 23774 23791 23882 24006 24286 25000 25010 25048 25268 25400 25500 25518]
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