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EXTREME VALUES OF THE RIEMANN ZETA FUNCTION AND ITS ARGUMENT

ANDRIY BONDARENKO AND KRISTIAN SEIP

ABSTRACT. We combine our version of the resonance method with certain convolution formu-

las for ζ(s) and log ζ(s). This leads to a newΩ result for |ζ(1/2+i t)|: The maximum of |ζ(1/2+i t)|

on the interval 1 ≤ t ≤ T is at least exp
(
(1+o(1))

√
logT log loglogT /log logT

)
. We also obtain

conditional results for S(t) := 1/π times the argument of ζ(1/2+ i t) and S1(t) :=
∫t

0 S(τ)dτ. On

the Riemann hypothesis, the maximum of |S(t)| is at least c
√

logT log loglogT /log logT and

the maximum of S1(t) is at least c1

√
log T loglog logT /(loglogT )3 on the interval T β ≤ t ≤ T

whenever 0 ≤β< 1.

1. INTRODUCTION

This paper combines certain convolution formulas for ζ(s) and log ζ(s) with the resonance

method, as developed in our recent paper [2]. As a result, we obtain an improved uncondi-

tional Ω result for |ζ(1/2+ i t )| and improved conditional Ω results for the functions S(t ) and

S1(t ). We begin by stating a strengthened version of the main theorem of [2].

Theorem 1. Let 0 ≤ β < 1 be given and let c be a positive number less than
√

1−β. If T is

sufficiently large, then there exists a t , T β ≤ t ≤ T , such that

(1)

∣∣∣∣ζ
(1

2
+ i t

)∣∣∣∣≥ exp

(

c

√
logT logloglogT

loglogT

)

.

This implies in particular that |ζ(1/2+ i t )| = Ω

(
exp

(
(1+o(1))

√
logT logloglogT

loglogT

))
, where the

gain compared to [2] is that the factor in front of the square-root has been increased from

1/
p

2+o(1) to 1+o(1). We will see that this improvement has the following simple explanation:
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2 ANDRIY BONDARENKO AND KRISTIAN SEIP

We avoid using the classical approximation

(2) ζ(1/2+ i t ) =
∑

n≤T

n−1/2−i t −
T 1/2−i t

1/2− i t
+O(T −1/2), |t | ≤ T,

where the second term causes problems when β < 1/2; we replace this approximation by

ζ(1/2+ i t ) convolved with a suitable smooth kernel K (t ), so that the influence of the pole of

ζ(s) becomes essentially harmless in the whole range 0≤β< 1.

We next turn to our results for the functions

S(t ) :=
1

π
Im logζ(1/2+ i t ) and S1(t ) :=

∫t

0
S(τ)dτ.

Here we use the standard convention that whenever t is not an ordinate of a zero of ζ(s),

log ζ(σ+ i t ) is obtained by continuous variation along the straight line segments joining 2,

2+ i t , and σ+ i t , starting from the real value ζ(2); if t is an ordinate of a zero, then S has a

jump discontinuity at t , and we declare that S(t ) := limε→0

(
S(t +ε)+S(t −ε)

)
/2. The function

S(t ) and its primitive S1(t ) are instrumental in the study of the finer structure of the vertical

distribution of the nontrivial zeros of ζ(s), as seen from the classical Riemann–von Mangoldt

formula:

N (t ) =
t

2π
log

t

2πe
+

7

8
+S(t )+O

(
1

t

)
,

where as usual N (t ) is the number of zeros β+ iγ of ζ(s) for which 0 < γ< t .

The classical bound S(t )=O(log t ) was proved by Backlund, and the fact that S1(t ) =O(log t )

was established by Littlewood. No improvements of these results are known, but on the Rie-

mann hypothesis (RH), S(t ) =O(log t/loglog t ) and S1(t ) :=O(log t/(loglog t )2); see [4] for the

most recent refinements of these estimates. In the other direction, it is known that

S(t ) =






Ω±
(
(log t/loglog t )1/3

)

Ω±
(
(log t/loglog t )1/2

)
on RH
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by results of respectively Tsang [10] and Montgomery [6], while

(3) S1(t ) =






Ω+
(
(log t )1/2/(loglog t )−3/2

)

Ω−
(
(log t )1/3 loglog t−4/3

)

Ω−
(
(log t )1/2(loglog t )−3/2

)
on RH

by work of Tsang, where the first result is from [12] and the two latter bounds are from [10].

It is widely believed that the conditional Ω bounds are closer to the truth. Indeed, a heuristic

argument led Montgomery [6] to suggest that the above conditional Ω± bounds for S(t ) are

optimal; this possible conjecture is also mentioned by Heath-Brown in [9, p. 384]. Thirty

years later, however, Farmer, Gonek, and Hughes [5] offered alternate heuristic arguments

suggesting that one should expect S(t ) to grow like
√

log t loglog t . Our second theorem shows

that at least the conditional Ω result of Montgomery can be strengthened; we also obtain a

conditional Ω+ result for S1(t ) that supersedes the unconditional one in (3).

Theorem 2. Assume that the Riemann hypothesis is true, and fix β, 0 ≤β< 1. Then there exist

two positive constants c and c1 such that, whenever T is large enough,

max
Tβ≤t≤T

|S(t )| ≥ c

√
logT logloglogT

loglogT
,(4)

max
Tβ≤t≤T

S1(t ) ≥ c1

√
logT logloglogT

(loglogT )3
.(5)

This result is of course intimately related with the problem of producing large values of

|ζ(σ+ i t )|. We may in fact obtain a slightly weaker result than (5) as a direct consequence of

our earlier work in [3]. To this end, we start from the conditional formula (see [9, (14.12.4)])

log |ζ(s)| = Re i

∫2t

t/2

S(y)

s −1/2− i y
d y +O(1).

We write s =σ+ i t and use integration by parts to obtain

Re i

∫2t

t/2

S(y)

s −1/2− i y
d y = Re

(
i

[
S1(y)

s −1/2− i y

]2t

t/2

+
∫2t

t/2

S1(y)

(s −1/2− i y)2
d y

)

=
∫2t

t/2

S1(y)((σ−1/2)2 − (t − y)2)

((σ−1/2)2 + (y − t )2)2
d y +O(log t/t 2).
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Hence, choosing σ= 1/2+1/loglog t and using [3, Theorem 1], we get conditionally that

max
T 1/2≤t≤T

|S1(t )| ≥ c1(loglogT )−3/2
√

logT logloglogT

for all large enough T .

The starting point for the proof of Theorem 2 is a convolution formula for log ζ(s), which

was introduced by Selberg [7] and later used also by Tsang [10, 11] to study S(t ) and S1(t ). We

will present this formula as well as the corresponding one for ζ(s) in the next section. On the

Riemann hypothesis, the two formulas are very similar, as we will see, and both are in tune

with the resonance method, which is a device for picking out large values of Dirichlet series. In

Section 3, we will present the combinatorial construction from [2] underlying our resonators,

along with some related estimates to be used in our analysis of the two convolution formulas.

The proofs of Theorem 1 and Theorem 2 are then given in respectively Section 4 and Section 5.

The principal difference between our method and those of for example Selberg and Tsang,

is that we use the resonance method rather than high moments to detect large values of

Dirichlet series. Also, a principal difference between our version of the resonance method

and that used earlier by Soundararajan [8], is that we use significantly larger primes and a

longer Dirichlet polynomial in our resonator. The price we pay compared to any of our prede-

cessors, is that the interval on which increased maxima are known to occur, are considerably

larger. In the same vein, we have so far been unable to establish any reasonable estimate for

the measure of the set on which corresponding large values are taken, comparable to what

was established by Soundararajan in [8].

To see the interest of this impasse, we mention without proof that we can adapt Soundarara-

jan’s measure result and modify Tsang’s proof from [12] to reprove Tsang’s unconditional Ω+

result in (3). Thus we might hope to establish (5) unconditionally by proving a stronger mea-

sure result than that of [8], valid for larger values of the Dirichlet series in question.

We close this introduction by mentioning what is the obstacle for getting improved condi-

tional Ω± results for S(t ) and an improved Ω− result for S1(t ): Our version of the resonance
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method only catches large positive values of the real part of a Dirichlet series whose coeffi-

cients are all nonnegative. In contrast, when relying on high moments, one is able to catch

large values of either sign.

2. CONVOLUTION FORMULAS FOR ζ(s) AND log ζ(s)

We define the Fourier transform K̂ of K on R as

K̂ (ξ) :=
∫∞

−∞
K (x)e−i xξd x.

The convolution formula to be used for ζ(s) should be well known to the experts, but we sup-

ply its standard proof for the sake of completeness.

Lemma 1. Suppose that 1/2≤σ< 1, and let K (x+i y) be an analytic function in the horizontal

strip σ−2≤ y ≤ 0 satisfying the growth estimate

max
σ−2≤y≤0

|K (x + i y)| =O

(
1

|x|2

)

when |x| →∞. Then for every real t we have

(6)

∫∞

−∞
ζ(σ+ i (t +u))K (u)du =

∞∑

n=1

K̂ (logn)n−σ−i t +2πK (−t − i (1−σ)).

Proof. Let Y be a large positive number and R(Y ) the rectangle with corners at the points σ±

iY and 2± iY . Then by the residue theorem applied to the function f (z) := ζ(z+ i t )K (iσ− i z)

in R(Y ), we find that

∫Y

−Y
ζ(σ+ i (t +u))K (u)du =

∫Y

−Y
ζ(2+ i (t +u))K (u − i (2−σ))du −2πK (t − i (1−σ))+O(Y −1/2)

by a trivial growth estimate on ζ(s) when Re s ≥ 1/2. Hence

∫∞

−∞
ζ(σ+ i (t +u))K (u)du =

∫∞

−∞
ζ(2+ i (t +u))K (u − i (2−σ))du −2πK (t − i (1−σ)),

where both integrals are absolutely convergent by the assumed decay of K (u). Now using the

absolutely convergent Dirichlet series of ζ(s) on the 2-line and applying Cauchy’s theorem

termwise to move the integral back to the σ-line, we reach the desired conclusion. �
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The formula of Selberg for log ζ(s) to be used below, can be found in the following conve-

nient form in [10, Lemma 5].

Lemma 2. Suppose that 1/2≤σ< 1, and let K (x+i y) be an analytic function in the horizontal

strip σ−2≤ y ≤ 0 satisfying the growth estimate

V (x) := max
σ−2≤y≤0

|K (x + i y)| =O

(
1

|x| log2 |x|

)

when |x| →∞. Then for every t 6= 0, we have

∫∞

−∞
log ζ(σ+ i (t +u))K (u)du =

∞∑

n=2

Λ(n)

logn
K̂ (logn)n−σ−i t(7)

+2π
∑

β>σ

∫β−σ

0
K (γ− t − iα)dα+O(V (t )).

Here Λ(n) is the classical von Mangoldt function, and the second sum is over the zeros

β+ iγ of ζ(s) (if any) satisfying β>σ. Thus on the Riemann hypothesis, (7) reduces to

(8)

∫∞

−∞
log ζ(σ+ i (t +u))K (u)du =

∞∑

n=2

Λ(n)

logn
K̂ (logn)n−σ−i t +O(V (t ))

and hence

(9)

∫∞

−∞
S(t +u)K (u)du =

1

π
Im

∞∑

n=2

Λ(n)

logn
K̂ (logn)n−1/2−i t +O(V (t ))

whenever K (u) is real valued for real arguments u. Moreover, using the classical fact that [9,

Theorem 9.9]

h(t ) := S1(t )−
1

π

∫2

1/2
log |ζ(σ+ i t )|dσ

is a bounded function, we infer also from (8) Tsang’s conditional formula [11]

(10)

∫∞

−∞
(S1(u+ t )−h(u+ t ))K (u)du =

1

π
Re

∞∑

n=2

Λ(n)

log2 n
K̂ (logn)

(
n−1/2−i t +O

(
n−2

))
+O(V (t )),

again assuming that K (u) takes real values for real arguments u. Notice that here we have

extended the definitions of S(t ) and S1(t ) in the obvious way so that S(t ) is an odd function

and S1(t ) is an even function on R. The two conditional formulas (9) and (10) will be our

starting point for the proof of Theorem 2.
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3. THE RESONATOR AND ASSOCIATED ESTIMATES

A resonator is a function of the form |R(t )|2, where

(11) R(t ) =
∑

m∈M ′
r (m)m−i t ,

and M ′ is a suitable finite set of integers. The idea, following [8], is that |R(t )|2 should “res-

onate” with and pick out large values of the Dirichlet series in question, which will come from

the right-hand side of either (9) or (10). Before explaining further what this means, we recall

the construction of R(t ) from [2].

We begin by fixing a large integer N . To simplify the writing, we will use the short-hand

notation log2 x := loglog x and log3 x := logloglog x. Let γ, 0 < γ < 1, be a parameter to be

chosen later, and let P be the set of all primes p such that

e log N log2 N < p ≤ log N exp((log2 N )γ) log2 N .

We define f (n) to be the multiplicative function supported on the set of square-free numbers

such that

f (p) :=

√
log N log2 N

log3 N

1
p

p(log p − log2 N − log3 N )

for p in P and f (p) = 0 otherwise.

Let Pk be the set of all primes p such that ek log N log2 N < p ≤ ek+1 log N log2 N for k =

1, . . . , [(log2 N )γ]. Fix 1 < a < 1/γ. Then let Mk be the set of those integers having at least

a log N

k2 log3 N
prime divisors in Pk , and let M ′

k
be the set of integers from Mk that have prime divisors

only in Pk . Finally, set

M := supp( f ) \
[(log2 N)γ]⋃

k=1

Mk .

In other words, M is the set of square-free numbers n that have at most
a log N

k2 log3 N
divisors in

each group Pk . It is is clear that M is divisor closed, by which we mean that d is in M when-

ever m is in M and d divides m.

The first of the following two lemmas was established as part of the proof of [2, Lemma 2].

Lemma 3. We have |M | ≤ N whenever N is large enough, depending on a and γ.



8 ANDRIY BONDARENKO AND KRISTIAN SEIP

Lemma 4. We have

(12)
1

∑
i∈N f (i )2

∑

n∈M

f (n)2
∑

p|n

1

f (p)
p

p
≥ (γ+o(1))

√
log N log3 N

log2 N
.

Proof. The proof is similar to that of [2, Lemma 2]. Fix α such that 0 <α< 1. Let Lk be the set

of integers in supp( f ) that have at most
α log N

k2 log3 N
prime divisors in Pk , and let L′

k
be the set of

integers from Lk that have prime divisors only in Pk . Finally, set

L :=M \
(log2 N)γ⋃

k=1

Lk .

In other words, L is the set of numbers in M that have at least
α log N

k2 log3 N
divisors in each group

Pk . To prove the lemma, it is enough to show that

(13)
1

∑
i∈N f (i )2

∑

n 6∈L

f (n)2 = o(1), N →∞.

Indeed, (13) implies that the left-hand side of (12) is at least

(1−o(1))min
n∈L

∑

p|n

1

f (p)
p

p
≥ (1−o(1))

(log2 N)γ∑

k=1

α log N

k2 log3 N
min
p∈Pk

1

f (p)
p

p

≥ (1−o(1))
(log2 N)γ∑

k=1

α log N

k2 log3 N
k

√
log3 N

log N log2 N
≥ (1−o(1))αγ

√
log N log3 N

log2 N
,

which implies the statement of the lemma, if we choose α arbitrarily close to 1.

We turn to the proof of (13). Since

L = supp( f ) \
(log2 N)γ⋃

k=1

(Mk ∪Lk ) ,

it is enough to prove that

(14)
1

∑
i∈N f (i )2

(log2 N)γ∑

k=1

∑

n∈Lk

f (n)2 = o(1),

and

(15)
1

∑
i∈N f (i )2

(log2 N)γ∑

k=1

∑

n∈Mk

f (n)2 = o(1).

We will only prove (14); the proof of (15) is similar and was essentially done in [2, Lemma 2].
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For every fixed k, we have

1
∑

i∈N f (i )2

∑

n∈Lk

f (n)2 =
1

∏
p∈Pk

(1+ f (p)2)

∑

n∈L′
k

f (n)2.

Using that f (n) is multiplicative and the definition of L′
k

, we find that

∑

n∈L′
k

f (n)2 ≤ b
−α log N

k2 log3 N
∏

p∈Pk

(1+b f (p)2)

for a suitable b < 1, and hence

(16)
1

∏
p∈Pk

(1+ f (p)2)

∑

n∈L′
k

f (n)2 ≤ b
−α log N

k2 log3 N exp

(
∑

p∈Pk

(b −1) f (p)2

)

.

We now recall from [2, Lemma 2] that

∑

p∈Pk

f (p)2 ≤ (1+o(1))
log N

k2 log3 N
.

Therefore the right-hand side of (16) is at most

exp

(
(b −1−α logb +o(1))

log N

k2 log3 N

)
.

Choosing b sufficiently close to 1, we obtain b −1−α logb < 0. This gives (14) and hence (13).

�

We proceed as in [2] (following an idea from [1]) and let J be the set of integers j such that

[
(1+T −1) j , (1+T −1) j+1

)⋂
M 6= ;,

and we let m j be the minimum of
[
(1+T −1) j , (1+T −1) j+1

)⋂
M for j in J . We then set

M ′ :=
{
m j : j ∈J

}

and

r (m j ) :=
(

∑

n∈M ,(1−T−1) j−1≤n≤(1+T−1 ) j+2

f (n)2

)1/2

for every m j in M ′. This defines the resonator (11); note that plainly |M ′| ≤ |M | ≤ N .

We will in what follows, for a reason that will become clear later, require that N = [T κ] for

some κ, 0 < κ≤ 1. Also, as in [2], we set Φ(t ) := e−t2/2. We now turn to an estimation of three

integrals involving |R(t )|2Φ(t/T ) that will be essential in the proofs of our two theorems.
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Lemma 5. We have

(17)

∫∞

−∞
|R(t )|2Φ

( t

T

)
d t ≪ T

∑

n∈M

f (n)2.

Proof. We begin by noting that

(18)

∫∞

−∞
|R(t )|2Φ

( t

T

)
d t =

p
2πT

∑

m,n∈M ′
r (m)r (n)Φ

(
T log

m

n

)

since

Φ̂(x) =
∫∞

−∞
Φ(t )e−i tx d t =

p
2πΦ(x).

Using the definition of M ′, we find that

(19)
∑

m∈M ′
r (m)2 ≤ 3

∑

n∈M

f (n)2.

To deal with the off-diagonal terms, we find, using again the definition of M ′, that

∑

m,n∈M ′,m 6=n

r (m)r (n)Φ
(
T log

m

n

)
≤

∑

j ,ℓ∈J , j 6=ℓ
r (m j )r (nℓ)Φ

(
T (| j −ℓ|−1) log(1+T −1)

)
(20)

≪
∑

j ,ℓ∈J , j 6=ℓ
r (m j )r (nℓ)Φ

(
| j −ℓ|−1

)

≪
∑

j ,ℓ∈J , j 6=ℓ
r (m j )2

Φ
(
| j −ℓ|−1

)
≪

∑

m∈M ′
r (m)2.

Here we used the Cauchy–Schwarz inequality, the definition of r (m), and finally the rapid

decay of Φ(t ). Plugging (19) and (20) into (18), we arrive at (17). �

The proofs of the next two lemmas follow closely an argument that may be found in [2,

p. 1699]. Here an essential role is played by the following way of relating certain sums of

coefficients over the two sets M and M ′. For a given k in M , consider all pairs m′,n′ in M ′

such that |km′/n′−1| ≤ 3/T . We use the notation

J (m′) :=
[

(1+T −1) j , (1+T −1) j+1
)

,

where j is the unique integer such that (1+T −1) j ≤ m′ < (1+T −1) j+1. Using the Cauchy–

Schwarz inequality and the definition of r (m′), we find that

∑

m,n∈M ,mk=n,m∈J (m′ ),n∈J (n′ )

f (m) f (n)≤ r (m′)r (n′)
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and hence, by the definition of M ′, that

(21)
∑

m,n∈M ,mk=n

f (m) f (n) ≤
∑

m′,n′∈M ′,|km′/n′−1|≤3/T

r (m′)r (n′).

Lemma 6. Suppose that

(22) F (t ) :=
∞∑

n=1

ann−1/2−i t

is absolutely convergent and that an ≥ 0 for every n. Let ε be a positive number and γ be the

parameter defining the set P. Then

(23)

∫∞

−∞
F (t )|R(t )|2Φ

( t

T

)
d t ≥ T

(
min
n≤T ε

an

)
exp

(
(
γ+o(1)

)
√

κ
logT log3 T

log2 T

)
∑

n∈M

f (n)2

when T →∞, where the function o(1) depends on the parameters γ, κ, and ε, but not on F .

Proof. We use the explicit expression for R(t ) and integrate termwise to get

∫∞

−∞
F (t )|R(t )|2Φ

( t

T

)
d t =

p
2πT

∑

m,n∈M ′

∞∑

k=1

ak r (m)r (n)
p

k
Φ

(
T log

km

n

)

≥
p

2πT

(
min
j≤T ε

a j

) ∑

m,n∈M ′

∑

k≤T ε

r (m)r (n)
p

k
Φ

(
T log

km

n

)
.

In the last step, we used that all the terms in the series are positive, so that we could sum over

a suitable finite subcollection of them. As in [2, p. 1699], we change the order of summation

and sum only over those m and n such that (21) applies; the remaining part of the proof is

identical to the estimation of the quantity I (R ,T ) in [2, p. 1699], leading to the displayed

formula (25) in [2]. We therefore omit the details. �

Lemma 7. There exists a positive constant c such that if

G(t ) :=
∞∑

n=2

Λ(n)an

logn
n−1/2−i t

is absolutely convergent and an ≥ 0 for every n, then

∫∞

−∞
G(t )|R(t )|2Φ

( t

T

)
d t ≥ cT

√
logT log3 T

log2 T

(
min
p∈P

ap

) ∑

n∈M

f (n)2.
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Proof. We use again the explicit expression for R(t ) and integrate termwise. This gives

∫∞

−∞
G(t )|R(t )|2Φ

( t

T

)
d t =

p
2πT

∑

m,n∈M ′

∞∑

k=2

Λ(k)ak r (m)r (n)
p

k logk
Φ

(
T log

km

n

)

≥
p

2πT

(
min
p∈P

ap

) ∑

m,n∈M ′

∑

p∈P

r (m)r (n)
p

p
Φ

(
T log

pm

n

)
,

where we as in the preceding case used that all the terms in the series are positive. We sum

again over those indices m and n in M such that (21) applies. This means that if we set k = p,

divide (21) by
p

p, and sum over all the primes p in P , then we get

∫∞

−∞
G(t )|R(t )|2Φ

( t

T

)
d t ≫ T

(
min
p∈P

ap

) ∑

n∈M

f (n)2
∑

p|n

1

f (p)
p

p
.

Hence, using Lemma 4, we see that

(24)

∫∞

−∞
G(t )|R(t )|2Φ

( t

T

)
d t ≫ T

√
logT log3 T

log2 T

(
min
p∈P

ap

) ∑

n∈M

f (n)2.

�

4. PROOF OF THEOREM 1

The proof of Theorem 1 is a little easier than the proof of the main theorem of [2], because

our convolution formula allows us to estimate more crudely. We choose

K (t ) :=
sin2((ε logT )t )

(ε logT )t 2

where ε> 0 can be chosen as small as we please. We notice that

(25) K̂ (ξ) =
π

2
max

((
1−

|ξ|
2ε logT

)
,0

)
.

We find that

∫Tβ

−Tβ

∫∞

−∞
|ζ(1/2+ i (t +u))|K (u)dud t ≪ T β+

∫Tβ

−Tβ

∫

|u|≤Tβ
|ζ(1/2+ i (t +u))|K (u)dud t

≪ T β+
∫2Tβ

−2Tβ
|ζ(1/2+ i t )|d t ≪T β

√
logT ,
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where we in the last step used the Cauchy–Schwarz inequality and Hardy and Littlewood’s

classical bound for the second moment of ζ(1/2+ i t ). Hence

∫Tβ

−Tβ

∫∞

−∞
|ζ(1/2+ i (t +u))|K (u)du|R(t )|2Φ

(
t

T

)
d t ≪T β

√
logT R(0)2

≪T β+κ
√

logT
∑

n∈M

f (n)2

by a trivial estimation of R(0)2. Plainly, by the rapid decay of Φ(t ), we also have

∫

|t |>T logT

∫∞

−∞
|ζ(1/2+ i (t +u))|K (u)du|R(t )|2Φ

(
t

T

)
d t = o(1)

∑

n∈M

f (n)2,

whence

∫

Tβ≤|t |≤T logT

∫∞

−∞
ζ(1/2+ i (t +u))K (u)du|R(t )|2Φ

(
t

T

)
d t(26)

=
∫∞

−∞

∫∞

−∞
ζ(1/2+ i (t +u))K (u)du|R(t )|2Φ

(
t

T

)
d t +O

(
T β+κ

√
logT

) ∑

n∈M

f (n)2.

We now require that κ< 1−β and see that by applying Lemma 5 to the left-hand side of (26),

we obtain

max
Tβ/2≤t≤2T logT

|ζ(1/2+ i t )|T
∑

n∈M

f (n)2(27)

≫
∫∞

−∞

∫∞

−∞
ζ(1/2+ i (t +u))K (u)du|R(t )|2Φ

(
t

T

)
d t +O(T )

∑

n∈M

f (n)2.

We now set

F (t ) :=
∞∑

n=1

K̂ (logn)n−1/2−i t

and see that by Lemma 1, the double integral on the right-hand side of (27) takes the form

∫∞

−∞

∫∞

−∞
ζ(1/2+ i (t +u))K (u)du|R(t )|2Φ

(
t

T

)
d t

=
∫∞

−∞
F (t )|R(t )|2Φ

( t

T

)
d t +2π

∫∞

−∞
K (t − i/2)|R(t )|2Φ

( t

T

)
d t .

We invoke Lemma 6 to estimate the first term on the right-hand side, and we estimate the

second term by using the explicit expression for K (t −i/2) and using again the trivial estimate
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|R(t )| ≤ R(0). This gives us

∫∞

−∞

∫∞

−∞
ζ(1/2+ i (t +u))K (u)du|R(t )|2Φ

(
t

T

)
d t(28)

≫
(

T

(
min
n≤T ε

K̂ (logn)

)
exp

(
(
γ+o(1)

)
√

κ
logT log3 T

log2 T

)

+O(T κ+ε)

)
∑

n∈M

f (n)2.

In view of (25), minn≤T ε K̂ (logn) is bounded below by π/4. Hence, choosing ε small enough

and plugging (28) into (27), we find that the asserted bound (1) holds for some t satisfying

T β/2 ≤ t ≤ 2T logT . We obtain the desired restriction T β ≤ t ≤ T after a trivial adjustment,

changing T to T /(2 logT ) and making β slightly smaller.

5. PROOF OF THEOREM 2

The proof of Theorem 2 is very similar to the preceding proof, but there is an interesting

distinction: In Lemma 2, we choose K (t ) to be an odd function when dealing with S(t ) and

an even function when dealing with S1(t ); this difference is the reason why we only obtain a

conditional Ω result for S(t ).

Proof of (4). We now choose

K (t ) :=−(log2 T )2tΦ((log2 T )t ),

which has Fourier transform

(29) K̂ (ξ) = i
p

2π(log2 T )−1ξΦ(ξ/log2 T ).

We compute in the same fashion as above:

∫Tβ

−Tβ

∫∞

−∞
|S(t +u))K (u)|dud t ≪ T β+

∫Tβ

−Tβ

∫

|u|≤Tβ
|S(t +u)K (u)|dud t

≪ T β+
∫2Tβ

−2Tβ
|S(t )|d t ≪ T β

√
log2 T ,

where we in the last step used the Cauchy–Schwarz inequality and a classical bound of Selberg

[7] for the second moment of S(t ). We follow the same steps as in the preceding case and
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hence, requiring that κ< 1−β, we find that

∫

Tβ≤|t |≤T logT

∫∞

−∞
S(t +u)K (u)du|R(t )|2Φ

(
t

T

)
d t(30)

=
∫∞

−∞

∫∞

−∞
S(t +u))K (u)du|R(t )|2Φ

(
t

T

)
d t +O(T )

∑

n∈M

f (n)2.

Applying Lemma 5 to the left-hand side of (30), we obtain

max
Tβ/2≤t≤2T logT

|S(t )|T
∑

n∈M

f (n)2(31)

≫
∫∞

−∞

∫∞

−∞
S(t +u)K (u)du|R(t )|2Φ

(
t

T

)
d t +O(T )

∑

n∈M

f (n)2.

We now set

G(t ) :=
∞∑

n=2

Λ(n)K̂ (logn)

π logn
n−1/2−i t

and see that by (9), the double integral on the right-hand side of (31) takes the form

∫∞

−∞

∫∞

−∞
S(t +u)K (u)du|R(t )|2Φ

(
t

T

)
d t

= Im

∫∞

−∞
G(t )|R(t )|2Φ

( t

T

)
d t +O

(∫∞

−∞
V (t )|R(t )|2Φ

( t

T

)
d t

)
.

We invoke Lemma 7 to estimate the first term on the right-hand side, and we estimate the

second term by using the explicit expression for V (t ) and using again the trivial estimate

|R(t )| ≤ R(0). This gives us

∫∞

−∞

∫∞

−∞
S(t +u)K (u)du|R(t )|2Φ

(
t

T

)
d t(32)

≫
(

T

(
min
p∈P

Im K̂ (log p)

)√
logT log3 T

log2 T
+O(T κ+ε)

)
∑

n∈M

f (n)2

for every ε> 0. By (29) and the definition of M ,

min
p∈P

Im K̂ (log p) =
p

2π min
e logN log2 N≤p≤e(log2 N )γ log N log2 N

log p Φ(log p/log2 T )

log2 T
≫ 1

since N = [T κ]. Choosing ε small enough and plugging (32) into (31), we therefore obtain the

asserted bound (4), after the same trivial adjustment of T and β as in the preceding case. �
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Proof of (5). We now choose

K (t ) := log2 TΦ((log2 T )t ),

which has Fourier transform

K̂ (ξ) =
p

2πΦ(ξ/log2 T ).

Computing exactly as in the preceding case, we obtain

max
Tβ/2≤t≤2T logT

S1(t )T
∑

n∈M

f (n)2(33)

≫
∫∞

−∞

∫∞

−∞
S1(t +u)K (u)du|R(t )|2Φ

(
t

T

)
d t +O(T )

∑

n∈M

f (n)2.

We now set

G(t ) :=
∞∑

n=2

Λ(n)K̂ (logn)

π log2 n
n−1/2−i t

and see that by (10), the double integral on the right-hand side of (33) takes the form

∫∞

−∞

∫∞

−∞
S1(t +u)K (u)du|R(t )|2Φ

(
t

T

)
d t

= Re

∫∞

−∞
G(t )|R(t )|2Φ

( t

T

)
d t +O

(∫∞

−∞
(V (t )+1) |R(t )|2Φ

( t

T

)
d t

)
,

where V (t ) is the function introduced in Lemma 2. We invoke Lemma 7 again to estimate

the first term on the right-hand side, and we estimate the second term by using the explicit

expression for V (t ) and using again the trivial estimate |R(t )| ≤ R(0). This gives us

∫∞

−∞

∫∞

−∞
S1(t +u)K (u)du|R(t )|2Φ

(
t

T

)
d t(34)

≫
(

T

(
min
p∈P

K̂ (log p)

log p

)√
logT log3 T

log2 T
+O(T κ+ε)+O(T )

)
∑

n∈M

f (n)2

for every ε> 0. Plainly,

min
p∈P

K̂ (log p)

log p
≫

1

log2 T
,

and hence choosing ε small enough and plugging (34) into (33), we obtain the asserted bound

(5), again adjusting T and β appropriately. �
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