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Abstract: In this paper we present a model of a pump station consisting of two pumps in
parallel with a recycle line, and a nonlinear Model Predictive Control strategy for said pump
station with suction pressure as the controlled variable. The dynamics of the flow through
the pump station is described using slightly modified models previously presented for electrical
submersible pumps. By using the symbolic framework CasADi in Matlab, we solve the nonlinear
optimal control problem by first discretizing it using the single shooting method and then solving
the finite-horizon nonlinear program. Simulations in Simulink shows that the proposed solution
is able to track the suction pressure reference under various conditions and disturbances, while

respecting constraints.
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1. INTRODUCTION

After years of production from an oil-field, the pressure
in a reservoir will decline. This leads to lower production
unless the pressure is either maintained by pumping water
or gas into the reservoir or the pressure downstream the
well is reduced (Bai and Bai, 2012). Boosting reduces the
back pressure seen by the well, which causes a higher flow
rate of produced fluids from the well and hence allows for a
longer tail end production or, if boosting is installed from
the beginning of production, a higher production plateau.

Subsea boosting was introduced in the 90’s and aims
at accelerating and prolonging the production plateaus
of economically marginal subsea fields. Subsea boosting
enables tie-backs from satellite fields to existing produc-
tion facilities (Solvik et al., 2013). As an example, Sta-
toil estimated that the installation of a subsea processing
unit consisting of water separation and pressure boosting
would increase the recovery factor from 49 to 55% and
extract an additional 35 million barrels of oil from the
Tordis field (Gjerdseth et al., 2007). The typical impact of
boosting on a brown field (old field) is depicted in Fig. 1.

A subsea production manifold experiences a back pressure
equal to the hydrostatic pressure of the riser, which can
be hundreds of meters tall, e.g., the Tordis Field (Gjerd-
seth et al., 2007). By inserting a boosting station, this
back pressure can be reduced, which in turn leads to an
increased or prolonged production. The boosting station
also helps bringing the produced hydrocarbons topside
by increasing the pressure downstream the station. The
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Fig. 1. Boosting in a brown field (old field) typically yields
additional production and leads to a reduced life
of field and hence, reduced operational expenditures
(OPEX).

boosting station consists of one or more pumps and asso-
ciated support systems.

Model predictive control (MPC) is commonly used in
the process industry because it combines control, either
tracking or regulation, with constraint handling (Camacho
and Alba, 2013). While linear MPC has been a preferred
method of control in the industry for several decades,
nonlinear MPC (NMPC) is still fairly uncommon. While
linear MPC only considers a linear prediction model, either
based on step-responses or linearization, the NMPC has
the ability to take system nonlinearities into account.
However, the complexity of the problem, with regards to
computational time and tuning, increases with the use of
NMPC (Allgower, 2005).

Recent papers, (Pavlov et al. (2014); Krishnamoorthy
et al. (2016); Binder et al. (2014)), presents linear MPC
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strategies for electric submersible pumps (ESPs). These
pumps are submerged into the oil-well and uses the same
principle of suction pressure reduction to increase produc-
tion as the multiphase pumps. In Pavlov et al. (2014),
a simple model of an ESP-lifted oil-well was presented
and a linear MPC developed based on step responses. The
results from simulations and large scale tests showed that
the linear MPC performed well.

The robustness of the MPC was put to test in Krish-
namoorthy et al. (2016), where a high fidelity simulator
was developed in Modelica. The process was tested with
different water cuts and the controller showed sufficient
robustness. In Binder et al. (2014) the MPC algorithm was
implemented on a PLC, and hardware-in-the-loop simu-
lations showed that the control performance of the PLC
implementation matched that of the original controller
which was developed using Statoil’s in-house software tool
for MPC, SEPTIC (Strand and Sagli, 2003). In fact,
SEPTIC was used in all the papers Pavlov et al. (2014);
Krishnamoorthy et al. (2016); Binder et al. (2014).

Nonlinear optimal control of ESPs was investigated
in Sharma and Glemmestad (2013) where a steady state
optimizer calculated the optimal fluid flow rate and pump
speeds for several pumps in parallel. The flow rates and
speeds were used as setpoints to two PI controllers which
set the pump speed and production choke opening. Since
the optimizer was based on steady-state, it had to be re-
run every time a process disturbance occurred.

Optimal control and scheduling of multi-pump systems
was studied in Yang and Bgrsting (2010b) and Yang
and Borsting (2010a). Here, a mixed integer nonlinear
program was solved to determine the number of pumps to
put into operation. Feedback control was used to counter
the uncertainties in the optimizer. In Yang and Bgrsting
(2010a) an identification algorithm was derived to estimate
unknown system parameters. The resulting optimizer was
tested on a test rig and showed a significant improvement
of the pump system’s efficiency.

Model predictive control of a pump system with parallel
pumps was investigated in Becquin et al. (2015). Here,
the process simulator K-spice and the multiphase flow
simulator LedaFlow were used to accurately model the
pump station and flow lines. These high fidelity simulators
were linked with Simulink, where the MPC algorithm was
implemented. Simulations of the start-up procedure was
presented and the simulations showed that the proposed
control solution worked very well.

In this paper we present a simple model of a subsea
pump station with a recycle line. The model is a modified
version of the model for ESP-lifted wells used in Pavlov
et al. (2014); Krishnamoorthy et al. (2016); Binder et al.
(2014). We then propose a control solution using an NMPC
that controls the speed of the multiphase pumps with
the goal of bringing the suction pressure to the desired
setpoint while considering the constraints on the system.
The NMPC control problem is solved in Matlab using the
symbolic framework CasADi v.3.1.0-rcl. CasADi is a free,
open-source software tool for nonlinear optimization (An-
dersson et al., 2012).

The paper is organized as follows: Section I describes the
process and the model used in simulations. The NMPC
controller is presented in Section IIT along with the control
objectives. Section IV contains the results of the simula-
tions and Section V concludes the paper.

2. MODELING

The system consists of two multiphase pumps in parallel
and a recycle line. The model of the pressure and flow
is based on a model which has previously been used to
describe ESPs in Pavlov et al. (2014), Binder et al. (2014)
and Krishnamoorthy et al. (2016). We use this model,
which describes flow through vertical pumps, to describe
the flow through horizontal pumps by modifying it slightly.
An overview of the system is shown in Fig. 2.

Several wells are producing to a manifold with pressure
P,,,. In the design of the controller we consider this to be
nominally constant, but we introduce variations to it in
the simulations.
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Fig. 2. Subsea pump station with two pumps in parallel
and recycle line.

The recycle line is included to ensure that the pumps
receive the minimum allowed flow at all times. The flow
that enters the pump inlets is the sum of the inlet flow and
the recycle flow. We assume that the flow is incompressible,
hence the flow that enters the pumps, ¢i, is the same flow
that exits the pumps, gs.

2.1 Pumps

A common way to describe the relationship between flow,
head and speed of a pump is to use affinity laws as
described in Takécs (2009). The affinity laws state that the
pressure difference over a pump changes proportionally to
the square of the speed and that the power required to
drive the pump changes proportionally to the cube of the
speed. The expressions for pump j are

AP;(w;) = Pjo(g5.0) <L:jjo)2 (1)
®j(ws) = ®j0(g5,0) <L:jjo>3 (2)

where AP; [Pa] is the pressure increase provided by the
pump, ®; [W] is the power consumed by the pump, w;
[rpm] is the speed of the pump, Pj;o(g;0) [Pa] is the
pressure increase at a given nominal flow ¢;o [m?3/s] and
a given nominal speed wjo [rpm]. ®; [W] is the power
consumption at nominal flow g; ¢ and nominal speed w; o.
The affinity laws only hold for incompressible fluids, so in
this paper we assume that the fluid is incompressible in the
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pumps and instead reduce the nominal pressure increase of
the pump to account for the gas; a higher compressibility
reduces the volumetric efficiency of pumps as described
in Nesbitt (2006).

2.2 Pressure and flow dynamics

The pressure upstream and downstream the pumps are
modelled using mass balances following Egeland and Grav-
dahl (2002). The mass balance for a control volume V' is
given by

d

dt
where w; = pg; [kg/s] is the mass flow and ¢; [m3/s] is
the volumetric flow into the volume, while w, = pq, [kg/s]
is the mass flow and ¢, [m3/s] is the volumetric flow out
of the volume. Inserting this into (3) and using V = 0
(incompressible fluid) gives

(PV) = wi —w, (3)

PV =p(a— ) - (4)
Pressure and density are related by their differentials by
dp dP
2= (5)
p B

where 3 [Pa] is the bulk modulus of the fluid. For the two
volumes V; and V, and pressures P; and Py (Fig. 2), we
then get

Plz%(Qin"‘QT_QQ) (6)
P2:%(q27q7‘7qout) . (7)

The different flows are the flow from the manifold g,
the recycle flow ¢, the flow through the pumps ¢2 and
the outlet flow q,,:. Note that since we assume that the
flow through the pumps is incompressible, ¢, = qour and
G2 = Gin +qr = q1. The flows ¢, ¢ and goy: are described
by orifice equations

P, — P
Qin = Cd,inAin ( P 1) (8)
P, — P
qr = Cd,’r‘A'r‘Z’r (2p1) (9)
Py, — P.
Qout = Cd,outAoutzout (2[)3) (10)

where P,, is the pressure at the manifold, Cy ;p, Cq4.r, Cd,out
€ (0,1] are the discharge coefficients, A;,, A, and A, are
the cross-sectional areas of the pipes at the inlet, recycle
line and outlet, respectively. The valve openings of the
recycle line and outlet valve are represented by z, € [0, 1]
(between 0 and 1) and zgy: € {0,1} (either 0 or 1).

The dynamics of the flow after the pumps, ¢, is described
by mass balances in the same manner as in Pavlov et al.
(2014), Krishnamoorthy et al. (2016) and Binder et al.
(2014)

1
Q2ZM(P1*P2*P3+AP1+AP2) (11)
where the fluid inertia is described by M = %[kg/m‘*]

where [ is the length of the pipes between the pumps and

the outlet choke valve and A, is the cross-sectional area of
the pipes. AP;, j € {1, 2} is the pressure increase provided
by each pump. Inserting (1) into (11) gives

2

1 w

i <P1 P2—P3+P10(Q10)< 1)
w10

+ P2,0(g2,0) (wfof)

where w; and ws are the speeds of Pump 1 and Pump 2,
respectively. The system is then given by (6), (7) and (12).

Go =

(12)

3. CONTROL

3.1 Control objectives

We wish to use the pumps to maintain a desired suction
pressure P; 4. The pumps are constrained by their maxi-
mum speed and maximum allowed change in speed, as well
as maximum available power. In addition, due to safety
concerns and the requirements of the topside production
equipment, the flow should be kept as steady as possible
and there is a maximum allowable flow rate.

In this paper we only investigate normal operation of the
pump station, i.e., we do not consider start-up or shut-
down sequences. Pressure and flow are assumed continu-
ously measured, no observer is used and no process noise
is added. Measurement noise is used in some simulations.

3.2 Limits

The pump model is in the following based on reason-
able/typical performance limits. The pumps are assumed
to be limited by a maximum power consumption, ®,x =
2235 kW. The rotation speed of each pump, under nor-
mal operation, is limited to between wpi;, = 500 rpm
and wmpax = 3800 rpm. The maximum allowed change
in pump speed is Awpax = 60 rpm/s. The topside re-
ceiving facility limits the maximum allowed fluid flow to
Gout,max = 1900 mg/h

3.8 Control design and implementation

The process, described by (6), (7) and (12), contains
nonlinearities, and since the controlled variables and ma-
nipulated variables are subject to constraints, a nonlinear
model predictive controller (NMPC) is proposed as control
solution.

We define the tracking error as ]51 = Pi— P, g where Py 4is
the desired suction pressure. The continuous-time optimal
control problem (OCP) is formulated as

Py 2 qS) dt (13)

2, max

. / ’ 2!
min

Plvq?(t) 0 <P12max
over the time horizon T'. The first term ensures reference
tracking while the second term attempts to maintain a
constant flow. The weights 71,72 > 0 are the weights on
the reference tracking and change in flow respectively. The
division by P1 "max and q2 max €Dsures that the weights are
normalized. Note that the inputs wi, we do not directly
enter the cost function; cost is only associated with changes
in total pump flow go.
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The OCP is subject to the inequality constraints

|Aw| < Awmax (14a)
—Pi(t) < —Pimin (14b)
0<® < Prax (14c¢)
Q2,low < 42 < ¢2,max (14d)

and the equality constraints describing the system dynam-
ics

Pl - fl(an(t)7 QT(t)v qQ(t)) (15)
Py = fa(q2(t), (1), Gour (1)) (16)
G2 = f3(P1(t), Pa(t), P3(t), w(t)) (17)

with given initial conditions P;(0), P>(0),¢2(0) and func-
tions f1, fa, f3 defined by (6), (7) and (12), respectively.

The NMPC algorithm seeks to repeatedly solve a finite-
horizon optimal control problem using the latest measure-
ments as initial states P;(0), P2(0), ¢2(0). The solution to
the optimal control problem is a sequence of piecewise
constant inputs that minimizes the cost function while
satisfying the constraints. Only the first optimal input is
used, and then new optimal inputs are calculated when
the algorithm runs again at the next time step.

In order to solve the nonlinear OCP we first transcribe
the infinite dimension OCP described by (13)—(17) into
a discrete-time finite dimension OCP. In this paper we
use the direct single-shooting method, as described in Jo-
hansen (2011), to eliminate the continuous-time dynamics.
We use a 4th order Runge-Kutta method with a step
length of 0.01 second to solve the discrete dynamics of the
prediction model in the MPC algorithm. The control w()
is realized by piecewise constant controls wy on a fixed,
evenly spaced grid 0 = t) < t;1 < ... <ty =T of N
intervals K =0,...,N — 1, i.e.,

w(t) =wy ift € [tk,tk+1) . (18)

3.4 Recycle loop control

The recycle loop ensures that the pumps receive the
minimum required inlet flow. The recycle loop valve is
controlled with a PI controller. The NMPC receives a
measurement of the recycle loop flow and uses this in the
prediction model, but otherwise the two control loops are
completely independent.

It is useful to always have a certain recycle flow to avoid
temperature issues in the recycle loop, hence the recycle
control valve is typically never less than 20% open. If the
inlet flow is higher than the minimum flow we do not
want to close the valve and bring the flow down, hence the
proportional part of the PI controller is only activated if
the actual inlet flow is lower than the minimum limit. Since
the minimum valve opening is 20% the contribution from
the integrator is limited between 20% and 100% to avoid
windup issues. The error variable for the PI controller is
defined as e £ @1,min — 1. The recycle loop control solution
is depicted in Fig. 3.

4. RESULTS

The process model consisting of (6), (7) and (11) was im-
plemented in Simulink. We used Matlab and the symbolic
framework CasADi to solve the OCP by first discretizing

1
—>S
Fig. 3. PI controller solution. The proportional part is only

activated if the flow is less than the minimum. The

integral contribution is limited to between 0.2 and 1
to avoid windup issues.

using single shooting and then solving the resulting non-
linear program with the IPOPT solver.

We tested 3 different scenarios in this paper. In the first
scenario, we consider identical pumps and introduce a
disturbance to the upstream conditions which causes the
inlet flow to decrease. This will cause the recycle loop
control system to open the valve and increase the recycle
loop flow to ensure that the minimum flow requirements
are met.

The second scenario is the same as the first scenario, but
we introduce additive zero-mean Gaussian white noise to
the measurements prior to the NMPC. The noise has a
variance of 3% of the normal value of the measurement
and all noise generators use different seeds (i.e., are uncor-
related).

In the third scenario we consider pumps with different wy,
Py, and ®3. The nominal speed of Pump 2 is changed

to wp,2 = 2600 rpm, the nominal pressure increase to
P,o = 25 bar and the nominal power consumption to
®y0 = 1000 kW. We use the same measurement noise

as in Scenario 2.

In all scenarios we introduce a positive step from 15.3 to
25.3 bar in the downstream pressure Ps at t = 300 s and a
step back to 15.3 bar at t = 600 s. The process is initialized
with ¢2(0) = 900 m3 /h, P;(0) = 30bar and P»(0) = 35bar.
We used the ode4b solver in all simulations. The NMPC
algorithm runs every second and a zero order hold block
keeps the measurements constant between samples. The
values used in the model is presented in Table 1 and
the parameters used in simulation of Scenario 1 and 2 in
Table 2 and Scenario 3 in Table 3.

Table 1. Model parameters

Parameter  Value Description

Jé] 109 [Pa] Bulk modulus

P 600 [kg/m3]  Density of fluid

Vi 1.6215 [m?] Volume upstream pumps

Vo 0.8107 [m3]  Volume downstream pumps
Cd in 0.55[-] Discharge coeff., inlet

Ca,r 1[-] Discharge coeff., recycle loop
Cd out 0.55 [-] Discharge coeff., outlet

Ay 0.0081 [m?]  Pipe cross section areas

l 50 [m] Pipe length, pump to outlet
Zout 1[-] Outlet valve opening
1517max 4 x 108 [Pa]  Normalizing factor

G2, max 0.1 [m3/s2?] Normalizing factor
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Table 2. Parameters used in Scenario 1 and 2

Parameter  Value Unit
P, 5 x 108 Pa
P3 1.53 x 106 Pa
1, Y2 100, 10 -
T 3 s
N 3 -
w1,0, W2,0 3300 rpm
Pl,(), ng() 2.3 x 106 Pa
D10, P2 1500 x 103 W
3
kp 20 s/m
ki 10 s?/m3
6
4 x10
T 3 L\
a 1
- 1
o o —P, il
Lo L]
4 \ \ \ \ \ \ \ !
0 200 400 600 800 1000 1200 1400 1600 1800
Time [s]
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Fig. 4. Scenario 1 simulation results.

4.1 Scenario 1: Identical pumps, upstream disturbance, no
measurement noise

As can be seen from Fig. 4, the NMPC is able to track
the desired setpoint while respecting the constraints on
change in pump speed and maximum power. When the
step in the downstream pressure occurs at ¢ = 300 s, the
pumps are initially able to maintain the setpoint, but then
the power constraint is met which leads to the deviation

between setpoint and measurement between t ~ 400 s and
t ~ 700 s.

At t = 1300 s, the upstream disturbance occurs and, as
shown in Fig. 4, it takes approximately 50 seconds for the
flow to reach the minimum limit and cause the recycle
control loop to engage. The valve opens, the recycle flow
increases and hence, the inlet flow is brought back to the
minimum value for the remainder of the simulation.

4.2 Scenario 2: Identical pumps, upstream disturbance,
measurement noise

In this scenario we introduce measurement noise to
all measurements used in the NMPC algorithm, i.e,

125
2 X1 0°
T 3 1
e, 1
o o o 4
— P‘
| ‘ | | ‘ ‘ ‘ | |=_—setpoint
0 200 400 600 800 1000 1200 1400 1600 1800
Time [s]
2000 T T
= —aq,=q,
o ~— Min. inlet flow
e 1500 i
N
o
i 1000 o)
o
500 . . . . . . . .
0 200 400 600 800 1000 1200 1400 1600 1800
Time [s 8
'E 4000 [ x10
= -
8 3000 %’ 2 = Power pump 1
2 039 —— Power pump 2
@ 5000 31 Max power
g— —Pump 1 o
5 ——Pump 2
o 1000 0
0 500 1000 1500 0 500 1000 1500
. Time [s] Time [s]
< 600 1
o
£
= 400 _—
2 05
[0}
S 200 ]
>
(8]
g o 0
0 500 1000 1500 0 500 1000 1500
Time [s] Time [s]

Fig. 5. Scenario 2 simulation results.

Py, P, P53, P, g2 and gq,. The results are shown in Fig. 5,
where we see that the NMPC is still able to produce
inputs for the pumps that enables setpoint tracking and
constraint handling. The minimum inflow boundary is
breached at certain points due to the magnitude of the
measurement noise and the sampling time of the NMPC.
This could probably have been improved by filtering the
measurements before using them in the NMPC, or by
increasing the sampling time of the NMPC algorithm. An-
other solution is to add a back-off to prevent the minimum
flow from reaching the actual minimum flow. The downside
of this is that more fluid than strictly necessary is recycled,
which leads to reduced production.

4.8 Scenario 3: Non-identical pumps, upstream disturbance,
measurement noise

We now change the nominal speed of Pump 2 to wyo =
2600 rpm, the nominal pressure increase to AP,y = 25
bar and the nominal power consumption to ®3 ¢ = 1000
kW. This implies that Pump 2 can produce a higher
pressure increase at a lower speed and that its power
consumption is slightly higher than that of Pump 1. As
shown in Fig. 6, there is a difference in the pump speeds
and power consumptions of Pump 1 and Pump 2. Due
to the increased pressure increment provided by Pump 2,
we are now able to better track the setpoint when the
downstream disturbance occurs at ¢ = 400 s.

5. CONCLUSION

In this paper we have presented a model of, and a nonlinear
Model Predictive Control solution for, a subsea pump
station with two pumps in parallel with a recycle line.
Simulations show that the solution is robust to measure-
ment noise and is able to achieve the objective, but the
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Table 3. Parameters used in Scenario 3

Parameter  Value Unit
P, 5 x 108 Pa
Ps 1.53 x 106 Pa
Y1, Y2 100, 10 -
T 3 s
N 3 -
w1,0, W2,0 3300, 2600 rpm
Pio, Py 2.3 x 105, 2.5 x 10° Pa
D10, P2 1500 x 103, 1000 x 103 W
kp 20 s/m3
ki 10 s2/m3
><106

4

-

1
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Fig. 6. Scenario 3 simulation results.

minimum flow constraint is breached at certain points. To
avoid this one could introduce a filter or back off further
from the true constraint.

The NMPC solution also works when the two pumps have
different efficiency. This opens for more varied optimal
control schemes. One could for instance allocate more
production to the most effective pump. Implementing this
in the controller remains future work.

The recycle line control valve can be added to the MPC
algorithm. Investigating this scheme remains future work.
Currently, the controller uses what is effectively a single-
phase pump model; a true multiphase pump model is
desirable as subsea boosting is frequently multi-phase.
Both developing the model and the controller for this
model remains future work.
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