
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Using a Langevin model for the simulation of environmental conditions in
an offshore wind farm
To cite this article: Helene Seyr and Michael Muskulus 2018 J. Phys.: Conf. Ser. 1104 012023

 

View the article online for updates and enhancements.

This content was downloaded from IP address 5.153.106.118 on 26/11/2018 at 14:10

https://doi.org/10.1088/1742-6596/1104/1/012023
https://oasc-eu1.247realmedia.com/5c/iopscience.iop.org/878786017/Middle/IOPP/IOPs-Mid-JPCS-pdf/IOPs-Mid-JPCS-pdf.jpg/1?


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

EERA DeepWind'2018, 15th Deep Sea Offshore Wind R&D Conference

IOP Conf. Series: Journal of Physics: Conf. Series 1104 (2018) 012023

IOP Publishing

doi:10.1088/1742-6596/1104/1/012023

1

Using a Langevin model for the simulation of

environmental conditions in an offshore wind farm

Helene Seyr and Michael Muskulus
Department of Civil and Environmental Engineering, Norwegian University of Science and
Technology, NTNU 7491 Trondheim, Norway

E-mail: helene.seyr@gmail.com

Abstract. For the planning of operations and maintenance in offshore wind farms, many
simulation models exist. Many rely on artificially generated weather time series to test different
strategies. In this paper, we present a novel approach to modeling both the significant wave
height and wind speed based on measurements from the site. We use a stochastic process called
the Langevin process. First, equations are fitted to the available data, which are then used
to generate the artificial weather data. The properties of these artificial weather time series
are very close to the properties of the actual weather. Mean and standard deviation as well
as the overall distribution and seasonality can be captured by the new model. Additionally,
the persistence of waves and winds is replicated. This is especially important, as the length of
weather windows is an important factor in operation and maintenance planning.

1. Introduction
Both in research and the wind industry, simulation models are often used to improve the
operations and maintenance for offshore wind farms. There are research groups looking
into optimal vessel routing, preventive maintenance strategies, optimization of corrective
maintenance and condition monitoring among other topics. In order to provide simulations
of an offshore wind farm, many of the existing models use weather time series to model the
weather conditions, with significant wave heights and wind speeds. In order to model a specific
location, without the risk of finding an optimal solution for a specific historical weather dataset,
some researchers want to use artificial weather data. This artificial weather data should represent
the given location and have the same properties, such as annual mean wind speeds or persistence
of wave heights. The advantage with artificial weather data over historic weather data is that
a natural variability of the weather can be achieved, without loss of site specific properties.
Even if a model can theoretically be used with historic weather data, this data is not available
of an appropriate length and quality for some locations. Also in this case, researchers benefit
from artificial weather time series. In order to generate this artificial weather data, different
methods can be used. Today, the three main choices for the simulation of weather conditions are
Gaussian statistics, Auto RegressiveMoving-Average (ARMA) processes and Markov processes
[1]. Different weather generation models have been developed using these methods and are
being used in decision support tools. Dinwoodie et al. [2] use a multivariate autoregressive
(MAR) process, an improved MAR process is described in detail by Dalgic et al. [3]. Scheu
et al. [4] use a Markov chain approach which is described and analyzed in [5]. This approach
was developed further to include more weather parameters by Hagen et al. [6]. Hersvik and
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Endrerud [7] present an improved Markov chain process. In this paper, we want to introduce
a novel approach to generating artificial weather series, based on the Langevin equations. In
Section 2, this method is explained in more detail. Then we briefly explain the data sources
used in this paper in section 3. An analysis of the generated weather is conducted in section 4,
before we discuss the results in section 5. Finally, we conclude and give an outlook to further
work in section 6.

2. Methodology
In this paper, we investigate a new approach to weather simulation, a Langevin process.
Czechowski and Telesca [8] already fitted a Langevin type equation to wind speed data and
the Langevin approach [9] has already been used to model turbulent wind velocities by Reinke
et al. [10]. To our knowledge, the Langevin approach has not been applied to model the
behavior of wind speeds on the scales used in offshore wind farm operation and maintenance
models. Hadjihosseini et al. [11, 12] applied the approach to ocean waves, studying rogue wave
phenomena, using data from Japan. They have shown that it is possible to use the Langevin
approach to generate surrogate data sets and even forecast extreme wave events. However, the
data used in their analysis had a sampling frequency of 1 Hz and the approach has not yet been
used on data with a lower sampling frequency. As Hadjihosseini et al. [12] were interested in
the study of rogue waves, they have not investigated other properties of the surrogate data, like
the persistence of significant wave heights.
The Langevin process is a stochastic process governed by the Langevin equation.

dX

dt
= F (X, t) +G(X, t,Γ) (1)

This is a stochastic differential equation, including a deterministic term F (X, t) and a stochastic
term G(X, t,Γ). Those terms are often referred to as drift and diffusion function and depend
on the first two Kramers-Moyal coefficients D(1)(X), D(2)(X)

F (X, t) = D(1)(X)τ (2)

G(X, t) =
√
D(2)(X)τΓt (3)

where τ is a time-increment. It is important to note, that the coefficients depend on the
observation X (in our case wave height or wind speed) as well as time t. Γt represents the
stochastic forces. Hadjihosseini et al. [11] and Reinke et al. [10] have shown that the Langevin
process can be described by the so-called Fokker-Planck equation, shown in Appendix A.1. The
Kramers-Moyal coefficients can be defined as an expression of the conditional moments of the
trajectory, as presented by [13], see Appendix A.2. The interested reader can find the derivations
of the equations for the Langevin process and a detailed mathematical description in e.g. [11, 10].
When fitting the model to wave height data the two functions describing the dependence of the
deterministic and stochastic contribution on the observation are estimated and later used for
modeling. We will refer to these functions as the “parameter functions”, the “drift-” (D(1)(X))
and “diffusion- (D(2)(X)) polynomial” and will use D(1) and D(2) as notation in the remainder
of the paper.
In the analysis presented in this paper, we used the software R and the package ’Langevin’
developed by Rinn et al. [14]. First, the parameter functions (D(1), D(2)) were estimated based
on the data. The software package, developed by Rinn et al., estimates the parameters for
discrete points and reports back the estimated coefficients, their respective estimation errors
and other information such as the mean and density of observations bin (interval) of the data
used to estimate the coefficients.
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In the second step a weighted linear regression taking into account the uncertainty of the estimate
was conducted. The point estimates provided in step one where weighted with the inverse of the
square of their respective error. For the wave heights, quadric polynomials were fitted for both
parameter functions. Quadratic functions were chosen, based on the fit of the linear models to
the estimated parameters. For the wind speed, a linear drift (D(1)) and a quadratic diffusion
(D(2)) function were chosen based on best fit to the estimated parameters.
Following these two steps, the obtained parameter functions were used to generate artificial
weather time series. This is done by using the quadraticlinear functions estimated previously as
an input to the data generation. The timeseries generation function from Rinn et al. [14] had
to be modified in order to generate realistic results for our specific case. The original function
’timeseries1D’ generates non-negative as well as negative observations. Since a negative wave
height is not meaningful in this context, the function was modified in order to assure only non-
negative observations. In the modified function, the Langevin process is allowed to continue into
the negative domain, but observations are only added to the simulated weather time series once
the process crosses back into non-negative values again. The artificial time series and properties
are compared to the original time series in Section 4.
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Figure 1. The drift and diffusion polynomial for the significant wave height in January, based
on the data from FINO 1. The parameters D(1) and D(2) in the Fokker-Planck equation depend
on the wave height.

3. Data
For our analysis, we investigated two different publicly available datasets. The re-analysis data
from the ECMWF [15] is available in different resolutions, and we used the data that we already
used for a different study [16]. These data have a resolution of six hours, providing one measured
wave height and wind speed in the center of each six hour interval.
Additionally, data from the FINO measurement campaign [17] was used for the measurement
platform FINO1 next to the Alpha Ventus wind farm in the North Sea. Here the significant
wave height is provided in 30 min mean values and wind speed measurements are available in
10min mean wind speed steps.

4. Analysis of the artificial weather data
In this section the properties of the artificial weather series are compared to those of the actual
weather data to see how well the Langevin approach captures the site specific weather properties.
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Results are presented for both datasets. Not every investigation is shown for both sites, the
performance of the model is similar in both cases and we have chosen to show plots from
different sites in order to represent different weather conditions.

Table 1. Statistics of the wave height simulations based on the FINO 1 data.

Wave height Mean Maximum SD

Data 1.44 9.77 0.93
Simulation 1.51 7.49 0.92
Simulation without seasonal effect 1.44 8.62 0.93
Simulation based on six-hour data 1.44 9.90 1.0

Table 1 shows some of the statistics of the data for significant wave height for the measurement
at FINO 1. We included the mean, maximum and standard deviation from the original data and
three different simulations based on the Langevin process. The first simulation, referred to as
“simulation” later, is based on one Langevin process. The equations for this process were fitted
to the whole data set, therefore the model is not able to capture any seasonality in the weather.
The second simulation is based on Langevin equations that have been estimated based on the
data for each month, we will refer to this as the “seasonal model” or “seasonal simulation” later
in the paper. There are two equations for January, two equations for February and so on. An
example of these parameter equations can be seen in Figure 1 for the month of January for the
FINO 1 data. The third model is based on six-hour data and is obtained by fitting monthly
Langevin equations to data that was previously filtered to have one observation every six hours.
This model will also be referred to as “six-hour simulation” in the remainder of the paper. Table
1 shows that mean and standard deviation are replicated quite well by all different simulation
models.

Table 2. Statistics of the wind speed simulations based on the FINO 1 data.

Wind speeds Mean Maximum SD

Data 9.99 37.01 4.66
Simulation 9.83 35.57 4.38
Simulation without seasonal effect 10.03 36.25 4.34
Simulation based on six-hour data 10.0 25.68 4.01

The same can be seen in Table 2 for the wind speeds. Also here, the same three kinds of
simulations are presented and the mean and standard deviation are again reproduced well.
The maximum value in the simulation shows a greater discrepancy. The reason for this lies
presumably in the generation of the six-hour data. When calculating the mean over six hours,
the extrema are smoothed out. By using the six-hour data to fit the Langevin equations, the
extreme values can then not be reproduced by the model.
An important aspect of the weather properties at a given site, is of course seasonality. The
weather is generally harsher in winter months, with higher waves and wind speeds. In order to
capture the seasonality, different Langevin equations where fitted for each month, as described
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above. To see whether this is sufficient to capture the seasonality, we investigated the monthly
means of both significant wave height and wind speed. Figure 2 shows box-plots for the original
data and simulation of the significant wave height and wind speed at a location off the British
coast, where data from the ECMWF was available. It can be seen that the seasonality in both
the significant wave height and wind speed is captured well by the new model based on the
Langevin process.
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Figure 2. Monthly means of the significant wave height and wind speed at a British offshore
location.

Not only the seasonality is an important characteristic of the local weather. Also the
distribution of the wave heights and windspeeds throughout the year should be similar to the
actual observations. In Figure 3, the distribution of the wave heights is shown for the location
of FINO 1. Here the effect of using the simulation based on multiple Langevin equations can
be observed. The simulation that was based on one separate set of equations for each month
performs better than the simulation without seasonal effect. The same has been observed for
the other location.

For the wind speed simulation, the distribution is not matched as well as for the wave heights
as can be seen from Figure 4. The same observation of the distribution of simulated wave heights
and wind speeds can be made for the British offshore site A1. One possible explanation is that
the Langevin process is better at capturing the wave specific properties and it might not be
the correct way to model wind speeds. Hadjihosseini et al. [11] have proven that the Langevin
process can be used to describe ocean waves. In the absence of a similar investigation for wind
speeds, we have in this study assumed that the Langevin process can also be used. It is possible
that this assumption does not hold up, this will be the basis for new investigations. Even if the
assumption holds, it might be that the type of equations that we fitted with the linear regression,
were indeed not suitable to capture all properties of the wind speed.

To show the difference in wave height distribution between winter and summer, January and
August were chosen as representative months in Figure 5. It can be seen that the wave height
is subject to more variation in the winter, with a higher mean significant wave height. For both
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Figure 3. Distribution of the wave heights over one year for the FINO 1 data, seasonal
simulation and simulation without the seasonal effect.
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Figure 4. Distribution of the wind speeds over one year for the FINO 1 data, seasonal simulation
and simulation without the seasonal effect.

months, the distribution is well matched by the artificial wave height series. Similar observations
can be made for the simulations based on the FINO 1 data.

Figures 6 and 7 show the cumulative distribution functions (CDFs) of the wind speed and
wave height respectively for each a summer and a winter month for the location of FINO 1.
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Figure 5. Distribution of the significant wave heights over one year for the ECMWF data. One
month in summer and one month in winter were chosen. For both months, the distribution of
the original data and of the artificial data are shown.
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Figure 6. Cumulative distribution function of wind speeds for a winter and a summer month
at the location of FINO 1.

Figure 6 shows the CDF of the wind speeds for a winter month and a summer month. It can
be observed that the simulation based on six-hour data under-estimates the wind speed at the
given site for January. For August, the model also under-estimates the wind speeds. However, it
can be seen that the occurrence of wind speeds below 5m/s is also under-estimated. The model
based on the original data replicates the CDF of the wind speeds much better. here, in both
months the occurrence of low wind speeds is slightly under-estimated and the CDF is replicated
better for the summer month. For the wave heights, the CDF is shown in Figure 7, again for
a summer and a winter month. Also here, we observe that the resolution in the data used for
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Figure 7. Cumulative distribution function of wave heights for a winter and a summer month
at the location of FINO 1.

fitting the equations has an influence on how well the CDFs are represented. Contrary to the
wind speed simulations, CDF of significant wave heights is better matched by the simulation for
the winter month.
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Figure 8. Persistence of wind speeds below 20m/s for the location of FINO 1. The data is
compared to the simulation without seasonal effect, the simulation with seasonal effect and the
simulation with seasonal effect, based on 6 hour data.
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Figure 9. Persistence of wave heights below 1.5m for the location of FINO 1. The data is
compared to the simulation without seasonal effect, the simulation with seasonal effect and the
simulation with seasonal effect, based on 6 hour data.

For the planning of operations and maintenance, weather windows play an important role.
In order to see whether the length of these windows is adequately represented in the artificial
weather series, we also investigated the persistence of waves and wind speeds. Anastasiou and
Tsekos [18] define the persistence of wave height below a threshold level as “the time interval
between a down-crossing of that threshold and the first subsequent up-crossing”. For the wave
height, a threshold of 1.5m height was chosen and for the wind speeds a threshold of 20m/s was
used to investigate the persistence. These values were chosen based on typical wave height and
wind speed limits for different vessels used for operation and maintenance (e.g. crew transfer or
lifting operations).
Figure 8 shows the persistence of wind speeds below 20m/s for the location of the FINO 1
measurement platform. It is necessary to note that the distribution of the persistence could not
be calculated for the simulation based on the six-hour data. In the simulated time series, no value
above 20m/s was present. Therefore, the probability of having a persistence lower than 20m/s
of the length of the dataset it one. The length of suitable weather windows is over predicted
by the seasonal simulation model and under-predicted by the model without seasonal variation.
The Kolmogorov-Smirnov-(KS-)distance of the distribution of the persistence is slightly bigger
for the non-seasonal model (0.16) than for the seasonal model (0.14), but both are in the same
magnitude and it cannot be rejected that the samples come from the same distribution as the
data (p-values > 0.8 for all three simulations). Depending on the application (e.g. turbine
performance calculation, scheduling a lift operation), the more conservative model might be
chosen.
Figure 9 shows the persistence statistics for wave heights below 1.5m for the location of
FINO 1. Also for the waves, the simulation without the seasonal effect under-predicts the
lengths of weather window, whereas the model with seasonal variation over-predicts the lengths.
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Calculating the KS-distance shows that the maximum distance between the persistence-curves of
the two seasonal simulations (0.04 for both models) is not significantly different (p-values > 0.95)
from the persistence of the original data. This means that the over- and under-prediction of
the two models are of the same magnitude. The KS-distance of the simulation without seasonal
effect (0.08) is about double the KS-distance of the two seasonal simulations. Also this model
does not show a significant (p-value > 0.9) difference from the original persistence distribution.

5. Discussion
The popular Markov Process uses discrete time steps. One challenge when using Markov chains
is the change from one transition probability matrix to the next. This happens e.g. when
switching from one month to the next in the model presented by [4]. The last value generated
in a month needs to be used for the generation of values in the next month. However, if this
value has an occurrence probability of zero in the new matrix, the process cannot select a first
value for the new month.
The Langevin process however is a continuous process and does not have any issues with different
starting values for the process. Here, the last generated value for a month can be directly input
as a starting value for the next month’s process. Additionally, for the Langevin process fewer
parameters need to be estimated and therefore less data is needed to fit the model. While for the
Markov chain, many transition probabilities need to be calculated and large matrices handled,
the Langevin equations can be describes with a handful of parameters.
Having fewer parameters that describe the Langevin model compared to the Markov model, has
the disadvantage that some of the properties of the data cannot be replicated as well as with the
Markov model. Usually, models with fewer parameters need fewer observations to estimate these
parameters. In the given application this would mean that a shorter weather observation period
can be used to base the site weather model on. This might especially be useful to optimize
the operation and maintenance for new wind farm projects, where data is collected for a short
period of time. Additionally, an advantages of the Langevin model is that the model does not
require the handling of large matrices and random sampling with discrete probabilities. The
analysis of the properties of the artificial weather data generated based on the Langevin process
showed that the properties of the site specific weather conditions are conserved well enough
to use the model for operation and maintenance optimization. It is necessary to note that the
Markov model with its many more parameters is (for the location and dataset used in this study)
superior in replicating the site properties of the weather. A comparison of the distribution of
the significant wave height and wind speed for the data from the British offshore site and the
simulations of this site with the (seasonal) Langevin model and Markov model can be found in
the Appendix in Figure A2.
The possible correlation between wave heights and wind speeds are missing in both applications.
Previously, a correlation matrix has been used by [4] to generate the wind speeds from the wave
height simulation. Using a multidimensional (2D) Langevin process could also solve the issue of
correlation.

6. Conclusion and further work
In this paper we have shown, that for the type of application that was the focus of our
investigation, namely generating artificial weather time series for operations and maintenance
simulations, a Langevin process can be used. The properties of the waves are represented well,
both in terms of distribution of the significant wave height and in terms on persistence of waves.
As with most data-driven models, the performance of the Langevin process improves with the
quality and sampling frequency of the data used to fit the equations. Higher data sampling
frequencies lead to a better representation of the site conditions. Especially the persistence is an
important property that is needed for O&M simulations, since the length of weather windows
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plays an important role in deciding e.g. a maintenance strategy.
In the future, the Langevin approach might be a tool that can assist in propagating site specific
properties of the waves without relying on simulations. It might also be used as an alternative
input to closed form models like the one from Feuchtwang and Infield [19] or the simulations
models mentioned above. The Langevin model presented here models the mean wind speeds
and wave heights independently. Hagen et al. [6] have presented a multivariate approach for the
Markov chain model to capture correlations between different weather parameters. Capturing
the correlation between wave heights, wind speeds (and other weather parameters) should be
possible by using a two (multi) dimensional Langevin process. This is another topic for further
research.
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Appendix
∂P (X)

∂t
=

(
− ∂

∂X
D(1)(X) +

∂2

∂X2
D(2)(X)

)
P (X) (A.1)

Equation A.1: Fokker-Planck equations, describing a Langevin process.
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D(n)(X) = lim
τ→0

1

n!τ
M (n)(X, τ) (A.2)

Equation A.2: Equation for the Kramers-Moyal coefficients, where τ is a time increment and
M (n)(X, τ) is the conditional moment of the Langevin processes’ trajectory in time, with respect
to τ .
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Figure A1. Distributions of the significant wave height and wind speed for the British offshore
site. Blue line and shading show the distribution of the original data, red shows the simulated
weather based on the seasonal Langevin model introduced in this paper and the green line
and shading show the distribution of the Langevin model without taking into account seasonal
effects.
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Figure A2. Distributions of the significant wave height and wind speed for the British offshore
site. Blue line and shading show the distribution of the original data, red shows the simulated
weather based on the Langevin model introduced in this paper and the green line and shading
show the distribution of the artificial weather generated by a Markov chain model.


