
Pose Estimation with Dual Quaternions and Iterative Closest Point

Aksel Sveier1, Torstein A. Myhre1 and Olav Egeland1

Abstract— This paper presents a method for pose estimation
of a rigid body using unit dual quaternions where pose mea-
surements from point clouds are filtered with a multiplicative
extended Kalman filter (MEKF). The point clouds come from a
3D camera fixed to the moving rigid body, and then consecutive
point clouds are aligned with the Iterative Closest Point (ICP)
algorithm to obtain pose measurements. The unit constraint of
the dual quaternion is ensured in the filtering process with the
Dual Quaternion MEKF (DQ-MEKF), where the measurement
updates are performed using the dual quaternion product so
that the result is a unit dual quaternion. In addition, we use
the Cayley transform for the discrete time propagation of the
DQ-MEKF estimate, eliminating the need for normalization
and projection of the resulting unit dual quaternion. The ICP
algorithm is initialized with the time propagated state of the
filter to give faster and more accurate pose measurements.
To further improve the accuracy of the initialization, angular
velocity measurements from a gyroscope fixed to the camera
are included in the filter. The proposed method has been tested
in experiments using a Kinect v2 3D camera mounted rigidly on
a KUKA KR6 robotic arm, while a customized ICP algorithm
was successfully implemented on a Graphical Processing Unit
(GPU) system.

I. INTRODUCTION

Relative pose estimation of systems with six degrees-of-
freedom is important in relative navigation [9], 3D mapping
[11], and robotics [7], [3]. The availability of commodity
real-time 3D cameras has opened up for new approaches for
measuring and observing relative position and attitude. 3D
cameras sample the observed scene in a 3D image, which can
be represented as a set of points called a point cloud. Pose
information from point clouds can be obtained by registration
algorithms such as the Iterative Closest Point (ICP) [2]. The
pose information can describe the movement of the camera,
or the movement of an object observed by the camera. In this
paper we focus on the former case, but the same methods
are applicable for the latter. By treating registration results as
pose measurements, these can be filtered in agreement with
the dynamics and process noise of the observed system.

The ICP algorithm is performed in two steps; first point-
to-point nearest neighbour (NN) correspondences between
two point clouds are obtained, then the transformation that
minimize an error metric between the correspondences is
found. It is assumed that the two point clouds are equal in the
sense that there exist a common rigid displacement that will
exactly match all the points in one point cloud to the other.
In [20] it was suggested to use a modified ICP algorithm for
aligning point clouds from 3D sensors. This is challenging

1The authors are with the Department of Mechanical and Industrial En-
gineering, Norwegian University of Science and Technology (NTNU), 7491
Trondheim, Norway {aksel.sveier, torstein.a.myhre,
olav.egeland}@ntnu.no

due to sensor noise and difference in viewpoint between
consecutive point clouds. They suggest two constraint on
the NN correspondences; in the first constraint corresponding
pairs of points are discarded when they are too far apart to
filter out false correspondences and reduce the effect of noisy
outliers. In the second constraint a corresponding pair is
discarded when either point is on a mesh boundary to reduce
alignment error due to partly overlapping point clouds.

In [1], ICP was used in combination with an adaptive
Kalman filter (AKF) to obtain the relative pose between a
space station and a spacecraft by aligning a laser scan of
the spacecraft with a CAD model. Fault detection for the
ICP pose estimates was implemented using measurements
from an Inertial Measurement Unit (IMU). In [10], the ICP
measurements from 3D data were used in combination with
an Invariant Extended Kalman Filter (IEKF) to create 3D
maps. It was shown that the filter produced better results
than ICP alone.

The measurement update for estimating elements on the
SE(3) and SO(3) group is nonlinear. Nonlinear filters such
as the extended Kalman filter (EKF) and the unscented
Kalman filter (UKF) have been applied to handle this nonlin-
earity [12]. The Quaternion Multiplicative EKF (Q-MEKF)
[13] has a multiplicative measurement update based on the
quaternion product to produce a resulting unit quaternion,
and only the vector part of the error quaternion is used in
the Kalman filter equations, reducing the dimension of the
covariance matrix. This filter has been applied to successfully
estimate attitude of NASA spacecrafts [5].

Unit dual quaternions can be used to represent both
attitude and position. The recently proposed Dual Q-MEKF
(DQ-MEKF) [9] is an extension of the Q-MEKF method
where the pose is estimated using a unit dual quaternion. A
multiplicative update is performed with the dual quaternion
product, and only the vector part is used in the filter equations
to reduce the dimension of the covariance matrix. The time
propagation of the dual quaternion in the filter is followed
by a normalization and projection operation to ensure that
the result is a unit dual quaternion. In [6] an unscented
Kalman filter for pose estimation is developed. Here, the
dual quaternion dynamics is propagated with an exponential
function to avoid violation of the unit constraint.

In this paper, we present a method for integrating the
DQ-MEKF filter with the ICP algorithm. As an extension
of the results in [9], [6], the Cayley transform [19] is used
as an approximation of the exponential function in the time
propagation of the filter. This gives a unit dual quaternion,
so that normalization and projection is not needed. The
registration process of the ICP algorithm is initialized with



the time propagated state of the filter, which gives faster
and more accurate ICP results [1], [10]. Furthermore, we
validated the integrated filter in an experiment where a 3D
camera was mounted on a robotic arm. The integrated filter
estimated the path of the robot by observing the rigid envi-
ronment without requiring prior knowledge about geometry
or features of the surroundings. The experiment showed a
significant improvement in accuracy when the ICP algorithm
was initialized with the time propagated state of the filter.
Further improvement in accuracy was achieved by including
angular velocity measurements from a gyroscope fixed to
the camera. Moreover, we implemented the constraints on
the NN correspondences from [20] in our ICP algorithm and
developed a method for determining mesh boundaries in a
point cloud.

The paper is organized as follows: Sect. II present notation
and preliminary results of quaternions, dual quaternions,
the Cayley transform and the DQ-MEKF. In Sect. II-E we
present the discrete time propagation of the filter. The ICP
algorithm is presented in Sect. III. Details regarding the
NN search is presented in Sect. III-A, detection of mesh
boundaries is presented in Sect. III-B and our implemen-
tation of ICP and is presented in Sect. III-C. Furthermore,
the integration of ICP and the DQ-MEKF is presented in
Sect. IV, calibration of camera and gyroscope is presented
in Sect. V and the experimental results are presented in
Sect. VI. Finally, the paper is concluded in Sect. VII.

II. POSE ESTIMATION WITH DUAL QUATERNIONS

A. Quaternions
A quaternion q = q0+q̄ is written as the sum of a scalar q0

and a vector q̄ = [q1 q2 q3]> [8]. The quaternion q can also
be represented as the vector [q] = [q0 q1 q2 q3]>. Addition
of two quaternions a = a0 + ā and b = b0 + b̄ is defined
component-wise and the quaternion product is given by

a⊗ b = (a0b0 − ā · b̄) + (a0b̄+ b0ā+ ā× b̄). (1)

The conjugate of a quaternion q is denoted by q∗ = q0 − q̄
and the magnitude of q is

‖q‖2 = q ⊗ q∗ = [q]>[q] = q2
0 + q̄ · q̄. (2)

The inverse of a quaternion is q−1 = q∗/‖q‖2.
A vector v̄ ∈ R3 is written in quaternion form as v = 0+v̄

with zero scalar part. The skew-symmetric matrix of a vector
is denoted as v̄×. A quaternion which satisfies q ⊗ q∗ = 1
is called a unit quaternion. A unit quaternion can be used
to represent a rotation by an angle θ about the unit vector
k̄ through the origin. The rotation is then described with the
unit quaternion

q = cos

(
θ

2

)
+ sin

(
θ

2

)
k̄. (3)

which corresponds to the rotation matrix given by the Euler-
Rodrigues formula R = I+sin θk̄×+(1−cos θ)k̄×k̄×. This
unit quaternion is also given by the exponential function

exp

(
θk̄

2

)
= 1 +

(
θk̄

2

)
+

1

2

(
θk̄

2

)2

+ . . . , (4)

where (·)i denotes the quaternion product of order i. The cor-
responding rotation matrix is given in terms of the quaternion
as

R(q) = I + 2q0q̄
× + 2q̄×q̄×. (5)

It is noted that for −π < θ < π, the scalar part of a unit
quaternion can be found from

q0 =
√

1− ‖q̄‖2. (6)

B. Dual quaternions

A dual quaternion is written

q = qr + εqd, (7)

where the real part qr and the dual part qd are quaternions,
and ε is the dual unit, which is defined by ε2 = 0 and ε 6= 0
[22]. Addition of two dual quaternions a = ar + εad and
b = br + εbd is given by

a + b = (ar + br) + ε(ad + bd). (8)

The quaternion product of two dual quaternions is given by

a⊗ b = ar ⊗ br + ε(ar ⊗ bd + ad ⊗ br). (9)

The conjugate of a dual quaternion is q∗ = q∗r +εq∗d and the
dual magnitude ‖q‖ of a dual quaternion is given by

‖q‖2 = q⊗ q∗ = qr ⊗ q∗r + ε(qr ⊗ q∗d + qd ⊗ q∗r ). (10)

The inverse of a dual quaternion is

q−1 =
q∗

‖q‖2
. (11)

The reduced dual quaternion q̄ = q̄r+εq̄d can be represented
by the vector [q̄] = [q̄>r q̄>d ]>, with the matrix form defined

q̄× =

[
q̄×r 03×3

q̄×d q̄×r

]
. (12)

The unit dual quaternion is subject to the constraint q ⊗
q∗ = 1. The pose or displacement of a rigid body can be
described as a rotation θ about a line k̄ = k̄r + εk̄d given in
Plücker coordinates, and a translation d along the line. Here
k̄r is the direction vector of the line, and k̄d = p̄× k̄r is the
moment of the line where p̄ is the position of a point on the
line [15]. The dual angle of the displacement is θ = θ+ εd,
where d is a scalar describing the translation along k̄. The
unit dual quaternion describing the displacement is

q = cos

(
θ

2

)
+ sin

(
θ

2

)
k̄. (13)

This unit dual quaternion is also given by the exponential
function

exp

(
θk̄

2

)
= 1 +

(
θk̄

2

)
+

1

2

(
θk̄

2

)2

+ . . . , (14)

where (·)i denotes the quaternion product of order i.



The scalar parts of the reduced unit quaternion q̄ can be
recovered for −π < θ < π [9] with

qr,0 =
√

1− ‖q̄r‖2 (15)

qd,0 =
−q̄>r q̄d
qr,0

. (16)

The homogeneous transformation matrix T ∈ SE(3) is
given in terms of the unit dual quaternion q as

T (q) =

[
R(qr) 2qd ⊗ q∗r

0> 1

]
, (17)

while the unit dual quaternion q can be given in terms of
the transformation matrix T (R, r̄) as

q(T ) = q(R) + ε
1

2
r̄ ⊗ q(R). (18)

A composite displacement T = T1T2 will correspond to the
dual quaternion q = q1q2, where q1 corresponds to T1 and
q2 corresponds to T2.

The kinematic differential equation for a dual quaternion
can be written

q̇ =
1

2
q⊗ ω̄, (19)

where ω̄ = ω̄+ εv̄ is the twist of the motion given in terms
of the angular velocity ω̄ and the velocity v̄. Suppose that
the initial pose is given by a dual quaternion q1 and that
a displacement q2 is made with a constant twist ω̄ over a
time interval h. Then q2 = exp(hω̄/2), and the resulting
pose is given by the quaternion q = q1 ⊗ exp(hω̄/2). Note
that the use of the dual quaternion product in the update of
the pose ensures that the result q is a unit dual quaternion.
To use this in time integration of the kinematic differential
equations, e.g., in the time propagation of a Kalman filter, it
is necessary to compute the dual quaternion exponential, or
some approximation of the dual quaternion exponential like
the Cayley transform.

C. The Cayley transform

The mapping of a vector ū ∈ R3 to a unit quaternion can
be performed with the Cayley transform [19] and is given
by

cay(ū)
4
= (1 + ū)⊗ (1− ū)−1 (20)

=
1− ū2

1 + ū2
+

2

1 + ū2
ū. (21)

Moreover, from standard trigonometric identities it follows
that

cay

(
k̄ tan

θ

4

)
= cos

(
θ

2

)
+ sin

(
θ

2

)
k̄ = exp

(
θk̄

2

)
.

For small angles θ the approximation tan θ ≈ θ can be used.
This gives

cay

(
1

2

θk̄

2

)
≈ cay

(
k̄ tan

θ

4

)
= exp

(
θk̄

2

)
. (22)

It is seen that the Cayley transform can be used to calculate
an approximation of the quaternion exponential function.

This approximation is a rotation about the same axis k̄,
while the angle of rotation is a first-order approximation.
In the case of quaternions, the exponential function can be
computed efficiently from

exp(ū) = cos(‖ū‖) + sinc(‖ū‖)ū, (23)

where sinc(x) = sin(x)/x.
The exponential function of a twist ū = ūr + εūd is

a unit dual quaternion and can be approximated by q =
exp(ūr)+ε 1

2 exp(ūr)⊗ūd [21]. This means that the rotation
is performed first, and then the translation.

The Cayley transform of a twist is given by

cay(ū) = (1 + ū)⊗ (1− ū)−1, (24)

where it is shown in [19] that cay(θk̄/4) is an approximation
of the dual quaternion exponential function exp(θk̄/2) with
the same screw axis k̄. It can be verified by direct compu-
tation that

(1− ū)−1 = (1− ūr)−1 + ε(1− ūr)−1 ⊗ ūd ⊗ (1− ūr)−1.

This gives

cay(ū) = cay(ūr) + 2ε(1− ūr)−1 ⊗ ūd ⊗ (1− ūr)−1.

D. The Dual Quaternion Multiplicative EKF
The DQ-MEKF is derived and presented in [9]. This

filter simultaneously estimates attitude and position using
dual quaternions with a multiplicative measurement update.
This ensures the unity constraint of the dual quaternion
representing the pose of the body. The filter is of discrete-
continuous type, meaning that the process is continuous
while the measurements arrive at discrete time-instances.

In this paper we will only repeat the main equations of the
filter and refer to [9] for a complete derivation and details.
We have also chosen to follow the notation of the original
authors for ease of reference.

1) Time Propagation: Consider a body frame B and a
reference frame I . The pose of B with respect to I is
described by the unit dual quaternion qB/I . The linear
velocity v̄BB/I and angular velocity ω̄B

B/I of B described in
the coordinate frame of B is represented by the dual vector

ω̄B
B/I = ω̄B

B/I + εv̄BB/I . (25)

Given an initial pose q̂B/I(t0), the estimate of the pose is
propagated using

d

dt

(
q̂B/I

)
=

1

2
q̂B/I ⊗ ˆ̄ωB

B/I , (26)

where

ˆ̄ω
B
B/I = ω̄B

B/I,m − ˆ̄bω. (27)

Here, ω̄B
B/I,m is a measurement of ω̄B

B/I and ˆ̄bω is an esti-
mate of the dual bias vector b̄ω = b̄ω+εb̄v , which represents
the bias of the linear and angular velocity measurements.
Given an initial bias ˆ̄bω(t0), the estimate of the bias is
propagated using

d

dt

(
ˆ̄bω

)
= 0. (28)



Given an initial covariance matrix P (t0) for the pose and
the bias, the covariance matrix is propagated according to
the Riccati equation

d

dt
(P ) = FP + PF> +GQG>, (29)

where

F12×12 =

[
− ˆ̄ωB

B/I

× − 1
2I6×6

06×6 06×6

]
(30)

is the linearized system matrix,

G12×12 =

[
− 1

2I6×6 06×6

06×6 I6×6

]
(31)

is the process disturbance matrix and Q12×12 is the process
disturbance covariance matrix. This means that the state
covariance matrix P is of dimension 12× 12.

2) Measurement Update: Given a measurement qB/I,m

of qB/I at time instance tk, the measurement sensitivity
matrix is

H6×12 (tk) =
[
I6×6 06×6

]
. (32)

The Kalman gain K12×6 is then calculated from

K = P−H>
(
HP−H> +R

)−1
, (33)

where P− denotes the predicted state covariance matrix
and R6×6 is the measurement noise covariance matrix. The
Kalman state update is then calculated as[

∆?δq̂B/I (tk)

∆?b̂ω (tk)

]
= K

[
q̂−B/I (tk)

∗ ⊗ qB/I,m (tk)
]
, (34)

where q̂−B/I denotes the predicted pose. The updated state
estimate is calculated as

q̂+
B/I (tk) = q̂−B/I (tk)⊗∆?δq̂B/I (tk) (35)

ˆ̄b+
ω (tk) = ˆ̄b−ω (tk) + ∆? ˆ̄bω (tk) , (36)

where ˆ̄b−ω denotes the predicted bias. The vector part of
∆?δq̂B/I (tk) is given by ∆?δq̂B/I (tk) and the scalar part
is found from (15) and (16). The multiplicative update of
q̂B/I ensures the unity constraint.

Finally the covariance matrix is updated according to

P+ = (I −KH)P− (I −KH)
>

+KRK>. (37)

E. Discrete Time Propagation

In a computer implementation of the DQ-MEKF, the
time propagation step has to be implemented in a discrete
manner. This is not shown in [9], but it is mentioned that
a normalization and projection of q̂B/I is required after
each propagation step, due to the violation of the algebraic
constraints of the unit dual quaternion. These violations may
occur through the use of numerical integration methods such
as the Euler method.

A first order application of the Euler method on (26) gives
the integration scheme

q̂−B/I(tk) = q̂+
B/I(tk−1) +

h

2
q̂+
B/I(tk−1)⊗ ˆ̄ωB

B/I(tk−1),

(38)

where h is the time step. This approach violates the unit con-
straint of q̂−B/I(tk) due to the addition of dual quaternions.

In [6] they maintain the unit constraint of q̂−B/I(tk) using
the exponential function for dual vectors in the discretization
of (26). It is however not shown how this exponential
function is implemented.

In this work we utilize the exponential update approxi-
mated by the Cayley transform in (24). We can then propa-
gate (26) in a discrete manner with the integration scheme

q̂−B/I(tk) = q̂+
B/I(tk−1)⊗ cay

(
h

4
ˆ̄ωB
B/I(tk−1)

)
. (39)

After this propagation q̂−B/I(tk) will still be a unit dual
quaternion, thus normalization and projection is not required.

III. ITERATIVE CLOSEST POINT

A set of points in Euclidean space is called a point cloud
and is defined as

P = {p̄i}, p̄i ∈ R3. (40)

The ICP algorithm, first introduced in [2], is a method for
aligning two point clouds, P1 and P2, that are initially
placed close to each other. The point clouds should be equal,
meaning that there exists a common transformation T (R, r̄)
that will exactly match all the points in one point cloud to
the other

p̄1,i = Rp̄2,j + r̄ ∀ i = j. (41)

In the case of two consecutive point clouds captured by a
3D camera, the transformation obtained by ICP can either
describe the movement of the camera or the movement of a
rigid object observed by the camera. In the latter case, the
camera is static while the object is moving.

There are two main steps of the ICP algorithm that are
repeated until convergence:

1) Find point-to-point nearest neighbour (NN) correspon-
dences between the two point sets.

2) Minimize a error metric between the correspondences
by applying a transformation.

Different approaches have been suggested to solve these
steps and an overview and comparison of recognized meth-
ods can be found in [18]. One of their most significant con-
clusions is that the point-to-plane error metric [4] converges
faster than the original point-to-point error metric. However,
the use of this error metric requires the computation of
surface normals, which may be computationally costly. Thus,
unless surface normals are easily available, there may not be
any advantage in terms of computational speed.

In a more recent review of registration algorithms for
mobile robotics [17], the usefulness of ICP is highlighted
by a graph showing 1800 publications on variations of the



original algorithm in different experimental scenarios. This
also highlights the difficulty to find a single versatile version
and a common approach is to implement an adapted version
suitable for the application.

Our ICP implementation is required to align noisy point
clouds at high rates, as they are received from the 3D camera.
We employ the constraints on the NN correspondences
suggested in [20] to handle noise and different viewpoints in
the point clouds. Furthermore, we choose to use the point-
to-plane error metric for fast convergence. Lastly, we use
the full resolution of the point clouds, as downsampling
may results in loss of information and consequently loss of
accuracy in the alignment.

Real-time requirements are not in the scope of this paper,
however this may be a demand for some applications. It is
also practical to have a fast algorithm for simulations, exper-
iments and further work. We have therefore put emphasis on
the implementation of the NN correspondences search, even
though this will only affect the speed and not the accuracy of
the algorithm. The NN search has a computational complex-
ity ofO(n2) and is the most computationally costly operation
of ICP. In addition, the internal NNs in a point cloud are
needed to compute surface normals and mesh boundaries.
Furthermore, these task are implemented in a parallel manner
on the Graphical Processing Unit (GPU), to reduce the time
of computation.

A. NN Search Between Two Consecutive Point Clouds

Given two sets of points {p̄1,i} ∈ P1 and {p̄2,j} ∈ P2, the
indices of the NN correspondences are found according to

d (p̄1,i, P2) = arg min
p̄2,j∈P2

‖p̄2,j − p̄1,i‖2. (42)

The set of correspondences is written as

C = {(i, j) | p̄1,i ∈ P1, p̄2,j ∈ P2}. (43)

In order to reduce the complexity of the NN search and
speed up the computation we exploit that a point cloud from a
3D camera is organized in a depth image matrix I ∈ RN×M ,
where each element of the matrix represent a point. The value
of the z-coordinate of a point is the value of the element,
while the x and y values of the point is determined by the
position of the element in the matrix.

By considering a 3D camera capable of capturing point
clouds at sufficiently high rates, two consecutive point clouds
will overlap. This assumption, in combination with the fact
that the point clouds are organized, allows for a simplified
NN search. For a point p̄1,i ∈ P1, instead of searching
through all the points in P2, one can define a radius of pixels
in the depth image I2 of P2. The points represented by the
pixels that fall inside the circle defined by the radius will be
considered for the NN search, the rest will be ignored. The
position of p̄1,i in the depth image matrix I1 of P1 is taken
as the center of the circle in I2. The concept is illustrated in
Fig. 1. This approach will greatly reduce the computational
cost of the NN search, facilitating for real-time performance
of ICP.

Fig. 1. Two consecutive depth images obtained at 4Hz during a hand-held
movement with a Kinect v2 3D camera. The corner of the chair (marked
with a circle) is observed to move 16 pixel between the two images. A
search radius of 16 pixels means searching through 804 points instead of
the full resolution of 217088 points.

Fig. 2. The left image shows a point cloud of an office wall captured by
a Kinect v2. The right image shows the detected mesh boundaries, which
were obtained with the parameters m = n = 4 and

√
µb = 0.012.

B. Classification of Mesh Boundaries

Fig. 2 illustrates the mesh boundaries in a point cloud
captured by a Kinect v2 3D camera. The depth image matrix
I ∈ RNn×Mm of a point cloud P can be subdivided into
smaller sub-matrices Si ∈ Rn×m. By comparing the values
of the elements in those sub-matrices, it can be determined
whether the points represented by the elements in a specific
sub-matrix are on a mesh boundary. A simple measure is the
variance in z-distance, where large variance indicates that the
points are on a mesh boundary.

Given a depth image matrix INn×Mm, the matrix is
subdivided into NM matrices with dimensions n×m

S1,n×m, . . . ,SNM,n×m ⊂ INn×Mm. (44)

The points represented by Si are identified as points on a
mesh boundary if

σ2
i ≥ µb, (45)

Where σi is the standard deviation for Si and µb is a
threshold.

C. ICP Implementation

Given two sets of points p̄1,i ∈ P1 and p̄2,j ∈ P2, the set
of corresponding points C is found as the nearest neighbours
according to (42). A point correspondence is removed from
the set C if

d (p̄1,i, p̄2,j) ≥ µd, (46)

or if either point correspondence is on a mesh boundary.
Here µd is a distance threshold.



By using the point-to-plane error metric suggested in [4],
the optimal transformation matrix Topt(R, r̄) ∈ SE(3) is
found by the minimization

Topt(R, r̄) = arg min
R,r̄

∑
(i,j)∈C

((Rp̄1,i + r̄ − p̄2,j) · n̄j) ,

(47)

where R is the rotation matrix, r̄ is the translation and
n̄j is the unit surface normal of p̄2,j . The expression(
R̃p̄1,i + r̄ − p̄2,j

)
·n̄j can be rearranged into a linear system

of the form Ax = b, when small rotations are assumed [14].
This is solved in the least square formulation A>Ax = A>b.

IV. INTEGRATION OF ICP AND DQ-MEKF

The DQ-MEKF requires absolute pose measurements,
while the ICP algorithm will provide relative pose between
two point clouds. One approach is to keep track of the
absolute pose by multiplying all available ICP registration
results in the sequence they arrive. However, since all previ-
ous pose measurements are accounted for in a (near) optimal
way in the DQ-MEKF estimate, we can multiply the current
estimate with the ICP registration result to obtain an absolute
measurement of the pose.

The point cloud Pk−1 obtained at the time tk−1 is aligned
with the point cloud Pk obtained at the time tk using the
ICP algorithm. The ICP registration result is received in the
form of a transformation matrix T (qicp) which is converted
to the unit dual quaternion qicp with (18). The current pose
estimate q̂B/I(tk−1) is then updated with qicp to obtain an
absolute pose measurement through

qB/I,m(tk) = q̂B/I(tk−1)⊗ qicp. (48)

Here the point cloud Pk−1 is not initially aligned with a prior
guess of the pose of Pk, thus we refer to this approach as
ICP without initialization.

It is well known that ICP may converge to a local
minimum if the initial alignment differs sufficiently from
the actual. ICP also tends to converge faster if the initial
alignment is accurate. As an alternative to (48), we can
provide an initial alignment with the time propagated pose
estimate of the DQ-MEKF filter.

We now consider the point clouds Pk−1 and Pk, obtained
at time instances tk−1 and tk, with the current pose estimate
q̂B/I(tk−1) and the propagated pose estimate q̂−B/I(tk). The
initial pose of the ICP registration is found as

qinit = q̂∗B/I(tk−1)⊗ q̂−B/I(tk). (49)

The points in Pk−1 are transformed with qinit before regis-
tration is performed.

The ICP registration result is a correction of the predicted
pose, therefore the final pose measurement is calculated as

qB/I,m(tk) = q̂−B/I(tk)⊗ qicp. (50)

This approach lets us give more accurate initialization of
ICP, as the camera motion is predicted by the dynamics of the
filter. The architecture of our system can be seen in Fig. 3.

Initial State
and Covariance

3D
Camera

ICP
Time

Propagation

Measurement
Update

Pk

qinit

qicp

Fig. 3. Integration of ICP and DQ-MEKF where ICP is initialized with
the propagated state of the filter.

Ra

Rb

Rx

Rx

G1

G2

B1

B2

Fig. 4. The figure shows a camera-gyroscope rig at two different poses.
This illustrates the kinematic chain described by (51).

V. CALIBRATION OF GYROSCOPE AND 3D CAMERA

In order to include angular velocity measurements in our
filter, we mounted a Bosch XDK rigidly to the camera.
The Bosch XDK has a gyroscope (BMI160) capable of
measuring angular velocity with an accuracy of 0.07◦ s−1 at
a sampling rate of 200Hz. The relative orientation between
the gyroscope frame G and the camera frame B is required
in order to relate the measurements in the G-frame to the
B-frame. Note that only the relative orientation is needed,
not the translation, as we only consider angular velocity
measurements. The calibration can be performed by observ-
ing relative orientation between two time instances for each
frame. Looking at Fig. 4 it can be seen that

RaRx = RxRb, (51)

where R ∈ SO(3). Here Ra is the observed rotation of the
G-frame, Rb is the observed rotation of the B-frame and Rx

is the relative orientation between the frames.
We obtained measurements of Ra by using the virtual

orientation sensor that comes as a part of the Bosch XDK
platform. Furthermore, Rb was measured by aligning con-
secutive point clouds from the 3D camera with ICP. Given a
set of measurements {Ra,i, Rb,i}, solving (51) becomes an
optimization problem on the SO(3) group. We used the Lie
group approach presented in [16] to find a solution for Rx.



Fig. 5. Setup of the Kinect v2 camera, with the Bosch XDK, mounted on
the Kuka KR6-2 robot arm to the left and the robot control pendant to the
right.

Recalling that

ω̄B
B/I,m = ω̄B

B/I,m + εv̄BB/I,m, (52)

the measured angular velocity ω̄G
B/I,m obtained from the

gyroscope can be included in the filter by setting

ω̄B
B/I,m = Rxω̄

G
B/I,m. (53)

Since we do not have a measurement of v̄BB/I,m, this is set
to zero as suggested in [9].

VI. EXPERIMENTAL RESULTS

An experiment was performed to verify the proposed
system. A Kinect v2 3D camera, with the Bosch XDK, was
mounted on the end-effector of a Kuka KR6-2 industrial
robot. The goal of the experiment was to reproduce the
pose of the moving robot with our pose estimation system
by obtaining point clouds from the 3D camera and angular
velocity measurements from the gyroscope. The setup can
be seen in Fig. 5. The ground truth for the pose was
obtained by reading position and attitude of the robot from
the robot control pendant at 83 Hz. The robot has a positional
repeatability of ±0.05 mm. The point clouds arrived at a rate
of 5.6 Hz and the angular velocity measurements arrived at
a rate of 102.4 Hz.

The filter was initialized with the states q̂B/I(t0) =

[1 0 0 0 0 0 0 0]> and b̂ω(t0) = [0 0 0 0 0 0 0 0]>, covariance
P (t0) = 10−9I12×12, process disturbance covariance matrix
Q = diag(0, 0, 0, 0, 0, 0, 7.5×10−4, 7.5×10−4, 7.5×10−4,
1.1 × 10−2, 1.1 × 10−2, 1.1 × 10−2) (no gyroscope) and
Qgyro = diag(19.6 × 10−7, 19.6 × 10−7, 19.6 × 10−7,
0, 0, 0, 7.5 × 10−4, 7.5 × 10−4, 7.5 × 10−4, 1.1 × 10−2,
1.1× 10−2, 1.1× 10−2) (with gyroscope) and measurement
noise covariance matrix R = diag(3.513×10−7, 2.59×10−6,
3.2× 10−6, 5.47× 10−6, 4.98× 10−6, 1.081× 10−4).

Three different configurations of the system were tested
on the obtained data-set. In the first configuration the ICP
algorithm was not initialized. In the second configuration the
ICP algorithm was initialized with the propagated state. In
the third configuration gyroscope measurements were also
included in the propagation. The results for the attitude are
plotted in Fig. 6 and the results for the position are plotted
in Fig. 7. It can be seen that the proposed system is able to
track the motion of the robot.

0 10 20 30 40 50
0.95

1.05

0 10 20 30 40 50
-0.1

0.3

0 10 20 30 40 50
-0.3

0.1

0 10 20 30 40 50
-0.2

0.2

Ground truth

Estimate without initialization

Estimate with initialization

Estimate with initialization and gyroscope

q r
,0

[-
]

q r
,1

[-
]

q r
,2

[-
]

q r
,3

[-
]

Time [s]

Fig. 6. True and estimated attitude. The ICP measurements were obtained
with a 10 pixel NN radius search and 1 ICP iteration for each point cloud.

TABLE I
RMS DEVIATIONS FOR ESTIMATES WITH AND WITHOUT INITIALIZATION

ICP Attitude Position
itera-
tions

w.o.
init.

w.
init.

reduc
-tion

w.o.
init.

w.
init.

reduc
-tion

[#] [◦] [◦] [%] [mm] [mm] [%]
1 15.3024 6.4351 57.9 259.8965 48.7306 81.3
2 12.1043 5.8724 51.5 131.0000 33.9034 74.1
3 9.3556 5.7657 38.4 81.8587 29.9448 63.4
5 6.5884 5.7078 13.4 42.1094 28.3826 32.6
10 5.7441 5.6906 0.9 28.1942 27.7093 1.7
15 5.7081 5.6890 0.3 27.5748 27.6136 -0.1

Table I and Table II shows the Root Mean Square (RMS)
deviation between the estimates and the ground truth for
an increasing number of ICP iterations. ICP with (w.) and
without (w.o.) initialization (init.) is compared in Table I
and it can be seen that ICP with initialization performs
significantly better for few ICP iterations. In Table II the
filter estimates (ICP with initialization) with and without
gyroscope (gyro.) measurements are compared. It can be seen
that the gyroscope measurements improves the estimates,
especially for few ICP iterations.

The difference of the RMS deviation for the three dif-
ferent configurations becomes small when the number of
iterations increases. This indicate that ICP will converge to
the same result, independent of the initial alignment, after
an sufficient amount of iterations are performed. However,
more ICP iterations require more computational power and
may not be feasible in real-time applications. It can be seen
from Table I and Table II that the filter with initialization
and gyroscope achieves approximately the same accuracy
with 1 ICP iteration, as the filter without initialization and
gyroscope achieves with 10 ICP iterations.

VII. CONCLUSION
This paper presents a method for pose estimation from

consecutive point clouds using the ICP algorithm in com-
bination with the DQ-MEKF. We have showed that the
pose estimate of the DQ-MEKF can remain a unit dual
quaternion in the discrete time propagation of the filter by
using the Cayley transform. Emphasis has been put on the
implementation of the ICP algorithm such that it can provide



0 10 20 30 40 50
-1000

-500

100

0 10 20 30 40 50
-500

0

600

0 10 20 30 40 50
-500

0

600

Ground truth

Estimate without initialization

Estimate with initialization

Estimate with initialization and gyroscope

r̄ x
[m

m
]

r̄ y
[m

m
]

r̄ z
[m

m
]

Time [s]

Fig. 7. True and estimated position. The position estimates are converted
to the Euclidean space to give physical meaning. The ICP measurements
were obtained with a 10 pixel NN radius search and 1 ICP iteration for
each point cloud.

TABLE II
RMS DEVIATIONS FOR ESTIMATES WITH AND WITHOUT GYROSCOPE

(ICP WITH INITIALIZATION)

ICP Attitude Position
itera-
tions

w.o.
gyro.

w.
gyro.

reduc
-tion

w.o.
gyro.

w.
gyro.

reduc
-tion

[#] [◦] [◦] [%] [mm] [mm] [%]
1 6.4351 5.7553 10.6 48.7306 31.1481 36.1
2 5.8724 5.5822 4.9 33.9034 26.5343 21.7
3 5.7657 5.5548 3.7 29.9448 25.5246 14.8
5 5.7078 5.5198 3.3 28.3826 25.0898 11.6

10 5.6906 5.5077 3.2 27.7093 24.8910 10.2
15 5.6890 5.5064 3.2 27.6136 24.8536 10.0

the filter with precise and high rate pose measurements.
Furthermore, we have presented the integration of the filter
with the ICP algorithm, where the initialization of the ICP
algorithm is done with the difference in pose between the
updated and time propagated state of the filter, which is found
with the dual quaternion product.

We have performed a laboratory experiment where the
estimates of our system are compared with the robot ground
truth. The results show that the DQ-MEKF integrated with
the ICP algorithm is able to track the motion of the robot,
and that the proposed ICP initialization strategy improves
the estimates. The proposed initialization reduced the RMS
deviation with 57.9% in attitude and 81.3% in position for
1 ICP iteration in the experiment. The estimates were fur-
ther improved by including angular velocity measurements
from a gyroscope in the time propagation of the filter. We
found that the gyroscope reduced the RMS deviation with
10.6% in attitude and 36.1% in position for 1 ICP iteration
in the experiment. It is noted that the filter without ICP
initialization and gyroscope requires 10 ICP iterations to
achieve approximately the same accuracy as the filter with
initialization and gyroscope achieves with 1 ICP iteration.

Finally, it is noted that the filter also provides linear and
angular velocity estimates in the bias state, which might be
required when implementing a control law.

ACKNOWLEDGMENT

The research presented in this paper has received funding
from the Norwegian Research Council, SFI Offshore Mecha-
tronics, project number 237896.

REFERENCES

[1] F. Aghili and C.-Y. Su. Robust Relative Navigation by Integration
of ICP and Adaptive Kalman Filter Using Laser Scanner and IMU.
IEEE/ASME Transactions on Mechatronics, 21(4):2015–2026, 2016.

[2] P. J. Besl and N. D. McKay. Method for registration of 3-D shapes. In
Robotics-DL tentative, pages 586–606. International Society for Optics
and Photonics, 1992.

[3] F. Bonin-Font, A. Ortiz, and G. Oliver. Visual navigation for mobile
robots: A survey. Journal of intelligent and robotic systems, 53(3):263,
2008.

[4] Y. Chen and G. Medioni. Object modelling by registration of multiple
range images. Image and vision computing, 10(3):145–155, 1992.

[5] J. L. Crassidis, F. L. Markley, and Y. Cheng. Survey of nonlinear atti-
tude estimation methods. Journal of guidance, control, and dynamics,
30(1):12–28, 2007.

[6] Y. Deng, Z. Wang, and L. Liu. Unscented kalman filter for spacecraft
pose estimation using twistors. Journal of Guidance, Control, and
Dynamics, 39(8):1844–1856, 2016.

[7] G. N. DeSouza and A. C. Kak. Vision for mobile robot navigation:
A survey. IEEE transactions on pattern analysis and machine
intelligence, 24(2):237–267, 2002.

[8] O. Egeland and J. T. Gravdahl. Modeling and Simulation for Automatic
Control. Marine Cybernetics, 2002.

[9] N. Filipe, M. Kontitsis, and P. Tsiotras. Extended Kalman filter
for spacecraft pose estimation using dual quaternions. Journal of
Guidance, Control, and Dynamics, 38(9):1625–1641, 2015.

[10] T. Hervier, S. Bonnabel, and F. Goulette. Accurate 3D maps from
depth images and motion sensors via nonlinear Kalman filtering. In
Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International
Conference on, pages 5291–5297. IEEE, 2012.

[11] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli,
J. Shotton, S. Hodges, D. Freeman, A. Davison, et al. KinectFusion:
real-time 3D reconstruction and interaction using a moving depth
camera. In Proceedings of the 24th annual ACM symposium on User
interface software and technology, pages 559–568. ACM, 2011.

[12] S.-G. Kim, J. L. Crassidis, Y. Cheng, A. M. Fosbury, and J. L.
Junkins. Kalman filtering for relative spacecraft attitude and position
estimation. Journal of Guidance Control and Dynamics, 30(1):133–
143, 2007.

[13] E. J. Lefferts, F. L. Markley, and M. D. Shuster. Kalman filtering
for spacecraft attitude estimation. Journal of Guidance, Control, and
Dynamics, 5(5):417–429, 1982.

[14] K.-L. Low. Linear least-squares optimization for point-to-plane ICP
surface registration. Chapel Hill, University of North Carolina, 4,
2004.

[15] J. M. McCarthy and G. S. Soh. Geometric design of linkages,
volume 11. Springer Science & Business Media, 2010.

[16] F. C. Park and B. J. Martin. Robot sensor calibration: solving AX=
XB on the Euclidean group. IEEE Transactions on Robotics and
Automation, 10(5):717–721, 1994.

[17] F. Pomerleau, F. Colas, R. Siegwart, et al. A review of point cloud
registration algorithms for mobile robotics. Foundations and Trends R©
in Robotics, 4(1):1–104, 2015.

[18] S. Rusinkiewicz and M. Levoy. Efficient variants of the ICP algorithm.
In 3-D Digital Imaging and Modeling, 2001. Proceedings. Third
International Conference on, pages 145–152. IEEE, 2001.

[19] J. Selig. Exponential and Cayley maps for dual quaternions. Advances
in applied Clifford algebras, 20(3):923–936, 2010.

[20] G. Turk and M. Levoy. Zippered polygon meshes from range images.
In Proceedings of the 21st annual conference on Computer graphics
and interactive techniques, pages 311–318. ACM, 1994.

[21] X. Wang and C. Yu. Feedback linearization regulator with coupled
attitude and translation dynamics based on unit dual quaternion. In
Intelligent Control (ISIC), 2010 IEEE International Symposium on,
pages 2380–2384. IEEE, 2010.

[22] Y. Wu, X. Hu, D. Hu, T. Li, and J. Lian. Strapdown inertial navigation
system algorithms based on dual quaternions. IEEE transactions on
aerospace and electronic systems, 41(1):110–132, 2005.


