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Abstract

StatoilHydro is the operator of the Åsgard oil and gas �eld outside of Trøndelag,
Norway, where large compressors for injection, recompression and export of natural
gas are installed. The facility transports and stores up to 36 millions Sm3 of gas
every day. If the compressors are not optimally operated, large values are lost.

This paper describes how to use linear mixed models to model the condition of
the compressors. The focus has been on the 1- and 2- stage recompression com-
pressors. Reference data from Dresser-Rand have been used to make the model.
Head and �ow data are the modelled, and the explanatory variables used are mol-
weight, rotational speed and an e�ciency indicator. The paper also shows how
cross validation is used to give an indication of how future datapoints will �t the
model. A graphical user interface has been developed to do estimation and plotting
with various models.

Di�erent models are tested and compared by likelihood methods. For a rela-
tively simple model using three explanatory variables reasonable predictions are
obtained. Results are not so good for very high rotational speeds and high mol-
weights.
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1 Introduction

StatoilHydro operates the Åsgård oil and gas �eld outside of Trøndelag, Norway.
The �eld has installed several compressors for injection, recompression and trans-
portation of gas. The compressors are critical components during transportation
of the gas. They provide the mechanism to move large quantities of gas around a
network to meet instantaneous demand and to replenish local storage, see Pearson
and Henderson [9].

It is very important to monitor the performance of a compressor to ensure it
runs optimally,

� Firstly, if it runs at a deteriorated state the customers will not get their
demands full�lled. This will of course prevent cash �ow to an oil and gas
company.

� When a compressor is not optimally run, it may cause surge and choke con-
ditions. Surge and choke conditions will in some cases result in breakdown of
the machinery, which again will lead to customers not getting their demands
full�lled and hence a great loss of income. When a compressor has broken
down it is very costly to replace or repair.

� Since the 80s enviromental policies have become more and more important.
A company of StatoilHydro's size is obliged to do its part to help keeping
the environment as clean as possible. A reduction of the compressor's fuel
usage in a year of 1% will prevent the production of 6 million tonnes of CO2

per year, [9]. An optimal fuel usage will de�nitely let StatoilHydro play a
role as a pioneer at environmental issues among similar companies.

Each compressor has a head and �ow chart. Head is the mechanical work made
by the compressor pump in [ J

kg
]. Flow is the volume of gas that �ows through the

pipe in [m3

h
]. Complete charts are either based on compressor rig test results, or

alternatively the chart of a similar compressor can be suitably scaled. Compressor
charts are important, since they are an integral part of predicting the performance
of the compressor. Condition analysis is the term that describes controlling the
compressors by observing di�erent operating values. These values can be used
directly or calculated to other parameters using equations of state. When the
operating value is found it will be compared to an expected value. The main control
parameters that are used are the head and �ow values. Today, the procedure in
condition analysis is to manually study data from the compressors with reference
charts to spot possible anomalities. The reference data were measured when the
compressor was new.
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Sample charts from the compressors are very expensive to get, so few tests are
made, and those test samples are mainly gotten from the most common conditions.
It is therefore higly advisable to get a model that does not require operators to
manually read charts to control the compressors. A model will in addition to avoid
human error also give a more accurate condition analysis.

This thesis will describe how Dresser-Rand's reference data are used to make
a Linear Mixed Model for the Head and Flow data at the Åsgård �eld for the
1-stage recompression compressors. Such a model might prevent the manual work
of reading charts. By feeding the model with the measured operating values a
prediction for head and �ow values are given. Flow is the gas volume �ow through
the compressor, while head is de�ned as an integration of in�nite many small
isentropic part compressions through the real compression line, see Øverli [10] and
Ambjørnsen [1].

The report is divided in 4 main parts. Chapter 2 gives a brief introduction to
the thermodynamics behind the compressors. This chapter also contains a deeper
presentation of the Åsgård dataset provided by Dresser-Rand. In Chapter 3 the
statistical theory behind the Linear Mixed Model is presented. How the Linear
Mixed Model is used on the Dresser-Rand dataset will also be described. The
theory behind Cross Validation will be presented, and how this validation method
is used on the Dresser-Rand dataset. There will also be a discussion around model
choice. In chapter 4 the results from the choice for model will be presented and
discussed along with results from cross validation.
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2 Data of Polytropic Head and Volume

This chapter will give a brief introduction to the theory behind compressors, which
is based on thermodynamic theory derived under ideal conditions. Further, the
parameters head and �ow are de�ned, which are the main control parameters to
run a compressor optimally. The operating values should always be measured for
thermodynamic condition analysis, and these values are used directly or calculated
to other parameters, using equations of state. When the operating value is found,
it will be compared to an expected value. The expected value is given by Dresser-
Rand and is from when the compressor was new. Condition analysis involves
monitoring these parameters and comparing them to the reference data.

Finally, the speci�c dataset of head and �ow values from the Åsgård �eld that
is used in this thesis is presented. The data are collected from a recompression
process. Di�erent cross plots are made as a preliminary data analysis and inter-
pretations along with the natural explanatory variables.

Variables that are used in the data analysis are

� molweight, denoted m [kg],

� rotational speed, denoted n [rpm],

� e�ciency, denoted P [W].

2.1 Head/Flow Diagram

Compressors are run under di�erent pressures and temperatures, but at an instal-
lation the most important parameters to control are the parameters head and �ow,
H and Q. H is de�ned as the mechanical work made by the pump,

H =

∫ p2

p1

vdp

[
J

kg

]
. (1)

This is a compression from a pressure p1 to a pressure p2. See Øverli [10] for a
derivation of the speci�c work made by a pump. H is a de�ned parameter that is
not physically possible to measure directly. Q is intuitively the volume of gas that
�ows through a pipe per hour (m3/h),

Q =
∆Pr4π

8Lη

[
m3

h

]
, (2)

where ∆P is the pressure between the two ends of the tube, r is the radius of the
tube, L is the length of the tube and η is the viscosity.
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The highest e�ciency of a compressor is somewhere between the surge and
choke areas. But this point may vary from the di�erent rotational speeds. At one
speed the most e�cient point may lie close to the surge area, while at another
speed it may lie closer to the choke area, but in general the most e�cient point is
somewhere close to the middle.

Figure 1 shows a constructed example of a Q/H diagram for a compressor.
Every curve represent a rotational speed, in this case the rotational speeds n1 and
n2, where n1 > n2. The lines are based on what is called a basis line with a
negative slope, indicating the radial speed component at the outlet increases with
increasing �ow. The Euler equation can be used to prove this. See Ambjørnsen
[1] for a derivation.

The surge e�ect is a result of low �ow through the compressor. The compressor
might experience back�ow, that may damage the compressor severely. Back�ow
means that the gas starts to �ow the opposite way due to too small pressure
produced by the compressor. Choke happens when the �ow is too high, that may
cause supersonic e�ects. Choke may also damage the compressor. The compressor
will be run so that this is avoided in practice. Looking at �gure 1 the optimal
condition of a compressor would be to run close to the dotted line. This is where
the e�ciency is highest and the risk of machinery failure is lowest.

Figure 1: A constructed H/Q diagram for the rotational speeds n1 and n2.
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2.2 Dresser-Rand Diagrams

As stated, the goal in this thesis is to propose a model, that can be used in
condition analysis of the compressors. The model is based on the reference data
of H and Q with various explanatory variables supplied by Dresser-Rand. Figure
2 shows all curves plotted like in Figure 1, with Q on the x-axis and H on the
y-axis. The curves are from the recompression process with molweights 39.9 in
blue, 44.3 in green and 47.5 in red. The di�erent rotational speeds are 6033, 6895,
7757, 8619, 9050, where the curves for the rotational speed 6033 are clustered at
the bottom left part of the diagram, and increasing rotational speed moves the
cluster right and upwards, to the highest rotational speed, 9050, at the top right
part of the diagram. The curves below the Q/H chart are the e�ciency curves to
corresponding Q/H curve, [4].

The dataset consists of 75 measurements for H and Q values, along with 75
values for the e�ciency at each datapoint. These measurements are made for
di�erent running conditions as shown in the curves in Figure 2 and speci�ed fur-
ther here. There are as said three di�erent molweights, and for each molweight
there are �ve rotational speeds. For every pair of rotational speed and molweight,
�ve measurements are collected. Hence, each curve in Figure 2 are made of �ve
datapoints. In total this gives 5 · 5 · 3 data values of each Q and H. The �ve mea-
surements are collected by adjusting the in- and outlet pressures, thus naturally
obtaining di�erent Q and H values.

Under testing the end members of the curves are close to the surge and choke
domains, while typically the middle values are the ones with the greatest e�ciency,
and thus sought after when running the compressors. This is however not always
the case, sometimes the measurements with the highest e�ciency lie close to the
surge and choke domains, but in general the most e�cient parts are close to the
middle of the curves.

Dresser-Rand gives the H, Q and e�ciency for each molweight in di�erent
diagrams. Ambjørnsen [1] provides an extensive presentation of how the data is
aquired, and relates this to the compressor theory underlying the diagrams.

As in all data analysis, it is important to examine the data before starting the
statistical modeling. Examining the di�erent diagrams, there is a clear connection
within each. Increasing rotational speeds indicate higher H and Q values, and
increasing molweights increases at least �ow, and in most cases also head. The
curves seem almost parallell, but with di�erent lengths.
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Figure 2: Dresser-Rand diagrams, above curves show H vs. Q, below are the
e�ciency versus �ow curves.

To be able to use the data we need a sensible notation. Let

� i ∈ {1, 2, . . . , 5} be the index for increasing rotational speed ni, such that
n1 = 6033 rpm and n5 = 9050 rpm,

� j ∈ {1, 2, 3} be the index for the molweights, where m1 = 39.9, m2 = 44.3
and m3 = 47.5,

� I ∈ {−1, 0, 1} be an indicator function used to identify the the datapoint
with the highest e�ciency at each curve. See Figure 8 and explanation below,

� l ∈ {1, 2, . . . , 5} denote the datapoint of each curve. l = 1 is the datapoint
with the lowest �ow, and l = 5 is the datapoint with the highest �ow,

� L ∈ {1, 2, . . . , 5} denote the datapoint with the highest e�ciency on each
curve.
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To analyse the data, Q and H are plotted as a function of the order of the
data, see �gure 3 and 4 respectively. The datapoints are ordered with increasing
rotational speeds and increasing molweight. The 25 �rst measurements are for
molweight 39.9, the next 25 are for molweight 44.3 and the last 25 measurements
are for molweight 47.5. Similarly, the �rst 5 measurements are for the lowest rota-
tional speed, 6033. Measurements 6-10 are for the rotational speed 6895 and so on
to the the measurements 21-25 for rotational speed 9050. Then for measurements
26-30 where the data for the molweight 44.3 begins again, the rotational speed
6033 begins.

A clear trend in the data is seen. The pattern for both H, �gure 4 and Q, �gure
3, looks like a zig-zag, with a period of �ve datapoints for every step in the zig-zag.
When plot gets to the next molweight the zig-zag again start at the bottom and
works its way up in the same manner with periods of 5 datapoints. The zig-zag
pattern is a lot clearer for H than for Q. Looking at the rightmost datapoints for
Q the zig-zag smoothens out. Looking at the peaks for the zig-zags, for H the
peaks decrease with bigger molweight in a seemingly linear manner, while for Q
the peaks increase the bigger molweight, but not equally evident.

Figure 3: All datapoints plotted versus their Q-value, in the order they are ar-
ranged in the dataset.
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Figure 4: All datapoints plotted versus their H-value, in the order they are ar-
ranged in the dataset.

Next, both Q and H are plotted as a function of the di�erent explanatory
variables, molweight, rotational speed and e�ciency.

In Figure 5 Q and H is plotted versus molweight. A color and �gure indexing
is used. Blue color for the lowest molweight, 33.9, green color for 44.3 and red
color for molweight 47.5. The di�erent symbols are for the di�erent rotational
speeds. The circle is for the lowest rotational speed, 6033, the asterisk is for 6895,
the cross for 7757, the square for 8619 and the plus-sign for 9050, see table 1 for
a legend. Looking at the crossplot between molweight and H �rst, it seems that
every curve is clustered.

It is also clear that there is a linear dependence within each rotational speed.
For high rotational speeds the tendency is that datapoints decrease with higher
molweight while for smaller rotational speeds the points seem to follow a horizontal
line. It is the exact same tendency for small rotational speeds when Q is plotted
versus molweight, while for higher rotational speeds the values increase the higher
molweight. The main point is that there is a linear dependence for each rotational
speed.

Looking at Figure 6 the di�erent molweights are spread out more than the
rotational speed were in the crossplot between molweight and H and Q. However,
a general increasing trend is a lot more evident in these two plots than in Figure
5.
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Table 1: Legend for the di�erent datapoints.

Rotational speed Molweight
33.9 44.3 47.5

6033 ◦ ◦ ◦
6895 ∗ ∗ ∗
7757 × × ×
8619 � � �
9050 + + +
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Figure 5: Molweight plotted versus Head and Flow.
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Figure 6: Rotational Speed plotted versus Head and Flow.
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In �gure 7 the e�ects are plotted versus H and Q. For both H and Q the
datapoints form a cluster, or a horseshoe, with the high and low rotational speeds
acting as the tips of the shoe. Based on these plots an indicator function is made,

Iijl =


−1 if Qijl < QijL

0 if Qijl = QijL

1 if Qijl > QijL

(3)

where the su�x L indicates the datapoint with the largest e�ect on the curve i, j.
See �gure 8 for a graphical representation of the indicator function. As seen in the
�gure the general trend is that medium rotational speeds have a more clustered
e�ect whilst the smaller and larger rotational speeds are more spread out across
the curves.

Figure 7: E�ect plotted versus Head and Flow.
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Figure 8: Figure explains how the indicator function applies on the curves.

In previous thesis and papers, such as Herdahl [7] and Ambjørnsen [1], a ref-
erence curve has been used when modelling the data. A reference curve gives the
data for one of the most common conditions. The models are based in this ref-
erence curve. The problem with modelling the data in this manner is that with
di�erent datasets, the reference curve will change. In [7] a reference curve was used
when making a model. The data were parameterized with angles and distances
from the reference curve, see Figures 9 and 10. A problem with this model were
that datapoints very close to the reference curve got the worst predictions due to
the fact that the angles obviously varied a lot more closer to the reference curve
than further away. Looking at Figure 9, especially the datapoints 25 and 70 for
the angles are big outliers. These outliers are a result of the parametrization made
as a basis from a reference curve. These bad results around the reference curve is
a big drawback, as good predictions around the reference curve is desireable since
this is the condition the compressors are mainly run at.
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Figure 9: Angles from reference curve to every other curve.

Figure 10: Distances from reference curve to every other curve.
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3 Statistical Model and Theory

This chapter is divided into 6 parts. First, an introduction to the linear mixed
model is given along with an example as a motivation for the use of linear mixed
model for the Q/H dataset. The next section will show how the linear mixed
model will be used on the Q/H dataset. Further, cross validation and its use on
the Q/H dataset will be introduced and explained. Finally, there will be two
chapters on model choice.

3.1 Linear Mixed Model

Linear Mixed Models, LMM, are widely used to describe clustered data. This
model allows for correlations among repeated measurements made on individual
clusters by incorporating appropriate random e�ects. The model is commonly
expressed in hierarchial form, see Laird and Ware [8], Dobsen [11] and Gelfand [5],
for i = 1, . . . ,m

yi = Xiβ + Zibi + εi,
bi ∼ Nq(0,Ψ),
εi ∼ Nni

(0,σ2Λi).
(4)

where

� yi is the ni × 1 response vector for observations in the ith cluster,

� Xi is the ni× p model matrix for the �xed e�ects for observations in cluster
i,

� β is the p× 1 vector of the �xed-e�ect coe�cients,

� Zi is the ni×q model matrix for the random e�ects for observations in cluster
i,

� bi is the q × 1 vector of random-e�ect coe�cients for cluster i,

� εi is the ni × 1 vector of errors for observations in cluster i,

� Ψ is the diagonal q × q covariance matrix for the random e�ects,

� σ2Λi is the diagonal ni × ni covariance matrix for the errors in cluster i.

Equally in form of equations for each measurement,

yij = β1x1ij + · · ·+ βpxpij,

+bi1z1ij + · · ·+ biqzqij + εij,

bik ∼ N(0, ψ2
k), k = 1, . . . , q,

εij ∼ N(0,σ2λij), 1, . . . , ni. (5)
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Figure 11 shows a DAG for the linear mixed model. An equivalent formulation

Figure 11: DAG for the linear mixed model, data y are modelled by �xed e�ects
β, random e�ects b and noise term ε

that explicitly shows the regression as a model of conditional expectation can be
given as,

[yi|bi] ∼ N(Ziβ + Zibi,σ
2Λi). (6)

And marginally,
yi ∼ N(Xiβ,ZiΨZT

i + σ2Λi). (7)

E[yi] = Xiβ

V ar[yi] = ZiΨZT
i + σ2Λi. (8)

An example of an LMM given by Bryk and Raudenbuch [2], gives the results
of a math-achievement test for di�erent students. The information available on
the di�erent student is which school the student goes to, the socioeconomic status
of the families, the student's school's average achievement on the math test and if
the school is public or catholic.

By examining scatterplots and boxplots between math achievement and socioe-
conomic status for public schools and catholic schools, the trend is that there is a
stronger positive relationship between socioeconomic status and math achievement
in the public schools than in catholic schools. However, the average level of math
achievement in catholic schools are greater than in public schools.

This data analysis give the background to propose a LMM. Using the centered
socioeconomic status, cses for the schools, the individual-level equation for student
j in school i is,

mathachij = α0i + α1icsesij + εij. (9)

Further, at the school level, the intercepts and slopes will depend upon catholic
and public schools and average level of socioeconomic status in the schools,

α0i = γ00 + γ01meansesi + γ02sectori + u0i (10)

α1i = γ10 + γ11meansesi + γ12sectori + u1i (11)
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Substituting the school-level equation into (9) and rearranging terms gives an
equation consisting of γ's, u's and ε. The γ's will then be the �xed e�ects, while
the u's and ε will be the random e�ects. A more detailed explanation of this
example can be obtained reading Bryk and Raudenbuch [2] and Laird and Ware
[8].

The usual ways to estimate the random e�ects are by MLE , or Restricted
Maximum Likelihood, REML. Usual MLE may be biased as it estimates MLE
simultaniously. This is not a problem where the variance of the data y does not
depend on the �xed e�ects β. In (7), we obtain parameter estimates by least
squares,

β̂ = [XTR−1X]−1XTR−1y. (12)

X is built up of xi's and R = σ2. The problems by using least squares is that we will
get too few degrees of freedom and bad predictions, if the dimension of the dataset
is close to the dimension of β. The solutions does not take advantage of cluster
e�ects, i.e. variations across and inwards clusters. This is where LMM expands
the methods which take the cluster e�ects into consideration, and introduces the
bi's as structured random e�ects.

REML �lters away the �xed e�ects βi before the parameters in the covariance
matrix are estimated,

ỹ = [I−X(XTX)−1XT]y = By. (13)

E[ỹ] = 0. (14)

V ar[ỹ] = B[ZΨZT + σ2Λi]B
T. (15)

The expression is independent of the �xed e�ects βi's. Now, the likelihood for ỹ
can be optimated with respect to σ2Λi and Ψ, see Wood [3].

3.2 Linear Mixed Model for Head and Flow

An assumption for the model is that the data Q and H can be modelled seprately.
Set

y =

{
Q, if considering �ow
H, if considering head

for the sake of simplicity. The dataset y will be modelled with an LMM. As
explained in the previous chapter this means that y will be modelled with three
additive parts,

� Fixed e�ects i in a multiple regression model β, β = (β1 . . . βp)
′,

� Random e�ects i in a structured model b1, . . . , bq, bi = (bi1 . . . biq)
′,
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� Residual e�ect ε1, . . . , εm.

such that

yi = Xiβ + Zibi + εi, i = 1, . . . ,m, yi = (yi1 . . . yin)′. (16)

In this thesis, the same model has been used for both Q and H data. Later in
chapter 3.5 di�erent models are discussed. For the basis model the variables used
are for the X-matrix all m,n and I. The X-matrix will look like this,

X =


1 n111 m111 I111

1 n112 m112 I112
...

...
...

...
1 n534 m534 I534

1 n535 m535 I535

 (17)

Here the p from chapter 3.1 is 4. Similarly the variable used to make the Z-matrix
in the basis model is only I. Hence q will be of size 2,

Z =



1 0 · · · · · · 0 I111 0 · · · · · · 0
...

...
...

...
...

...
1 0 I115 0
0 1 0 I121
...

...
...

...

0 1
. . . 0 I125

. . .
... 0

...
...

...
...

... 0
... 0

1 I531
...

...
...

...
...

...
0 · · · · · · 0 1 0 · · · · · · 0 I535



(18)

The model will be presented as model 2 in the results chapter.
The �xed e�ects β are common for all curves, while the matrix of covariates

Xi may vary between the curves. The �xed part of the model is a regular multiple
regression model,

y =

 y1
...
ym

 =

 X1
...

Xm

 · β + v = X · β + v. (19)
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Usually the v's are independent and identically distributed. In LMM they have a
structure because of Z, and can therefore have di�erent variances and correlations.
Assume v independent and vj = N(0, σ2), j = 1, . . . , n ·m. Then,

β̂ = [XTX]−1 ·XT · y, ŷ = X · β̂

σ̂2 =
1

nm− 1

nm∑
j=1

(yj − ŷj)2.

The random e�ects are di�erent from every curve, i = 1, . . . ,m,

bi ∼ N

0,

 σ2
1 · · · 0
...

. . .
...

0 · · · σ2
q


 . (20)

A priori the residual terms are independently distributed,

ej ∼ N(0, σ2
q+1). (21)

In an LMM the variance parameters have to be estimated,

σ̂2
1, . . . , σ̂q+1 (22)

as well as β̂. As û constitute in the structured part of the model,

ûi = E[ûi|y]. (23)

This will give the predicted data

ŷi = Xiβ̂ + Ziûi. (24)

The variance of the prediction can also be obtained by using

V ar[ui|y]. (25)

which can be used to obtain uncertainity or to draw realizations with the correct
amount of variablity.
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3.3 Cross Validation

The next two subchapters will describe cross validation in general and for the
Q/H dataset. There will be a comparison between the di�erent models tried in
subchapter, and an explanation for the choice of model with references to the
dataset in the second subchapter.

Consider a dataset that can be represented by a function. It is desired to �nd a
function that is closest to the �truth� by doing a regression analysis on the dataset
to predict new data. The accuracy of a regression analysis is restricted by the size
of the dataset. Obviously, the less data we have available, the poorer regression
model we get.

As the dataset gets smaller, each datapoint will a�ect the regression model at a
larger weight than with bigger datasets. Hence, any datapoint that is skewed can
cause future data to di�er more from the model than if these skewed datapoints
were not weighted in the regression analysis. This is where cross validation is
useful. Cross validation is a method that is better than the common residual
analysis, as cross validation will give an indication of how future datapoints will
�t the model. The idea is to choose a datapoint or a set of datapoints, and use the
remaining dataset as a training set. Then we use our regression on the training
set and estimate the future performance with the test set. We then measure the
mean absolute test set error, which we use to evaluate the model. This type of
cross validation is called the hold out method or the test set method.

This method can be expanded into the k-fold method where one choose k test
subsets and repeat the test set method k times, where the kth subset is used as
a test set and the other k − 1 are used as the training set. The advantage of this
method is that each data point is guaranteed to be in a test set once and in a
training set k − 1 times, hence the variance of the estimate will be smaller than
with a single test set method. The downside with this method is that its algorithm
will cost more.

Lastly the Leave One Out Cross Validation is just what it says it is. It is a
k-fold method where k equals n, where n is the number of datapoints. It means the
regression is done on the whole data set except that single point, and predictions
are made for that single point not in the training set.

Cross validation can also be used to detect outliers or anomalous parts of a
dataset. If the leave-n-out prediction intervals for a block of size n misses most of
the data, the model is probably not valid for that block.
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3.4 Cross Validation on the Head and Flow Dataset

Typically, a smart way to use cross validation on the Q/H dataset is to remove
single curves from the dataset,

y =


y1
...
yk
...
ym


︸ ︷︷ ︸

old

y−k =



y1
...

yk−1

yk+1
...
ym


︸ ︷︷ ︸

new

where yk is removed. The new dimension on the vector, y−k, where −k denotes
that the kth kurve is removed, will be n · m − n. When y is altered, X and
Z-matrices must also be altered,

X =

 x1
...
xm


︸ ︷︷ ︸

old

X−k =



x1
...

xk−1

xk+1
...
xm


︸ ︷︷ ︸

new

,

Z =

z1 0

0
. . . 0
0 zm


︸ ︷︷ ︸

old

Z−k =



z1 0

0
. . . 0
0 zk−1 0

0 zk+1 0

0
. . . 0
0 zm


︸ ︷︷ ︸

new

.

u also needs to be reduced as both rows and columns in Z are changed,

u =

 u1
...
um


︸ ︷︷ ︸

old

u−k =



u1
...

uk−1

uk+1
...
um


︸ ︷︷ ︸

new

.
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This can be done in a sequential manner, starting by removing the �rst curve
(k = 1), then the second curve (k = 2), and so on until (k = m). For each curve
the leave-k-out prediction ŷk with the obsverved left out data yk.

3.5 Model Choice

There are two critera for model choice. First, it is desired that the model is as
accurate as possible. A model that �ts the given data is intuitively a good model.
However, if the model �ts the given data too well there might be a chance that
the data have been overparametrized. As a result of this overparamterization new
data will in many cases �t the model poorly.

A variable to measure the accuracy of the model is the likelihood of the model.
In Harville [6] the likelihood is given

L(σ; y) = −1/2ln|Vσ| − 1/2ln|X′V−1
σ X|

= −1/2(y −Xβ̂)′V−1
σ (y −Xβ̂)

β̂ = [X′V−1
σ X]−1X′V−1

σ y. (26)

Similar algebraical expressions exist. The inverse of a matrix may be written in
other terms, such that β̂ also will be written in other terms. In Laird and Ware
[8] the likelihood for the LMM is written,

L = −((nm− rank(X′X)) · log(2πsr+1)− log(det(T)) + (nm− rank(X′X))

2
,

(27)
where n×m is the number of data used in the model, sr+1 is the last element in
the vector of prior choice of variance components and T is,

T =

[
Ia×a + O ·D

s

]−1

,

where I is the identity matrix of dimension a × a. a is given by the number of
columns in the X′Z-matrix which varies between di�erent models. O is given by

O = Z′Z− (X′Z)′ · (X′X)+ ·X′Z,

and D is given by
D = diag(s1 · r),

where r is a diagonal matrix made up of the prior choice of variance components
[8].
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3.6 Model Choice for Head/Flow dataset

The basis model is given in chapter 1.2. When adding variables to the model
columns are added to the X-matrix. here X+c denotes the new matrix when c new
explanatory variables or product of these are added to the model.

X =

 x1
...
xm


︸ ︷︷ ︸

old

X+c =

 x1 v11 . . . vc1
...

...
...

xm v1m . . . vcm


︸ ︷︷ ︸

new

,

The vs are vectors of dimension (m
k

). The Z-matrix also needs to be expanded
when new explanatory variables are added to the model. Again Z+c denotes the
new matrix when c new variables or products are added to the model.

Z =

 1 0 I1 0

0
. . . 0 0

. . . 0
0 1 0 Im


︸ ︷︷ ︸

old

Z+c =

 1 0 I1 0 w11 0 wc1 0

0
. . . 0 0

. . . 0 0
. . . 0 . . . 0

. . . 0
0 1 0 Im 0 w11 0 wcm


︸ ︷︷ ︸

new

Again the ws, Is and 1 are vectors of dimension (m
k

).
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4 Results

This chapter is divided into 4 parts. The �rst subchapter gives an overview of the
Graphical User Interface that has been made to represent the data, to choose a
model and to get the results from the chosen model. The next subchapter gives
various results from the chosen model. The cross validation subchapter give an
overview over how the model �ts when subtracting various curves from the dataset
before estimating the parameters. The last subchapter gives alternative models.

4.1 Graphical User Interface for the Dataset

As a part of the thesis a Graphical User Interface, GUI, has been made to plot the
data, analyze the data and to evaluate the di�erent Linear Mixed Models. The
GUI has been programmed using MATLAB's GUIDE add-on. Figure 12 shows a
screenshot of how the GUI looks like after initializion in MATLAB. The GUI is
launched simply writing lmmgui_v2 in the MATLAB command line after loading
appropriate �les.

The GUI consists of a graphing area, checkboxes, pop-up menus and push but-
tons. The upper right panel called Model Choice is where the di�erent explanatory
variables for the linear mixed model for both Head and Flow are chosen. The idea
is to click whichever explanatory variables are desired and press Estimate H to
estimate the parameters of the model for Head. Similary, again choose which ex-
planatory variables are desired for Flow and click Estimate Q. Once the Estimate-
buttons are clicked the text-area to the corresponding Estimate-button will give
a likelihood value for the model, along with numbers indicating which model has
been chosen. The �rst 6 numbers indicates which of the �xed parameters has been
chosen by the user, starting from top of the checkbox column to the bottom. The
next 6 numbers indicates which of the random e�ects has been chosen by the user.
The number 1 means that the corresponding e�ect is chosen, while the number 0
means it is not chosen in the model.
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Figure 12: A screenshot of how the GUI looks like when it is �rst launched in
MATLAB.
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To look at how the model �t, click �Plot H� solution for the Head model, and
�Plot Q� Solution for the Flow model. This will bring up a plot of the data together
with predictions and realizations of the model, together with 95% con�dence in-
tervals. See �gure 13 for a screenshot of this part of the GUI. Clicking several
times on these two buttons will give new realizations.

Figure 13: A screenshot of the GUI with the H predictions after estimating with
some parameters and plotted.
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To see how both the models for Head and Flow �t the original dataplot click
�Plot!�. This will give a graph of the original data together with predictions from
the models chosen. The panel Cross Validation is where the user can choose to
remove a curve from the dataset when estimating the parameters for the model.
Further, clicking �Plot H� and �Plot Q� will again give a plot of the predictions
along with con�dence intervals, realizations and the original data.

Figure 14: A screenshot of the GUI with the predicted data together with original
data.
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4.2 Results From the Chosen Model

In this chapter the results from the chosen model are presented. In �gure 15 and
16 the data are plotted in red, the predictions are plotted in black and realizations
are plotted in green for H and Q respectively.

Looking at �gure 15 �rst, the model seems to �t quite well for most datapoints
for the lowest molweight, datapoint 0 to 25. For the medium molweight, however,
the model does not catch up with the outliers for some of the highest rotational
speeds. The datapoints have generally a lower value than for the predictions. The
same trend can be spotted for the highest molweight, where the data for the two
highest rotational speeds have a much lower value than the predictions.

In �gure 16 the same graph is displayed, but for Q this time. As discussed
in chapter 2 the zig-zag pattern for Q is not as strong overall as it is for H.
For the highest molweight, datapoint 50 to 75, the pattern is almost smoothened
completely at some of the highest rotational speeds. This makes it harder to get
good predictions as the pattern is not well de�ned. In general it seems that the
right- and leftmost points of the curves have gotten the worst predictions. The
model does not manage to match up with the very steep zig-zag for the two lower
molweights, while it is too steep for the higher rotational speeds for the highest
molweight.

Figure 15: H predictions together with data, con�dence intervals and realizations
for model 2, basis model, with 3 �xed e�ects and 1 random e�ect for H.



4.3 Cross Validation with Chosen Model 29

Figure 16: Q predictions together with data, con�dence intervals and realization
for model 2, basis model, with 3 �xed e�ects and 2 random e�ects for Q.

4.3 Cross Validation with Chosen Model

In table 2 the total error, (28), at each curve has been listed when that curve has
been left out as the model's parameters has been calculated.

[Herrij , Qerrij ] =
l=5∑
l=1

(y−kijl
− ŷijl)2. (28)

Here i, j indexes k as in chapter 3.4, i.e every curve k is indexed by rotational
speed i and molweight j. Looking at table 2, it seems that when the error is big
with the head predictions it is also big with �ow. However, this is not always true.
For Q predictions at molweight 33.9 and rotational speed 8619, curve (4, 1) the
error is a lot bigger than at the same molweight and rotational speed 9050. For
H predictions the size of errors are opposite than for Q predictions at these two
curves. The same thing can be seen at other curves, like curve (1, 3) and (2, 3),
and curve (1, 2) and (2, 2).

Looking at curve (4, 3) there is a very large di�erence between predicted curve
and observed curve. Probably the data for this set of explanatory variables is not
well represented by the model.
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Table 2: Total error at each curve for model 2 using cross validation

Curve (i, j) Herrij Qerrij

(1,1) 2.41 7.28
(2,1) 11.32 6.95
(3,1) 8.90 8.32
(4,1) 19.97 28.12
(5,1) 57.24 14.58
(1,2) 6.54 5.42
(2,2) 8.76 4.50
(3,2) 10.10 10.26
(4,2) 38.61 12.34
(5,2) 61.22 11.98
(1,3) 9.99 7.27
(2,3) 6.26 8.10
(3,3) 20.46 7.82
(4,3) 112.15 10.78
(5,3) 14.66 3.19
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4.4 Model Choice

In chapter 3.5 the criteria for model choice were discussed. The likelihood is cal-
culated each model and compared. The calculation of the likelihood is integrated
as a part of the GUI. It will appear in the text areas when the estimations of
head and �ow is done. In table 3 the likelihood is listed for di�erent models. The
general trend is that the more explanatory variables are put in the model, the
greater the likelihood gets. Another thing to notice is that some of the variables
a�ect the likelihood for head more than �ow, and vice versa. The Indicator gives
a greater impact on the likelihood for �ow than for head, while m and n makes
the likelihood greater for head than for �ow. Another thing to notice is that the
random e�ects a�ect the likelihood at a much greater rate when there are few
�xed e�ects in the model opposed to the models with many �xed e�ects. Also,
when using almost every explanatory variables and products the likelihood is a
bit smaller than when removing some of the variables. It seems that to maximize
the likelihood without using too many explanatory variables and products, the
last model gives the highest likelihood for head, and the 2nd last model gives the
highest likelihood for �ow.

Below are predictions from three di�erent models for both head and �ow.
Model 1 for both head and �ow consist of only one �xed e�ect and random e�ect.
In this model the molweight has been used as both the �xed and random e�ect.
As seen in �gure 17 and 19, the predictions are very poor. For both H and Q
the model hardly match up with the zig-zag pattern. The model gives merely a
stair-type prediction. It is obvious that this model is under-parametrized for both
H and Q.

Looking at Figure 20 and 18, 6 di�erent �xed e�ects and 6 di�erent random
e�ects have been used in model 2 for both H and Q. This model �ts the data
better than the simple model with only one random and one �xed e�ect. However,
this model is probably overparametrized and future data might su�er.

Figure 16 and 15 gives the predictions for two models where fewer e�ects have
been used. For both Q and H the �xed e�ects are m, n and I and the random
e�ects are m and I. Looking at table 3 it is clear that these models for H and Q
have near the same likelihoods as the models with 6 di�erent �xed and random
e�ects. The predictions showed in the two �gures are also equally good. This gives
an indication that model 3 for both H and Q is a better �t to the data when both
the predictions and the amount of parametrization is taken into account.
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Table 3: Likelihood for di�erent models for Head and Flow
Fixed e�ects Random e�ects LH LQ

m m 70.01 64.45
m,n m 96.69 86.32
m, I m 88.01 110.54
m,n, I m 118.09 141.18
n m, n, I 107.33 117.13
I m 88.00 110.26
n m 97.31 81.78
n, I I 119.13 137.76

m,n, I m, I 118.10 141.69
m,n, I,m m, I 116.30 140.52

m,n, I,m·, n · I I, n · I 119.00 139.44
m,n, I,m · n, n · I,m · I I, n · I 116.78 138.13

m m,n, I,m · n, n · I,m · I 77.06 97.04
m, I,m · n I, n · I 114.05 142.38
m,n, I, n · I n, n · I 121.00 141.01
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Figure 17: H predictions together with data, con�dence intervals and realizations
for model 1 with 1 �xed e�ect and 1 random e�ect for H.

Figure 18: H predictions together with data, con�dence intervals and realizations
for model 3 with 6 �xed e�ects and 6 random e�ects for H.
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Figure 19: Q predictions together with data, con�dence intervals and realizations
for model 1 with 1 �xed e�ect and 1 random e�ect for Q.

Figure 20: Q predictions together with data, con�dence intervals and realizations
for model 3 with 6 �xed e�ects and 6 random e�ects for Q.
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Tables (4), (5) and (6) show the error (29) for both head and �ow for each
curve (i, j) for the three di�erent models,

[Herrij , Qerrij ] =
l=5∑
l=1

(yijl − ŷijl)2 (29)

Comparing the di�erent models it is clear that the simplest model in table 2 gives
very bad predictions at many curves. Especially Q predictions at molweight 33.9
and the two highest rotational speeds give very bad predictions compared to the
two other models. But in general every curve are worse predicted in the simplest
model than in the two other models. Comparing the basis model (model 2) with
model 3 where every explanatory variable are used, and also products of these
variables it seems they have fairly equally good predictions. The only curves
there are an evident di�erence in predictions are the H predictions at the lowest
rotational speed at every molweight.

Comparing the basis model with the cross validation in table 1, the results
follow the same trend. They are high on the same curves, and low on the same
curves. But in table 2 the numbers are extra high where they are already high in
table 5. Similarly the numbers are a bit lower where they are already low in table
5.
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Table 4: Total error at each curve for model 1
Curve (i, j) Herrij Qerrij

(1,1) 2.45 4.58
(2,1) 9.35 21.69
(3,1) 28.31 72.43
(4,1) 55.03 123.35
(5,1) 95.11 108.84
(1,2) 4.18 10.56
(2,2) 13.98 42.56
(3,2) 32.92 82.81
(4,2) 83.30 57.78
(5,2) 89.35 28.11
(1,3) 5.75 17.03
(2,3) 18.39 17.03
(3,3) 49.57 64.45
(4,3) 99.54 72.96
(5,3) 19.13 4.61

Table 5: Total error at each curve for model 2
Curve (i, j) Herrij Qerrij

(1,1) 2.60 7.48
(2,1) 9.44 7.14
(3,1) 8.96 7.98
(4,1) 20.79 20.28
(5,1) 45.34 13.78
(1,2) 8.13 5.84
(2,2) 7.32 4.72
(3,2) 10.14 9.16
(4,2) 35.63 10.71
(5,2) 54.14 10.53
(1,3) 9.92 6.89
(2,3) 6.40 7.64
(3,3) 18.39 7.72
(4,3) 84.95 9.45
(5,3) 13.03 4.39
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Table 6: Total error at each curve for model 3
Curve (i, j) Herrij Qerrij

(1,1) 1.27 5.20
(2,1) 3.64 8.09
(3,1) 7.14 7.70
(4,1) 18.08 15.93
(5,1) 34.15 11.44
(1,2) 3.67 5.11
(2,2) 3.09 4.31
(3,2) 10.03 9.69
(4,2) 32.35 10.52
(5,2) 50.95 11.11
(1,3) 2.63 4.67
(2,3) 5.13 9.26
(3,3) 19.10 8.90
(4,3) 82.12 9.74
(5,3) 15.99 4.70
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5 Conclusion

A linear mixed model has modelled head and �ow data. The di�erent explanatory
used are molweight, rotational speed and an e�ciency indicator.

The best predictions were achieved at the lowest molweights and rotational
speeds. The model is not able to match up with the steeper zig-zag pattern for
head values, and the more smoothened zig-zag pattern for �ow values at larger
molweights and rotational speeds.

A possible expansion of a linear mixed model for the head and �ow dataset is
to use a model that is more physical. Such a model might give better predictions
in the �trouble� areas.

A GUI such as the one that has been made in this thesis could be very helpful
at testing di�erent models.
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APPENDIX

Figure 21 shows how the GUI is built up, i.e. what buttons and functions call to
other functions. The code is listed in the rest of this appendix in verbatim.

Figure 21: A DAG explaining how the GUI is built up. The black boxes are
functions. The red boxes are not functions, but strings of di�erent buttons in the
GUI. The green lines gives an indication of which buttons or functions call at other
functions. The right panel is for cross validation estimating.

function varargout = lmmgui_v2(varargin)
% LMMGUI_V2 M−file for lmmgui_v2.fig
% LMMGUI_V2, by itself, creates a new LMMGUI_V2 or raises the existing
% singleton*.
%
% H = LMMGUI_V2 returns the handle to a new LMMGUI_V2 or the handle to
% the existing singleton*.
%
% LMMGUI_V2('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in LMMGUI_V2.M with the given input arguments.
%
% LMMGUI_V2('Property','Value',...) creates a new LMMGUI_V2 or raises the
% existing singleton*. Starting from the left, property value pairs are
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% applied to the GUI before lmmgui_v2_OpeningFunction gets called.
An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to lmmgui_v2_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help lmmgui_v2

% Last Modified by GUIDE v2.5 21−May−2008 00:13:35

% Begin initialization code − DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...

'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @lmmgui_v2_OpeningFcn, ...
'gui_OutputFcn', @lmmgui_v2_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);

if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});

end

if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else
gui_mainfcn(gui_State, varargin{:});

end
% End initialization code − DO NOT EDIT

% −−− Executes just before lmmgui_v2 is made visible.
function lmmgui_v2_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved − to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to lmmgui_v2 (see VARARGIN)

[M,k,mw,n,Q,H,eff]=lmmDATA;

for i=1:5
q(i)=Q(i);
h(i)=H(i);

end;
plot(q,h,'−');
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hold;
for i=2:15

for j=1:5
q(j) = Q((i−1)*5+j);
h(j) = H((i−1)*5+j);

end;
plot(q,h,'−');

end;
xlabel('Q')
ylabel('H')

handles.molweight=0;
handles.rotspeed=0;
handles.data=M;
mod=zeros(12,1);
handles.model=mod;
handles.Q=Q;
handles.H=H;

% Choose default command line output for lmmgui_v2
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes lmmgui_v2 wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% −−− Outputs from this function are returned to the command line.
function varargout = lmmgui_v2_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved − to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% −−− Executes on selection change in molweight_popup.
function molweight_popup_Callback(hObject, eventdata, handles)
% hObject handle to molweight_popup (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: contents = get(hObject,'String') returns molweight_popup contents as cell array
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% contents{get(hObject,'Value')} returns selected item from molweight_popup

switch get(handles.molweight_popup,'Value')
case 1

handles.molweight=39.9;
case 2

handles.molweight=44.3;
case 3

handles.molweight=47.5;
otherwise

end
guidata(hObject, handles);
% −−− Executes during object creation, after setting all properties.
function molweight_popup_CreateFcn(hObject, eventdata, handles)
% hObject handle to molweight_popup (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles empty − handles not created until after all CreateFcns called

% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');
end

% −−− Executes on selection change in rotspeed_popup.
function rotspeed_popup_Callback(hObject, eventdata, handles)
% hObject handle to rotspeed_popup (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: contents = get(hObject,'String') returns rotspeed_popup contents as cell array
% contents{get(hObject,'Value')} returns selected item from rotspeed_popup

switch get(handles.rotspeed_popup,'Value')
case 1

handles.rotspeed=6033;
case 2

handles.rotspeed=6895;
case 3

handles.rotspeed=7757;
case 4

handles.rotspeed=8619;
case 5

handles.rotspeed=9050;
otherwise

end
guidata(hObject, handles);
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% −−− Executes during object creation, after setting all properties.
function rotspeed_popup_CreateFcn(hObject, eventdata, handles)
% hObject handle to rotspeed_popup (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles empty − handles not created until after all CreateFcns called

% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');
end

% −−− Executes on button press in estimate_leavecurve_q.
function estimate_leavecurve_q_Callback(hObject, eventdata, handles)
% hObject handle to estimate_leavecurve_q (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

[X,Z,data,radnumre] = estimate_leaveoutonecurve(handles.molweight,handles.rotspeed,handles.QX,handles.QZ,handles.Qss20,handles.Q);

handles.radnumreQ=radnumre;
Qy=data;
handles.Qy2=Qy;

B = inv(X'*X)*X'*Qy;

S=var(Qy−X*B);
r=14;
ss20=handles.Qss20;

s20=S/3*ones(ss20,1);

% Last input is 2:REML estimation

[s2a,bQ,uQ,Is2,C,H,q,loglik,loops] = mixed(Qy,X,Z,r*ones((ss20−1),1),s20,2);

s20=3*S*ones(ss20,1);

% Last input is 2:REML estimation

[s2,bQ,uQ,Is2,C,H,q,loglik,loops] = mixed(Qy,X,Z,r*ones((ss20−1),1),s20,2);
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disp('Variance estimates with starting point 1');

s2(1:2,1)

s2a(1:2,1)

disp('Variance estimates with starting point 2');

s2(3,1)

s2a(3,1)

logliktext=num2str(loglik);
mod1=num2str(handles.model(1));
mod2=num2str(handles.model(2));
mod3=num2str(handles.model(3));
mod4=num2str(handles.model(4));
mod5=num2str(handles.model(5));
mod6=num2str(handles.model(6));
mod7=num2str(handles.model(7));
mod8=num2str(handles.model(8));
mod9=num2str(handles.model(9));
mod10=num2str(handles.model(10));
mod11=num2str(handles.model(11));
mod12=num2str(handles.model(12));

inputtekst=['loglik: ',logliktext,' model: ',mod1,' ',mod2,' ',mod3,' ',mod4,' ',mod5,' ',mod6,' , ',mod7,' ',mod8,' ',mod9,' ',mod10,' ',mod11,' ',mod12];

set(handles.modelQ_textleave,'String',inputtekst);

handles.QX2=X;
handles.QZ2=Z;
handles.s2Q2=s2;
handles.bQ2=bQ;
handles.uQ2=uQ;

guidata(hObject, handles);

% −−− Executes on button press in plotbutton.
function plotbutton_Callback(hObject, eventdata, handles)
% hObject handle to plotbutton (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

handles.Q
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handles.H
for i=1:5

q(i)=handles.Q(i);
h(i)=handles.H(i);

end;

hold off;

plot(handles.Qhat*12058,handles.Hhat*109.7,'xr');
hold;

plot(q,h,'−');
for i=2:15

for j=1:5
q(j) = handles.Q((i−1)*5+j);
h(j) = handles.H((i−1)*5+j);

end;
plot(q,h,'−');

end;
xlabel('Q')
ylabel('H')

% −−− Executes on button press in estimate_leavecurve_q_all_data.
function estimate_all_data_Q_Callback(hObject, eventdata, handles)
% hObject handle to estimate_leavecurve_q_all_data (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

[data,X,Z,M,Morig,ss20,r] = estim(handles.model);

handles.QX=X;
handles.QZ=Z;
handles.Qss20=ss20;
handles.Qr=r;
handles.M=M
handles.HLP=[M(:,2),M(:,3),M(:,6),M(:,2).*M(:,3),M(:,2).*M(:,6),M(:,3).*M(:,6)];

%

% For each dimension of y (q,h), estimate the parameters

% by REML code,

%
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% s20 = prior choice of variance components,

% We have r=2, for two random effects b_1, b_2

% We have

%

%

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%

%

% volumstrøm Q

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Qy=data(:,1);
handles.Qy=Qy;

handles.Qy=Qy;

B = inv(X'*X)*X'*Qy;

S=var(Qy−X*B);

s20=S/3*ones(ss20,1);

% Last input is 2:REML estimation

[s2a,bQ,uQ,Is2,C,H,q,loglik,loops] = mixed(Qy,X,Z,r*ones((ss20−1),1),s20,2);

s20=3*S*ones(ss20,1);

% Last input is 2:REML estimation

[s2,bQ,uQ,Is2,C,H,q,loglik,loops] = mixed(Qy,X,Z,r*ones((ss20−1),1),s20,2);
disp('s20')
s20

disp('Variance estimates with starting point 1');

s2(1:2,1)
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s2a(1:2,1)

disp('Variance estimates with starting point 2');

s2(3,1)

s2a(3,1)

logliktext=num2str(loglik);
mod1=num2str(handles.model(1));
mod2=num2str(handles.model(2));
mod3=num2str(handles.model(3));
mod4=num2str(handles.model(4));
mod5=num2str(handles.model(5));
mod6=num2str(handles.model(6));
mod7=num2str(handles.model(7));
mod8=num2str(handles.model(8));
mod9=num2str(handles.model(9));
mod10=num2str(handles.model(10));
mod11=num2str(handles.model(11));
mod12=num2str(handles.model(12));

inputtekst=['loglik: ',logliktext,' model: ',mod1,' ',mod2,' ',mod3,' ',mod4,' ',mod5,' ',mod6,' , ',mod7,' ',mod8,' ',mod9,' ',mod10,' ',mod11,' ',mod12];

set(handles.modelQ_text,'String',inputtekst);

handles.s2Q=s2;
handles.bQ=bQ;
handles.uQ=uQ;

guidata(hObject, handles);

% −−− Executes on button press in fixed_m.
function fixed_m_Callback(hObject, eventdata, handles)
% hObject handle to fixed_m (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of fixed_m

checkboxStatus = get(handles.fixed_m,'Value');
if(checkboxStatus==1)

%if box is checked,
handles.model(1)=1;

else
%if box is unchecked,
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handles.model(1)=0;
end

guidata(hObject, handles);

% −−− Executes on button press in fixed_n.
function fixed_n_Callback(hObject, eventdata, handles)
% hObject handle to fixed_n (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of fixed_n

checkboxStatus = get(handles.fixed_n,'Value');
if(checkboxStatus==1)

%if box is checked,
handles.model(2)=1;

else
%if box is unchecked,
handles.model(2)=0;

end

guidata(hObject, handles);

% −−− Executes on button press in fixed_i.
function fixed_i_Callback(hObject, eventdata, handles)
% hObject handle to fixed_i (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of fixed_i

checkboxStatus = get(handles.fixed_i,'Value');
if(checkboxStatus==1)

%if box is checked,
handles.model(3)=1;

else
%if box is unchecked,
handles.model(3)=0;

end
guidata(hObject, handles);
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% −−− Executes on button press in fixed_mn.
function fixed_mn_Callback(hObject, eventdata, handles)
% hObject handle to fixed_mn (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of fixed_mn

checkboxStatus = get(handles.fixed_mn,'Value');
if(checkboxStatus==1)

%if box is checked,
handles.model(4)=1;

else
%if box is unchecked,
handles.model(4)=0;

end
guidata(hObject, handles);

% −−− Executes on button press in fixed_mi.
function fixed_mi_Callback(hObject, eventdata, handles)
% hObject handle to fixed_mi (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of fixed_mi

checkboxStatus = get(handles.fixed_mi,'Value');
if(checkboxStatus==1)

%if box is checked,
handles.model(5)=1;

else
%if box is unchecked,
handles.model(5)=0;

end
guidata(hObject, handles);

% −−− Executes on button press in fixed_ni.
function fixed_ni_Callback(hObject, eventdata, handles)
% hObject handle to fixed_ni (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of fixed_ni
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checkboxStatus = get(handles.fixed_ni,'Value');
if(checkboxStatus==1)

%if box is checked,
handles.model(6)=1;

else
%if box is unchecked,
handles.model(6)=0;

end
guidata(hObject, handles);

% −−− Executes on button press in random_m.
function random_m_Callback(hObject, eventdata, handles)
% hObject handle to random_m (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of random_m

checkboxStatus = get(handles.random_m,'Value');
if(checkboxStatus==1)

%if box is checked,
handles.model(7)=1;

else
%if box is unchecked,
handles.model(7)=0;

end
guidata(hObject, handles);

% −−− Executes on button press in random_n.
function random_n_Callback(hObject, eventdata, handles)
% hObject handle to random_n (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of random_n

checkboxStatus = get(handles.random_n,'Value');
if(checkboxStatus==1)

%if box is checked,
handles.model(8)=1;

else
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%if box is unchecked,
handles.model(8)=0;

end
guidata(hObject, handles);

% −−− Executes on button press in random_i.
function random_i_Callback(hObject, eventdata, handles)
% hObject handle to random_i (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of random_i

checkboxStatus = get(handles.random_i,'Value');
if(checkboxStatus==1)

%if box is checked,
handles.model(9)=1;

else
%if box is unchecked,
handles.model(9)=0;

end
guidata(hObject, handles);

% −−− Executes on button press in random_nm.
function random_nm_Callback(hObject, eventdata, handles)
% hObject handle to random_nm (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of random_nm

checkboxStatus = get(handles.random_nm,'Value');
if(checkboxStatus==1)

%if box is checked,
handles.model(10)=1;

else
%if box is unchecked,
handles.model(10)=0;

end
guidata(hObject, handles);

% −−− Executes on button press in random_ni.
function random_ni_Callback(hObject, eventdata, handles)
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% hObject handle to random_ni (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of random_ni

checkboxStatus = get(handles.random_ni,'Value');
if(checkboxStatus==1)

%if box is checked,
handles.model(12)=1;

else
%if box is unchecked,
handles.model(12)=0;

end
guidata(hObject, handles);

% −−− Executes on button press in random_mi.
function random_mi_Callback(hObject, eventdata, handles)
% hObject handle to random_mi (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of random_mi

checkboxStatus = get(handles.random_mi,'Value');
if(checkboxStatus==1)

%if box is checked,
handles.model(11)=1;

else
%if box is unchecked,
handles.model(11)=0;

end
guidata(hObject, handles);

% −−− Executes on button press in plot_q_solution.
function plot_q_solution_Callback(hObject, eventdata, handles)
% hObject handle to plot_q_solution (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

X=handles.QX;
Z=handles.QZ;
ss20=handles.Qss20;
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r=handles.Qr;
b=handles.bQ;
u=handles.uQ;
y=handles.Qy;
s2=handles.s2Q;

yhat=X*b+Z*u;

Qhat=yhat;
handles.Qhat=Qhat;

Dcap=zeros(r*(ss20−1),r*(ss20−1));

for i=1:(ss20−1),

Dcap((i−1)*r+1:i*r,(i−1)*r+1:i*r)=s2(i,1)*eye(r);

end;

varu=Dcap−Dcap*Z'*inv(Z*Dcap*Z'+s2(ss20,1)*eye(size(y,1)))*Z*Dcap;

varyhat=Z*varu*Z'+s2(ss20,1)*eye(size(y,1));

Qreal=yhat+chol(varyhat)'*randn(size(X,1),1);

%figure(2)

%clf;

hold off;

plot(yhat,'k');

hold;

plot(yhat+1.96*sqrt(diag(varyhat)),'k−−');

plot(yhat−1.96*sqrt(diag(varyhat)),'k−−');

plot(y,'r')

plot(Qreal,'g');
xlabel('Datapoint');
ylabel('Q normed');
title('Q predictions (red), data (black) and realizations (green)');
print plot.ps

guidata(hObject, handles);
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% −−− Executes on button press in plot_h_solution.
function plot_h_solution_Callback(hObject, eventdata, handles)
% hObject handle to plot_h_solution (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

X=handles.HX;
Z=handles.HZ;
ss20=handles.Hss20;
r=handles.Hr;
b=handles.bH;
u=handles.uH;
y=handles.Hy;
s2=handles.s2H;

yhat=X*b+Z*u;

Hhat=yhat;
handles.Hhat=Hhat;

Dcap=zeros(r*(ss20−1),r*(ss20−1));

for i=1:(ss20−1),

Dcap((i−1)*r+1:i*r,(i−1)*r+1:i*r)=s2(i,1)*eye(r);

end;

varu=Dcap−Dcap*Z'*inv(Z*Dcap*Z'+s2(ss20,1)*eye(size(y,1)))*Z*Dcap;

varyhat=Z*varu*Z'+s2(ss20,1)*eye(size(y,1));

Hreal=yhat+chol(varyhat)'*randn(size(X,1),1);

%figure(2)

%clf;

hold off;

plot(yhat,'k');

hold;
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plot(yhat+1.96*sqrt(diag(varyhat)),'k−−');

plot(yhat−1.96*sqrt(diag(varyhat)),'k−−');

plot(y,'r')

plot(Hreal,'g');
xlabel('Datapoint');
ylabel('H normed');
title('H predictions (red), data (black) and realizations (green)');

yhat=yhat*47.5;
y=y*47.5;
err=yhat−y;
err
guidata(hObject, handles);

% −−− Executes on button press in estimate_all_data_h.
function estimate_all_data_h_Callback(hObject, eventdata, handles)
% hObject handle to estimate_all_data_h (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%

% Løftehøyde

%

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[data,X,Z,M,Morig,ss20,r] = estim(handles.model);

handles.HX=X;
handles.HZ=Z;
handles.Hss20=ss20;
handles.Hr=r;

Hy=data(:,2);
handles.Hy=Hy;
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B = inv(X'*X)*X'*Hy;

S=var(Hy−X*B);

s20=S/3*ones(ss20,1);

% Last input is 2:REML estimation

[s2a,bH,uH,Is2,C,H,q,loglik,loops] = mixed(Hy,X,Z,r*ones((ss20−1),1),s20,2);

s20=3*S*ones(ss20,1);

% Last input is 2:REML estimation

[s2,bH,uH,Is2,C,H,q,loglik,loops] = mixed(Hy,X,Z,r*ones((ss20−1),1),s20,2);

logliktext=num2str(loglik);
mod1=num2str(handles.model(1));
mod2=num2str(handles.model(2));
mod3=num2str(handles.model(3));
mod4=num2str(handles.model(4));
mod5=num2str(handles.model(5));
mod6=num2str(handles.model(6));
mod7=num2str(handles.model(7));
mod8=num2str(handles.model(8));
mod9=num2str(handles.model(9));
mod10=num2str(handles.model(10));
mod11=num2str(handles.model(11));
mod12=num2str(handles.model(12));

inputtekst=['loglik: ',logliktext,' model: ',mod1,' ',mod2,' ',mod3,' ',mod4,' ',mod5,' ',mod6,' , ',mod7,' ',mod8,' ',mod9,' ',mod10,' ',mod11,' ',mod12];

set(handles.modelH_text,'String',inputtekst);

disp('Variance estimates with starting point 1');

s2(1:2,1)

s2a(1:2,1)

disp('Variance estimates with starting point 2');

s2(3,1)

s2a(3,1)
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handles.s2H=s2;
handles.bH=bH;
handles.uH=uH;

guidata(hObject, handles);

% −−− Executes on button press in estimate_leavecurve_h.
function estimate_leavecurve_h_Callback(hObject, eventdata, handles)
% hObject handle to estimate_leavecurve_h (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
%handles.HX
%handles.HZ
[X,Z,data,radnumre] = estimate_leaveoutonecurve(handles.molweight,handles.rotspeed,handles.HX,handles.HZ,handles.Hss20,handles.H);

handles.radnumreH=radnumre;
Hy=data;
handles.Hy2=Hy;

B = inv(X'*X)*X'*Hy;

S=var(Hy−X*B);
r=14;
ss20=handles.Hss20;

s20=S/3*ones(ss20,1);

% Last input is 2:REML estimation

[s2a,bH,uH,Is2,C,H,q,loglik,loops] = mixed(Hy,X,Z,r*ones((ss20−1),1),s20,2);

s20=3*S*ones(ss20,1);

% Last input is 2:REML estimation

[s2,bH,uH,Is2,C,H,q,loglik,loops] = mixed(Hy,X,Z,r*ones((ss20−1),1),s20,2);

disp('Variance estimates with starting point 1');

s2(1:2,1)

s2a(1:2,1)

disp('Variance estimates with starting point 2');
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s2(3,1)

s2a(3,1)

logliktext=num2str(loglik);
mod1=num2str(handles.model(1));
mod2=num2str(handles.model(2));
mod3=num2str(handles.model(3));
mod4=num2str(handles.model(4));
mod5=num2str(handles.model(5));
mod6=num2str(handles.model(6));
mod7=num2str(handles.model(7));
mod8=num2str(handles.model(8));
mod9=num2str(handles.model(9));
mod10=num2str(handles.model(10));
mod11=num2str(handles.model(11));
mod12=num2str(handles.model(12));

inputtekst=['loglik: ',logliktext,' model: ',mod1,' ',mod2,' ',mod3,' ',mod4,' ',mod5,' ',mod6,' , ',mod7,' ',mod8,' ',mod9,' ',mod10,' ',mod11,' ',mod12];

set(handles.modelH_textleave,'String',inputtekst);

handles.HX2=X;
handles.HZ2=Z;
handles.s2H2=s2;
handles.bH2=bH;
handles.uH2=uH;

guidata(hObject, handles);

% −−− Executes on button press in plot_q_leavecurve.
function plot_q_leavecurve_Callback(hObject, eventdata, handles)
% hObject handle to plot_q_leavecurve (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

X=handles.QX2;
Z=handles.QZ2;
ss20=handles.Qss20;
r=handles.Qr−1;
b=handles.bQ2;
u=handles.uQ2;
y=handles.Qy2;
s2=handles.s2Q2;
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yhat=X*b+Z*u;

Qhat=yhat;
handles.Qhat=Qhat;

Dcap=zeros(r*(ss20−1),r*(ss20−1));

for i=1:(ss20−1),

Dcap((i−1)*r+1:i*r,(i−1)*r+1:i*r)=s2(i,1)*eye(r);

end;

varu=Dcap−Dcap*Z'*inv(Z*Dcap*Z'+s2(ss20,1)*eye(size(y,1)))*Z*Dcap;

varyhat=Z*varu*Z'+s2(ss20,1)*eye(size(y,1));

Qreal=yhat+chol(varyhat)'*randn(size(X,1),1);

%figure(2)

%clf;

hold off;

plot(yhat,'k');

hold;

plot(yhat+1.96*sqrt(diag(varyhat)),'k−−');

plot(yhat−1.96*sqrt(diag(varyhat)),'k−−');

plot(y,'r')

plot(Qreal,'g');

title('Q predictions (red), data (black) and realizations (green)');

guidata(hObject, handles);

% −−− Executes on button press in plot_h_leavecurve.
function plot_h_leavecurve_Callback(hObject, eventdata, handles)
% hObject handle to plot_h_leavecurve (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
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radnumre=handles.radnumreH;
HLP=handles.HLP;
X=handles.HX2;
Z=handles.HZ2;
ss20=handles.Hss20;
r=handles.Hr−1;
b=handles.bH2;
u=handles.uH2;
y=handles.Hy2;
s2=handles.s2H2;

utelatt=HLP(radnumre(1):radnumre(5),:);

%utpred=utelatt*b;

yhat=X*b+Z*u;

Qhat=yhat;
handles.Qhat=Qhat;

Dcap=zeros(r*(ss20−1),r*(ss20−1));

for i=1:(ss20−1),

Dcap((i−1)*r+1:i*r,(i−1)*r+1:i*r)=s2(i,1)*eye(r);

end;

varu=Dcap−Dcap*Z'*inv(Z*Dcap*Z'+s2(ss20,1)*eye(size(y,1)))*Z*Dcap;

varyhat=Z*varu*Z'+s2(ss20,1)*eye(size(y,1));

Qreal=yhat+chol(varyhat)'*randn(size(X,1),1);
%utpred
%plotme=[yhat(1:radnumre(1)−1)];
%plotme=[plotme utpred];
%plotme=[plotme yhat(radnumre(5)+1:length(yhat))];

hold off;

plot(yhat,'k');

hold;

plot(yhat+1.96*sqrt(diag(varyhat)),'k−−');
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plot(yhat−1.96*sqrt(diag(varyhat)),'k−−');

plot(y,'r')

plot(Qreal,'g');

title('Q predictions (red), data (black) and realizations (green)');

guidata(hObject, handles);

% −−− Executes on button press in plot_leavecurve.
function plot_leavecurve_Callback(hObject, eventdata, handles)
% hObject handle to plot_leavecurve (see GCBO)
% eventdata reserved − to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

The mixed function that is called does the estimation of the model parameters
and the likelihood. It is written at the Slovak Academy of Sciences:

function [s2,b,u,Is2,C,H,q,loglik,loops] = mixed(y,X,Z,dim,s20,method);

%MIXED Computes ML,REML,MINQE(I),MINQE(U,I),BLUE(b),BLUP(u)

% by Henderson's Mixed Model Equations Algorithm.

%

%======================================================================

% Syntax:

% [s2,b,u,Is2,C,H,q,loglik,loops] = mixed(y,X,Z,dim,s20,method);

%

%======================================================================

% Model: Y=X*b+Z*u+e,

% b=(b_1',...,b_f')' and u=(u_1',...,u_r')',

% E(u)=0, Var(u)=diag(sigma^2_i*I_{m_i}), i=1,...,r

% E(e)=0, Var(e)=sigma^2_{r+1}*I_n,
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% Var(y)=Sig=sum_{i=1}^{r+1} sigma^2_i*Sig_i.

% We assume normality and independence of u and e.

%

% Inputs:

% y − n−dimensional vector of observations.

% X − (n * k)−design matrix for

% fixed effects b=[b_1;...;b_f],

% typically X=[X_1,...,X_f] for some X_i.

% Z − (n * m)−design matrix for

% random efects u=[u_1;...;u_r],

% typically Z=[Z_1,...,Z_r] for some Z_i.

% dim − Vector of dimensions of u_i, i=1,...,r,

% dim=[m_1;...;m_r], m=sum(dim).

% s20 − A prior choice of the variance components,

% s20=[s20_1;...;s20_r;s20_{r+1}].

% SHOULD BE POSITIVE for method>0

% method − Method of estimation of variance components;

% 0:NO estimation, 1:ML, 2:REML, 3:MINQE(I), 4:MINQE(U,I)

%

%======================================================================

% Outputs:

% s2 − Estimated vector of variance components

% (sigma^2_1,..., sigma^2_{r+1})'.

% A warning message appears if some of the estimated
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% variance components is negative or equal to zero.

% In such cases the calculated Fisher information

% matrices are inadequate.

% b − k−dimensional vector of estimated fixed effects beta,

% b=[b_1;...;b_f]=(X'Sig^{−1}X)^{+}X'Sig^{−1}y.

% u − m−dimensional vector of EBLUP's of random effects U,

% u=[u_1;...;u_r].

% Is2 − Fisher information matrix for variance components;

% if method=0 the output is Is2=[];

% if metod=3 or method=4 the output is inversion of the

% covariance matrix of MINQE calculated at estimated s2.

% C − g−inverse of Henderson's MME matrix, where

% C=pinv([XX XZ; XZ' ZZ+inv(D)*s0]/s0), if inv(D) exists

% or C=s0*[I 0; 0 D]*pinv([XX XZ*D; XZ' V]) otherwise

% H − Criterial matrix for MINQE calculated at priors s20;

% if method=3

% H_ij=trace(Sig_0^{−1}*Sig_i*Sig_0^{−1}*Sig_j),

% if method=4

% H_ij=trace((M*Sig_0*M)^{+}*Sig_i*(M*Sig_0*M)^{+}*Sig_j)

% q − (r+1)−dimensional vector of MINQE(U,I) quadratic forms

% calculated at prior values s20;

% if method=0,1,2 the output is q=[], otherwise

% q_i=y'*(M*Sig_0*M)^{+}*Sig_i*(M*Sig_0*M)^{+}*y.

% loglik − Log−likelihood evaluated at the estimated parameters;

% if method=1 loglik=log−likelihood(ML),
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% if method=2 loglik=log−likelihood(REML),

% if method=3 or method=4 loglik=[],

% if method=0 loglik=informative value of

% log of the joint pdf of (y,u).

% loops − Number of loops.

%

%======================================================================

% REFERENCES

%

% Searle, S.R., Cassela, G., McCulloch, C.E.: Variance Components.

% John Wiley & Sons, INC., New York, 1992. (pp. 275−286).

%

% Witkovsky, V.: MATLAB Algorithm mixed.m for solving

% Henderson's Mixed Model Equations.

% Technical Report, Institute of Measurement Science,

% Slovak Academy of Sciences, Bratislava, Dec. 2001.

% See http://www.mathpreprints.com.

%

% The algorithm mixed.m is available at

% http://www.mathworks.com/matlabcentral/fileexchange

% see the Statistics Category.

%

%======================================================================

% Ver.: 2.0
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% Revised 21−Dec−2001 20:31:48

% Copyright (c) 1998−2001 Viktor Witkovsky

%======================================================================

% CONTACT ADDRESS:

% Viktor Witkovsky

% Institute of Measurement Science

% Slovak Academy of Sciences

% Dubravska cesta 9

% 84219 BRATISLAVA, Slovak Republic

% Tel:(+421905) 223191

% Fax:(+4212) 54775943

% E−mail: umerwitk@savba.sk

% http://nic.savba.sk/sav/inst/umer/

%======================================================================

% BEGIN MIXED.M

%======================================================================

% This is the (only) required input.

% The algorith mixed.m could be easily changed in such a way

% that the required inputs will be y, a, XX, XZ, and ZZ,

% and the call would be mixed(y,a,XX,XZ,ZZ,dim,s20,method);

% instead of mixed(y,X,Z,dim,s20,method);

%======================================================================

y=y(:);

yy=y'*y;
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Xy=X'*y;

Zy=Z'*y;

XX=X'*X;

XZ=X'*Z;

ZZ=Z'*Z;

a=[Xy;Zy];

% end of required input parameters

n=length(y);

[k,m]=size(XZ);

rx=rank(XX);

s20=s20(:);

r=length(s20)−1;

Im=eye(m);

loops=0;

%======================================================================

% METHOD=0:

% No estimation of variance components

% Output is BLUE(b), BLUP(u), and C,

% calculated at chosen values s20

%======================================================================

if method==0,

s0=s20(r+1);

d=s20(1)*ones(dim(1),1);

for i=2:r,
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d=[d;s20(i)*ones(dim(i),1)];

end;

D=diag(d);

V=s0*Im+ZZ*D;

A=[XX XZ*D;XZ' V];

A=pinv(A);

C=s0*[A(1:k,1:k) A(1:k,k+1:k+m);...

D*A(k+1:k+m,1:k) D*A(k+1:k+m,k+1:k+m)];

bb=A*a;

b=bb(1:k);

v=bb(k+1:k+m);

u=D*v;

Aux=yy−b'*Xy−u'*Zy;

if all(s20),

loglik=−((n+m)*log(2*pi)+n*log(s0)+log(prod(d))+Aux/s0)/2;

else

loglik=[];

end;

s2=s20;

Is2=[];

H=[];

q=[];

return;

end;

%======================================================================
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% METHOD=1,2,3,4: ESTIMATION OF VARIANCE COMPONENTS

%======================================================================

fk=find(s20≤0);

if any(fk),

s20(fk)=100*eps*ones(size(fk));

warning('Priors in s20 are negative or zeros !CHANGED!');

end;

sig0=s20;

s21=s20;

ZMZ=ZZ−XZ'*pinv(XX)*XZ;

q=zeros(r+1,1);

%======================================================================

% START OF THE MAIN LOOP

%======================================================================

epss=0.00001; % Given precission for stopping rule

crit=1;

loopiter=1;

while ((loopiter<25)&(crit>epss)),

loops=loops+1;

sigaux=s20;

s0=s20(r+1);

d=s20(1)*ones(dim(1),1);

for i=2:r,

d=[d;s20(i)*ones(dim(i),1)];
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end;

D=diag(d);

V=s0*Im+ZZ*D;

W=s0*inv(V);

T=inv(Im+ZMZ*D/s0);

A=[XX XZ*D;XZ' V];

bb=pinv(A)*a;

b=bb(1:k);

v=bb(k+1:k+m);

u=D*v;

%======================================================================

% ESTIMATION OF ML AND REML OF VARIANCE COMPONENTS

%======================================================================

iupp=0;

for i=1:r,

ilow=iupp+1;

iupp=iupp+dim(i);

Wii=W(ilow:iupp,ilow:iupp);

Tii=T(ilow:iupp,ilow:iupp);

w=u(ilow:iupp);

ww=w'*w;

q(i)=ww/(s20(i)*s20(i));

s20(i)=ww/(dim(i)−trace(Wii));

s21(i)=ww/(dim(i)−trace(Tii));

end;
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Aux=yy−b'*Xy−u'*Zy;

Aux1=Aux−(u'*v)*s20(r+1);

q(r+1)=Aux1/(s20(r+1)*s20(r+1));

s20(r+1)=Aux/n;

s21(r+1)=Aux/(n−rx);

if method==1,

crit=norm(sigaux−s20);

H=[];

q=[];

elseif method==2,

s20=s21;

crit=norm(sigaux−s20);

H=[];

q=[];

else

crit=0;

end;

loopiter=loopiter+1;

end;

disp(sprintf('EM algorithm for REML performed %d iterations',loopiter));

%======================================================================

% END OF THE MAIN LOOP

%======================================================================

% COMPUTING OF THE MINQE CRITERIAL MATRIX H



72 REFERENCES

%======================================================================

if (method==3 | method==4),

H=eye(r+1);

if method==4,

W=T;

H(r+1,r+1)=(n−rx−m+trace(W*W))/(sigaux(r+1)*sigaux(r+1)); %VW

else

H(r+1,r+1)=(n−m+trace(W*W))/(sigaux(r+1)*sigaux(r+1));

end;

iupp=0;

for i=1:r;

ilow=iupp+1;

iupp=iupp+dim(i);

trii=trace(W(ilow:iupp,ilow:iupp));

trsum=0;

jupp=0;

for j=1:r,

jlow=jupp+1;

jupp=jupp+dim(j);

tr=trace(W(ilow:iupp,jlow:jupp)*W(jlow:jupp,ilow:iupp));

trsum=trsum+tr;

H(i,j)=((i==j)*(dim(i)−2*trii)+tr)/(sigaux(i)*sigaux(j));

end;

H(r+1,i)=(trii−trsum)/(sigaux(r+1)*sigaux(i));

H(i,r+1)=H(r+1,i);
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end;

end;

%======================================================================

% SET THE RESULTS: MINQE(I), MINQE(U,I), ML, AND REML

%======================================================================

if (method==3 | method==4),

s2=pinv(H)*q;

loglik=[];

else

s2=s20;

end;

fk=find(s2<0.000000000001);

if any(fk),

warning('Estimated variance components are negative or zeros!');

end;

%======================================================================

% BLUE, BLUP, THE MME'S C MATRIX AND THE LOG−LIKELIHOOD

%======================================================================

s0=s2(r+1);

d=s2(1)*ones(dim(1),1);

for i=2:r,

d=[d;s2(i)*ones(dim(i),1)];

end;

D=diag(d);
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V=s0*Im+ZZ*D;

W=s0*inv(V);;

T=inv(Im+ZMZ*D/s0);

A=[XX XZ*D;XZ' V];

A=pinv(A);

C=s0*[A(1:k,1:k) A(1:k,k+1:k+m);...

D*A(k+1:k+m,1:k) D*A(k+1:k+m,k+1:k+m)];

bb=A*a;

b=bb(1:k);

v=bb(k+1:k+m);

u=D*v;

if (method==1),

loglik=−(n*log(2*pi*s0)−log(det(W))+n)/2;

elseif (method==2),

loglik=−((n−rx)*log(2*pi*s0)−log(det(T))+(n−rx))/2;

end;

disp(sprintf('Log likelihood for current model is %0.5g',loglik));

%======================================================================

% FISHER INFORMATION MATRIX FOR VARIANCE COMPONENTS

%======================================================================

Is2=eye(r+1);

if (method==2 | method==4),

W=T;

Is2(r+1,r+1)=(n−rx−m+trace(W*W))/(s2(r+1)*s2(r+1)); %VW
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else

Is2(r+1,r+1)=(n−m+trace(W*W))/(s2(r+1)*s2(r+1));

end;

iupp=0;

for i=1:r;

ilow=iupp+1;

iupp=iupp+dim(i);

trii=trace(W(ilow:iupp,ilow:iupp));

trsum=0;

jupp=0;

for j=1:r,

jlow=jupp+1;

jupp=jupp+dim(j);

tr=trace(W(ilow:iupp,jlow:jupp)*W(jlow:jupp,ilow:iupp));

trsum=trsum+tr;

Is2(i,j)=((i==j)*(dim(i)−2*trii)+tr)/(s2(i)*s2(j));

end;

Is2(r+1,i)=(trii−trsum)/(s2(r+1)*s2(i));

Is2(i,r+1)=Is2(r+1,i);

end;

Is2=Is2/2;

%======================================================================

% EOF MIXED.M

%======================================================================
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Other functions called are lmmGUI which makes the dataset and estim which
makes the Z and X matrices upon the users choice of model parameters;

% modelparam er en vektor av lengde 12. Den angir hvilke parametere som
% skal være med i modellen. elementene i vektoren er enten 0 eller 1, der 1
% angir at parameteren skal være med i modellen. Når 0 er valgt skal
% parameteren ikke være med.

% FIXED | RANDOM
% estim(modelparam[m, n, I, m*n, m*I, n*I, m, n, I, m*n, m*I, n*I])

function [data,X,Z,M,Morig,ss20,r] = estim(modelparam);

% Datamatrisa M
% Kolonne 1 er k, et slags kjørenivå, men ikke gyldig som kovariat
% kolonne 2 er molvekt (m)
% kolonne 3 er turtall (n)
% kolonne 4 er volumstrøm (Q)
% kolonne 5 er løftehøyde (H)
% kolonne 6 er effekt (c)
%

M=[
1 39.9 6033 4769 45.4 79.85; ...
2 39.9 6033 4931 44.5 79.46; ...
3 39.9 6033 5093 43.6 78.95; ...
4 39.9 6033 5255 42.6 78.32; ...
5 39.9 6033 5417 41.4 77.48;...
1 39.9 6895 5436 62.3 80.50;...
2 39.9 6895 5808 61.0 80.54;...
3 39.9 6895 6181 59.2 80.21;...
4 39.9 6895 6553 56.8 79.19;...
5 39.9 6895 6926 53.5 77.29;...
1 39.9 7757 6051 80.8 80.15;...
2 39.9 7757 6734 79.8 80.75;...
3 39.9 7757 7417 77.4 80.87;...
4 39.9 7757 8100 73.3 79.86;...
5 39.9 7757 8784 65.7 76.10;...
1 39.9 8619 7130 99.7 78.68;...
2 39.9 8619 8021 99.0 79.87;...
3 39.9 8619 8912 96.6 80.88;...
4 39.9 8619 9803 91.4 80.17;...
5 39.9 8619 10694 79.0 74.68;...
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1 39.9 9050 8320 109.7 78.60;...
2 39.9 9050 9155 108.1 79.74;...
3 39.9 9050 9991 105.4 80.52;...
4 39.9 9050 10826 99.5 79.68;...
5 39.9 9050 11662 82.1 72.20;...
1 44.3 6033 4751 46.9 80.38;...
2 44.3 6033 5005 45.9 80.22; ...
3 44.3 6033 5259 44.6 79.76; ...
4 44.3 6033 5512 43.1 78.88; ...
5 44.3 6033 5766 41.3 77.55; ...
1 44.3 6895 5396 63.6 80.39; ...
2 44.3 6895 5918 62.5 80.75; ...
3 44.3 6895 6441 60.7 80.76; ...
4 44.3 6895 6963 57.7 79.81; ...
5 44.3 6895 7486 52.9 76.94; ...
1 44.3 7757 6576 80.2 79.87; ...
2 44.3 7757 7307 79.7 80.57; ...
3 44.3 7757 8037 77.7 81.06; ...
4 44.3 7757 8768 73.4 80.09; ...
5 44.3 7757 9498 64.2 75.00; ...
1 44.3 8619 8910 97.8 79.04; ...
2 44.3 8619 9519 96.1 79.63; ...
3 44.3 8619 10128 93.4 79.88; ...
4 44.3 8619 10737 87.9 78.66; ...
5 44.3 8619 11345 71.8 70.93; ...
1 44.3 9050 10375 104.8 78.77; ...
2 44.3 9050 10795 102.8 78.89; ...
3 44.3 9050 11216 99.3 78.46; ...
4 44.3 9050 11637 93.5 76.97; ...
5 44.3 9050 12058 77.7 70.05; ...
1 47.5 6033 4713 47.7 79.98; ...
2 47.5 6033 5038 46.7 80.11; ...
3 47.5 6033 5363 45.3 79.83; ...
4 47.5 6033 5689 43.4 78.88; ...
5 47.5 6033 6014 41.0 77.04; ...
1 47.5 6895 5326 63.7 79.54; ...
2 47.5 6895 5969 63.2 80.42; ...
3 47.5 6895 6612 61.5 80.80; ...
4 47.5 6895 7256 58.2 79.92; ...
5 47.5 6895 7899 51.7 75.81; ...
1 47.5 7757 7158 80.5 78.89; ...
2 47.5 7757 7844 79.3 79.91; ...
3 47.5 7757 8529 77.3 80.62; ...
4 47.5 7757 9215 73.0 79.66; ...
5 47.5 7757 9901 60.5 72.35; ...
1 47.5 8619 10115 93.9 78.59; ...
2 47.5 8619 10461 91.9 78.43; ...
3 47.5 8619 10807 88.8 77.91; ...
4 47.5 8619 11153 83.8 76.49; ...
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5 47.5 8619 11498 65.3 66.72; ...
1 47.5 9050 11266 98.5 77.04; ...
2 47.5 9050 11428 96.6 76.65; ...
3 47.5 9050 11591 94.2 76.05; ...
4 47.5 9050 11754 90.9 75.15; ...
5 47.5 9050 11916 85.8 73.35];

Morig=M;

M(:,2)=M(:,2)/max(M(:,2));
M(:,3)=M(:,3)/max(M(:,3));
M(:,4)=M(:,4)/max(M(:,4));
M(:,5)=M(:,5)/max(M(:,5));
M(:,6)=M(:,6)/max(M(:,6));

maxe=0;
maxpos=0;
for i=1:15

for k=0:4
if(M(1+((i−1)*5)+k,6)>maxe)

maxpos=1+((i−1)*5)+k;
maxe=M(1+((i−1)*5)+k,6);

end;
end;
for l=0:4

if(M(1+((i−1)*5)+l,4)<M(maxpos,4))
M(1+((i−1)*5)+l,6)=−1;

end;
if(M(1+((i−1)*5)+l,4)>M(maxpos,4))

M(1+((i−1)*5)+l,6)=1;
end;
if(M(1+((i−1)*5)+l,4)==M(maxpos,4))

M(1+((i−1)*5)+l,6)=0;
end;

end;
maxe=0;
maxpos=0;

end;

% vektorer med de forskjellige variablene; "kjørenivå", molvekt, turtall, flow,
% head, og effekt

k=M(:,1);
m=M(:,2);
n=M(:,3);
q=M(:,4);
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h=M(:,5);
e=M(:,6);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% X−matrisa nedenfor %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

teller=0;
for i=1:6

if(modelparam(i)==1)
teller=teller+1;

end
end

HLP=[M(:,2),M(:,3),M(:,6),M(:,2).*M(:,3),M(:,2).*M(:,6),M(:,3).*M(:,6)];

X=zeros(75,teller+1);
X(:,1)=1;
ny=2;
for i=1:6

if(modelparam(i)==1)
X(:,ny)=HLP(:,i);
ny=ny+1;

end
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Z−matrisa nedenfor %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

teller=0;
for i=7:12

if(modelparam(i)==1)
teller=teller+1;

end
end
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ss20=teller+2;

r=5*3; % dette er antall grupper turtall innenfor hver molvekt multiplisert med antall grupper molvekt, ja?
k=5;
Z=zeros(75,(ss20−1)*r);

for i=1:r,
Z((i−1)*k+1:i*k,i)=ones(k,1);

end;
ny=1;
for i=7:12

if(modelparam(i)==1)
for j=1:r

Z((j−1)*k+1:j*k,(ny*15)+j)=HLP((j−1)*k+1:j*k,i−6);
end
ny=ny+1;

end
end

data=[q h];
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