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Abstract— Production of gas condensate from small and
remote gas condensate fields require cost-efficient boosting tech-
nology for maintaining an economically satisfactory through-
put. Wet gas compressors are a new boosting technology
enabling boosting of gases containing up to 5% liquid per
volume, removing the need for pre/bulk separation, resulting in
lower investment and maintenance costs. However, introduction
of liquid significantly changes the compression performance
from that of dry gas compression, including the process gain
and the normal operating region, resulting in a challenging
modelling and control problem. Therefore, in this paper, we
extend the commonly applied dynamic model of Greitzer for
dry gas compression with one additional state and extended
polynomial approximation of the compressor characteristic.
A nonlinear process control algorithm, using the angular
velocity as input, is derived by applying backstepping, and
local asymptotic stability proven via Lyapunov analysis. The
control performance is studied in different simulations with
and without saturation on the control input. The steady-state
performance of the dynamic model is quantitatively validated
against experimental data.

I. INTRODUCTION

Today, most of the large oil and gas discoveries in the
North Sea have been developed and attention is now on
smaller and more remote gas condensate fields. Development
and production of these fields require cost-efficient boosting
technologies and operation to achieve a sufficiently high
throughput at affordable operating costs. The throughput
from a producing well increases with increasing pressure
difference between the well head pressure and the pressure
at the receiving end (back pressure). For small fields, subsea
wet gas compression is a cost-efficient boosting technology
for increasing the well head pressure and thereby the well
throughput to maintain an economically sufficient throughput
capable of compressing gases containing up to 5% liquid per
volume [1], [2], [3].

The fundamental principle of a subsea compression system
is the same as that of an equivalent topside compression
system, where the main difference is that a subsea compres-
sion system is designed to withstand the harsh conditions at
the seabed, e.g., higher ambient pressure, corrosion, erosion,
etc. [2]. Thus, results presented here can be useful for both
subsea and topside facilities.

The two types of compressors most useful for gas pro-
cessing are the axial and the centrifugal compressors, where
the centrifugal compressor is dominant because of its high
robustness and capacity [2]. The centrifugal compressor
casing consists of an inducer section leading the fluid into a
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Fig. 1. A sketch of a dry gas compressor map showing the pressure
ratio increase over the compressor as a function of constant rotational speed
(angular velocity) including the surge line, surge control line and choke line.

rotating impeller section connected to a shaft which increases
the fluid velocity. The high velocity fluid leaving the impeller
enters a diffuser section which decelerates the fluid resulting
in an increase in fluid static pressure. The volute section is
the last part of the centrifugal compressor casing and collects
the decelerated fluid leaving the diffuser, leading the fluid
to an exit plenum volume of much larger diameter that is
equipped with a throttle [4].

The compressor performance is described by a set of
curves showing the pressure rise as a function of mass
flow for constant rotational speed, known as the compressor
characteristic or compressor map. The compressor map is
created based on measured sample points from experiments
on a specific compressor. The normal operating region of the
compressor map is limited by surge at lower mass flows and
by choke at higher mass flows. Surge is defined as an unstable
state of the compressor to the left of the stability boundary in
the compressor map called the surge line (SL), while choke is
defined as a state of the compressor at maximum mass flow.

Wet gas compression is a relatively new research area,
but experiments by [5], [6] show that the compressor perfor-
mance is significantly influenced by the presence of liquid.
Typically, the losses increase with increasing mass flows and
liquid content, resulting in reduced pressure rise for high
mass flows and thereby reduced maximum capacity com-
pared to dry gas compression. However, for low mass flows,
increasing liquid content contributes to delayed instability
onset as the liquid reduces the available flow area for the
wet gas compression, effectively adapting the compressor for
lower mass flows resulting in an increased stability region.

Dynamic modelling and control of dry gas compressors
are a huge and well explored field in the literature and



[7] provides an excellent overview. In regards to modelling
and relevant for this paper, we emphasize the models of
Greitzer [4] and Gravdahl and Egeland [8]. The first model
describes a compression system using a set of Ordinary
Differential Equations (ODEs) for describing the dynamics
and an empirical 3rd order polynomial for describing the
ideal pressure rise. The second model applies the same ODEs
for describing the dynamics, but replaces the polynomial with
an expression derived from first principles.

The most important control objective is handling surge
of which there are two main strategies: active surge control
(ASC) and surge avoidance (SA). Surge avoidance or anti-
surge control algorithms are designed to keep the compressor
operating point within the normal operating region by intro-
ducing a surge control line (SCL), see Fig. 1, to the right
of the surge line and ensuring that the compressor operating
point is kept to the right of or at this line [7]. Since the
maximum pressure rise over the compressor is located at
the surge line, active surge control algorithms have been
designed to extend the normal operating region by stabilizing
the unstable surge region enabling operation at the surge
line [7]. A process control (PC) algorithm is only designed
for tracking of a reference value within the normal operating
region without any measures for handling or avoiding surge.

There exists a great variety of control methods for the
control of dry gas compressors, and these mainly differ in
which type of actuation and control algorithm that have been
applied. This research area is too extensive to provide a com-
plete overview in this article, and therefore, we only present
short overview as a starting point for the interested reader
• control strategy/objective:

– SA: [9], [10], [11], [12]
– ASC: [8], [13], [14], [15], [16]

• control algorithm
– linear: [9], [10], [12]
– nonlinear: [8], [11], [13], [14], [15], [16]
– MPC: [11], [12]

• control actuation/input:
– drive torque/rotational speed: [12], [14], [15], [16]
– throttle/recycle valve opening: [9], [10]
– closed-coupled valve opening: [8], [11], [13]

In [13] and [16], backstepping was used to design a nonlinear
surge avoidance control algorithm for a dry gas compressor.

The introduction of liquid significantly changes both the
compressor performance – including the process gain and
normal operating region – creating a challenging modelling
and control problem. To the authors’ knowledge, there exists
little to no research on dynamic modelling and control of
wet gas compressors. Therefore, in this paper, we extend
the dynamic dry gas compression model of Greitzer [4]
– including the corresponding compressor characteristic –
with an additional state. The compressor characteristic is
curve fitted to experimental data from [5]. This allows the
new dynamic model to capture wet gas dynamics while
maintaining a continuous transition to dry gas compression.
A nonlinear process control algorithm is derived based on
backstepping [17], assuming full-state feedback, and used to

Fig. 2. A sketch of the wet gas compression system.

control the dynamic model with and without saturation on
the control input. Local asymptotic stability is proven via a
Lyapunov analysis.

II. MATHEMATICAL MODEL

The compressor model, an extension of Greitzer’s [4]
dry gas model, is based on a simplified and idealized
compression system as shown in Fig. 2. The compression
system, which collectively represent the physical compressor,
consists of an idealized compressor in series with a duct
and a plenum volume connected with a throttle. The ideal
compressor describes the ideal pressure rise over the physical
compressor, while the duct describes the flow dynamics and
the plenum volume describes the compression dynamics in
the physical compressor. The ideal pressure rise can either
be modelled physically using a first principles approach or
empirically using a polynomial approximation approach [18].
We extend Greitzer’s [4] dry gas model with one additional
state describing the accumulation of liquid in the compressor,
based on first principles, and apply an extended empirical
polynomial approximation – including the inlet gas mass
fraction – describing the ideal wet gas pressure rise.

A. Modelling assumptions

In order to derive the dynamic wet gas compression model,
we need to make some simplifying assumptions. Similar to
[4] and [8], but with the extension of considering a two-
phase fluid with thermodynamic equilibrium between the
phases instead of a single-phase fluid, we consider a one-
dimensional two-phase fluid flow model where compress-
ibility effects are gathered in the plenum and flow effects
are gathered in the duct. According to [19], liquid will ac-
cumulate in the diffuser, resulting in an annular flow pattern
and a reduced diffuser cross-sectional where fluid velocity is
converted to static pressure. This observation was confirmed
in experiments in [5], where an annular flow pattern was
observed in the compressor, indicating separation of the flow
due to the strong centrifugal forces created by the rotation
of the impeller. To incorporate this wet gas effect in the
model, the modelling approach of [4] is followed by dividing
physical effects between different system components. Thus,
we consider a homogeneously mixed flow with no separation
effects in the duct and gather all separation effects in the
plenum, assuming perfect separation of the duct flow as the
fluid enters the plenum. The assumption of perfect separation



in the plenum allows for treating the gas and liquid in the
plenum separately and thus, the gas is assumed to behave like
an ideal gas. Lastly, similar to [4], losses are incorporated in
the compressor characteristic and the compression process in
the plenum is considered isentropic.

B. Dynamics

The polynomial approximation describing the ideal pres-
sure rise over the compressor gives the following expression
for the ideal compressor outlet pressure

p02 = Ψ(·)p1 , (1)

where p1 is the inlet pressure, p02 is the ideal compressor
outlet pressure, Ψ(·) is the compressor characteristic and the
dot represents several arguments that later will be introduced.

The duct mass flow is derived from the momentum balance
using (1) while considering an incompressible homoge-
neously mixed flow with no separation giving

d
dt
(
mhCh

)
= Ad∆p

⇓
d
dt

((
ρhAdLd

)( wh
ρhAd

))
= (Ψ(·)p1 − pp)Ad

⇓

ẇh =
dwh
dt

=
Ad
Ld

(Ψ(·)p1−pp), (2)

where mh is the homogeneously mixed mass in the duct, wh
is the homogeneously mixed mass flow rate, Ch is the homo-
geneously mixed absolute velocity, ρh, is the homogeneously
mixed density, pp is the plenum pressure, ∆p is the pressure
difference over the duct, Ad is the duct cross-sectional area
and Ld is the length of the duct.

As previously stated, the two-phase fluid immediately
separates into separate volumes of gas and liquid as it
enters the plenum. The accumulated volume of liquid reduces
the available volume for gas compression leading to faster
pressure dynamics and stricter requirements on control per-
formance. The accumulated liquid volume is derived from
the liquid mass balance in the plenum assuming constant
liquid density

dml

dt
= (1− β1)wh − (1− βp)wt
⇓

V̇l =
dVl
dt

=
1

ρl

(
(1− β1)wh − (1− βp)wt

)
, (3)

where ml is the liquid mass in plenum, Vl is the liquid
volume in the plenum, wt is the throttle mass flow, ρl is
the liquid density, β1 ∈ (0, 1] is the inlet gas mass fraction1

and βp ∈ (0, 1] is the plenum gas mass fraction given by

βp =
mg

mg +ml
, (4)

1Since there is no generation (evaporation of gas or condensation of
liquid) and no loss (condensation of gas or evaporation of liquid), the amount
of gas and liquid in the duct remains constant, resulting in a constant gas
mass fraction in the duct.

where mg is the gas mass in the plenum.

Applying the assumptions of thermodynamic equilibrium,
perfect separation in the plenum and ideal gas behaviour, the
amount of gas in the plenum is given by the ideal gas law as

mg =
pgMgVg
RTg

=
ppMg(Vp − Vl)

RT1
, (5)

where pg = pp is the gas pressure in the plenum equal to the
plenum pressure, Mg is the gas molar mass, Vg is the volume
of gas in the plenum, Vp is the plenum volume, R is the
ideal gas constant and Tg = T1 is the gas temperature in the
plenum equal to the homogeneous mixed fluid temperature
due to the thermodynamic equilibrium assumption.

The amount of liquid in the plenum is given by the
definition of density as

ml = ρlVl . (6)

An alternative expression for the plenum gas mass fraction
is obtained by substituting (5) and (6) into (4) giving

βp =
ppMg(Vp − Vl)

ppMg(Vp − Vl) + ρlRT1Vl
. (7)

The plenum pressure, representing the accumulated
amount of gas in the plenum, is derived from the gas mass
balance in the plenum assuming ideal gas behaviour with
perfect separation as

dmg

dt
= β1wh − βpwt
⇓

Vg
dρg
dt

+ρg
dVg
dt

= β1wh − βpwt
⇓

dρg
dt

=
1

Vp−Vl

(
β1wh−βpwt+ρg

dVl
dt

)
, (8)

where ρg is the gas density. For isentropic compression of
ideal gases, the following relation between gas density and
gas pressure holds [18]

dρg =
1

c2g
dpg =

1

c2g
dpp , (9)

where cg =
√
γRT1/Mg is the dry gas speed of sound and

γ is the specific dry gas heat capacity ratio. The plenum
pressure dynamics is obtained by substituting (3) and (9)
into (8) giving

ṗp =
dpp
dt

=
c2g

Vp − Vl

(
β1wh − βpwt

+
ppMg

RT1ρl

(
(1− β1)wh − (1− βp)wt

))
.

(10)

To complete the dynamic model, we need an algebraic
expression for the throttle outlet flow. The fluid leaving the
plenum is assumed to instantaneously mix homogeneously
and density of this homogeneous mixture is given by [5]

ρp =
ρgρl

βpρl + (1− βp)ρg
. (11)



The throttle flow is given by the valve equation using (11)

wt = kt

√
ρp(pp − p2) , (12)

where p2 is the back pressure and kt is an empirical throttle
constant.

C. Static pressure rise

In literature, a 3rd-order polynomial as a function of mass
flow and rotational speed is commonly used to approximate
dry gas compressor characteristics [4], [15], [18]. The reason
for this is that the pressure rise typically has the shape of
a 3rd-order function as illustrated in Fig. 1. For dry gas
compression the gas mass fraction is constant and therefore
not included in the polynomial approximation. However, for
wet gas compression the gas mass fraction is changing and
therefore must be included in the polynomial approximation.
Since the experimental wet gas compressor map [5] only
includes the normal operating region, i.e., the mass flows
between surge and choke, a 2nd-order polynomial provides
sufficient accuracy, see Fig. 3. Applying a 3rd-order polyno-
mial is possible if more data is considered. We therefore use
a 2nd-order polynomial of three variables, i.e., mass flow,
inlet gas mass fraction and rotational speed, to approximate
the compressor characteristic.

The 2nd-order polynomial approximation of the compres-
sor characteristic is then given by

Ψ(wh, β1, ω)= c0+c1wh+c2β1+c3ω+c4w
2
h+c5whβ1

+c6whω+c7β
2
1 +c8β1ω+c9ω

2 ,
(13)

where ci is the ith constant coefficient and ω is the angu-
lar velocity of the drive shaft.

For calculating the coefficients of the 2nd-order polyno-
mial, we apply the method of nonlinear least squares using
the Matlab function lsqcurvefit [20]. The polynomial
approximation is curve-fitted to the wet gas compressor
characteristic obtained from [5]. The resulting polynomial
is shown in Fig. 3 and the calculated coefficients and
residual in Table I. As the figure shows and the residual
indicates, the 2nd-order polynomial provides a quite accurate
approximation of the experimentally obtained curves. The
polynomial approximation is not valid outside this normal
operating region.

D. Model summary

The ordinary dynamic equations (ODEs) describing the
dynamic wet gas compressor model is summarized below

ṗp =
c2g

Vp − Vl

(
β1wh − βpwt

+
ppMg

RT1ρl

(
(1− β1)wh − (1− βp)wt

)) (14)

ẇh =
Ad
Ld

(
Ψ(wh, β1, ω)p1−pp

)
(15)

V̇l =
1

ρl

(
(1− β1)wh − (1− βp)wt

)
. (16)

The wet gas compressor model reduces to the dry gas
compressor model with β1 = βp = 1.

TABLE I
CALCULATED 2ND-ORDER POLYNOMIAL

COEFFICIENTS AND RESIDUAL.

Polynomial 2nd-order
coefficients polynomial

c0 5.1757 · 10−1

c1 −2.8779 · 10−1

c2 7.0458 · 10−2

c3 1.0501 · 10−3

c4 −2.8873 · 10−1

c5 1.4441 · 10−1

c6 4.7954 · 10−4

c7 −9.5474 · 10−2

c8 1.0259 · 10−4

c9 −3.4193 · 10−7

Residual 4.3844 · 10−3

III. CONTROL DESIGN

The design of the backstepping process control algorithm
is based on general theory from [17] with full-state knowl-
edge of the plant using ω as control input.

A. Assumptions

To derive a backstepping control algorithm adapted for use
in industrial applications we make the simplifying assump-
tion of a constant liquid volume in the plenum, implying that
βp = β1 and wt(pp, Vl) = wt(pp). Additionally, we assume
that the constant liquid volume is less than the plenum
volume, i.e., Vp > Vl, and that the back pressure is smaller
than the inlet pressure, i.e., p1 > p2. Thus, the simplified
system is given by

ẋ1 = f1(Vl)f2(β1, x1)
(
x2 − wt

)
(17)

ẋ2 = k2

(
Ψ(x2, β1, u)p1 − x1

)
(18)

where x = [x1, x2]> = [pp, wh]> is the simplified system
states, u=ω is the input and Vl is a constant, k1 = RT1 > 0

and k2 = Ad

Ld
> 0 are constants and f1(Vl) =

c2g
Vp−Vl

> 0

and f2(β1, x1) = β1 +
Mgx1

k1ρl
(1 − β1) > 0. To simplify the

backstepping design, the aggregated input

v = Ψ(x2, β1, u)p1 , (19)

is considered as the input to the simplified system.
The objective of the surge avoidance control algorithm

is to have the plenum pressure x1 = pp track the constant
reference pref.

B. Stabilization by backstepping

To apply theory from [17], the origin of (17) is shifted
so that the plenum pressure reference becomes the origin of
the transformed system. The control objective is to achieve
asymptotic tracking of pref for the transformed system.

The backstepping method starts by designing a stabilizing
control input for the output state using the subsequent state
as virtual input and then recursively follows this procedure
until the actual input is used for design of the stabilizing
control input. For the simplified system (17),(18), the plenum
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Fig. 3. Experimental compressor map (solid) [5] vs. polynomial approximation (dashed) for various gas mass fractions.

pressure x1 is the output state, the mass flow x2 is the virtual
input and v is the actual input.

The following theorem can now be stated:

Theorem 1. Assume that pref ≥ p2 + ε and ε > 0. Then, the
equilibrium point x> = [pref, wt(pref)] of the system (17)–
(18) is locally asymptotically stable with the control input

v=Ψ(x2, β1, u)p1

=− 1

d2k2

[
kp2
(
x2−wt

)
−kp1kp2

(
x1−pref

)
−d2k2x1−ẇt

+ f1(Vl)f2(β1,pref)
(
d1
(
x1−pref

)
+d2kp1

(
x2−wt

))]
,

(20)

where d1, d2 > 0 are positive constants and kp1 > 1 and
kp2 > 0 are positive gains.

Proof. The proof is divided into two recursive steps by the
backstepping method.

1) Step 1 – stabilization of x1 using x2 as virtual input:
For the first recursive design step, we shift the origin of
(17) to the plenum pressure reference and stabilize this
transformed state using x2 as a virtual input. Hence, the first
backstepping variable (error variable) is defined as

z1 = x1 − pref . (21)

The resulting z1-subsystem is given by

ż1 = f1(Vl)f2(β1, z1 + pref)
(
x2 − wt

)
. (22)

The virtual input is defined as

x2 = z2 + λ , (23)

where z2 is the second backstepping variable and λ is a stabi-
lizing function we can choose to stabilize the z1-subsystem.

We choose the positive definite Lyapunov function candi-
date for design of the stabilizing virtual input as

V1(z1) =
1

2
d1z

2
1 , (24)

where d1 is a positive constant. The time derivative of V1
along the trajectories of the system (22) is given by

V̇1(z1) = d1f1(Vl)f2(β1, z1+pref)
(
z1z2+(λ−wt)z1

)
, (25)

where (23) has been inserted. Since x2 is considered as
virtual input for the z1-subsystem, the z2-terms are ignored
for this design step (cross terms are considered in the next
design step).

In order to make V̇1(z1) negative definite in z1, the
following stabilizing function is chosen:

λ = wt − kp1z1 (26)

where the first term has been included for cancelling of
the nonlinear dynamics and the second term with the pos-
itive constant kp1 has been added for stabilizing of the
z1-subsystem.

Inserting (26) into (25) gives

V̇1(z1)=−d1f1(Vl)f2(β1, pref)
(
kp1z

2
1−z1z2

)
+H.O.T. (27)

Since f2(β1, pref) is linear in its second argument and pos-
itive, V̇1(z1) is negative definite for small z1 and z2 = 0.
Thus, the z1-subsystem is locally stabilized with x2 as
virtual input.

2) Step 2 – stabilization of x2 using v as actual input:
The origin of (18) is shifted by the stabilizing function
(26). For the second recursive design step, we stabilize this
transformed state using the actual input v. The z2-subsystem
is given by

ż2 = k2

(
v − (z1 + pref)

)
−ẇt

+ f1(Vl)f2(β1, z1 + pref)
(
kp1z2 − k2p1z1

)
.

(28)

We choose the positive definite Lyapunov function candi-
date for design of the stabilizing actual input

V2(z) = V1(z1) +
1

2
d2z

2
2 , (29)

where d2 is a positive constant. The time derivative of V2
along the trajectories of (22) and (28) with λ given by
(26) gives

V̇2(z)=− d1f1(Vl)f2(β1, z1 + pref)
[
kp1z

2
1 − z1z2

]
+ d2f1(Vl)f2(β1, z1+pref)

[
kp1z

2
2 − k2p1z1z2

]
+ d2z2

[
k2v − k2(z1 + pref)− ẇt

]



=− d1f1(Vl)f2(β1, pref)kp1z
2
1

+z2

[
f1(Vl)f2(β1, pref)

(
d1z1+d2kp1z2

−d2k2p1z1
)

+d2k2

(
v−(z1+pref)

)
−ẇt

]
+H.O.T.

(30)

In order to make V̇2(z) negative definite in z> = [z1, z2],
the following actual input is chosen

v =− 1

d2k2

[
f1(Vl)f2(β1, pref)

(
d1z1 + d2kp1z2

− d2k2p1z1
)
−d2k2

(
z1 + pref

)
−ẇt + kp2z2

]
,

(31)

where the first terms have been included for cancelling
the nonlinear dynamics and the last term with the positive
constant kp2 has been added for stabilizing the z2-subsystem.

Inserting (31) into (30) gives

V̇2(z)=−d1f1(Vl)f2(β1, pref)kp1z
2
1−kp2z22+ H.O.T. (32)

which is negative definite for small z, assuming ẇt exists
and is well-defined. In the appendix, we derive the exact
expression for ẇt and prove that it exists and is well-defined
if pref ≥ p2 + ε for ε > 0.

Thus, by [17, Theorem 4.1], the origin of the z-system
is locally asymptotically stable. From (21) and (26), we see
that the x → z map is a diffeomorphism. The point x> =
[pref, wt(pref)] corresponds to the point z = 0, and thus the
point x> = [pref, wt(pref)] is locally asymptotically stable.

The preceding proof only holds for v = Ψ(x2, β1, u)p1
as the control input, however in reality u = ω is the
actual control input. For calculating the actual control input
using the control law stated in Theorem 1, we solve the
optimization problem

u = arg min
u≤u≤u

(
v −Ψ(x2, β1, u)p1

)2
, (33)

where u and u are the maximum and minimum angular
velocity that the wet gas compressor is able to deliver, as
specified by the compressor characteristic in Fig. 3.

Because of the simple nature of Ψ(u;x2, β1), (33) can be
solved explicitly. To find the inverse of Ψ(x2, β1, u) with
respect to u, the following function is defined

Ψ̃(ũ ;x2, β1) = Ψ(x2, β1, ũ) = Aũ2 +Bũ+ C , (34)

where A, B and C are given by

A=c9 (35)
B(x2, β1)=c3+c6x2+c8β1 (36)

C(x2, β1)=c0+c1x2+c2β1+c4x
2
2+c5x2β1+c7β

2
1 . (37)

The inverse of Ψ̃(ũ ;x2, β1) is derived from the quadratic
formula and the relation Ψ̃(ũ ;x2, β1)=v/p1

ũ=Ψ̃−1(v/p1;x2, β1)=− B

2A
±
√( B

2A

)2
−C−(v/p1)

A
.(38)

The 2nd-order polynomial approximation Ψ(x2, β1, u) has
only one solution as seen in Fig. 3. Since the solution of (38)
with a positive quadratic term has no physical interpretation,
as it only generates angular velocities far above what the

compressor is able to produce, the following solution of (38)
is chosen

ũ = − B

2A
−
√( B

2A

)2
−C − (v/p1)

A
. (39)

Complex roots correspond to u being saturated. Therefore,
we introduce constraints on the control law to account for
limited control inputs and avoid complex control inputs. The
constrained control law is given by

u =


u Re(ũ) ≥ u
Re(ũ) u < Re(ũ) < u

u Re(ũ) ≤ u
. (40)

IV. SIMULATIONS
The nonlinear process control laws (31) and (40) are stud-

ied in three different simulation scenarios for the actual plant
(14)–(16). In Scenario 1, β1 varies while pref is constant. In
Scenario 2, β1 is constant while pref changes, and in Scenario
3, both β1 and pref change. Simulation results are shown in
Figs. 4–6 where blue curves are the results from using u,
orange curves are the results from using v and the black curve
is the inlet conditions and control input limits that are the
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Fig. 4. Transient response for Scenario 1 where the label Common refers to
inlet conditions or control input limits that are common for both nonlinear
control laws. The labels Ctrl. input v and Ctrl. input u represent the control
response for the different nonlinear control laws.
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Fig. 5. Transient response for Scenario 2 where the label Common refers to
inlet conditions or control input limits that are common for both nonlinear
control laws. The labels Ctrl. input v and Ctrl. input u represent the control
response for the different nonlinear control laws.

same for both control algorithms. The simulation and tuning
parameters used in the simulations are given in Table II.

As one control algorithm has input v in Pa and the other u
in rad/s, the control input from each of the nonlinear control
algorithms are converted to the matching converted control
input form to enable comparison. Thus, for the nonlinear
control laws v and u the control input is converted to
angular velocity u∗ = Ψ̃−1(v/p1 ;x2, β1) and aggregated
input v∗ = Ψ(x2, β1, u)p1, respectively. The asterisks signs
represent converted control inputs.

For all the simulation scenarios, both nonlinear process
control laws are able to control the pressure without oscilla-
tions or offset. As expected, all variables behave equally for
both nonlinear process control laws with the exception of a
few transients for the control input variable. These transients
occur upon infinitely fast, step changes in the control refer-
ence causing u to generate complex control inputs that are

TABLE II
SIMULATION AND TUNING PARAMETERS.

ρg ρl cg Mg k1 k2 kt kp1 kp2 d1 d2
[kg/m3] [m/s] [kg/mole] [J/mole] [m] [m2] [m s] [s] [m2s2] [-]

3.33 1000 300 28.96 2685 5.83 0.004 15 20 1 1000
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Fig. 6. Transient response for Scenario 3 where the label Common refers to
inlet conditions or control input limits that are common for both nonlinear
control laws. The labels Ctrl. input v and Ctrl. input u represent the control
response for the different nonlinear control laws.

constrained, while v handles these transients smoothly.
Note that the nonlinear process control laws were de-

rived assuming a constant accumulated liquid volume and
constant parameters (β1, p1, T1), and that local stability was
only proven for this case. However, the simulations were
performed with a non-constant accumulated liquid volume
and a time-varying inlet gas mass fraction; despite of this,
the control laws were able to control the process.

The simulations show that the plenum volume occupied
by the gas drastically reduces, compared to the plenum
volume occupied by the liquid, for increasing liquid con-
tent. This behaviour is due to the homogeneously mixed
flow assumption, causing the accumulated liquid volume to
change such that the plenum gas mass fraction (4) equals
the inlet gas mass fraction at steady-state. The reduced
plenum volume available for gas compression results in faster
pressure dynamics, i.e., the pressure transient response for
wet gas compression is faster compared to that of dry gas
compression. However, the steep pressure change subsequent
to the step change in the pressure reference, occurring each
eight minutes, is only made possible by the nonlinear control
algorithm. Uncontrolled, the pressure would rapidly diverge.



V. CONCLUSIONS AND FURTHER WORK

A dynamic model of a wet gas compressor with an empir-
ical polynomial describing the compressor characteristic was
derived from first principles, and the empirical polynomial
was curve-fitted to a wet gas compressor map obtained
from previously published experiments. A nonlinear process
control law with the pressure rise as control input was derived
using backstepping, and locally asymptotic stability of the
reference point was proven using Lyapunov analysis. This
control law was, without any stability proof, extended with
the angular velocity as control input. The control laws were
compared in simulations.

The dynamic part of the model was derived from first
principles providing physical insight and a wide range of
validity, while the compressor characteristic is empirical
providing no physical insight and is only valid for a specific
compressor unit. Only the steady-states of the model, i.e.,
the ideal pressure rise, is validated against experimental data
and experimental validation of the dynamic response is future
work. The wet gas compressor characteristic is described us-
ing a 2nd-order polynomial approximation providing validity
for a specific wet gas compressor unit. A wet gas compressor
characteristic derived from first principles would provide a
wider range of validity and valuable insight into wet gas
compression, and is future work.

The control laws with the pressure rise and the angular
velocity as control input were able to control the actual
plant without oscillations or offset in the controlled pressure
variable. The control laws achieved control of the actual plant
with moderate control input usage. However, upon infinitely
fast, step changes in the control reference, the control law
with the angular velocity as the control input generates spikes
in the control input that are confined by the constraints, while
the control law with the pressure rise as the control input
handles these changes smoothly without spikes.

The derived control laws use the pressure rise as control
input, while the actual control input is the angular velocity.
There is a static mapping between these control inputs and as
long as this mapping is invertible, there exists a smooth map-
ping between these control inputs. As shown in simulations,
this mapping exists in almost all situations. Simulations show
that more aggressive tuning and/or smoother steps remove
the exceptions, but a formal proof is future work.

The control laws are derived assuming a constant liquid
volume in plenum and constant parameters, while the actual
liquid volume is non-constant and the parameters are time-
varying. In simulations, the changing liquid volume and the
time-varying inlet gas mass fraction did not hamper the
efficiency of the nonlinear control laws; the plenum pressure
still converges to the desired value. However, a formal proof
remains future work.

APPENDIX

A. Existence and uniqueness of ẇt
The throttle flow wt of (17),(18) is given by

wt(x1) = kt
√
ρ1(x1 − p2)=kt

√
ρ1(z1 + pref − p2) , (41)

where ρ1 is the inlet homogeneously mixed flow density. The
time derivative of the simplified throttle flow is given by

ẇt=
ktρ1

2
√
ρ1(x1 − p2)

ẋ1 =
ktρ1

2
√
ρ1(z1 + pref − p2)

ẋ1. (42)

If pref ≥ p2 + ε and ε > 0, then wt and ẇt (and here ẋ1,
which contains wt) exists and are well-defined for z1 > −ε,
which contains the z-origin.
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