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Abstract: Novel predictive tools for clear cell renal cell carcinoma (ccRCC) are urgently needed.
MicroRNAs (miRNAs) have been increasingly investigated for their predictive value, and formalin-
fixed paraffin-embedded biopsy archives may potentially be a valuable source of miRNA sequencing
material, as they remain an underused resource. Core biopsies of both cancerous and adjacent normal
tissues were obtained from patients (n = 12) undergoing nephrectomy. After small RNA-seq, several
analyses were performed, including classifier evaluation, obesity-related inquiries, survival analysis
using publicly available datasets, comparisons to the current literature and ingenuity pathway
analyses. In a comparison of tumour vs. normal, 182 miRNAs were found with significant differential
expression; miR-155 was of particular interest as it classified all ccRCC samples correctly and
correlated well with tumour size (R2 = 0.83); miR-155 also predicted poor survival with hazard
ratios of 2.58 and 1.81 in two different TCGA (The Cancer Genome Atlas) datasets in a univariate
model. However, in a multivariate Cox regression analysis including age, sex, cancer stage and
histological grade, miR-155 was not a statistically significant survival predictor. In conclusion,
formalin-fixed paraffin-embedded biopsy tissues are a viable source of miRNA-sequencing material.
Our results further support a role for miR-155 as a promising cancer classifier and potentially as a
therapeutic target in ccRCC that merits further investigation.

Keywords: microRNA/miRNA; miR-155; clear cell renal cell carcinoma/ccRCC; formalin-fixed
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1. Introduction

Kidney cancer is one of the most common cancers in the Western world, accounting for 2–3% of
all adult malignancies worldwide [1,2], and its incidence rate is projected to accelerate [3]. Over 50% of
kidney cancers are of the clear cell renal cell carcinoma (ccRCC) subtype [2,4,5], which is often
characterized by an inactivation of the von Hippel-Lindau gene and arises from the epithelium
of the proximal tubule [2,4,6]. The majority of cases are discovered at an advanced stage [4,7],
with even small tumours exhibiting metastatic potential [8,9]. Neither chemotherapy, targeted
therapy, nor radiotherapy currently represent effective avenues of treatment for the advanced stages,
with radical surgery presently being the best option [2,10–12]. For these reasons, there is an unmet need
to discover biomarkers of ccRCC [13]. It is therefore of great importance to enhance our understanding
of the pathophysiology of ccRCC, as this will enable us to develop novel diagnostic, therapeutic and
predictive measures.

Micro-RNAs (miRNAs) have increasingly emerged not only as biomarkers and predictive tools
but also as therapeutic targets [14–20]. miRNAs are single stranded, non-coding RNA molecules with
lengths of 19–22 nucleotides [21,22]. They are heavily involved in post-transcriptional regulation
of mRNA, making them ideal candidates both as biomarkers and as tools for diagnosis and
therapy [20,23–25].

Several techniques are currently employed to study miRNAs. One of these techniques is next
generation sequencing (NGS), which offers unique options for detecting novel miRNA transcripts.
NGS can also quantify expression levels of miRNAs precisely [26,27]. While using fresh-frozen
(FF) samples is more common in miRNA research, collecting a sufficient number of samples can
be time-consuming, especially when a long follow-up is desirable. In contrast, formalin fixation
and paraffin embedding (FFPE) has been used as an easily accessible method for several decades.
Consequently, there are large archives of FFPE biopsies, with a wealth of information on the
associated patients’ subsequent clinical development. These archives remain an underused resource,
as NGS of FFPE biopsies was previously thought to yield results of insufficient quality. However,
results comparable to those of FF samples have been obtained, even using highly degraded FFPE
samples [28–31] Several investigations of the miRNA profile of ccRCC have been performed [7,32],
as have studies on FFPE specimens [14,33]. However, to the best of our knowledge only the work of
Weng et al. has investigated the miRNA profile of ccRCC with NGS of samples derived from FFPE [28]
Although novel, the work of Weng et al. included only three cases of ccRCC and their findings,
therefore, require further investigation and validation. The primary aim of this study was to validate
the analysis of stored FFPE ccRCC biopsies with NGS in a larger cohort than Weng et al. [28]; and,
secondly, to examine the difference between ccRCC and normal tissues with regard to miRNA levels.

2. Results

2.1. RNA Yield and RNA Quality

Sufficient RNA for NGS was extracted from all enrolled participants (Table 1), with an average
RNA yield of 1069 ng per sample. The mean DV200 value was 54% (with a 95% confidence interval
(CI) of 48–61%), which was of sufficient quality for NGS [30].
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Table 1. Patient characteristics at the time of surgery.

Patient
Number Age (Year) Gender BMI Nephrectomy

Type eGFR TNM-Stage Size (mm) Fuhrman
Grade

Leibovich
Score Stage

39 71 Male 25 Radical 59 pT3AcN0cM0 90 4 8 III
44 74 Female 23 Radical >60 pT3AcN0cM0 58 4 4 III
46 53 Female 24 Partial >60 pT1AcN0cM0 38 1 0 I
50 72 Female 19 Radical >60 pT1BcN0cM0 68 2 3 I
53 46 Female 44 Radical >60 pT2AcN0cM0 83 2 3 II
55 44 Female 23 Radical >60 pT3AcN0cM0 85 3 5 III
57 63 Female 28 Radical >60 pT1AcN0cM0 25 2 0 I
59 52 Female 29 Partial >60 pT1AcN0cM0 40 2 0 I
63a 55 Male 28 Partial >60 pT1AcN0cM0 19 3 1 I
63b 44 Male 20 Partial >60 pT1AcN0cM0 22 2 0 I
64 52 Male 26 Radical >60 pT1BcN0cM0 60 3 4 I
65 57 Male 24 Radical >60 pT2AcN0cM0 85 3 5 II

BMI: body mass index, eGFR: estimated glomerular filtration rate, measured in (mL/min/1.73 m2) TNM: tumor node metastasis performed according to the European Association of
Urology (EAU) guidelines on renal cell carcinoma; 2014 update [10], cN0: clinically assessed negative lymph nodes, cM0: clinically assessed no metastasis.



Int. J. Mol. Sci. 2018, 19, 803 4 of 18

2.2. miRNA Expression Analysis and Data Visualization

Based on the expression filter, a total of 730 miRNAs were detected with statistical confidence,
amongst which 423 were overrepresented and 307 were underrepresented in tumour samples,
and 182 showed significant differential expression between the tumour and normal samples. Amongst
the differentially expressed genes, 103 were downregulated in the tumour samples and 79 were
upregulated. The volcano plot in Figure 1A displays the entire study population divided by detected
miRNAs that were differentially expressed (red) or not (black).
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Figure 1. (A) Volcano plot of all detected miRNAs. From a total of 730 detected miRNAs, 182 were
differentially expressed. Of all detected miRNAs, 423 were upregulated and 307 were downregulated
in tumor samples. Among the differentially expressed miRNAs, 103 were downregulated and 79
were upregulated; (B) principal component analysis of the 182 differentially expressed miRNAs (those
with an adjusted p-value < 0.05 and absolute fold change > 2). Samples segregate according to their
diagnosis, with larger variation found amongst tumour tissue samples, as shown by the larger spread
in that group, particularly along principal component 2.

The most strongly upregulated miRNA was miR-122-5p (FC = 116.04). The most strongly
downregulated miRNA was miR-184 (FC = −67.61). The 20 most differentially expressed miRNAs are
displayed in Table 2, sorted by the abs. FC between tumour and normal tissues.

Table 2. The 20 miRNAs with the highest absolute fold change. TU: tumour, NO: normal.

Mature microRNA Precursor microRNA Fold Change (TU/NO) p-Value Adjusted p-Value

hsa-miR-122-5p hsa-miR-122 116.04 2.60 × 10−10 4.68 × 10−8

hsa-miR-184 hsa-miR-184 −67.61 8.22 × 10−8 2.05 × 10−6

hsa-miR-891a-5p hsa-miR-891a −49.12 3.95 × 10−6 2.43 × 10−5

hsa-miR-200c-3p hsa-miR-200c −39.12 6.84 × 10−9 3.59 × 10−7

hsa-miR-141-5p hsa-miR-141 −30.31 1.25 × 10−7 2.29 × 10−6

hsa-miR-514a-3p hsa-miR-514a-2 −22.31 4.82 × 10−7 5.87 × 10−6

hsa-miR-216b-5p hsa-miR-216b −18.72 6.35 × 10−6 3.50 × 10−5

hsa-miR-141-3p hsa-miR-141 −17.64 1.08 × 10−7 2.18 × 10−6

hsa-miR-129-1-3p hsa-miR-129-1 −17.21 7.85 × 10−7 7.91 × 10−6

hsa-miR-135a-5p hsa-miR-135a-2 −16.31 4.17 × 10−5 1.77 × 10−4

hsa-miR-508-3p hsa-miR-508 −16.13 3.20 × 10−10 4.68 × 10−8

hsa-miR-4461 hsa-miR-4461 −16.04 3.57 × 10−10 4.68 × 10−8
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Table 2. Cont.

Mature microRNA Precursor microRNA Fold Change (TU/NO) p-Value Adjusted p-Value

hsa-miR-885-5p hsa-miR-885 15.65 6.08 × 10−6 3.46 × 10−5

hsa-miR-187-3p hsa-miR-187 −14.12 4.83 × 10−6 2.88 × 10−5

hsa-miR-210-3p hsa-miR-210 14.02 1.55 × 10−13 8.12 × 10−11

hsa-miR-210-5p hsa-miR-210 13.47 1.38 × 10−9 1.26 × 10−7

hsa-miR-138-5p hsa-miR-138-2 −12.09 2.01 × 10−5 9.40 × 10−5

hsa-miR-1251-5p hsa-miR-1251 −10.98 3.74 × 10−4 1.08 × 10−3

hsa-miR-362-5p hsa-miR-362 −9.99 7.65 × 10−8 2.04 × 10−6

hsa-miR-155-5p hsa-miR-155 9.62 5.31 × 10−8 1.86 × 10−6

Principal component analysis (PCA) of differentially expressed miRNAs was used to segregate the samples according
to their origin, i.e., tumour or normal tissue (Figure 1B). Tumour and normal samples were separated along the PC1
axis, accounting for 59.7% of the variation. The degree of variation appeared to be larger in the tumour group.

2.3. Evaluation of Selected miRNAs as Potential Classifiers

miR-184, miR-155-5p and miR-122-5p were evaluated as classifiers, i.e., to separate tumours
from normal tissue (Figure 2A,C). miR-122-5p and miR-184 were selected due to having the two
highest overall abs. FC., while miR-155-5p was selected due to findings in other analyses in this
investigation. The best separation of samples was achieved using miR-122-5p (Figure 2A), with a
log2CPM of 2. In this way, every sample was correctly classified as either tumour or normal tissue.
Similarly, a log2CPM cut-off of 1 for miR-184 (Figure 2B) resulted in one normal sample being classified
incorrectly, while all others were correctly classified as either tumour or normal tissue.

A log2CPM cut-off of 7 for miR-155-5p (Figure 2C) incorrectly classified two normal samples but
correctly classified all others.
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Figure 2. (A) Scatterplots of the expression of miR-122-5p (adj. p-value 4.68× 10−8); (B) miR-184 (adj.
p-value 2.05 × 10−6) and (C) miR-155-5p (adj. p-value 1.86× 10−6) to classify samples as either tumour
(TU, in red) or normal (NO, in blue). Each dot represents the result from one sample. Normal and
tumour samples originating from the same donor are connected by lines; (D) displays the correlation
of miR-155-5p expression and tumour size, which results in a linear regression with R2 = 0.83.
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2.4. Correlation of miRNA with Tumour Size

miR-155-5p (R2 = 0.83), miR-10b-5p (R2 = 0.80), miR-361-3p (R2 = 0.78) and miR-10b-3p (R2 = 0.78)
showed the best correlation with tumour size. Only the results for miR-155-5p (Figure 2D) are displayed.

2.5. Survival Analysis

Based on the high absolute fold changes between normal and tumour samples and correlation
with tumor size, miR-155-5p, miR-122-5p, miR-184 and miR-514 were tested for survival analyses as a
single marker. Using miR-155-5p as a single marker, the most significant finding in the Cancer Genome
Atlas (TCGA) Illumina GA dataset was obtained with miR-155-5p (Figure 3B), with p-value = 0.0001
and hazard ratio (HR) = 2.58 (CI: 1.59–4.17). In the TCGA Illumina HiSeq dataset (Figure 3A),
miR-155-5p showed p-value = 0.0175, HR = 1.81 (CI: 1.11–2.96). The second most significant miRNA
was miR-122-5p (not shown in Figure 3). In the Illumina GA dataset, the analysis of miR-122-5p
resulted in p-value = 0.02407 and HR = 1.7 (CI: 1.07–2.69). In TCGA Illumina Hiseq, the findings for
miR-122-5p were not statistically significant: p-value = 0.07513 and HR = 0.63 (CI: 0.38–1.05). The most
statistically significant findings were made using a multivariate approach with 4 miRNAs combined
in the Illumina GA dataset (Figure 3D). Survival analysis of miR-155, miR-141, miR-129, miR-200c in
combination gave a HR of 3.11 (CI: 1.87–5.18) and (p = 1.27 × 10−5). The same four miRNAs gave
a HR of 2.63 (CI = 1.51–4.6), p = 6.6 × 10−4, in the TCGA Illumina Hiseq dataset. See Figure 3 for
more details. The authors would like to point out that the survival analyses were not intended to be
exhaustive and, therefore, the complete adherence to the REMARK guidelines [34] goes beyond the
scope of this investigation.
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Figure 3. (A,B) Overall survival analysis of miR-155; (A) displays the findings from the Hiseq dataset,
while (B) shows the findings from the Illumina GA dataset; (C) overall survival analysis of miR-155,
miR-141, miR-129, miR-200c in the HiSeq dataset (p = 6.6 × 10−4). (D) The most statistically significant
findings were made using a multivariate approach with 4 miRNAs combined in the Illumina GA
dataset (p = 1.27 × 10−5).
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Nonetheless additional, multivariate cox regression analyses with estimated hazard ratios were
performed, using the levels of miR-155-5p, miR-141, miR-129-1 and miR-200c. Additionally, age, gender,
stage and tumour histological grade were considered. Results are displayed in Table 3. Only the results
from miR-155 are shown. The accompanying figures are shown in the Appendix A as Figure A1.
The results were statistically significant comparing the lowest quartile with the third and fourth quartile
for model 1 with age and sex together with the expression values of miR-155 for the GA dataset only.
In the complete model where also cancer stage and histological grade were considered, the results were
not statistically significant. Thus, combining miR-155 expression data and standard clinical parameters
in a Cox hazard model did not benefit the survival prediction. The excel-file containing the clinical and
histopathological data from the TCGA investigation has been uploaded as supplementary information.

Table 3. Cox multivariate analyses for the GA (A) and HiSeq (B) datasets. miR-155 levels were used
together with age and gender (Model 1) and age, gender, tumour stage and histological grade (Model 2).

A GA

Model 1 Model 2

HR (95% CI) p HR p

Per SD 1.18 (1.04, 1.35) 0.013 1.0 (0.82, 1.21) 0.97
Vs Q1

Q2 1.88 (0.92, 3.83) 0.082 1.39 (0.7, 2.77) 0.342
Q3 2.19 (1.12, 4.28) 0.022 1.22 (0.62, 2.39) 0.567
Q4 3.03 (1.57, 5.85) 0.001 1.46 (0.76, 2.8) 0.261

Model 1 age, sex
model 2 +stage, grade

B HiSEQ

Model 1 Model 2

HR (95% CI) p HR p

Per SD 1.27 (1.00, 1.62) 0.046 1.1 (0.85–1.43) 0.449
Vs Q1

Q2 0.98 (0.42, 2.27) 0.955 1.0 (0.42, 2.39) 0.996
Q3 1.84 (0.84, 4.01) 0.128 2.4 (1.07, 5.37) 0.033
Q4 1.67 (0.79, 3.53) 0.181 1.07 (0.5, 2.3) 0.862

Model 1 age, sex
model 2 +stage, grade

SD: standard deviation, Q1: quartile 1, HR: hazard ration, CI: confidence interval,

2.6. Correlation of miRNA Abundance to Body Mass Index (BMI)

Since obesity has been linked to ccRCC [35,36], the dataset was investigated for correlations
between BMI and the expression level of various miRNAs. The best correlation was seen for miR-10a-3p
(R2 = 0.68). Other high-ranking candidates were miR-10a-5p (R2 = 0.65) and miR-487a-3p (R2 = 0.64).
Several comparisons between tumour and normal tissues from different BMI groups were then
performed (Table A1). The miRNA with the strongest difference between tumour and normal samples
in patients with high BMI was miR-122-5p (abs. FC: 280), whereas the corresponding miRNA in
patients with low BMI was miR-184 (abs. FC: 310), both of which were statistically significant.

2.7. Pathway Analyses

To determine which biological pathways were overrepresented by the differentially expressed
miRNAs, we performed pathway analysis. The integration of the present miRNA data with previously
published mRNA data from the same patient cohort [30] identified the Th2 pathway as the most affected
(p-value = 6.23 × 10−11). Additionally, all other top pathways were related to either immunology or
fibrosis (Table 4). Using the previously published data of mRNA obtained from the same patients,
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another pathway analysis was performed using the differentially expressed miRNA genes and their
differentially expressed mRNA targets. The top five upstream regulators, each with p-values of
1.12 × 10−14 or less, are shown in Table 4. The network analysis of “renal clear cell cancer” showed
a p-value of 2.84 × 10−4. The specific up- and down-regulation of various parts of the network are
displayed in Figure A2.

Table 4. Top affected pathways and upstream regulators. TGFβ1: Transforming growth factor beta 1,
TNF: tumor necrosis factor, IFNG: Interferon gamma.

Pathways p-Value Overlap

Th2 pathway 6.23 × 10−11 17.3% 26/150
Th1 and Th2 activation pathway 3.10 × 10−10 15.1% 28/185

Th1 pathway 3.12 × 10−8 15.6% 21/135
Antigen presentation pathway 9.02 × 10−8 28.9% 11/38

Hepatic fibrosis/hepatic stellate cell activation 3.88 × 10−7 12.6% 23/183

Upstream Regulators p-Value

IFNG 3.41 × 10−20

TNF 7.26 × 10−16

Lipopolysaccharide TGG 2.01 × 10−15

TGFβ1 1.03 × 10−14

Beta-estradiol 1.12 × 10−14

2.8. Confirmation of Differentially Regulated miRNA

In an investigation comparable to ours, Osanto et al. [27] used FF samples from a similarly sized
cohort to identify miRNAs in ccRCC with NGS technology. Of Osanto’s top 20 differentially expressed
miRNAs, 14 were detected amongst the differentially expressed miRNAs from the present study,
with a 70% overlap. Of those 14 miRNAs, 5 were amongst the top 20 differentially expressed miRNAs
from this dataset. The direction of the FC was the same for any given miRNA found in both datasets.
Both of these original investigations were compared to an inquiry with an even larger sample pool,
using a dataset from TCGA and two previously published cohorts [18]. Of the 17 miRNAs described
by Shu et al. [37], 16 were found amongst the differentially expressed miRNAs from this investigation
(94% overlap). The direction of the FC was the same for any given miRNA. Four of the 17 were
amongst the top 20 miRNAs from our dataset (Table A2).

3. Discussion

In this report we investigated the use of FFPE biopsies for miR-seq by examining the ccRCC
miRNA profile. The use of miRNAs as tumor classifiers have been reported and confirmed in many
previous studies [7,25,27,37,38]. However, we are the first to extend the previous, but more limited,
findings of Weng et al. on NGS of FFPE samples [28], by including four times as many patients.
Still, a total patient number of 12 and total sample number of 24 is also a relevant limitation of this
investigation. The limited number of patients in this investigation is also the reason why we used
the TCGA dataset for the survival analyses. In this study, we extracted both quantitatively and
qualitatively sufficient RNA for miRNA sequencing from all 24 FFPE samples. However, successful
sequencing does not preclude the possibility of a bias inherent to FFPE samples when compared
to FF samples. In our previous investigation of this issue [30] we found a correlation between the
differentially expressed mRNA found in paired FF vs. FFPE biopsies of R2 = 0.96, while Weng et al. [28]
found an miRNA correlation of R2 = 0.95–0.98. In addition to the comparisons with the findings of
both Osanto [27] and Shu [37], this supports the absence of any obvious bias. This study, therefore,
presents further evidence that FFPE samples are a viable source for miRNA sequencing of ccRCC
samples. FFPE biopsy archives remain an underused resource for developing patient stratification
and treatment tools; however, we believe that our present findings can help to further unlock these



Int. J. Mol. Sci. 2018, 19, 803 9 of 18

archives. To further demonstrate the usefulness of the current miR-seq data, we performed additional
analyses linking our investigation to more biologically relevant examinations.

The combination of the results of the classifier analysis, the matching of miRNA abundance to
tumour size, and the survival analyses, makes us regard miR-155 as the most interesting miRNA
highlighted in this investigation. The Cox multivariate analyses performed on the GA dataset resulted
in a close to linear increase of risk with increasing levels of miR-155. However, once correcting for age,
sex, cancer stage and histological grade, miR-155 was not a statistically significant survival predictor.
If the results of our survival analysis even approximately translate to the clinical setting, it would
indicate that patients with high levels of miR-155-5p are almost three times as likely to die over a given
period of time. One possible explanation for why an elevated expression of miR-155-5p is correlated
with poorer overall survival is that increased expression of miR-155-5p also correlated with larger
tumours in this dataset, which in turn has been linked to lower survival [39]. miR-155-5p was one of
only two miRNAs found amongst the top 20 miRNAs in our dataset along with those from Osanto
and Shu [27,37]. Previously, miR-155-5p has been investigated in a wide range of settings. In ccRCC,
miR-155 was first identified as a target of interest while profiling the differences between various
cancers and normal kidney tissues [38,40]. miR-155 has also been evaluated as a possible distinguisher
of metastatic and non-metastatic cancers, both for untreated [41] and sunitinib-treated patients [42].
In the latter study, decreased levels of miR-155 were significantly associated with increased time of
tumour progression. To explain the underlying mechanism of miR-155-5p, E2F2 has been proposed
as a possible target [43]. Some of the predicted functions of miR-155-5p include the inhibition of
proliferation, migration and induction of apoptosis by upregulating BACH1 in renal cancer cells [44].
Suppression of miR-155 also significantly inhibits the proliferation, colony formation, migration and
invasion of ccRCC cells, while inducing G1 arrest and apoptosis and upregulating FOXO3a [45].
However, we are the first to propose miR-155-5p expression as an important predictor of tumour
size and one of the first to examine its relation to survival. Although several interesting findings for
miR-155 has been demonstrated, once correcting for age, sex, cancer stage and histological grade the
predictive value of overall survival in the TCGA dataset statistical significance was lost.

We were unable to detect significant changes in the expression of miRNAs in the tumours of
patients with different BMIs, at least in our limited dataset. Shu et al. suggested that miR-200a-3p,
miR-200b-3p, miR-200c-3p, miR-210-3p, miR-204-5p and miR-30a-5p may all be obesity-related and
were amongst their top 17 miRNAs [37]. In our results, all these miRNAs were differentially expressed
and changed in the same direction as reported in Shu’s dataset. However, none of them were amongst
the 4 most differentially regulated miRNAs in any analysis displayed in Table A1, nor were they
amongst the miRNAs with the strongest correlation with BMI.

Senbabaoglu et al. previously described the importance of the Th2 pathway in ccRCC [46].
Consistently, in our combined miRNA and mRNA dataset, the Th2 pathway was most upregulated.
Thus, this pathway may represent a novel therapeutic target for ccRCC.

Many of our top miRNAs, e.g., miR-122 [47], miR-200c [48] and miR-210 [49], have previously
been linked to the epithelial–mesenchymal transition (EMT). In support of this, Lorens et al. previously
proposed EMT to be a central inducer of Axl expression [50]. More recently, downregulation of
miR-217 has been linked to HIF-1α/AXL signalling via the suppression of HIF-1α protein levels [51].
In the present dataset, miR-217 was amongst the most differentially expressed miRNAs. In the
previously published data from this cohort, several mesenchymal markers were screened [30],
revealing an over-representation of vimentin (VIM), endothelin 1 (EDN1), fibronectin 1 (FN1),
and transforming growth factor-β (TGF β1). Additionally, the epithelial markers epithelial cell-
adhesion molecule (EPCAM) and E-cadherin (CDH1) were under-represented. Grainyhead-like 2
(GRHL2), a transcription factor that has been shown to inhibit EMT, was approximately 10-fold
downregulated [30]. This connection to EMT is further strengthened by the top upstream regulators
found in our pathway analysis, in which the top five deregulated upstream regulators were all linked
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to EMT: interferon gamma [52], tumour necrosis factor [52,53], lipopolysaccharide [54], TGFB1 [55],
and beta-estradiol [56].

The findings presented here require functional validation, especially if we wish to further
investigate these miRNAs as targets in the development of novel therapies. Additionally, the use of
serum samples for detecting miR-155-5p requires further investigation, and it must be determined
whether those results match our findings from solid biopsies.

4. Materials and Methods

4.1. Participants

Twelve ccRCC patients undergoing either partial (n = 4) or radical (n = 8) nephrectomy at
Haukeland University Hospital were selected consecutively. None of the patients had undergone
previous treatment. Further details of the study population have been reported previously [57].
In short, pT tumour stages of T1a/b (n = 7), T2a/b (n = 2) and T3a/b (n = 3) were included. The mean
age was 56.9 ± 6.8 years. Five of the 12 participants were males. Tumour sizes varied from 15 mm to
117 mm with an average of 46 mm. All clinical information was acquired from the patients’ medical
records and our own in-house renal cancer registry. Leibovich, Fuhrmann and tumour-node-metastasis
(TNM) scoring was performed in accordance with the established criteria [10], based on routine
workup. Body mass index (BMI) groups were established as follows: BMI low: 19–23 (n = 4) and BMI
high: 28–44 (n = 4). Additional patient characteristics are displayed in Table 1. The ethics committee of
Western Norway approved this study on 06/06/2005 (REC West No. 78/05). All participants provided
informed consent.

4.2. Kidney Biopsies and RNA Extraction

All core biopsies were obtained with 16-gauge core biopsy needles. Both tumour and tumour-
adjacent normal samples were taken from each patient in the operating room at the time of surgery,
immediately following tumour removal. Tumour and tumour-adjacent normal tissues were identified
visually at the time of sampling and subsequently stored as FFPE tissue. Histological confirmation was
then performed by an experienced pathologist. RNA was extracted using a miRNeasy FFPE kit (Qiagen,
Venlo, The Netherlands). All extractions were performed as previously established [57,58] and in
accordance with the manufacturer’s instructions. Eight 10 µm sections were used from each FFPE block.
The quality and quantity of the extracted RNA were measured with a NanoDrop spectrophotometer
(Nano Drop Technologies, Wilmington, DE, USA) and an Agilent RNA 6000 Nano Kit with a 2100
Bioanalyzer instrument (Agilent Technologies, Santa Clara, CA, USA). The DV200 metric, which is
the percentage of fragments >200 nucleotides in length [59], was computed from a standard smear
analysis on the 2100 Bioanalyzer instrument as an indicator of quality.

DV200 values of as low as 30% have been reported in the creation of RNA libraries [60]. DV200
was used instead of the RIN number because RIN (RNA integrity number) is not a reliable parameter
of RNA quality in degraded FFPE samples. RIN is also an unreliable predictor of cDNA library output
for FFPE-extracted RNA compared to the DV200 metric [61]. Following RNA extraction, samples were
stored at −80 ◦C.

4.3. Small RNA Library Preparation and Sequencing

Prior to library preparation, sample RNA concentrations were measured with a Qubit RNA HS
Assay Kit on a Qubit 2.0 fluorometer (Thermo Fisher Scientific, Waltham, MA, USA).

The sequencing libraries were generated with a TruSeq small RNA library kit (Illumina, USA, Inc.,
San Diego, CA, USA) in accordance with the manufacturer’s protocol, using 1 µg total RNA as starting
materials for 20 samples and slightly less for the remaining 4 samples. Prior to sequencing, the libraries
were normalized, pooled and size selected (145–160 bp) before clean up. Finally, the pooled libraries
were normalized, and 2.2 pM was subject to clustering on the instrument’s flow cell. The clustering
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and sequencing (50 cycles) were performed on a NextSeq500 instrument, in accordance with the
manufacturer’s instructions (Illumina, Inc., San Diego, CA, USA). FASTQ files were created with
bcl2fastq 2.18 (Illumina, Inc., San Diego, CA, USA). Data will be made available through the Gene
Expression Omnibus repository.

4.4. Statistics and Next Generation Sequencing (NGS) Data Processing

Fastq files were adapter filtered using fastq-mcf and miRNA expression values were generated
with miRDeep2 using gene definitions from miRBase 21. An empirical expression filter was applied,
to only retain genes with more than 3 counts per million (cpm) in more than 8 samples per
dataset. Comparative analysis was done using the voom/limma R-package [62,63] (Available online:
www.Bioconductor.org) (R Bioconductor version 3.4). Differential gene expression was defined as a
Benjamini–Hochberg-adjusted p-value ≤ 0.05, and an absolute fold change (abs. FC) ≥ 2. Pathway
analysis was performed with Ingenuity Pathway Analysis (Qiagen, Redwood City, CA, USA; version
27216297). The Ingenuity Knowledge Base was used as a reference dataset.

Canonical pathways were sorted by their smallest Benjamini-Hochberg-adjusted p-value.
Classifier analysis was then performed with the KNN Validation package in GenePattern

(Available online: http://www.broadinstitute.org/cancer/software/genepattern). Euclidean distance
was used as distance measure, where three neighbours were considered. Additional analyses and data
visualization was performed with JMP Pro 11 (Available online: www.sas.com), and Graphpad Prism
6 (Available online: www.graphpad.com).

4.5. Survival Analysis

To analyse survival rates, The Cancer Genome Atlas (TCGA) NGS data were analysed using
the SurvExpress platform (Available online: http://bioinformatica.mty.itesm.mx:8080/Biomatec/
Survmicro.jsp). All features were averaged per sample. Statistical analyses were performed using
the Kaplan Meier log-rank test and Cox proportional hazard regression to determine the relationship
between gene expression and survival time. High- and low-risk groups were categorized according to
significantly different survival rates. Two ccRCC datasets were used: the renal clear cell carcinoma
(Illumina GA) TCGA dataset (n = 267), and the renal clear cell carcinoma (Illumina HiSeq) TCGA
dataset (n = 217) (Figure 3). Mir-155 was also tested in a multivariate Cox-regression model with
age, sex, histological grade and cancer stage (Table 3). This is also plotted graphically demonstrating
the partial hazard for a given expression value as a continuous variable (Figure A1). Multivariate
Cox regression analyses were performed using R software version 3.4.30 (R foundation for Statistical
Computing, Vienna, Austria; R-Studio version 1.1.383; packages tidyverse and survival).

5. Conclusions

FFPE biopsies are an entirely viable source of material for miRNA analyses. FFPE biopsy archives
remain an underused resource for molecular analyses. miR-seq from FFPE tissues demonstrated the
potential of finding candidate markers once larger FFPE datasets are used. We found that miR-155
has a high correlation with tumor size as well as demonstrating its potential as a classifier in ccRCC.
We believe that our present findings can help to further unlock these FFPE archives.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/xxx/s1.
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Figure A1. The visual representation of the Cox multivariate analyses, showing the continuous relationship 
between the expression of mir-155 and risk, adjusted for age, sex, histological grade and cancer stage. The 
white lines indicate the 1st, 2nd, 3rd and 4th quartile of gene expression. The figure on the left was 
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dataset. 

 
Figure A2. A visual representation of the “renal clear cell cancer” network and how our data relates to this. 
The p-value was 2.84 × 10−4. 
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Figure A1. The visual representation of the Cox multivariate analyses, showing the continuous
relationship between the expression of mir-155 and risk, adjusted for age, sex, histological grade and
cancer stage. The white lines indicate the 1st, 2nd, 3rd and 4th quartile of gene expression. The figure
on the left was generated with data from the GA dataset, the figure on the right was generated with
data from the HiSeq dataset.

Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  12 of 18 

 

Appendix A 

  

Figure A1. The visual representation of the Cox multivariate analyses, showing the continuous relationship 
between the expression of mir-155 and risk, adjusted for age, sex, histological grade and cancer stage. The 
white lines indicate the 1st, 2nd, 3rd and 4th quartile of gene expression. The figure on the left was 
generated with data from the GA dataset, the figure on the right was generated with data from the HiSeq 
dataset. 

 
Figure A2. A visual representation of the “renal clear cell cancer” network and how our data relates to this. 
The p-value was 2.84 × 10−4. 

  

GA 

HiSEQ 

Figure A2. A visual representation of the “renal clear cell cancer” network and how our data relates to
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Table A1. Top miRNAs from obesity-related inquiries.

Top miRNAs Abs. Fold Change Adj. p-Value

Tumour: BMI high vs. BMI low

miR-1251 10 0.440815
miR-483-3p 9.5 0.740509

mir-4792 8.7 0.151826
miR-146b 7.3 0.151826

Normal: BMI high vs. low

mir-122 5.1 0.765518
miR-514a-5p 4.7 0.185964
miR-514a-3p 4.9 0.085238

34c-3p 3.9 0.765518

BMI high: Tumour vs. Normal

miR-122-5p 280 6.78 × 10−4

miR-184 129 3.15 × 10−5

miR-122-3p 50 1.95 × 10−4

miR-891a-5p 42.9 3.87 × 10−4

BMI low: Tumour vs. Normal

mir-184 310.1 1.56 × 10−4

mir-891a 137.5 2.19 × 10−3

mir-141 63.9 2.30 × 10−4

miR-122-5p 58.8 7.11 × 10−4

Tumour (BMI high vs. low) vs.
Normal (BMI high vs. low)

mir-483-3p 19.3 0.693293
mir-146b 10.6 3.20 × 10−1

mir-2277 9.9 3.20 × 10−1

miR-192-5p 6.1 4.39 × 10−1
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Table A2. Overview over which miRNAs were found to be most significant in which analysis.

miRNA
Amongst 20 Most

Deregulated
miRNAs in Our

Dataset

Evaluated
as Classifier

Amongst the 4
miRNA with the

Strongest
Correlation to
Tumour Size

Amongst the top
4 miRNAs with

the Strongest
Correlation to
Tumour Size

Found amongst
the Top 17

miRNAs Found
by Shu et al.

Found amongst the
Significant

Differentially Expressed
miRNAs from the Work

of Shu et al.

Found amongst
the Top 20

miRNAs Found
by Osanto et al.

Found amongst the
Significant

Differentially
Expressed miRNAs

Found by Osanto et al.

Survival
Analysis

Using
TCGA
Dataset

Survival
Analysis

Using
Illumina

GA Dataset(without Normal
Samples)

(with Normal
Samples)

hsa-miR-122-5p Yes Yes No No No Yes No Yes Yes Yes
hsa-miR-885-5p Yes No No No No No No No No No
hsa-miR-210-3p Yes No No No Yes Yes Yes Yes No No
hsa-miR-210-5p Yes No No No No No Yes Yes No No
hsa-miR-138-5p Yes No No No No No No Yes No No
hsa-miR-187-3p Yes No No No No Yes No Yes No No
hsa-miR-4461 Yes No No No No No No No No No
hsa-miR-508-3p Yes No No No No No No No No No
hsa-miR-135a-5p Yes No No No No Yes No Yes No No
hsa-miR-129-1-3p Yes No No No No Yes No Yes No No
hsa-miR-141-3p Yes No No No Yes Yes No Yes No No
hsa-miR-216b-5p Yes No No No No No No No No No
hsa-miR-514a-3p Yes No No No No Yes No No Yes Yes
hsa-miR-141-5p Yes No No No No Yes No No No No
hsa-miR-200c-3p Yes No No No Yes Yes No Yes No No
hsa-miR-891a-5p Yes No No No No No Yes yes No No
hsa-miR-184 Yes Yes No No No No No No Yes Yes
hsa-miR-1304 No No Yes No No No No No No No
hsa-miR-155 Yes No Yes Yes Yes Yes Yes Yes No No

hsa-miR-142-3p No No Yes No No Yes No No No No
Hsa-miRNA-616-5p No No Yes No No No No No No No
Hsa-miRNA-361-3p No No No Yes No No No No No No
Hsa-miRNA-10b-3p No No No Yes No No No No No No
Hsa-miRNA-10b-5p No No No Yes Yes Yes No Yes No No
Hsa-miRNA-146 No No No No No Yes No Yes Yes Yes
Hsa-miRNA-362 Yes No No No No Yes No Yes No No
Hsa-miRNA-1251 Yes No No No No No No No No No



Int. J. Mol. Sci. 2018, 19, 803 15 of 18

References

1. Fitzmaurice, C.; Dicker, D.; Pain, A.; Hamavid, H.; Moradi-Lakeh, M.; MacIntyre, M.F.; Allen, C.; Hansen, G.;
Woodbrook, R.; Wolfe, C.; et al. The Global Burden of Cancer 2013. JAMA Oncol. 2015, 1, 505–527. [CrossRef]
[PubMed]

2. Cohen, H.T.; McGovern, F.J. Renal-cell carcinoma. N. Engl. J. Med. 2005, 353, 2477–2490. [CrossRef] [PubMed]
3. Smittenaar, C.R.; Petersen, K.A.; Stewart, K.; Moitt, N. Cancer incidence and mortality projections in the UK

until 2035. Br. J. Cancer 2016, 115, 1147–1155. [CrossRef] [PubMed]
4. Cairns, P. Renal cell carcinoma. Cancer Biomark. 2010, 9, 461–473. [CrossRef] [PubMed]
5. Ljungberg, B.; Campbell, S.C.; Choi, H.Y.; Jacqmin, D.; Lee, J.E.; Weikert, S.; Kiemeney, L.A. The epidemiology

of renal cell carcinoma. Eur. Urol. 2011, 60, 615–621. [CrossRef] [PubMed]
6. Gerlinger, M.; Horswell, S.; Larkin, J.; Rowan, A.J.; Salm, M.P.; Varela, I.; Fisher, R.; McGranahan, N.;

Matthews, N.; Santos, C.R.; et al. Genomic architecture and evolution of clear cell renal cell carcinomas
defined by multiregion sequencing. Nat Genet. 2014, 46, 225–233. [CrossRef] [PubMed]

7. He, H.; Wang, L.; Zhou, W.; Zhang, Z.; Wang, L.; Xu, S.; Wang, D.; Dong, J.; Tang, C.; Tang, H.; et al.
MicroRNA Expression Profiling in Clear Cell Renal Cell Carcinoma: Identification and Functional Validation
of Key miRNAs. PLoS ONE 2015, 10, e0125672. [CrossRef] [PubMed]

8. Guethmundsson, E.; Hellborg, H.; Lundstam, S.; Erikson, S.; Ljungberg, B.; Swedish Kidney Cancer Quality
Register, G. Metastatic potential in renal cell carcinomas </=7 cm: Swedish Kidney Cancer Quality Register
data. Eur. Urol. 2011, 60, 975–982. [CrossRef] [PubMed]

9. Thorstenson, A.; Harmenberg, U.; Lindblad, P.; Holmstrom, B.; Lundstam, S.; Ljungberg, B. Cancer
Characteristics and Current Treatments of Patients with Renal Cell Carcinoma in Sweden. BioMed Res. Int. 2015,
2015, 456040. [CrossRef] [PubMed]

10. Ljungberg, B.; Bensalah, K.; Canfield, S.; Dabestani, S.; Hofmann, F.; Hora, M.; Kuczyk, M.A.; Lam, T.;
Marconi, L.; Merseburger, A.S.; et al. EAU guidelines on renal cell carcinoma: 2014 update. Eur. Urol. 2015,
67, 913–924. [CrossRef] [PubMed]

11. Coppin, C.; Kollmannsberger, C.; Le, L.; Porzsolt, F.; Wilt, T.J. Targeted therapy for advanced renal cell
cancer (RCC): A Cochrane systematic review of published randomised trials. BJU Int. 2011, 108, 1556–1563.
[CrossRef] [PubMed]

12. Zhou, L.; Chang, Y.; Xu, L.; Liu, Z.; Fu, Q.; Yang, Y.; Lin, Z.; Xu, J. The Presence of Vascular Mimicry
Predicts High Risk of Clear Cell Renal Cell Carcinoma after Radical Nephrectomy. J. Urol. 2016, 196, 335–342.
[CrossRef] [PubMed]

13. Parkinson, D.R.; McCormack, R.T.; Keating, S.M.; Gutman, S.I.; Hamilton, S.R.; Mansfield, E.A.; Piper, M.A.;
Deverka, P.; Frueh, F.W.; Jessup, J.M.; et al. Evidence of clinical utility: An unmet need in molecular
diagnostics for patients with cancer. Clin. Cancer Res. 2014, 20, 1428–1444. [CrossRef] [PubMed]

14. Heinzelmann, J.; Unrein, A.; Wickmann, U.; Baumgart, S.; Stapf, M.; Szendroi, A.; Grimm, M.O.; Gajda, M.R.;
Wunderlich, H.; Junker, K. MicroRNAs with prognostic potential for metastasis in clear cell renal cell
carcinoma: A comparison of primary tumors and distant metastases. Ann. Surg. Oncol. 2014, 21, 1046–1054.
[CrossRef] [PubMed]

15. Ishihara, T.; Seki, N.; Inoguchi, S.; Yoshino, H.; Tatarano, S.; Yamada, Y.; Itesako, T.; Goto, Y.; Nishikawa, R.;
Nakagawa, M.; et al. Expression of the tumor suppressive miRNA-23b/27b cluster is a good prognostic
marker in clear cell renal cell carcinoma. J. Urol. 2014, 192, 1822–1830. [CrossRef] [PubMed]

16. Ben-Dov, I.Z.; Tan, Y.C.; Morozov, P.; Wilson, P.D.; Rennert, H.; Blumenfeld, J.D.; Tuschl, T. Urine microRNA
as potential biomarkers of autosomal dominant polycystic kidney disease progression: Description of
miRNA profiles at baseline. PLoS ONE 2014, 9, e86856. [CrossRef] [PubMed]

17. Butz, H.; Szabo, P.M.; Nofech-Mozes, R.; Rotondo, F.; Kovacs, K.; Mirham, L.; Girgis, H.; Boles, D.; Patocs, A.;
Yousef, G.M. Integrative bioinformatics analysis reveals new prognostic biomarkers of clear cell renal cell
carcinoma. Clin. Chem. 2014, 60, 1314–1326. [CrossRef] [PubMed]

18. Fritz, H.K.; Lindgren, D.; Ljungberg, B.; Axelson, H.; Dahlback, B. The miR(21/10b) ratio as a prognostic
marker in clear cell renal cell carcinoma. Eur. J. Cancer 2014, 50, 1758–1765. [CrossRef] [PubMed]

http://dx.doi.org/10.1001/jamaoncol.2015.0735
http://www.ncbi.nlm.nih.gov/pubmed/26181261
http://dx.doi.org/10.1056/NEJMra043172
http://www.ncbi.nlm.nih.gov/pubmed/16339096
http://dx.doi.org/10.1038/bjc.2016.304
http://www.ncbi.nlm.nih.gov/pubmed/27727232
http://dx.doi.org/10.3233/CBM-2011-0176
http://www.ncbi.nlm.nih.gov/pubmed/22112490
http://dx.doi.org/10.1016/j.eururo.2011.06.049
http://www.ncbi.nlm.nih.gov/pubmed/21741761
http://dx.doi.org/10.1038/ng.2891
http://www.ncbi.nlm.nih.gov/pubmed/24487277
http://dx.doi.org/10.1371/journal.pone.0125672
http://www.ncbi.nlm.nih.gov/pubmed/25938468
http://dx.doi.org/10.1016/j.eururo.2011.06.029
http://www.ncbi.nlm.nih.gov/pubmed/21741160
http://dx.doi.org/10.1155/2015/456040
http://www.ncbi.nlm.nih.gov/pubmed/26539495
http://dx.doi.org/10.1016/j.eururo.2015.01.005
http://www.ncbi.nlm.nih.gov/pubmed/25616710
http://dx.doi.org/10.1111/j.1464-410X.2011.10629.x
http://www.ncbi.nlm.nih.gov/pubmed/21952069
http://dx.doi.org/10.1016/j.juro.2016.02.2971
http://www.ncbi.nlm.nih.gov/pubmed/26970566
http://dx.doi.org/10.1158/1078-0432.CCR-13-2961
http://www.ncbi.nlm.nih.gov/pubmed/24634466
http://dx.doi.org/10.1245/s10434-013-3361-3
http://www.ncbi.nlm.nih.gov/pubmed/24242678
http://dx.doi.org/10.1016/j.juro.2014.07.001
http://www.ncbi.nlm.nih.gov/pubmed/25014580
http://dx.doi.org/10.1371/journal.pone.0086856
http://www.ncbi.nlm.nih.gov/pubmed/24489795
http://dx.doi.org/10.1373/clinchem.2014.225854
http://www.ncbi.nlm.nih.gov/pubmed/25139457
http://dx.doi.org/10.1016/j.ejca.2014.03.281
http://www.ncbi.nlm.nih.gov/pubmed/24793999


Int. J. Mol. Sci. 2018, 19, 803 16 of 18

19. Munari, E.; Marchionni, L.; Chitre, A.; Hayashi, M.; Martignoni, G.; Brunelli, M.; Gobbo, S.; Argani, P.;
Allaf, M.; Hoque, M.O.; et al. Clear cell papillary renal cell carcinoma: Micro-RNA expression profiling and
comparison with clear cell renal cell carcinoma and papillary renal cell carcinoma. Hum. Pathol. 2014, 45,
1130–1138. [CrossRef] [PubMed]

20. Simpson, K.; Wonnacott, A.; Fraser, D.J.; Bowen, T. MicroRNAs in Diabetic Nephropathy: From Biomarkers
to Therapy. Curr. Diabetes Rep. 2016, 16, 35. [CrossRef] [PubMed]

21. Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281–297. [CrossRef]
22. Macfarlane, L.A.; Murphy, P.R. MicroRNA: Biogenesis, Function and Role in Cancer. Curr. Genom. 2010, 11,

537–561. [CrossRef] [PubMed]
23. Anglicheau, D.; Muthukumar, T.; Suthanthiran, M. MicroRNAs: Small RNAs with big effects. Transplantation

2010, 90, 105–112. [CrossRef] [PubMed]
24. Bhatt, K.; Kato, M.; Natarajan, R. Emerging Roles of microRNAs in the Pathophysiology of Renal Diseases.

Am. J. Physiol. Ren. Physiol. 2015. [CrossRef]
25. Li, M.; Wang, Y.; Song, Y.; Bu, R.; Yin, B.; Fei, X.; Guo, Q.; Wu, B. MicroRNAs in renal cell carcinoma:

A systematic review of clinical implications (Review). Oncol. Rep. 2015, 33, 1571–1578. [CrossRef] [PubMed]
26. Nassirpour, R.; Mathur, S.; Gosink, M.M.; Li, Y.; Shoieb, A.M.; Wood, J.; O’Neil, S.P.; Homer, B.L.;

Whiteley, L.O. Identification of tubular injury microRNA biomarkers in urine: Comparison of next-generation
sequencing and qPCR-based profiling platforms. BMC Genom. 2014, 15, 485. [CrossRef] [PubMed]

27. Osanto, S.; Qin, Y.; Buermans, H.P.; Berkers, J.; Lerut, E.; Goeman, J.J.; van Poppel, H. Genome-wide
microRNA expression analysis of clear cell renal cell carcinoma by next generation deep sequencing.
PLoS ONE 2012, 7, e38298. [CrossRef] [PubMed]

28. Weng, L.; Wu, X.; Gao, H.; Mu, B.; Li, X.; Wang, J.H.; Guo, C.; Jin, J.M.; Chen, Z.; Covarrubias, M.; et al.
MicroRNA profiling of clear cell renal cell carcinoma by whole-genome small RNA deep sequencing of
paired frozen and formalin-fixed, paraffin-embedded tissue specimens. J. Pathol. 2010, 222, 41–51. [CrossRef]
[PubMed]

29. Hedegaard, J.; Thorsen, K.; Lund, M.K.; Hein, A.M.; Hamilton-Dutoit, S.J.; Vang, S.; Nordentoft, I.;
Birkenkamp-Demtroder, K.; Kruhoffer, M.; Hager, H.; et al. Next-generation sequencing of RNA and
DNA isolated from paired fresh-frozen and formalin-fixed paraffin-embedded samples of human cancer
and normal tissue. PLoS ONE 2014, 9, e98187. [CrossRef] [PubMed]

30. Eikrem, O.; Beisland, C.; Hjelle, K.; Flatberg, A.; Scherer, A.; Landolt, L.; Skogstrand, T.; Leh, S.; Beisvag, V.;
Marti, H.P. Transcriptome Sequencing (RNAseq) Enables Utilization of Formalin-Fixed, Paraffin-Embedded
Biopsies with Clear Cell Renal Cell Carcinoma for Exploration of Disease Biology and Biomarker
Development. PLoS ONE 2016, 11, e0149743. [CrossRef] [PubMed]

31. Kolbert, C.P.; Feddersen, R.M.; Rakhshan, F.; Grill, D.E.; Simon, G.; Middha, S.; Jang, J.S.; Simon, V.;
Schultz, D.A.; Zschunke, M.; et al. Multi-platform analysis of microRNA expression measurements in RNA
from fresh frozen and FFPE tissues. PLoS ONE 2013, 8, e52517. [CrossRef] [PubMed]

32. Tang, K.; Xu, H. Prognostic value of meta-signature miRNAs in renal cell carcinoma: An integrated miRNA
expression profiling analysis. Sci. Rep. 2015, 5, 10272. [CrossRef] [PubMed]

33. Muciaccia, B.; Vico, C.; Aromatario, M.; Fazi, F.; Cecchi, R. Molecular analysis of different classes of RNA
molecules from formalin-fixed paraffin-embedded autoptic tissues: A pilot study. Int. J. Legal Med. 2015, 129,
11–21. [CrossRef] [PubMed]

34. McShane, L.M.; Altman, D.G.; Sauerbrei, W.; Taube, S.E.; Gion, M.; Clark, G.M.; Statistics Subcommittee of
the, N.C.I.E.W.G.o.C.D. REporting recommendations for tumour MARKer prognostic studies (REMARK).
Br. J. Cancer 2005, 93, 387–391. [CrossRef] [PubMed]

35. Choi, Y.; Park, B.; Jeong, B.C.; Seo, S.I.; Jeon, S.S.; Choi, H.Y.; Adami, H.O.; Lee, J.E.; Lee, H.M. Body
mass index and survival in patients with renal cell carcinoma: A clinical-based cohort and meta-analysis.
Int. J. Cancer 2013, 132, 625–634. [CrossRef] [PubMed]

36. Rogde, A.J.; Gudbrandsdottir, G.; Hjelle, K.M.; Sand, K.E.; Bostad, L.; Beisland, C. Obesity is associated with
an improved cancer-specific survival, but an increased rate of postoperative complications after surgery for
renal cell carcinoma. Scand. J. Urol. Nephrol. 2012, 46, 348–357. [CrossRef] [PubMed]

37. Shu, X.; Hildebrandt, M.A.; Gu, J.; Tannir, N.M.; Matin, S.F.; Karam, J.A.; Wood, C.G.; Wu, X. MicroRNA
profiling in clear cell renal cell carcinoma tissues potentially links tumorigenesis and recurrence with obesity.
Br. J. Cancer 2017, 116, 77–84. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.humpath.2014.01.013
http://www.ncbi.nlm.nih.gov/pubmed/24703100
http://dx.doi.org/10.1007/s11892-016-0724-8
http://www.ncbi.nlm.nih.gov/pubmed/26973290
http://dx.doi.org/10.1016/S0092-8674(04)00045-5
http://dx.doi.org/10.2174/138920210793175895
http://www.ncbi.nlm.nih.gov/pubmed/21532838
http://dx.doi.org/10.1097/TP.0b013e3181e913c2
http://www.ncbi.nlm.nih.gov/pubmed/20574417
http://dx.doi.org/10.1152/ajprenal.00387.2015.
http://dx.doi.org/10.3892/or.2015.3799
http://www.ncbi.nlm.nih.gov/pubmed/25682771
http://dx.doi.org/10.1186/1471-2164-15-485
http://www.ncbi.nlm.nih.gov/pubmed/24942259
http://dx.doi.org/10.1371/journal.pone.0038298
http://www.ncbi.nlm.nih.gov/pubmed/22745662
http://dx.doi.org/10.1002/path.2736
http://www.ncbi.nlm.nih.gov/pubmed/20593407
http://dx.doi.org/10.1371/journal.pone.0098187
http://www.ncbi.nlm.nih.gov/pubmed/24878701
http://dx.doi.org/10.1371/journal.pone.0149743
http://www.ncbi.nlm.nih.gov/pubmed/26901863
http://dx.doi.org/10.1371/journal.pone.0052517
http://www.ncbi.nlm.nih.gov/pubmed/23382819
http://dx.doi.org/10.1038/srep10272
http://www.ncbi.nlm.nih.gov/pubmed/25974855
http://dx.doi.org/10.1007/s00414-014-1066-1
http://www.ncbi.nlm.nih.gov/pubmed/25135750
http://dx.doi.org/10.1038/sj.bjc.6602678
http://www.ncbi.nlm.nih.gov/pubmed/16106245
http://dx.doi.org/10.1002/ijc.27639
http://www.ncbi.nlm.nih.gov/pubmed/22610826
http://dx.doi.org/10.3109/00365599.2012.678382
http://www.ncbi.nlm.nih.gov/pubmed/22530756
http://dx.doi.org/10.1038/bjc.2016.392
http://www.ncbi.nlm.nih.gov/pubmed/27907930


Int. J. Mol. Sci. 2018, 19, 803 17 of 18

38. Jung, M.; Mollenkopf, H.J.; Grimm, C.; Wagner, I.; Albrecht, M.; Waller, T.; Pilarsky, C.; Johannsen, M.;
Stephan, C.; Lehrach, H.; et al. MicroRNA profiling of clear cell renal cell cancer identifies a robust signature
to define renal malignancy. J. Cell. Mol. Med. 2009, 13, 3918–3928. [CrossRef] [PubMed]

39. Jeong, S.U.; Park, J.M.; Shin, S.J.; Lee, J.; Song, C.; Go, H.; Cho, N.H.; Ro, J.Y.; Cho, Y.M. Prognostic
Significance of Macroscopic Appearance in Clear Cell Renal Cell Carcinoma and Its Metastasis-Predicting
Model. Pathol. Int. 2017. [CrossRef] [PubMed]

40. Juan, D.; Alexe, G.; Antes, T.; Liu, H.; Madabhushi, A.; Delisi, C.; Ganesan, S.; Bhanot, G.; Liou, L.S.
Identification of a microRNA panel for clear-cell kidney cancer. Urology 2010, 75, 835–841. [CrossRef]
[PubMed]

41. Wotschofsky, Z.; Busch, J.; Jung, M.; Kempkensteffen, C.; Weikert, S.; Schaser, K.D.; Melcher, I.; Kilic, E.;
Miller, K.; Kristiansen, G.; et al. Diagnostic and prognostic potential of differentially expressed miRNAs
between metastatic and non-metastatic renal cell carcinoma at the time of nephrectomy. Clin. Chim. Acta
2013, 416, 5–10. [CrossRef] [PubMed]

42. Merhautova, J.; Hezova, R.; Poprach, A.; Kovarikova, A.; Radova, L.; Svoboda, M.; Vyzula, R.; Demlova, R.;
Slaby, O. miR-155 and miR-484 Are Associated with Time to Progression in Metastatic Renal Cell Carcinoma
Treated with Sunitinib. BioMed Res. Int. 2015, 2015, 941980. [CrossRef] [PubMed]

43. Gao, Y.; Ma, X.; Yao, Y.; Li, H.; Fan, Y.; Zhang, Y.; Zhao, C.; Wang, L.; Ma, M.; Lei, Z.; et al. miR-155 regulates
the proliferation and invasion of clear cell renal cell carcinoma cells by targeting E2F2. Oncotarget 2016, 7,
20324–20337. [CrossRef] [PubMed]

44. Li, S.; Chen, T.; Zhong, Z.; Wang, Y.; Li, Y.; Zhao, X. microRNA-155 silencing inhibits proliferation and
migration and induces apoptosis by upregulating BACH1 in renal cancer cells. Mol. Med. Rep. 2012, 5,
949–954. [CrossRef] [PubMed]

45. Ji, H.; Tian, D.; Zhang, B.; Zhang, Y.; Yan, D.; Wu, S. Overexpression of miR-155 in clear-cell renal cell
carcinoma and its oncogenic effect through targeting FOXO3a. Exp. Ther. Med. 2017, 13, 2286–2292.
[CrossRef] [PubMed]

46. Senbabaoglu, Y.; Gejman, R.S.; Winer, A.G.; Liu, M.; Van Allen, E.M.; de Velasco, G.; Miao, D.; Ostrovnaya, I.;
Drill, E.; Luna, A.; et al. Tumor immune microenvironment characterization in clear cell renal cell carcinoma
identifies prognostic and immunotherapeutically relevant messenger RNA signatures. Genome Biol. 2016, 17,
231. [CrossRef] [PubMed]

47. Fan, Y.; Ma, X.; Li, H.; Gao, Y.; Huang, Q.; Zhang, Y.; Bao, X.; Du, Q.; Luo, G.; Liu, K.; et al. miR-122 Promotes
Metastasis of Clear-Cell Renal Cell Carcinoma by Downregulating Dicer. Int. J. Cancer 2017. [CrossRef]
[PubMed]

48. Jiang, J.; Yi, B.O.; Ding, S.; Sun, J.; Cao, W.; Liu, M. Demethylation drug 5-Aza-2′-deoxycytidine-induced
upregulation of miR-200c inhibits the migration, invasion and epithelial-mesenchymal transition of clear cell
renal cell carcinoma in vitro. Oncol. Lett. 2016, 11, 3167–3172. [CrossRef] [PubMed]

49. Yoshino, H.; Yonemori, M.; Miyamoto, K.; Tatarano, S.; Kofuji, S.; Nohata, N.; Nakagawa, M.; Enokida, H.
microRNA-210-3p depletion by CRISPR/Cas9 promoted tumorigenesis through revival of TWIST1 in renal
cell carcinoma. Oncotarget 2017, 8, 20881–20894. [CrossRef] [PubMed]

50. Gjerdrum, C.; Tiron, C.; Hoiby, T.; Stefansson, I.; Haugen, H.; Sandal, T.; Collett, K.; Li, S.; McCormack, E.;
Gjertsen, B.T.; et al. Axl is an essential epithelial-to-mesenchymal transition-induced regulator of breast
cancer metastasis and patient survival. Proc. Natl. Acad. Sci. USA 2010, 107, 1124–1129. [CrossRef] [PubMed]

51. Hong, Q.; Li, O.; Zheng, W.; Xiao, W.Z.; Zhang, L.; Wu, D.; Cai, G.Y.; He, J.C.; Chen, X.M. LncRNA HOTAIR
regulates HIF-1alpha/AXL signaling through inhibition of miR-217 in renal cell carcinoma. Cell Death Dis.
2017, 8, e2772. [CrossRef] [PubMed]

52. Trivanovic, D.; Jaukovic, A.; Krstic, J.; Nikolic, S.; Okic Djordjevic, I.; Kukolj, T.; Obradovic, H.; Mojsilovic, S.;
Ilic, V.; Santibanez, J.F.; et al. Inflammatory cytokines prime adipose tissue mesenchymal stem cells to
enhance malignancy of MCF-7 breast cancer cells via transforming growth factor-beta1. IUBMB Life 2016, 68,
190–200. [CrossRef] [PubMed]

53. Ho, M.Y.; Tang, S.J.; Chuang, M.J.; Cha, T.L.; Li, J.Y.; Sun, G.H.; Sun, K.H. TNF-alpha induces epithelial-
mesenchymal transition of renal cell carcinoma cells via a GSK3beta-dependent mechanism. Mol. Cancer Res.
2012, 10, 1109–1119. [CrossRef] [PubMed]

http://dx.doi.org/10.1111/j.1582-4934.2009.00705.x
http://www.ncbi.nlm.nih.gov/pubmed/19228262
http://dx.doi.org/10.1111/pin.12606
http://www.ncbi.nlm.nih.gov/pubmed/29086465
http://dx.doi.org/10.1016/j.urology.2009.10.033
http://www.ncbi.nlm.nih.gov/pubmed/20035975
http://dx.doi.org/10.1016/j.cca.2012.11.010
http://www.ncbi.nlm.nih.gov/pubmed/23178446
http://dx.doi.org/10.1155/2015/941980
http://www.ncbi.nlm.nih.gov/pubmed/26064968
http://dx.doi.org/10.18632/oncotarget.7951
http://www.ncbi.nlm.nih.gov/pubmed/26967247
http://dx.doi.org/10.3892/mmr.2012.779
http://www.ncbi.nlm.nih.gov/pubmed/22307849
http://dx.doi.org/10.3892/etm.2017.4263
http://www.ncbi.nlm.nih.gov/pubmed/28565840
http://dx.doi.org/10.1186/s13059-016-1092-z
http://www.ncbi.nlm.nih.gov/pubmed/27855702
http://dx.doi.org/10.1002/ijc.31050
http://www.ncbi.nlm.nih.gov/pubmed/28921581
http://dx.doi.org/10.3892/ol.2016.4364
http://www.ncbi.nlm.nih.gov/pubmed/27123083
http://dx.doi.org/10.18632/oncotarget.14930
http://www.ncbi.nlm.nih.gov/pubmed/28152509
http://dx.doi.org/10.1073/pnas.0909333107
http://www.ncbi.nlm.nih.gov/pubmed/20080645
http://dx.doi.org/10.1038/cddis.2017.181
http://www.ncbi.nlm.nih.gov/pubmed/28492542
http://dx.doi.org/10.1002/iub.1473
http://www.ncbi.nlm.nih.gov/pubmed/26805406
http://dx.doi.org/10.1158/1541-7786.MCR-12-0160
http://www.ncbi.nlm.nih.gov/pubmed/22707636


Int. J. Mol. Sci. 2018, 19, 803 18 of 18

54. Jing, Y.Y.; Han, Z.P.; Sun, K.; Zhang, S.S.; Hou, J.; Liu, Y.; Li, R.; Gao, L.; Zhao, X.; Zhao, Q.D.; et al. Toll-like
receptor 4 signaling promotes epithelial-mesenchymal transition in human hepatocellular carcinoma induced
by lipopolysaccharide. BMC Med. 2012, 10, 98. [CrossRef] [PubMed]

55. Huang, Y.; Tong, J.; He, F.; Yu, X.; Fan, L.; Hu, J.; Tan, J.; Chen, Z. miR-141 regulates TGF-beta1-induced
epithelial-mesenchymal transition through repression of HIPK2 expression in renal tubular epithelial cells.
Int. J. Mol. Med. 2015, 35, 311–318. [CrossRef] [PubMed]

56. Wang, K.H.; Kao, A.P.; Lin, T.C.; Chang, C.C.; Kuo, T.C. Promotion of epithelial-mesenchymal transition and
tumor growth by 17beta-estradiol in an ER(+)/HER2(+) cell line derived from human breast epithelial stem
cells. Biotechnol. Appl. Biochem. 2012, 59, 262–267. [CrossRef] [PubMed]

57. Eikrem, O.S.; Strauss, P.; Beisland, C.; Scherer, A.; Landolt, L.; Flatberg, A.; Leh, S.; Beisvag, V.; Skogstrand, T.;
Hjelle, K.; et al. Development and confirmation of potential gene classifiers of human clear cell renal cell
carcinoma using next-generation RNA sequencing. Scand. J. Urol. 2016, 50, 452–462. [CrossRef] [PubMed]

58. Landolt, L.; Marti, H.P.; Beisland, C.; Flatberg, A.; Eikrem, O.S. RNA extraction for RNA sequencing of
archival renal tissues. Scand. J. Clin. Lab. Investig. 2016, 1–9. [CrossRef] [PubMed]

59. Walther, C.; Hofvander, J.; Nilsson, J.; Magnusson, L.; Domanski, H.A.; Gisselsson, D.; Tayebwa, J.;
Doyle, L.A.; Fletcher, C.D.; Mertens, F. Gene fusion detection in formalin-fixed paraffin-embedded benign
fibrous histiocytomas using fluorescence in situ hybridization and RNA sequencing. Lab. Investig. 2015, 95,
1071–1076. [CrossRef] [PubMed]

60. Huang, W.; Goldfischer, M.; Babyeva, S.; Mao, Y.; Volyanskyy, K.; Dimitrova, N.; Fallon, J.T.; Zhong, M.
Identification of a novel PARP14-TFE3 gene fusion from 10-year-old FFPE tissue by RNA-seq. Genes
Chromosomes Cancer 2015. [CrossRef] [PubMed]

61. Illumina. Evaluating RNA Quality from FFPE Samples. Available online: https://www.illumina.com/
content/dam/illumina-marketing/documents/products/technotes/evaluating-rna-quality-from-ffpe-
samples-technical-note-470-2014-001.pdf (accessed on 26 October 2016).

62. Law, C.W.; Chen, Y.; Shi, W.; Smyth, G.K. voom: Precision weights unlock linear model analysis tools for
RNA-seq read counts. Genome Biol. 2014, 15, R29. [CrossRef] [PubMed]

63. Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential
expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015, 43, e47. [CrossRef]
[PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1186/1741-7015-10-98
http://www.ncbi.nlm.nih.gov/pubmed/22938142
http://dx.doi.org/10.3892/ijmm.2014.2008
http://www.ncbi.nlm.nih.gov/pubmed/25421593
http://dx.doi.org/10.1002/bab.1022
http://www.ncbi.nlm.nih.gov/pubmed/23586837
http://dx.doi.org/10.1080/21681805.2016.1238007
http://www.ncbi.nlm.nih.gov/pubmed/27739342
http://dx.doi.org/10.1080/00365513.2016.1177660
http://www.ncbi.nlm.nih.gov/pubmed/27173776
http://dx.doi.org/10.1038/labinvest.2015.83
http://www.ncbi.nlm.nih.gov/pubmed/26121314
http://dx.doi.org/10.1002/gcc.22261
http://www.ncbi.nlm.nih.gov/pubmed/26032162
https://www.illumina.com/content/dam/illumina-marketing/documents/products/technotes/evaluating-rna-quality-from-ffpe-samples-technical-note-470-2014-001.pdf
https://www.illumina.com/content/dam/illumina-marketing/documents/products/technotes/evaluating-rna-quality-from-ffpe-samples-technical-note-470-2014-001.pdf
https://www.illumina.com/content/dam/illumina-marketing/documents/products/technotes/evaluating-rna-quality-from-ffpe-samples-technical-note-470-2014-001.pdf
http://dx.doi.org/10.1186/gb-2014-15-2-r29
http://www.ncbi.nlm.nih.gov/pubmed/24485249
http://dx.doi.org/10.1093/nar/gkv007
http://www.ncbi.nlm.nih.gov/pubmed/25605792
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	RNA Yield and RNA Quality 
	miRNA Expression Analysis and Data Visualization 
	Evaluation of Selected miRNAs as Potential Classifiers 
	Correlation of miRNA with Tumour Size 
	Survival Analysis 
	Correlation of miRNA Abundance to Body Mass Index (BMI) 
	Pathway Analyses 
	Confirmation of Differentially Regulated miRNA 

	Discussion 
	Materials and Methods 
	Participants 
	Kidney Biopsies and RNA Extraction 
	Small RNA Library Preparation and Sequencing 
	Statistics and Next Generation Sequencing (NGS) Data Processing 
	Survival Analysis 

	Conclusions 
	
	References

