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Abstract: Sputtered Pd77%Ag23% membranes of thickness 2.2–8.5 µm were subjected to a three-step
heat treatment in air (HTA) to investigate the relation between thickness and the reported beneficial
effects of HTA on hydrogen transport. The permeability experiments were complimented by
volumetric hydrogen sorption measurements and atomic force microscopy (AFM) imaging in order
to relate the observed effects to changes in hydrogen solubility and/or structure. The results show
that the HTA—essentially an oxidation-reduction cycle—mainly affects the thinner membranes,
with the hydrogen flux increasing stepwise upon HTA of each membrane side. The hydrogen
solubility is found to remain constant upon HTA, and the change must therefore be attributed to
improved transport kinetics. The HTA procedure appears to shift the transition from the surface
to bulk-limited transport to lower thickness, roughly from ~5 to ≤2.2 µm under the conditions
applied here. Although the surface topography results indicate that HTA influences the surface
roughness and increases the effective membrane surface area, this cannot be the sole explanation
for the observed hydrogen flux increase. This is because considerable surface roughening occurs
during hydrogen permeation (no HTA) as well, but not accompanied by the same hydrogen flux
enhancement. The latter effect is particularly pronounced for thinner membranes, implying that the
structural changes may be dependent on the magnitude of the hydrogen flux.

Keywords: Pd-Ag membranes; hydrogen permeation; surface characterization; solubility;
heat treatment

1. Introduction

Palladium-based membranes have been the focus of many studies due to their high hydrogen
permeability and selectivity, which may find application in efficient separation technologies [1,2].
At temperature below ~300 ◦C and pressure below ~2 MPa, however, pure palladium undergoes the
α-to-β phase transition that results in irreversible lattice strain. Over time, cycling of the temperature
causes the Pd to become brittle; leading to fractures. In order to prevent hydrogen embrittlement, Pd is
conveniently alloyed with other metals [3,4]. Silver is a widely used alloying element, reducing the
α-to-β phase transition to below room temperature. Moreover, Pd-Ag alloys exhibit higher hydrogen
permeability than pure palladium [4–6], with a maximum at ~23 wt.% of Ag [6].

Hydrogen flux can be also enhanced by heat treatment in air (HTA) procedures [7–19], which are
essentially oxidation-reduction cycles. For thin membranes, typically in the range of 1–3 µm, the total
hydrogen flux through the membrane can be doubled upon air thermal treatment [8–11,16], and HTA
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has also been used to regenerate deactivated membranes [14,20,21]. Moreover, Mejdell et al. reported
a significant reduction of the CO inhibitive effects on hydrogen permeation through a ~3 µm Pd-Ag
(23%) membrane after HTA [9]. The phenomena behind these advantageous effects are, however,
still not clear. Different hypotheses have been suggested to explain the influence of heat treatment in
air; including cleaning of the Pd-Ag surface, microstructural rearrangement, and induced segregation
of Pd towards the surface. Oxidation is known to remove certain impurities and poisoning species from
Pd-based surfaces [5,15,16,20]. This can facilitate and improve hydrogen flux, but is not a sufficient
explanation that can fully elucidate the positive effects of HTA [14].

Microstructural changes are commonly observed in Pd-based membranes after air exposure,
while the permeation properties are maintained or enhanced and even the stability/durability seems
upheld. These include increase in surface roughness [10,13,14,17,22,23], as well as defect/void
formation [8,11,14,17,19]. The increased surface roughness leads to an enlarged active surface area
which can promote the hydrogen flux through the membrane given that surface phenomena are
transport limiting. Furthermore, surface roughening is associated with grain growth in the membrane
bulk [10,13,14,17,19]. As there is no clear agreement on whether larger grains inhibit [24–26] or
enhance [27,28] hydrogen flux, it is not possible to irrefutably attribute hydrogen flux enhancement
to formation of larger grains. Recently we established, however, a possible correlation between the
solubility of hydrogen and the average grain boundary density in sputtered membranes, rendering
the diffusivity practically unaffected as long as the hydrogen transport was controlled by bulk
diffusion [29]. On the other hand, Zhang and co-workers [17] reported an increase in the hydrogen
sorption kinetics that was attributed to higher hydrogen diffusivity for a 25 µm cold-rolled Pd-Ag
25 wt.% membrane after heat treatment in air at 300 ◦C for 1 day.

Another hypothesis is related to surface segregation of Pd as a result of the heat treatment in
air, since H2 dissociates over and binds to Pd but not to Ag. It is well established that Ag segregates
to the membrane surface of ideal Pd-Ag alloys in absence of adsorbates; i.e., under vacuum or inert
gas conditions, while a reverse segregation of Pd is induced after exposure of Pd-Ag surfaces to
hydrogen and several other chemisorbing species [30–32]. The thermal treatment in air has been found
to yield formation of a ~2 nm thick PdO layer [13] on the Pd-Ag surface and to an enrichment of Pd
that can be involved in the enhancement of hydrogen flux through Pd-Ag membranes [13,15,16,32].
Segregation and rearrangement of the outmost atomic layers could also be linked, in the sense that this
could affect in particular the transfer of hydrogen from the surface to the bulk or vice versa; processes
that are particularly difficult to study experimentally.

In this work, a new approach to the heat treatment in air procedure has been applied in order to
further investigate its effect on hydrogen transport properties in Pd-Ag membranes. The procedure
was performed so that each side of the membranes was consecutively exposed to ambient air in
order to probe the individual surface responses, which to our knowledge have not been previously
addressed in the literature. A final HTA applied to both sides together was also performed in order
to establish if additional effects exist. Different membrane thicknesses have been included to the
investigation, as well as measurements of hydrogen solubility before and after heat treatment, to better
understand the transport mechanisms involved. The membranes were characterized using atomic
force microscopy (AFM) for as-grown membranes, hydrogen-stabilized, and heat-treated in air (with
subsequent hydrogen stabilization), to monitor changes in surface topography.

2. Materials and Methods

2.1. Membrane Preparation

Pd77%Ag23% thin, self-supported membranes were produced by SINTEF using a unique two-step
magneton sputtering technique onto silicon single crystal substrates [33,34]. Pd-Ag films with
thicknesses of 2.2, 4.7, 6.9, 8.5, and 11.2 µm were studied. The membrane thickness was determined
using white light interferometry. In this work, the membranes analyzed have been categorized as
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follows: ‘as-grown’ refers to Pd77%Ag23% thin film samples just pulled-off from the silicon substrate;
‘hydrogen-stabilized’ refers to membranes exposed to hydrogen permeation measurements only;
‘air-treated’ corresponds to membranes that have been heat-treated in air (HTA) and subsequently
stabilized under hydrogen according to the procedures described below. The ‘growth/feed side’ of the
membranes is the side growing during the magneton sputtering deposition and was always exposed
to the feed gas during permeation experiments. The ‘substrate/permeate side’ refers to the membrane
side facing the silicon wafer under fabrication, and was always kept to the permeate (low pressure)
side of the membranes during permeation experiments.

2.2. Hydrogen Stabilization/Permeation

The permeation behavior under pure hydrogen (purity 99.999%) through the Pd77%Ag23%
membranes was studied as a function of temperature and pressure with no use of sweep gas.
All membranes were mounted in a microchannel configuration as depicted in Figure 1. The membranes
were placed in between a polished stainless steel feed housing and a polished stainless steel plate.
The feed housing had seven channels for gas flow corresponding to a total active surface area
of 0.91 cm2, in accordance with the permeate side steel plate geometry. On the permeate side,
an open stainless steel housing was sealed to the perforated steel plate by a polished copper gasket.
In conjunction with absence of sweep gas or dilutants, this configuration enables investigation of very
thin membranes in absence of transport limitations from the gas phase (concentration polarization)
or the support [35]. Membrane leakage was checked by using an Agilent 490 Micro-GC (Agilent
Technologies, Santa Clara, CA, USA). No leakage could be detected during any of the permeation
experiments both before and after the three-step heat treatment procedure. Experiments were
performed at selected temperatures of 300, 350, and 400 ◦C. 300 ◦C was reached by ramping at
2 ◦C per minute with nitrogen (purity 99.999%) flushing on the feed side and argon (purity 99.999%)
on the permeate side. After reaching 300 ◦C, nitrogen and argon were slowly removed from the system
and hydrogen introduced. The permeate side was left at atmospheric pressure while a differential
pressure of maximum 2 bar was applied on the retentate side. The permeate flow was measured by a
bubble flow meter.

Figure 1. Sketch of the microchannel reactor configuration.

2.3. Heat Treatment in Air (HTA)

The three-step heat treatment in air (HTA) procedure was performed between hydrogen
permeation experiments for three selected membrane thicknesses; 2.2, 4.7, and 8.5 µm respectively.
The HTA was mainly performed using the following sequence: (i) permeate side, (ii) feed side, (iii) both
sides one more time, with hydrogen permeation experiments between each step. Each HTA step was
carried out at 300 ◦C for one hour. Before exposing the membranes to ambient air, hydrogen was
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removed from the system by introducing nitrogen on the feed side and argon on the permeate side
for about 15 min. Nitrogen/argon were reintroduced for 15 min at the feed/permeate sides in order
to flush out air. Hydrogen was then introduced again and nitrogen/argon slowly removed. As will
be shown, HTA had the largest effect for the thinnest membranes. Another 2.2 µm membrane was
therefore subjected to an alternative HTA sequence, denoted HTA2: (i) feed side, (ii) permeate side,
(iii) both sides one more time, again with hydrogen permeation experiments between each step and
procedures otherwise as described above.

2.4. Hydrogen Solubility

Equilibrium sorption measurements were carried out as described in [29] using an ASAP 2020
chemisorption analyzer (Micromeritics Instrument Corporation, Norcross, GA, USA) for 2.2 µm and
8.5 µm as-grown membranes, as well as after heat treatment in air. The heat treatment in air for the
sorption samples was performed in a furnace at 300 ◦C under ambient air for one hour. Volumetric
sorption was performed with a hydrogen pressure between 0.02 and 90.7 kPa. In every measurement,
a sample mass close to 0.1 grams was used, taking into account also mass loss from degassing of the
sample. The sorption measurements were carried out twice at three different temperatures: 300, 350,
and 400 ◦C.

2.5. AFM Imaging

The surface topography was investigated by atomic force microscopy (AFM, Bruker, Boston, MA,
USA) using a Multimode AFM instrument with a Veeco Multimode controller. All force spectroscopy
analysis was performed in tapping mode under atmospheric conditions. Surface topography was
investigated for both growth/feed side and substrate/permeate side for all the as-grown membranes,
for hydrogen stabilized membranes and selected membranes after heat treatment in air with subsequent
hydrogen stabilization. At least five surface scans were obtained at different locations for each
sample. The first flattening order, provided by the AFM-instrument software (Nanoscope Software
Version 7.2, by Veeco, Plainview, NY, USA), was performed in order to remove tilt and noise from all
images. Surface roughness was estimated as the root mean square roughness (Rq) from the measured
AFM images.

3. Results and Discussion

3.1. Permeability

Hydrogen permeation through Pd-Ag membranes generally follows the solution-diffusion
mechanism, where Fick’s law of diffusion describes the mass transport

JH2 =
P
t
(pn

1 − pn
2 ) =

SD
t
(pn

1 − pn
2 ) (1)

P is the permeability of the membrane, t the thickness, p1 and p2 the partial pressure of hydrogen on
the high pressure side and low pressure side of the membrane, respectively, S the solubility, and D the
diffusion coefficient. The n-value is determined by the rate-limiting step of the transport mechanism
as explain further below. The diffusivity can be expressed as

D = D0 exp
(
− Ea

RT

)
(2)

where D0 is a pre-exponential factor and Ea the activation energy for diffusion.
Hydrogen permeance (P/t, Equation (1)) values, measured at 300 ◦C for untreated membranes

(not subjected to HTA), are plotted in Figure 2 as a function of inverse thickness. In the calculation
of the permeance, n = 0.5 was applied, which is essentially valid only with bulk diffusion as the
rate-limiting step [36–41]. When the kinetics is bulk-limited, the permeance should be proportional to
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the inverse thickness, leading to a constant value for the permeability (a material property). In thick
Pd-membranes, hydrogen generally forms a dilute solution and the transport is bulk-limited. The full
line (Figure 2) refers to a bulk value of permeability equal to 1.5 × 10−8 mol·m·m−2·s−1·Pa−0.5 that
has been reported for a 100 µm thick Pd77%Ag23% membrane at 300 ◦C [5]. A previous investigation
of pure Pd membranes in the thickness range 10 to 150 µm indicated that bulk diffusion was rate
limiting for thicknesses above 20 µm [37]. As the thickness decreases, the transport mechanism may be
controlled by a combination of surface effects and bulk diffusion (0.5 < n < 1) [42,43]. Eventually, surface
phenomena such as adsorption/dissociation and/or association/desorption become completely
rate-limiting, and the pressure exponent approaches unity [36–41]. Figure 2 indicates a bulk limited
transport with permeance values somewhat higher than the bulk literature value for the thicker
membranes (≤4.7 µm), while the thinnest membranes exhibit permeance values indicative of surface
limitations affecting hydrogen permeation. The thickness at which this transition appears may depend
both on the conditions (T, P, H2 feed content) and the material properties as affected by the fabrication
and eventual pre-treatment of the membrane. Several studies report that surface phenomena start to
have an impact from 4–5 µm [10,29,40,44].

Figure 2. Measured hydrogen permeance as function of inverse thickness at 300 ◦C for membranes not
subjected to HTA. The full line refers to values of permeance reported if bulk is the rate limiting step
(1.5 × 10−8·mol·s−1·m−2·Pa−0.5) [5].

There are some variations in the measured permeance between membranes of the same thickness;
larger for the 2.2 µm membrane relative to the 4.7 µm and 8.5 µm membrane. There could be several
reasons for this variation, including experimental uncertainty. There may be a gradient in membrane
thickness as large as ~10% across the silicon wafer, but we take care to mainly utilize the mid-sections
for permeation experiments to reduce this deviation. Time and contamination during ambient storage
may have an effect, as well as slight stretching of the material under total pressure difference [10].
Such sputtered membranes of similar thickness are, however, not found to exhibit major differences in
microstructure, composition, or surface topography [10,45,46], but a general observation that will be
further discussed below is that this variation between principally equivalent samples is also reduced
by HTA [10].

After stabilization under hydrogen and measurement of the permeance, membranes with
thicknesses of 2.2, 4.7, and 8.5 µm were subjected to the three-step HTA procedures as described
above. The results are displayed in Figure 3 and Table 1. Figure 3a shows the hydrogen permeance
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plotted as a function of inverse thickness before HTA as well as after each step in the HTA procedure;
n assumed equal to 0.5 also here. HTA has larger effect as the thickness decreases, with practically
no effect for the 8.5 µm thick membrane. Moreover, the permeance increases after each of the first
two HTA steps, i.e., upon oxidation-reduction of each side of the membrane. The first increase
amounts to ~20% (HTA permeate/substrate) while the second (HTA feed/growth) is 60–40% (Table 1),
depending on temperature, for the 2.2 µm membrane. There is no significant change when both
sides are simultaneously exposed one more time to air. Figure 3a also implies that the permeance is
inversely proportional to the membrane thickness after HTA. Hence, the oxidation-reduction cycle
imposed by the HTA procedure apparently shifts the surface transport limitation to lower thickness and
bulk diffusion becomes rate-limiting for the hydrogen transport over the whole thickness range and
experimental conditions investigated. Moreover, the surface limitations appear to impose transport
limitations on both sides initially, which can be lifted stepwise by oxidizing one side at the time.

Figure 3. Permeance measured at 300 ◦C for each single step of heat treatment in air; (a) as function of
inverse thickness for the main HTA membrane side sequence with the full line indicating a permeability
of 2.1 × 10−8 mol·s−1·m−2·Pa−0.5, and (b) as function of the difference in the square root of the
hydrogen partial pressure for the HTA2 membrane side sequence applied to a 2.2 µm thick membrane.
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In order to investigate the importance of the order of the heat treatment with respect to
growth/feed or substrate/permeate side of the membrane an experiment in the opposite order (HTA2)
was performed for the 2.2 µm thickness as mentioned above. The results are displayed in Figure 3b
and in Table 1. The stepwise increase in permeability is definitely maintained, possibly with some
differences due to the order, i.e., feed or permeate side first. The relative increases are now ~40%
(HTA feed/growth) followed by 70–30% (HTA permeate/substrate) with increasing temperature, to
eventually reach similar permeances values as for the main HTA sequence. Conclusions with respect
to order are, however, complicated by the variation in values obtained for the hydrogen stabilization
as discussed above.

Table 1. Permeability measured at 300 ◦C after before, between and after each of the three steps in the
main HTA membrane side sequences for the 2.2 µm thick membranes.

T (◦C)

Permeability 108 (mol·m·m−2·s−1·Pa−0.5)

Main HTA Sequence HTA2 Sequence

Before Feed Perm Both Before Feed Perm Both

300 1.1 1.3 2.1 2.0 0.9 1.3 2.2 2.1
350 1.2 1.5 2.3 2.3 1.1 1.6 2.4 2.3
400 1.5 1.8 2.5 2.5 1.5 2.1 2.7 2.7

The dissociative adsorption of hydrogen over palladium surface atoms is practically
non-activated [47]. It is thus difficult to ascribe the observed permeation increase on the feed side for either
of the sequences in terms of adsorption properties only. Moreover, the hydrogen-stabilization as well as
the HTA should have promoted Pd termination of the surface over Ag, but (temperature dependent)
coverage effects may complicate the segregation behavior [48]. Nevertheless, the subsurface structure
and elemental distribution may also be affected by the treatment and play a role in the transfer from
the surface to the bulk and may affect both sides.

After exposure to air of both sides of the membranes, the permeability approaches a value
of 2.1 ± 0.1 × 10−8·mol·s−1·m−2·Pa−0.5 at 300 ◦C, as shown by Table 1 as well as the values for
the 4.7 µm thickness (not shown). This is comparable to previous values reported in literature for
similar membranes [10], for which the HTA also seems to partially diminish the variations between
samples from different wafers or fabrication batches that is observed during the initial stabilization
under hydrogen. The oxidation-reduction cycle may hence induce a higher degree of structural
and compositional uniformity. The flux increase after HTA of both sides of the thinnest membrane
corresponds to a doubling of the permeability, also in accordance with what has been previously
reported in literature [10,13,14,16], although a comparison of permeabilities based on n equal to 0.5
is not valid in the strictest sense. The final permeability value at 300 ◦C is, however, higher than the
value of 1.5 × 10−8·mol·m·m−2·s−1·Pa−0.5 at 300 ◦C expected for bulk-limited transport reported in
literature [5]. This could be related to differences in grain structure/density [29], grain orientation
(the sputtered PdAg films contain predominantly grains oriented along <111> parallel/normal to the
surface [49]), as well as purity, but requires further investigation.

3.2. Hydrogen Solubility and Diffusivity

In addition to hydrogen permeation experiments before and after the three-step heat treatment
procedure, hydrogen sorption measurements were carried out to investigate possible variation caused
by the HTA. The hydrogen solubility values were obtained before and after heat treatment in air of
both sides simultaneously for 2.2 µm and 8.5 µm membranes, and the Sieverts’ constants are reported
in Table 2.
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Table 2. Sieverts’ constant measured at different temperature for 2.2 µm and 8.5 µm thick membranes
before and after heat treatment in air.

Sample Thickness (µm) Temperature (◦C)
Sieverts’ Constant (µmol/g·Pa0.5)

Before HTA After HTA

8.5
300 0.77 0.79
350 0.53 0.63
400 0.44 0.45

2.2
300 0.82 0.81
350 0.57 0.60
400 0.47 0.47

Solubility decreases with increasing temperature, as expected [3,50–54]. Moreover, the solubility
increases as the thickness decreases as we have recently reported [29]. These thickness dependent
changes in solubility were related to differences in the grain structure of the sputtered Pd-Ag films.
After HTA of both sides, the values of Sieverts’ constant remain basically unaffected for 300 and 400 ◦C.
There is, however, some increase for the values at 350 ◦C, especially for the 8.5 µm. We are unsure
whether this discrepancy can be considered an experimental error, but the data are not sufficient to
conclude on significant HTA-induced changes in solubility. Previous results for a 25 µm cold-worked
Pd-Ag25 wt.% indicated no change in hydrogen solubility after heat treatment in air [17,18].

Hydrogen diffusivities calculated based on reaction (1) for the 2.2 µm and 8.5 µm thick membranes
before and after HTA are shown in Figure 4 as a function of inverse temperature. Estimated values
for the pre-exponential factor (D0) and activation energy (Ea) using Equation (2) are listed in Table 3.
There are no significant changes found in diffusivity for the 8.5 µm membrane as both the permeability
(Table 2) and solubility (Table 3) are constant before and after HTA. The solubility value obtained
after HTA at 350 ◦C has been omitted from the fit in Figure 4, but the values remain if it is taken
in. The apparent activation energy of 20 kJ/mol (before and after HTA) is comparable to results
obtained for Pd-Ag with bulk-limited kinetics. Völkl and Alefeld collected data for the diffusion
coefficient of hydrogen in Pd from 25 authors and estimated a mean value of Ea ~22.4 kJ/mol and D0

~2.9 × 10−7 m2/s [55]. Moreover, Holleck calculated for a Pd80%Ag20% (0.08–0.20 cm thick) membrane
values of Ea of ~22.3 ± 0.4 kJ/mol and D0 ~(2.33 ± 0.2) × 10−7 m2/s [56]. This suggests that HTA does
not change the hydrogen transport mechanism for thick sputtered Pd77%Ag23% membranes.

Figure 4. Arrhenius plot of the diffusivity for 2.2 µm and 8.5 µm thick membranes before and after HTA
of both sides for the temperature range 300–400 ◦C. The diffusivity scale is presented in logarithmic
form and the dotted lines are linear fits.
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Table 3. Estimated values of the pre-exponential factor (D0) and of the activation energy (Ea) for 2.2 µm
and 8.5 µm thick membranes before and after the main HTA sequence.

Sample Thickness (µm)
Before HTA After HTA

D0 (m2/s) Ea (kJ/mol) D0 (m2/s) Ea (kJ/mol)

2.2 4.9 × 10−7 29 3.6 × 10−7 24
8.5 1.5 × 10−7 20 1.7 × 10−7 20

In the case of the 2.2 µm thick membrane, the permeability enhancement must be attributed
to an apparent increase in the diffusivity since the solubility seems to remain constant. Both the
pre-exponential factor and the activation energy changes after HTA: Ea decreases from 29 kJ/mol
before HTA to 24 kJ/mol after HTA on both sides, and similar values were obtained for the opposite
order of stepwise air-treatment (HTA2). Since Ea exceeds the values reported for thicker membranes in
literature [56], this supports the idea that surface phenomena are rate-limiting before HTA. However,
if the enhanced kinetics of hydrogen transport upon heat treatment in air is associated with a transition
from surface to bulk limited transport, there should be a change in the n-value that essentially
complicates the comparison by fitting. However, comprehensive analysis to extract n-values also
requires a larger pressure range that what could been applied here [11,35]. Nevertheless, the activation
energies associated with (associative) desorption should be generally higher than those for diffusion,
but may depend on the surface composition (Pd/Ag) as well as the coverage as discussed in [29].

3.3. Surface Topography

AFM was used in order analyze how the hydrogen stabilization and HTA procedure affects the
surface topography of the different membranes. Figures 5 and 6 show representative AFM images of
2.2 µm and 8.5 µm thick as-grown, hydrogen-stabilized, and air-treated membranes. The corresponding
roughness values of all the measured membranes are reported in Table 4. The feed/growth
side of as-grown samples shows an increase in the surface roughness as the thickness increases.
The corresponding permeate/substrate side is very smooth (0.2–0.4 nm) with some variation in surface
roughness between the different samples and thicknesses analyzed. This is in accordance with previous
results for similar, sputtered membranes [10,29], and reflects the nature of the nucleation and growth
phenomena involved during sputtering. A relatively high density of nuclei seem to form on the
substrate, and then growth proceeds by continuing some grains while others are terminated [19].

Table 4. Surface roughness for as-grown membranes, after hydrogen stabilization and HTA with
subsequent hydrogen stabilization obtained from AFM imaging analysis for both the growth/feed
and substrate/permeate side. The analyzed areas are based on (5 × 5) µm2 images except for the
substrate/permeate side as-grown membranes where images with an area of (1 × 1) µm2 are used.

Membrane
Thickness

(µm)

Roughness (nm)

As-Grown Hydrogen Stabilization HTA

Growth/
Feed

Substrate/
Permeate

Growth/
Feed

Substrate/
Permeate

Growth/
Feed

Substrate/
Permeate

2.2 8.4 ± 0.3 0.29 ± 0.02 13.8 ± 0.8 12.3 ± 0.6 20.3 ± 1.3 11.6 ± 0.6
4.7 10.7 ± 0.6 0.19 ± 0.01 18.2 ± 0.7 5.0 ± 0.4 24.6 ± 1.6 9.0 ± 0.2
6.9 11.8 ± 1.6 0.38 ± 0.04 12.0 ± 0.7 3.8 ± 0.6 - -
8.5 10.2 ± 0.6 0.40 ± 0.03 24.0 ± 1.2 1.0 ± 0.07 26.9 ± 2.8 14.3 ± 0.6

11.2 13.2 ± 2.3 0.21 ± 0.01 20.2 ± 1.5 1.5 ± 0.3 - -
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Upon hydrogen permeation, the feed side surface roughness is found to increase moderately,
while the effect of H2 stabilization on the permeate side is found to be strongly thickness dependent.
Hydrogen exposure/permeation has already been reported to increase the surface roughness of
1.3 µm sputtered Pd-Ag films [10]. For thick membranes (≥8.5 µm), hydrogen exposure causes only
small changes to the surface structure. The permeate side becomes more roughened as the thickness
decreases and the surface roughness of the 2.2 µm membrane becomes comparable for the two opposite
sides. The reason behind this trend is not known, and it has—to our knowledge—not been reported
before. The thickness dependent surface roughening on the permeate side under hydrogen permeation
may possibly be connected to the fact that thinner membranes experience higher hydrogen flux than
thicker membranes. In general, substantial roughening is associated with grain growth [19,29] and the
higher hydrogen flux should hence facilitate restructuring and grain growth.

Figure 5. AFM images of the 2.2 µm thick membrane for the feed/growth side (left panel) and
permeate/substrate side (right panel) for (a) as-grown; (b) hydrogen stabilized; and (c) HTA-subjected
samples. Image areas: (a) right: 1 × 1 µm2; rest: 5 × 5 µm2.
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Figure 6. AFM images of the 8.5 µm thick membrane for the feed/growth side (left panel) and
permeated/substrate side (right panel) for (a) as-grown; (b) hydrogen stabilized; and (c) HTA-subjected
samples. Image areas: (a) right and (b) right: 1 × 1 µm2; rest: 5 × 5 µm2.

After the HTA procedure and subsequent hydrogen stabilization the surface topology undergoes
further changes, depending on thickness. For the thickest (8.5 µm) membrane analyzed, the roughness
of the feed side is mainly enhanced upon exposure to hydrogen while the HTA procedure has only
minor effect (Figure 5). The permeate side, on the other hand, is strongly roughened after HTA. The feed
side of the 4.7 µm thick membrane, already roughened during the hydrogen stabilization step, has yet
another increase in roughness once oxidized. A similar behavior is also observed for the permeate side.
Heat treatment in air contributes to a strong additional increase in surface roughness of feed side for
the 2.2 µm membrane (Figure 4, Table 2). The permeate side roughness, instead, is enhanced only after
hydrogen exposure to around 12 nm, and no further increase after HTA is observed.

Eventually, upon HTA the roughness values end up in the range of 20–30 nm on the growth/feed
side and 9–15 nm on the substrate/permeate side, irrespective of the thickness dependent differences
existing due to the growth process or developing during H2 stabilization only. This is in agreement
with several other investigations [10,13,14,17,22,23], reporting that the heat treatment in air helps the
overall surface roughening process, thus creating new active sites and an increase of surface area.
However, the roughening occurs also during hydrogen permeation—in particular for the thinner
membranes—without observing an associated strong increase in flux. The permeation enhancement
effect of the heat treatment in air can therefore not be fully attributed to an increase in surface
area [14,19,57].
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4. Conclusions

A three-step heat treatment in air has been performed on sputtered Pd77%Ag23% membranes
with thickness ranging from 2.2 µm to 8.5 µm. The HTA is found to increase hydrogen permeability
after each of the steps and to have a larger effect as the membrane thickness decreases. Air oxidation
has no apparent effect on the hydrogen solubility, implying that enhancement in permeability may be
related to an increase in diffusivity for thinner membranes (≤5 µm). The data also suggest that bulk
diffusion is the rate-limiting step for transport after HTA for all membranes, while surface phenomena
are rate-limiting for thinner membranes prior thermal air treatment. Moreover, AFM studies reveal that
the HTA increases the surface roughness of the membranes. However, significant surface roughening
is already experienced upon stabilization under hydrogen, in particular for the thinner membranes,
indicating that increase in permeability is not only attributable to increased surface area.
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