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Abstract: The present paper proposes a method to estimate the bispectral Donaldson matrices 
of fluorescent objects in a scene with a spectral imaging system. Multiple ordinary light 
sources with continuous spectral-power distributions are projected sequentially onto object 
surfaces without controlling the spectral shape of the illumination source. The estimation 
problem of the Donaldson matrices is solved as an optimization problem, where the residual 
error of observations by the spectral imaging system is minimized. The reflection, emission, 
and excitation spectral functions are estimated at each wavelength without using a basis 
function approximation. To improve the estimation efficiency, the output visible range is 
segmented into two types of wavelength ranges: one for only reflection and another for both 
reflection and emission. An iterative algorithm is then developed based on the wavelength 
segmentation and the physical excitation model. The usefulness of the proposed method is 
examined in experiments using different fluorescent objects and illuminants. We show the 
estimation accuracy of the Donaldson matrices, discuss the effective selection of illuminants, 
and demonstrate an application to spectral analysis and reconstruction of a fluorescent image. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 
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1. Introduction 

Over the years, the use of fluorescent materials has increased in our daily lives. All kinds of 
everyday objects are made of such materials, including paint, dye, paper, plastic, and cloth. 
The usefulness of fluorescence is based on the effect that the visual appearance of the object 
surface is improved compared to a reflective surface based on non-fluorescent reflection. 
Because of fluorescent emissions, many fluorescent surfaces appear brighter and more vivid 
with respect to the original color of the surface. 

The fluorescent characteristics are well-described in terms of their bispectral radiance 
factor. The radiance factor is a function of two wavelength variables: the excitation 
wavelength of incident light and the emission/reflection wavelength. The bispectral radiance 
factor can be summarized as a Donaldson matrix [1], which is an illuminant independent 
matrix representing the bispectral radiance factor of a target object. The bispectral radiance 
factor can be measured using two monochromators [2, 3]. However, the two-monochromator 
method is time-consuming and expensive. Thus, its use is confined to the laboratory and it is 
not available in ordinary imaging systems. 

Although there have been many papers related to reflectance and fluorescent spectral 
recovery using an imaging system, most of them do not consider estimation of the Donaldson 
matrix. Rather, they separate fluorescent emission and reflectance (e.g., see [4–7]). Some 
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approaches towards Donaldson matrix estimation are found in a limited number of papers [8–
11]. 

It is usually considered that control of the illuminant spectrum is required in order to 
distinguish the reflected and luminescent photons. For example, Fu et al. [8] described a 
method that uses nine colored light in the visible range (400 to 700 nm) to recover the 
reflectance spectrum and the relative spectrum of emission and absorption from color camera 
data. Blasinski et al. [9] presented a framework that can estimate the reflectance spectrum and 
the absolute emission and absorption spectra in two fluorophores. This method is based on an 
imaging system consisting of many narrowband light sources and transmission filters attached 
to a camera. These methods used a linear basis function approximation to represent three 
spectral functions of reflectance, emission, and excitation. However, the selection of basis 
functions is not easy because the three spectral functions have unique spectral features. 
Increasing the number of basis functions may lead to an improvement of the spectral 
approximation, but that will result in an increased number of narrowband light sources. It 
should be noted that increasing the number of unknown parameters does not result in reliable 
spectral estimation. The optimal selection of basis functions, illuminant spectrum, and camera 
filtration is still a problem. Suo et al. [10] described an imaging system that uses 
programmable spectral filters placed in both sides of light source and camera. Although this 
approach could yield a direct estimation of the Donaldson matrix, the spectral sampling was 
too rough to use in practical fluorescent analysis. 

Tominaga et al. [11] presented an approach using a spectral imaging system where only 
two illuminants with different spectra are projected onto an object without controlling the 
spectral shapes. The Donaldson matrix was modeled with high spectral resolution. This had 
the possibility to be used for several fluorescence analyses, such as mutual illumination [12], 
appearance reconstruction [13], and texture analysis [14]. The principle of the Donaldson 
matrix estimation was based on that the difference between the total radiance factors observed 
under the two illuminants. This difference was caused only by the luminescent radiance 
component due to fluorescent emission. However, the method was a graphical approach for 
finding spectral differences between the two total spectral radiance factors. Thus, the 
estimation results were often unreliable and unstable, especially for low intensity light 
sources. 

The present paper proposes a stable and reliable method to estimate the bispectral 
Donaldson matrices for spectral imaging data of fluorescent objects. We suppose a general 
image acquisition system that allows more than two illuminant projections. The Donaldson 
matrix is modeled as a 71 × 60 array in spectrally high dimension. Excitation is defined in a 
350 to 700 nm wavelength range, and emission range is defined a 400 to 700 nm wavelength 
range. 

The estimation problem is solved as an optimization problem, where the residual error of 
the observations acquired by the spectral imaging system is minimized. We estimate the 
spectral functions of reflectance, emission, and excitation in a direct way without using basis 
functions. The output visible wavelength is segmented into two types of wavelength ranges: 
one consisting of only reflection and another consisting of both reflection and emission. In the 
first range, the reflectance is straightforward estimated; in the second range, the reflection and 
emission spectra are estimated iteratively. The excitation spectrum is estimated using a 
physical model. The emission wavelength range is determined based on error minimization. 
The usefulness of the proposed method is examined in experiments using different fluorescent 
objects and illuminants. We show how precisely the algorithm estimates the Donaldson 
matrix of a fluorescent object with a fluorophore. The effective selection of illuminants is 
discussed with the presented experiments. Finally, a successful application to spectral 
analysis and reconstruction of a fluorescent image is demonstrated using a real scene, which 
includes different fluorescent and non-fluorescent materials. 
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2. Bispectral modeling 

2.1 Donaldson matrix for a fluorescent object 

A Donaldson matrix ( , )em exD λ λ  represents the bispectral radiance factor of a fluorescent 

object as a two-variable function of the excitation wavelength emλ  and the emission/reflection 

wavelength exλ . The excitation wavelength range for all fluorescent materials starts from 

about 330 to 350 nm (see [15,16]). Because most light sources used in everyday life contain 
some ultraviolet (UV) component that contributes to fluorescent emission, the excitation 
range in this paper is set to 350 700exλ≤ ≤  nm. As our spectral imaging system operates in 

the visible wavelength range, the emission/reflection range is set to 400 700emλ≤ ≤  nm. 

The Donaldson matrix is decomposed into two components of the reflected radiance 
factor ( , )R em exD λ λ  by light reflection, and the luminescent radiance factor ( , )L em exD λ λ  by 

fluorescent emission. The matrix ( , )R em exD λ λ  is diagonal and has values only at em exλ λ= . 

This corresponds to surface spectral reflectance ( )S λ  because monochrome light reflected 

from a surface has the same wavelength as the incident light. The matrix ( , )L em exD λ λ  has 

values only in the off-diagonal of satisfying em exλ λ>  because the luminescent energy is 

emitted at a longer wavelength than each excitation wavelength due to the Stokes shift [17]. 
In this study, the luminescent radiance factor is separated into a multiplication of excitation 
and emission wavelength components as ( , ) ( ) ( )L em ex em exD λ λ α λ β λ= . The two functions 

( )emα λ  and ( )exβ λ  are the emission and excitation spectra, respectively. The chromaticity 

invariance of fluorescence emission [8, 9, 11] is derived from this separation property. The 
above multiplication of ( )emα λ  and ( )exβ λ  implies that one of two spectra can be arbitrarily 

rescaled. Therefore, we assume that the excitation spectrum is normalized such that 
700

350
( ) 1ex exdβ λ λ = . 

A discrete form of the Donaldson matrix with the above properties can be represented in 
an N × M matrix as 

 

R L
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(1) 

where is (i = 1, 2, .., N), iα (i = 1, 2, .., N), and iβ (i = 1, 2, .., M-1) represent the discrete 

reflectance, emission, and excitation spectra, respectively. When the spectral functions are 
sampled in equal 5 nm wavelength intervals, the Donaldson matrix is rewritten with M = 71 
and N = 61 as follows: 
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2 1 2 10 2 11 2

61 1 61 10 61 11 61 70 61

0 0

0

s
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 (2) 

Figure 1 demonstrates the Donaldson matrix of a pink sample containing an orange 
fluorescent color, where a hump in the 600 to 700 nm emission wavelength range represents 
the luminescent radiance factor of this sample. 

 

Fig. 1. Donaldson matrix obtained from a pink sample containing an orange fluorescent color. 

2.2 Observation model 

We consider the matte surface of a fluorescent object without specularity. Let ( )E λ  be the 

illuminant spectrum of a light source. The spectral radiances observed from the surface under 
this illuminant are described as a sum of the diffuse reflection component and the luminescent 
component as follows: 

 350
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ),

em

em em em em ex ex ex

em em em em

y S E E d

S E C

λ
λ λ λ α λ β λ λ λ

λ λ α λ λ

= +

= +
  (3) 

where 

 
350

( ) ( ) ( ) .
em

em ex ex exC E d
λ

λ β λ λ λ=   (4) 

The spectral observations are also described in a matrix equation. Let s, α, e, and c be the N ( 
= 61)-dimensional vectors representing reflectance ( )S λ , emission ( )α λ , and 

illuminant ( )E λ  in the visible range (400 to 700 nm), and modified excitation ( )C λ , 

respectively. Then the observations can be summarized in a matrix form as 

 . . ,= ∗ + ∗Y s e α c  (5) 

where the symbol “ .∗ ” represents element-wise multiplication. 
Suppose that n light sources with different spectral-power distributions are available. 

When the same fluorescent object surface is illuminated with each of these light sources, the 
observations can be described as 
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1 1 1

2 2 2

( ) ( ) ( )
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( ) ( ) ( )

em em em

em em em
em em
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y E C
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λ α λ

λ λ λ
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     
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     
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  
 (6) 

3. Estimation method 

For computational simplicity, the observation equation is equivalently described in vector 
notation as 

 ( ) = ( ) ( ) + ( ) ( )Sλ λ λ λ α λy E C  (7) 

where n-dimensional column vectors ( )λy , ( )λE , and ( )λC represent observations, 

illuminants, and modified excitations at wavelength λ , respectively. The emission spectrum 
( )α λ  for a single fluorophore is unimodal, and the effective range is narrow compared with 

the reflectance spectrum in the visible wavelength range. The emission wavelength range can 
be roughly predicted in separate ways, such as by use of a UV light source to illuminate the 
surface. One can also make a prediction via spectral differences between the total reflected 
radiance factors obtained under two different illuminants. Now let us assume the effective 
wavelength range for fluorescent emission is ( 1λ , 2λ ). The visible wavelength range is then 

partitioned into different wavelength ranges, where (400, 1λ ) and ( 2λ , 700) consist of only 

reflection, and the range ( 1λ , 2λ ) contains both reflection and emission. This wavelength 

partition makes the estimation procedure effective and simple. The optimal emission range is 
also determined. 

3.1 Estimation of only reflectance 

The observations are described simply as 

 ( ) = ( ) ( )Sλ λ λy E  (8) 

where 1400 λ λ≤ <  and 2 700λ λ< ≤ . In order to minimize the residual error in this range, 

the least squares estimate of the reflectance radiance factor (surface-spectral reflectance) is 
obtained in a straightforward manner as 

 ˆ( ) ( ( ) ( )) ( ( ) ( ))t tS λ λ λ λ λ= E y E E  (9) 

where the symbol t represents matrix transposition. The illuminant spectra ( )iE λ  (i = 1, 2, ..., 

n) of n light sources were measured using a standard white reference surface with known 
reflectance and the sensitivity of the spectral imaging system. 

3.2 Estimation of both reflectance and emission 

In the wavelength range 1 2λ λ λ≤ ≤ , we have 

 [ ] ( )
( ) ( ) ( )

( )

S λ
λ λ λ

α λ
 

=  
 

y E C  (10) 

The least squares estimate of ( )S λ and ( )α λ  at each wavelength under n illuminants is 

obtained as 

 
1ˆ( )

( ) ( ) ( ) ( )
ˆ ( )

t tS λ λ λ λ λ
α λ

− 
 =   

 
X X X y  (11) 
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where [ ]( ) ( ) ( )λ λ λ=X E C . The modified excitation spectrum ( )λC  is calculated as 

 
350

( ) ( ) ( )
ex

i ex i exC E
λ

λ
λ β λ λ

=

=   (12) 

The excitation spectrum ( )β λ  can be estimated using a physical model describing the 

relationship between the excitation and reflection spectra: 

 ˆ( ) ( )(1 ( )),Q Sβ λ λ λ= −  (13) 

where ( )Q λ  is the luminescence efficiency [18, 19]. The luminescence efficiency was 
determined by applying Eq. (13) to direct measurements of ( )β λ and ( )S λ  for 12 fluorescent 
samples from different products, such as sheet, paint, cardboard, and plastic [11]. We 
obtained the Donaldson matrix for each object with the bispectrometer system. Thin curves in 
Fig. 2 show the efficiency curves for the respective samples. The curves are normalized with 
respect to the efficiency value, which to take to be one at 600 nm. Variations in the efficiency 
curves for different samples appear to be larger at short excitation wavelengths. As 
wavelength affects the efficiency curves of the samples, the average of these curves was 
adopted as the luminescence efficiency in this study. In Fig. 2, the average curve for different 
samples is represented by the bold curve, where the standard deviation curves ( + 1σ and −1σ) 
were represented by the dotted curves. 

 

Fig. 2. Luminescent efficiency curve that represents the average curve of the efficiencies for 
different fluorescent samples. Thin curves represent the efficiencies for 12 different fluorescent 
objects. The bold curve and the broken curves represent the average curve and the standard 
deviation curves of 1σ±  from the average, respectively [11]. 

We note that the reflectance ( )S λ  is nested in Eqs. (11) and (13), thus ( )S λ  and ( )α λ  

cannot be determined directly. We adopt an iterative procedure. The initial condition of ˆ( )S λ  

is set to a constant spectrum in the excitation range. The estimates ˆ( )S λ  and ˆ ( )α λ  are 

updated using Eqs. (11)-(13) at each iteration step. This procedure is repeated until the 

residual error 
2ˆ( ) ( )λ λ−y y  becomes sufficiently small over the entire wavelength range. 

Note that the relationship in Eq. (13) is available only for estimation of ( )β λ  in 400 λ≤  due 

to observation limitations. The spectral curve of ( )β λ  in 350 400λ≤ <  is estimated by 
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interpolation based on the estimates of ˆ( )β λ  in 400 λ≤  and the terminal condition 

of ˆ(350) 0β = . 

3.3 Determination of the emission range 

We determine the optimal wavelength range ( 1λ , 2λ ) for effective fluorescent emission. A 

pair of ( 1λ , 2λ ) are two-dimensional variables. We determine the optimal values that 

minimize the average residual error 
2ˆ( ) ( )J λ λ= −y y  over the entire visible wavelength 

range. The emission spectrum ( )α λ  has a single peak as shown in Fig. 3. We judge the 

unimodal property of ( )α λ  during the estimation procedure. Let pλ be the peak wavelength 

of the emission spectrum. It is obvious that the slope of ( )α λ  should be positive when 

1 pλ λ λ≤ <  and negative when p 2λ λ λ< ≤ . 

 

Fig. 3. Unimodality of the emission spectrum. 

In Fig. 3, the unimodality was suggested as we had only considered a single fluorescent 
material in this study. The proposed method only considers a single fluorescent material 
which could only produce a unimodal emission spectrum. We do not recommend the 
proposed method for materials with multimodal fluorescence. 

4. Experiments 

A series of experiments using different fluorescent objects and illuminants was conducted to 
show the usefulness of the proposed method. The analysis includes precise estimation of the 
Donaldson matrix, effective selection of illuminants, and application to appearance 
decomposition and reconstruction. Figure 4 shows the spectral imaging system used in 
experiments, which consisted of a monochrome CCD camera with 12-bit dynamic range and 
Peltier cooling (QImaging, Retiga 1300), a VariSpec liquid crystal tunable filter, an IR-cut 
filter, and a personal computer. Figure 5 shows the total spectral sensitivity functions of the 
imaging system, including filter transmittances and camera sensitivity. The spectral images 
were captured at 5 nm intervals in the visible wavelength range, thus each captured image 
was represented in an array of 61-dimensional vectors. Since the total sensitivities depend on 
wavelength as shown in Fig. 5, the camera was adjusted so that the captured image intensity 
was equal in every wavelength channel. Let ( )

i
R λ  (i = 1, 2, …, 61) be the spectral sensitivity 

function of the i-th sensor of the spectral imaging system and 
i

T  (i = 1, 2, …, 61) be the 

exposure time of the sensor. The exposure time of the camera was determined to satisfy the 
following relationship for every channel: 

 ( )700

400
( ) , 1, 2, , 61

i i
T R d const iλ λ = = …                (14) 
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Figure 6 shows the spectral-power distributions for the following light sources: (1) an 
incandescent lamp (Iwasaki, PRF-300W), (2) an artificial sunlight lamp (SERIC, SOLAX 
100W), (3) a photographic flood daylight lamp (Iwasaki, PRF-350WD), and (4) a white LED 
lamp (Hitachi, LDA11D-G/100C). Each illuminant spectral-power distribution was 
represented in an array of 71-dimensional vectors. Because the light sources used in this study 
emit unpolarized light, we do not suspect the occurrence of fluorescence polarization. 
However, since the VariSpec liquid crystal tunable filter is polarization-sensitive, it is 
possible in principle to sense polarization effects when an object is illuminated with a strong 
polarized light source. 

In this paper, all gathered images and the analysis results are displayed in sRGB color 
images in order to reproduce accurate color appearance in a calibrated display device. To this 
end, all spectral images were first transformed into the CIE-XYZ images by using the color-
matching functions, and were then converted to the sRGB images. 

 

Fig. 4. Spectral imaging system used in experiments. 

 

Fig. 5. Total spectral sensitivity functions of the imaging system. 
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Fig. 6. Illuminant spectral-power distributions of four light sources. 

4.1 Estimation accuracy 

The test samples were chosen from general objects that one can easily find in daily life. 
Figure 7 shows the observed images of (a) a pink sample and (b) a green sample under 
illumination with four different light sources. We made these samples by pasting cut sheets 
(product name: Lumino Sheet, manufacturer; Okina Inc.) on a board with dimensions of 
about 5 cm by 5 cm. Unfortunately, the manufacturers of the fluorescent objects did not 
provide us the details of the fluorescent substances included in the test objects. A portion of 
these images was used for estimation. 

The estimation algorithm was run by iteratively changing the emission wavelength range 
( 1λ , 2λ ) while searching for the minimum average residual error J. The iterative algorithm 

converged after about three iterations in every case. Figure 8 depicts the average residual 
error for the pink sample as a function of 1λ  and 2λ . The unimodal property of the emission 

spectrum was satisfied in this range. Error minimization was achieved with J = 3.5 at 1λ  = 

565 nm and 2λ  = 700 nm. Thus, the emission range was determined to be 565 to 700 nm. The 

estimated spectral curves of reflection, emission, and excitation for the pink sample are 
depicted in Figs. 9(a)-9(c). It is shown in Figs. 9(a) and 9(b) that the object color of this 
sample is pink, while the fluorescent color is orange. The Donaldson matrix constructed with 
the estimated spectral curves is shown previously in Fig. 1. 

Next, the estimation results for the green sample are shown in Figs. 10-12. The residual 
error was minimized with J = 12.9 at 1λ  = 480 nm and 2λ  = 660 nm in Fig. 10, and the 

emission range was determined to be 480 to 660 nm. The estimated spectral curves in Fig. 11 
and the Donaldson matrix in Fig. 12 suggest that the fluorescent material emits more 
saturated green light than the original green color of the object because the emission range is 
narrower than the reflectance range. 

 

Fig. 7. Observed images of two fluorescent samples of (a) pink and (b) green under four light 
sources. 
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Fig. 8. Average residual error for the pink sample as a function of parameters 1λ  and 2λ . 

 

Fig. 9. Estimated spectral curves of (a) reflection, (b) emission, and (c) excitation for the pink 
sample. 

 

Fig. 10. Average residual error for the green sample as a function of parameters 1λ  and 2λ . 
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Fig. 11. Estimated spectral curves of (a) reflection, (b) emission, and (c) excitation for the 
green sample. 

 

Fig. 12. Estimated Donaldson matrix for the green sample. 

 

Fig. 13. Donaldson matrices for (a) pink and (b) green samples obtained by the previous 
method [11], where two light sources (1) and (2) were used to illuminate the same samples. 

For comparison, Fig. 13 shows the Donaldson matrices obtained by the previous method 
in [11], where two light sources (1) and (2) were used to illuminate the same fluorescent 
samples. The average residual error was J = 47.3 and J = 68.2 for the pink and green samples, 
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respectively. These values are much larger than those using the present method. The 
estimated reflectance curves exhibit an unusual discontinuity, as shown in Fig. 13(b). 

4.2 Illuminant selection 

We investigated how the illuminant spectra influenced the estimation performance. Since a 
brighter light source with higher power distribution is more effective for estimating the 
Donaldson matrix, the illuminants in Fig. 6 were normalized to have the same power. Figure 
14 shows a set of illuminant spectral curves with constanti =e  (i = 1, 2, 3, and 4), which 

were used in a numerical simulation for bispectral estimation. The same estimation algorithm 
was executed for different illuminant combinations. The performance indices in typical 
combinations for the pink sample are as follows: 

 ( ) ( ) ( ) ( ) ( )1, 2 0.075, 2, 3 0.073, 1, 3 0.092, 1, 2, 3 0.071, 1, 2, 3, 4 0.164J J J J J= = = = =                          

  

These results suggest that the use of all of the illuminants does not lead to the best 
performance. We suggest that by using only two illuminants, i.e., (2) sunlight and (3) 
daylight, we can produce a result that is close to the best performance J(1, 2, 3) = 0.071. The 
use of (1) incandescent light is less effective. We consider that the illuminant has less spectral 
energy in the excitation range at UV and blue wavelengths. It is found that the use of (4) LED 
significantly degrades the performance. This is because the LED illuminant used in the 
present experiment has large spectral variation and has little spectral energy in the UV and 
shorter blue wavelengths compared to the other illuminants in Fig. 14. It is obvious that such 
a LED illuminant is not suitable for use in the present estimation method. We conclude that it 
is essential for the illuminant to have a certain amount of energy at shorter wavelengths. 

 

Fig. 14. Illuminant spectral curves normalized to the same power. 

4.3 Application to appearance decomposition and reconstruction 

Since the proposed method makes estimation of the precise Donaldson matrix at every pixel 
point in a scene containing different fluorescent objects, we can consider various appearance 
analyses applied to a fluorescence scene. Since the Donaldson matrix is spectrally constructed 
with the reflection component and the luminescent component as R L= +D D D , the image 

observed with illuminant e is decomposed into RD e  and LD e . The appearance of the 

reflection component depends directly on the illuminant e. Although the intensity depends on 
the illuminant, the luminescent component always has the same spectral composition as the 
emission spectrum. We should note that, once we estimate the Donaldson matrices for the 
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fluorescent objects, we can spectrally reconstruct the appearance of the same object with an 
arbitrary illuminant. In other words, we can produce the spectral image required to predict the 
relighting result of the same object by using an arbitrary illuminant. 

Figure 15 shows the observed images of a scene with different objects under illumination 
with (1) incandescent light and (2) sunlight. The scene contains six pencils, two erasers, and a 
white plate. The fluorescent pencils were Textsurfer® dry triangular highlighter pencils 
produced by Steadtler, and the non-fluorescent pencils were Color pencils produced by 
Tombo. The erasers were Resare produced by Kokuyo. The white plate was a white 
calibration plate (Konica-Minolta CRA43) made of a glass coated fine ceramic, whose chief 
ingredient was aluminum (III) oxide (Al203). The Donaldson matrix was estimated at each 
pixel using the proposed algorithm. Then, the observed images were decomposed into their 
reflection and luminescent components based on the estimated matrices, as shown in Figs. 16 
and 17. It is seen that the objects with fluorescence are clearly separated from the non-
fluorescent objects. Figure 17 shows only the fluorescent objects of three pencils and two 
erasers. The fluorescent objects in Fig. 17 (a) appear darker than the objects in Fig. 17 (b) 
because the incandescent light has less energy in the shorter wavelength range. Note that the 
fluorescent colors in Fig. 17 (a) have the same chromaticities as in Fig. 17 (b). 

 

Fig. 15. Observed images of a scene with different objects under two light sources. ((a): 
incandescent and (b): sunlight). 

 

Fig. 16. Appearance of the reflection component. ((a): incandescent and (b): sunlight). 
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Fig. 17. Appearance of the luminescent component. ((a): incandescent and (b): sunlight). 

We used the illuminant spectral-power distributions of a white LED and a RGB mixing 
LED shown in Figs. 18(a) and 18(b) for appearance reconstruction. The two light sources 
have the same color temperature of about 6500 K. Figure 19 demonstrates the appearance 
reconstruction results of the same scene by illuminating with the two LED lights. The white 
plates in Figs. 19(a) and 19(b) present the same color appearance under the two illuminants 
because the sources have the same color temperature. It is interesting to observe that the 
appearances of the yellow pen and the green pen are distinguishable between the two figures. 
When Figs. 19(a) and 19(b) are compared, one can see in Fig. 19(a) that the green appears 
emphasized so that the yellow pen shifts to green and the green pen is saturated, compared 
with in Fig. 19(b). This is because the white LED illuminant has a much larger amount of 
shorter wavelength components that contribute to green fluorescent emission. Thus, the 
appearance of fluorescent objects is strongly affected by the illuminant spectral curve. The 
proposed method is useful for various purposes including these spectral analysis and spectral 
reconstruction of a fluorescent object scene. 

 

Fig. 18. Illuminant spectral-power distributions of (a) white LED and (b) RGB mixing LED, 
which have the same color temperature of about 6500 K. 
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Fig. 19. Appearance reconstruction results of the same scene by illuminating the two LED 
lights. ((a): white LED and (b): RGB mixing LED). 

4.4 Useful and practical applications 

The developed algorithm and multispectral imaging system can have various applications in 
computer vision, image processing, and computer graphics [20], as well as many other fields 
including biology, medical diagnosis, food science, material science, and art inspection. In the 
field of biology, after discovery of green fluorescent protein by Shimomura et al. [21], many 
studies have been conducted on chlorophyll fluorescence analysis [22]. Fluorescence imaging 
provides a useful tool to investigate the photosynthetic activities of plant leaves with 
chlorophyll [23], and to identify plants and characterize their state of health in remote sensing 
[24]. 

In medical diagnosis, fluorescence imaging provides an important diagnostic method [25]. 
For instance, fluorescence spectroscopy of skin shows significant differences between normal 
and tumorous tissue, both from the point of view of detecting endogenous signals and of 
using of exogenous fluorescent markers [26]. Combining the multispectral reflection mode 
imaging with the fluorescence imaging in a single instrument lends strength to the proposed 
technique. Therefore, if the S/N (signal-to-noise) ratio is high, the proposed technique could 
be applied to discriminate pathological tissues from normal tissues in biomedicine by using 
an ordinary light source. Reconstruction may be possible if the fluorescence component of the 
signal and the intrinsic sample fluorescence are spectrally distinguishable. Since the bispectral 
characteristics in the proposed technique could be estimated at each pixel point, two-
dimensional distribution and visualization of fluorescence is possible. 

In food science, the analysis based on an excitation-emission matrix (EEM), called a 
fluorescent fingerprint, has been successfully applied to quality evaluation of different types 
of food [27, 28]. In material science applications, bispectral spectrophotometry is used for 
colorimetry and radiance evaluation of fluorescent printing materials [29, 30]. A similar 
fluorescent analysis is also used for evaluation of groundwater and wastewater [31]. In art 
inspection, a noninvasive technique based on fluorescent spectroscopy is used to characterize 
the painting materials and evaluate the conservation state [15]. 

The accuracy of the Donaldson matrix estimation depends on the imaging geometry. In 
this paper, we consider the light source to be located in the vertical direction with respect to 
the object surface, and the camera in front observes the illuminated surface. Since the object 
surface is a Lambertian diffuser, the observed signal intensities depend on the incidence angle 
of light rather than the viewing angle. As the incidence angle increases toward the grazing 
angle, the reflection and emission signal intensities decrease, leading to decreased estimation 
accuracy. The accuracy also depends on the curvature of the surface in a similar way. If the 
surface roughness is low, the estimation results for a rough surface show that the performance 
is similar to the results from a smooth surface. 
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5. Conclusions 

In this paper, we have proposed a method to estimate the bispectral Donaldson matrices of 
fluorescent objects using a spectral imaging system. This is the first attempt to use multiple 
ordinary light sources where continuous spectral-power distributions were projected 
sequentially to the object surfaces without controlling the illuminant spectral shape. The 
problem of estimating the Donaldson matrices was solved as an optimization problem, where 
the residual error of the observations acquired by the spectral imaging system is minimized. 
We estimated the spectral functions of reflection, emission, and excitation at each wavelength 
without using a basis function approximation. 

To improve the estimation efficiency, the output visible range was segmented into two 
wavelength ranges. One consisted only of reflection, and another consisted of both reflection 
and emission. An iterative estimation algorithm was developed based on this wavelength 
segmentation and the physical excitation model. The optimal fluorescent emission range was 
determined based on the error minimization method. We examined the usefulness of the 
proposed method in experiments using different fluorescent objects and illuminants. We 
showed the estimation accuracy of the Donaldson matrices, discussed the effective selection 
of illuminants used, and demonstrated an application to spectral analysis and reconstruction 
of a fluorescent image. 

The proposed method has several useful features. The algorithm obtained here is simple 
and stable, which is optimized in the sense that the estimates are determined to minimize the 
residual error of the observations. The Donaldson matrix estimation procedure is more direct 
and does not require external control over the illuminant spectra, nor does it require a basis 
approximation of spectral functions. The Donaldson matrices were represented as a spectrally 
high-dimension 71 × 61 array with an excitation range of 350–700 nm and emission range of 
400–700 nm. Because of these useful features, we can easily extend the present method to 
wider spectral ranges. If the Donald matrices are measured directly by the two-
monochromator method, the reliability and accuracy can be verified clearer. Therefore, we 
suggest that further studies should include a comparison with the direct measurement results 
of the Donald matrices. 

Funding 

MEXT (Grant-in-Aid for Scientific Research on Innovative Areas, No. 15H05926). 

                                                                                          Vol. 26, No. 2 | 22 Jan 2018 | OPTICS EXPRESS 2148 




