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Abstract—When operating an autonomous surface vessel
(ASV) in a marine environment it is vital that the vessel is
equipped with a collision avoidance (COLAV) system. This system
must be able to predict the trajectories of other vessels in order
to avoid them. The increasingly available automatic identification
system (AIS) data can be used for this task. In this paper, we
present a data-driven approach to predict vessel positions 5-15
minutes into the future using AIS data. The predictions are given
as Gaussian Mixture Models (GMMs), thus the predictions give a
measure of uncertainty and can handle multimodality. A nearest
neighbor algorithm is applied on two different data structures.
Tests to determine the accuracy and covariance consistency of
both structures are performed on real data.

I. INTRODUCTION

In order for an autonomous surface vessel (ASV) to
operate safely it is essential that it is equipped with a robust
collision avoidance (COLAV) system. A major component of
this system is the prediction of the future positions of other
vessels. A simple solution to this problem is to assume that
nearby vessels will continue with constant velocity. However,
such predictions might not be sufficient for longer prediction
horizons. In recent years automatic identification system
(AIS) data has become more available and has been used to
improve the trajectory predictions of vessels.

In previous work, vessel trajectories have been predicted
by describing a vessel’s velocity using a Ornstein-Uhlenbeck
(OU) stochastic process. This was shown to give better results
than to assume a near constant velocity [1].

Another approach for vessel movement prediction is to
cluster trajectories based on historical AIS data and then assign
an object’s initial state to one of these clusters [2], [3], [4].
This approach can typically be divided into four sequential
steps:

1) Cluster trajectories based on historical data.
2) Classify a new object to one of the clusters found in

step 1.
3) Generate a representative trajectory for each cluster.
4) Predict the movement of the object along the representa-

tive trajectory found in step 3.

The trajectory clustering (TRACLUS) algorithm presented
in [5] is widely used for trajectory clustering. This algorithm
uses density based clustering to detect trajectories. The
algorithm partitions trajectories into smaller line segments
and then clusters these line segments. The algorithm is further
improved in [6] where it is made less sensitive to its decision
parameters.

As opposed to TRACLUS, the traffic route extraction for
anomaly detection (TREAD) algorithm [2] was specifically
designed for AIS data predictions. This algorithm defines
waypoints that later are clustered instead of clustering
trajectories directly. The waypoints are defined when a vessel
enters or exits a pre-defined bounding box with minimal
movement, as well as when it stays within the box for a
certain amount of time. The algorithm is principally developed
to detect low-likelihood anomalies that deviate from the main
trajectories.

Clustering based methods like TRACLUS and TREAD, as
well as the OU method from [1], were developed for much
larger prediction horizons than what is of interest in a COLAV
system. In addition, the OU method requires the estimation
of process parameters, which may not be straightforward.
Therefore, a radically different and more data-driven approach
was proposed in [7]. The key concept in this approach was a
single point neighbor search (SPNS). Given an AIS message,
the SPNS algorithm considers historical messages within a
given radius, called close neighbors, to predict a course and
speed of the vessel. Historical messages with courses that
deviate by a certain amount from the vessel’s course are
discarded in order to avoid influence from opposite moving
vessels in the predictions. What remains are messages that
have a similar position and course as that of the vessel.
The median course and speed of these close neighbors are
calculated and used as a predicted course and speed of
the vessel. The predicted course and speed is then used to
calculate the future position by a given step length parameter.
The same process is then applied on the newly predicted state
and this is then repeated until a trajectory of desired length



is produced. The output of the SPNS algorithm is an array of
waypoints with equal distances between the positions of any
two subsequent messages.

The inability to estimate prediction uncertainty and the
inability to handle branching of sea lanes are two of the
SPNS algorithm’s main shortcomings. The neighbor course
distribution method (NCDM) was developed in the MSc
thesis [8] to account for this. Whereas the output from
the SPNS can be seen as a list of states which forms a
single trajectory, the output from NCDM is a tree of states
which forms several trajectories. Each individual trajectory is
calculated in a similar manner as in the SPNS. The same set
of close neighbors are used to predict the vessel’s course and
speed at each predicted position. However, while the SPNS
predict the course and speed as the median course and speed
of the closest neighbors, the NCDM samples course from the
distribution of the neighbors’ courses. The NCDM is thus
able to predict trajectories in several branched sea lanes and
it possess the ability to indicate an uncertainty measure of
the predictions.

This paper builds upon the work done in [7] and [8]. We
extend the NCDM by introducing a Gaussian Mixture Model
(GMM) to represent the position of a vessel. The NCDM
is implemented using both the original data structure that
was used in [8] and a new data structure proposed in this
paper, and the two implementations are tested on real AIS data.

The outline of this paper is as follows: Section II introduces
the NCDM using both data structures. In Section III the
methods are tested on a comprehensive set of AIS data from
Trondheimsfjorden, Norway. Lastly, conclusions and sugges-
tions for further work are given in Section IV and Section V.

II. NEIGHBOR COURSE DISTRIBUTION METHOD

This section describes the NCDM introduced in [8]. First
the prediction tree is explained. Then the two different data
structures are introduced: the AIS message structure from [8]
and a new structure which utilizes the recent past trajectory
of the vessel.

A. Prediction tree

The NCDM takes an initial state X1 of a ship as input.
This initial state is the root node of the prediction tree, where
each node represents a predicted state X̂k,j . The tree has a
depth index k and a width index j. Nk,j gives the number of
child nodes for node (k, j), while Jk is the number of nodes at
level k. In this paper we choose the number of children for the
root node to be N1,1 = Jmax, while the number of children
at all other levels are set to one. In other words the tree has
Jmax branches which all originate in its root node. A predicted
position p̂k,j is calculated from a random sample at every node
in the tree. The method for obtaining the predicted position
varies depending on the data structure used. The prediction

Fig. 1: Prediction tree structure. N1,1 = Jmax, otherwise
Nk,j = 1.

tree is illustrated in Figure 1.

Algorithm 1 Neighbor Course Distribution Method

1: Input parameters:
• X1 . Initial state
• Nk,j . Number of child nodes from node (k,j)
• K . Total number of tree levels

2: Set X̂1,1 = X1

3: for k = 1 to K − 1 do
4: q = 0 . Indexing variable at level k
5: for j = 1 to Jk do
6: Find close neighbors
7: for Nk,j iterations do
8: q = q + 1
9: Obtain random sample

10: Calculate the next position
11: Update X̂k+1,q based on the latest prediction
12: end for
13: end for
14: end for

B. Old data structure

The first structure, referred to as XA, is used in [7] and [8].
It consists of a list of AIS messages:

XA =
[
X1 X2 ... Xn

]T
, (1)

where each message is given as

Xi =
[
MMSIi ti pi χi vi

]
, (2)

where MMSIi, ti, pi, χi and vi are the unique vessel
identification number, time stamp, position vector, course over



ground (COG) and speed over ground (SOG), respectively.
The position vector can be written as pi =

[
λi φi

]
where

λi and φi are the longitude and latitude in the WGS84
coordinate system.

The set of close neighbors (CNs) at step (k, j) is defined
as

Ck,j = {Xi| d(p̂k,j ,pi) ≤ rc, χi ∈ I,Xi ∈ X}, (3)

where d(p̂k,j ,pi) is the Euclidean distance between the pre-
dicted position and a position in the dataset calculated with
the Haversine formula [9]. Further, rc is the search radius and
I is the interval of accepted course angles given by

I =
[
χk,j −∆χ, χk,j + ∆χ

]
, (4)

where ∆χ > 0 is the maximum course angle deviation. In
other words a state is considered a close neighbor to the
predicted state if its position is within a radius rc from the
predicted position and if its course is within ∆χ of the last
predicted course.

A random sample is drawn from the CNs and the predicted
course and speed are obtained from this sample. These values
are used to update the state X̂k+1,q . The position of the next
state is given by:

p̂k+1,q = p̂k,j + ∆l
[
sin(χ̂k,j) cos(χ̂k,j)

]
, (5)

where p̂k,j is the ship’s predicted position at node (k, j), χ̂k,j

is the predicted course at node (k, j) and ∆l is the fixed
step parameter. The time stamp is updated using the following
equation:

t̂k+1,q = t̂k,j +
∆l

v̂k,j
. (6)

This means that the new state is given as

X̂k+1,q =
[
MMSIi t̂k+1,q p̂k+1,q χ̂k,j v̂k,j

]
, (7)

where χ̂k,j and v̂k,j are the randomly drawn course and
speed respectively.

C. New data structure

The second structure, referred to as XB , structures the data
as a list of sub-trajectories. A sub-trajectory S consists of n
points

S =
[
p1 p2 · · · pn

]
, (8)

where p is a point given by longitude and latitude. There is
an equal amount of time elapsed between any two subsequent
points. These points are found using cubic spline interpolation
on the points given in the AIS messages. A trajectory is given
by:

T =
[
S1 S2 · · · SM

]T
, (9)

and the entire dataset is given by a list of trajectories:

XB =
[
T1 T2 · · · TN

]T
. (10)

Fig. 2: An example of a short trajectory represented with both
data structures: The blue dots represents the ship’s positions as
given in the original AIS data. The red dots are the new data
points obtained using interpolation. Here the sub-trajectories
consist of n = 3 points.

A comparison between the old and the new structure can
be seen in Figure 2. Reformatting the dataset from the
original structure XA to the new structure XB involves three
main steps:

1) Find trajectories from the original dataset: Points that
belong to the same MMSI number and have less than 15
minutes between two subsequent points are considered as
part of the same trajectory. The time limit makes sure that
trajectories from vessels which leave and later enter the
dataset window or which stay in port for a long time, are
split into separate trajectories

2) Interpolate trajectories to get new data points: Cubic
spline interpolation is used to extract new data points at a
specified time interval. The new data points now form a new
trajectory.

3) Create sub-trajectories of n points: The first sub-
trajectory consists of the first n points of the new data points.
This is the first row of the data structure. The next row is a
new sub-trajectory shifted one point forward, thus creating a
structure of partly overlapping sub-trajectories. This continues
until the end of the trajectory. With this method a trajectory
of k points will result in k−n+1 sub-trajectories of n points.

Sub-trajectories can be seen as 2 × n dimensional points,
where n is the number of points of the sub-trajectories
in XB . The distance between sub-trajectories is thus the
Euclidean distance between these points. Close neighbors are
found as in (3) where d(p̂k,j ,pi) now is replaced by the
distance between the two sub-trajectories. A key difference
now is that the course tolerance parameter ∆χ is no longer
needed. Instead of choosing an arbitrary parameter for
accepted courses, sub-trajectories with similar courses to
the initial state are selected because these sub-trajectories
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Fig. 3: The sub-trajectory shown in red is a close neighbor
of X1 if the Euclidean distance between

[
p̂k−1 p̂k

]
and[

pn−2 pn−1

]
is less than rc. The location of p̂k+1 is

determined by adding v to p̂k.

are closer to the initial state. Two nearby sub-trajectories
that point in opposite directions will still have a large
distance between each other while two sub-trajectories
that point in roughly the same direction will have a small
distance between each other. Sub-trajectories with similar
courses will thus be considered close neighbors. The step
length parameter ∆l is also no longer needed as predictions
are made with fixed time steps as defined by the data structure.

The input in this case is a sub-trajectory of n − 1 points
where the last point will be the first of the predicted trajectory.
This state is compared to the n − 1 first columns of XB

to find close neighbors. A random sample (a sub-trajectory
from XB) is drawn from the CNs. From this sub-trajectory a
vector v = pn−pn−1 is obtained. As shown in Figure 3, this
vector is added to p̂k,j to obtain p̂k+1,q . The state, which is
a sub-trajectory, is updated by removing the first point from
the sub-trajectory and adding the newly calculated one at its
end.

An advantage with the new data structure is that vessels
with similar speeds are more likely to be considered close
neighbors. This is because sub-trajectories of points are
compared instead of just single points. Intuitively, sub-
trajectories of similar length will be considered closer than
sub-trajectories of different length.

D. Gaussian mixture representation

For both structures the predicted future position of a vessel
is given by a number of Jmax points taken from the desired
level of the prediction tree. A GMM is then fitted to these
points to give a probabilistic model of the future position. This
is done using the Expectation Maximization (EM) algorithm
which will fit the maximum likelihood GMM for the given
points. The number of components used are increased until the
means of two components are less than a pre-specified distance
apart, then one less component is used. It is also possible
to consider a model selection criterion such as AIC [10] or
BIC [11] instead of looking at the distance between the means,
but in the context of vessel trajectories we are mostly interested

in a multimodal distribution to enable predictions in branching
sea lanes.

III. TESTS AND RESULTS

The NCDM is tested on AIS data gathered during 2015 in
Trondheimsfjorden, Norway.

A. Test setup

The dataset is initially divided into a training set, from
where the and a test set. The first 90% of the data points are
used as training data, while the remaining 10% are used for
tests. Both structures are tested to predict vessel positions
5, 10 and 15 minutes into the future from an initial state.
We use the same prediction tree as described in Section II-A
with Jmax = 200, i.e., the tree has 200 branches which all
originate in its root node. All tests were done on N = 400
initial states randomly sampled from the test set without
replacement. The close neighbors of this sample are obtained
from the training set. A test of a given method for a given
time horizon on N initial states will from here be referred to
as a ’test’ while a test of a single initial state will be referred
to as an ’individual test’.

The initial states and their corresponding trajectories must
fulfill one requirement: The time at the end of the trajectory
minus the time of the initial state must be larger or equal to
the test time. This ensures that there is a true position in the
test trajectory that the prediction can be compared against.

An individual test will be discarded if more than 25% of
the predicted positions at the desired level of the prediction
tree are identical. This is an indication that there is not
enough data in the area of the initial state for the algorithm
to make any reasonable predictions, and it is also difficult to
fit a GMM to the points in this case.

Table I shows the decision parameters used for the test of
the NCDM using data structure XA. The trajectories produced
using this structure have a fixed step length between subse-
quent states and each state has a predicted time stamp. Most
likely they will not have time stamps equal to the test time (5,
10 or 15 minutes). It is therefore necessary to interpolate the
trajectories to obtain a position at the desired time.

TABLE I: Decision parameters for NCDM with XA

Decision parameter Value Description

rc 100m Search radius for CNs
∆l 100m Prediction step length
∆χ 35◦ Maximum course deviation for CNs

Data structure XB was tested using the decision parameters
in Table II. The search radius rc is set to the same as for the
first data structure. Parameters n and t are chosen when gen-
erating XB as described in Section II-C. The choices of n and
t are somewhat arbitrary. The minimum value for n is three
and was chosen for simplicity. Higher values of n were tried



with no visible improvement, but this has not been extensively
tested. The average SOG for the messages in the dataset is
roughly 5.4m/s. If similar step length as with XA was to be
chosen the time step would be t = (100/5.4)s ≈ 18.5s. This
was tried, but with such small sub-trajectories it was found
that sub-trajectories pointing in opposite directions often were
considered close neighbors. Therefore, t was increased to 60
seconds.

TABLE II: Decision parameters for NCDM with XB

Decision parameter Value Description

rc 100m Search radius for CNs
n 3 Number of points in each sub-trajectory
t 60s Time between each point

B. Performance measures

Two performance measures are used to determine the
quality of a set of predictions: the root mean square error
(RMSE) and a generalized concept of filter consistency, also
sometimes referred to as credibility.

The RMSE is used to measure the accuracy of a prediction.
The lower the RMSE, the better is the prediction. We define
the RMSE as

RMSE =

√∑Jmax

i=1 ‖p− p̂i‖2
Jmax

, (11)

where p is the true position, p̂i is the predicted position at
iteration i and Jmax is the number of individual predictions
as defined in Section II-A. This measure gives an idea of
how close the mean of the predictions is to the true value.
The RMSE is generally not very well suited for multimodal
distributions. The mean of a multimodal distribution might
be in an empty area between components. This is, however,
a rare scenario.

The second performance measure is used to determine if the
GMM produced is consistent. Filter consistency is colloquially
explained as follows in [12]: The estimation error should have
magnitude commensurate with the corresponding covariance
that is yielded by the estimator. In order to deal with multi-
modality, consistency of the prediction methods is measured
using the same method as in [13]. First, the Probability Density
Function (PDF) value as given by the GMM for the true
position is noted for each individual test. This value, called
f , is then compared to the maximum value of the same PDF,
called fmax. The ratio f/fmax ∈ [0, 1] thus serves as a quality
measure where a single prediction is better the closer the ratio
is to one. The distribution of f/fmax for N predictions will
then give an idea of the consistency. The values f and fmax

are illustrated in Figure 4.

C. Results

The median values of the RMSE of all the methods for each
test time is given in Table III. The same information is plotted

-1 -0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

f
max

    

f    

Fig. 4: Performance measure illustrated using one-dimensional
data. The true value is x = 0.1. In this case f/fmax ≈
0.57/0.8 ≈ 0.71.

in Figure 5. As can be seen, the accuracy of the NCDM is
roughly the same using both data structures. It can seem as if
XB has a slight advantage for short prediction horizons while
XA is more accurate for longer horizons. However, the sample
size might be too small to draw any definitive conclusions.

TABLE III: Median RMSE for each test time

NCDM with XA NCDM with XB

5 min 282m 269m
10 min 509m 537m
15 min 661m 758m
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Fig. 5: Median RMSE over time

The natural logarithms of the f/fmax ratios are displayed
in Figure 6 in order to investigate the consistency. The
far-right box plots are values sampled from a Gaussian
distribution (also shown in Figure 6d). This plot should
therefore exhibit ideal consistency properties and will serve
as a comparison for the box plots to the left. A consistent
prediction method would have a box plot similar to the one
from the Gaussian distribution.
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Fig. 6: Box plot of the PDF-ratios

The consistency behavior deteriorates as the test time in-
creases across all methods (notice the change of y-axis). It can
be seen that NCDM using XB over XA results in a significant
improvement in the consistency. However, compared to the
Gaussian it is evident that the consistency properties of XB

still remains far from ideal.
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Fig. 7: The blue dots are reported ship positions from the AIS
dataset. The red dots indicate the true trajectory of a ship with
the triangle representing the initial position and the cross the
true position at the time the position is predicted. The orange
dots are predicted positions and the orange lines correspond
to the 1, 2 and 3 standard deviation equi-probability contours
of the GMM fitted to them. The axis are in meters.

Figure 7 shows plots where the true trajectories of vessels
are compared to their predicted positions produced by the
NCDM. They are not intended to show a representative
selection of predictions or to give a comparison of the two
structures, but are chosen to highlight the strengths and



weaknesses of the NCDM in general.

Figure 7a and Figure 7b show two typical outcomes where
relatively accurate predictions are made. Figure 7c and Fig-
ure 7d show cases where the algorithm has produced multi-
modal predictions, Figure 7c in particular gives a good exam-
ple of how the algorithm is able to handle branching. However,
Figure 7e shows an example where the algorithm fails to
produce a component for the less traveled lane. Figure 7f,
Figure 7g and Figure 7h show predictions made in areas with
sparse data density. The first produces a good prediction, while
the last two highlight a major weakness of the algorithm. In
areas with sparse data density it often makes overconfident
and inaccurate predictions. The plots also show that there is
usually more uncertainty in the speed prediction than in the
prediction of the course (best illustrated in Figure 7a). The
same conclusion was also reached in [8].

IV. CONCLUSION

The NCDM is able to give a probabilistic position prediction
of vessels. The predicted position distribution can be multi-
modal and the algorithm is thus able to handle branching. A
new data structure was developed to use data from the recent
trajectories of vessels in the predictions. The accuracy of the
predictions produced using the NCDM with the new structure
are similar to the ones using the old structure. However,
the uncertainty evaluations of the predictions are significantly
more reliable with the new structure. There is still a clear
potential for improvements in consistency, although it should
be noted that the algorithm is intended to be used in a highly
proactive manner, i.e., only for suggesting how other ships
possibly may move 5-15 minutes into the future. This may
relax the requirements to consistency somewhat and future
research is needed to determine what is acceptable.

V. SUGGESTIONS FOR FUTURE WORK

The performance of the NCDM in areas with low data
density has to be improved. A way of compensating for
the lack of data may be to include the possibility that the
vessel moves straight ahead with constant speed in such areas.
Furthermore, the current method for determining the number
of components for the EM algorithm is not ideal and may be
improved by using automatic model selection [14]. The next
step is to then assess the suitability of the NCDM as part
of a COLAV system [15]. Another approach for trajectory
prediction using Guassian Process Regression can also be
investigated.
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