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Abstract

Today there is an immense production of data, and the need for better methods to
analyze data is ever increasing. Topology has many features and good ideas which seem
favourable in analyzing certain datasets where statistics is starting to have problems.
For example, we see this in datasets originating from microarray experiments. However,
topological methods cannot be directly applied on �nite point sets coming from such
data, or atleast it will not say anything interesting. So, we have to modify the data sets
in some way such that we can work on them with the topological machinery. This way
of applying topology may be viewed as a kind of discrete version of topology. In this
thesis we present some ways to construct simplicial complexes from a �nite point cloud,
in an attempt to model the underlying space. Together with simplicial homology and
persistent homology and barcodes, we obtain a tool to uncover topological features in
�nite point clouds. This theory is tested with a Java software package called JPlex, which
is an implementation of these ideas. Lastly, a method called Mapper is covered. This
is also a method for creating simplicial complexes from a �nite point cloud. However,
Mapper is mostly used to create low dimensional simplicial complexes that can be easily
visualized, and structures are then detected this way. An implementation of the Mapper
method is also tested on a self made data set.
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Figure 1: A Microarray experiment.

1 Introduction

In the present day, data of varoius kinds are being produced as never before. These
might come from new experimental methods, in the study of di�erent kinds of networks
like Facebook, scanning of geometrical objects, results from psychological questionaire
responses and so on. The challenge is that this production of data is developing faster
than our capabilities to deal with them. This is were topology might be in a position to
contribute to the greater good. Let us take a look at a new experimental method using
microarrays and how topology might have favourable attributes to deal with challenges
present in analyzing these types of data sets.

A microarray is a tool for analyzing genes. All biological cells contain a full set of chro-
mosomes and identical genes, but only a small part of these are active. This means that
di�erent cells produce di�erent types and amounts of messenger RNA(mRNA), which
are the blueprints for making proteins. This process is termed gene expression. The
microarrays work by exploiting the fact that a given mRNA molecule is able to bind,
hybridize, to the DNA template from which it originated. So a microarray is a small
membrane or glass slide containing an array of selected DNA samples, called probes.
These may number in the hundreds or thousands. The microarray is then exposed to
mRNA from sample cells alone or together with mRNA from control cells. This will then
produce di�erent light intensities or color variations on the array, depending on which of
the metods above is used, and relative gene expression levels are expressed at the speci�c
probe spots for speci�c genes.

With this new experimental method, several challenges have arised.

Qualitative di�erentiations. Often one want to try and distuingish gene expres-
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sions in di�erent types of specimens. Say we have breast cancer patients with or without
some type of mutation, and that the types of tumors are classi�ed beforehand by some
other method, for instance biopsy. Then, if there are di�erences in the gene expressions
of these two classes of tumors, this can be used for diagnostics.

High-dimensionality. A challenge when dealing with microarray data is the high-
dimensionality. Microarrays enable scientists to check thousands of genes simultaniously,
but the samples may only vary in the order of tens to hundreds, this is due to costs and
sample availability. Statistical analysis has been the tool of choice for dealing with these
types of data. The problem is that standard statistical methodology works best in the
opposite case, when the samples are in the thousands and the dimension is in the tens
or hundreds.

Relative quantities. As mentioned microarray analysis can only say something
about the relative gene expressions in a sample. DNA and mRNA consists of strands
with nucleotide base pairs, and in a microarray experiment the more correct pairs there
are between a DNA probe strand and an mRNA strand, the stronger the bonds are.
After an experiment the amount of pairs on a speci�c gene probe depends on experiment
conditions like temperature under hybridization, washing after hybridization and amount
of mRNA available. This means that it is the relative di�erences between quantities that
are important and not the quantities on their own.

No theoretical backed up metric. In contrast to physics, there is no theoretical
backed up metric to rely on to measure distance in these data sets. Metrics are mostly
computed with regard to all genes that are registered at some high enough value, or with
regard to genes that show some meaningfull variation across the sample set. However,
often there are relatively few genes that separate di�erent specimen classes, and cluster
analysis, which creates groups of cluster with respect to these metrics, will often not
pay enough attention to the e�ects of these genes. In short one can not really trust the
metrics that much here.

Noise. There may be a lot of noise in microarray experiments. Some mRNAs may
cross-hybridize to other probes which are supposed to detect other mRNA, there might
be cases where probes are based on information incorrectly associated with the gene they
are supposed to detect, and there are measurement di�culties as well.

Let us see what topology has to o�er. Topology only study the properties of geomet-
ric objects that does not depend on coordinates. When in a metric space, only relative
positions are important, which is the case with data sets from microarrays.

Topology is the branch of mathematics that deals with qualitatively di�erentiation.
More speci�cally, we will in this paper focus on homology, which is a crude measure of
topological properties. Through the lenses of homology a circle and a square are not dis-
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tuingishable. This is because homology is invariant under continuous deformations. This
means that because a circle and a square can be deformed to one another without any
tearing they are not distuingished. Whereas the letter 'B' and a circle is distuingished
because the letter 'B' cannot be deformed to a circle without ripping the letter apart
and visa versa. This line of thought is then applied for higher dimensional surfaces as well.

Because homology is invariant under continuous deformations, it follows that homol-
ogy is not as sensitive to the metrics chosen as other methods might be. As an example,
let us say that two points are connected by an edge if they are within some distance of each
other. Because of the invariance properties of homology, the actual length of the edge
does not really matter, only that it exists in the �rst place! This also makes homological
methods less a�ected by noise. The natural follow up question might be how to decide if
there is an edge or not, but before we look into that let us adress the high-dimensionality.

To adress the high-dimensionality, let us just go ahead and see how one can deal with
such data sets from a topological point of view. From microarray data sets we get a
matrix which consists of genes along the rows and samples in the columns. The entries
in this matrix are numbers which represent relative gene expression levels. The column
vectors can then be viewed as vectors in some metric space, for instance in euclidean
space, and we call them point clouds. Looking at the rows as vectors is also possible,
giving other studying possibilities.

Gene 1

Gene 2

Gene N

Sample 1 Sample n

Expression level

E
xpression

pro�le

Figure 2: Matrix consisting of relative gene expression levels.

The dimensional reduction methods that are often used are various clustering meth-
ods, these methods detect connectedness in the set. Say we are given a point cloud in
a metric space. Then we can decide that some points are close enough to be connected
and makes a cluster. Hence, we get a collection of clusters. Furthermore, there might
be connections between such clusters and clusters of clusters, and so on. What it does
not capture is higher dimensional connectivity data and structures. For instance, if we
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have points sampled from a sphere, which has a void in it. Can we extract this kind of
information?

Figure 3: A simplicial complex.

A central idea is to use what we call simplicial complexes, which are built from p-
simplices, a 0-simplex is a point, a 1-simplex is an edge, a 2-simplex is a triangle, a
3-simplex is a tetrahedron, and a p-simplex is a higher dimensional analog for a triangle.
So what happens is that some points are used as sca�olds for creating edges, like in clus-
tering, but then the edges can be used as sca�olds for building triangels, the triangles as
sca�old for building tetrahedrons and so on. In this way we hope to create a good model
of the underlying space, with similar topological features. These constructions can then
be analysed with homology to detect global higher-dimensional features. An example is
given in Figure 4.

When constructing a simplicial complex, we have to decide when points may be con-
nected by an edge and when these may be used for creating a triangle and so on. This
will often depend on a distance ε, as in Figure . Which epsilon should one choose? In
Figure , if we choose a too small ε, then no points will be connected, too large an ε
and all points will be connected. Remember that we generally do not know what the
underlying structure is, so how can we decide which ε gives the correct structure? More-
over, there is a good chance that such an ε does not even exist or it exists in a very
small neighborhood. A way to deal with this is persistent homology. It is possible to
construct simplicial complexes such that they increase in size with respect to some ε,
like in Figure , such that a simplicial complex constructed with a low ε is a subset of
a simplicial complex constructed with a higher ε. Hence, if we start with some small
ε and increase it in steps we get a sequence of simplicial complexes, where topological
features appear and dissappear. Then if features persist over a long time it might indi-
cate that these are actual features of the underlying space while short lived features are
most likely noise. This will be be illustrated by sets of intervals that we will call Barcodes.
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ε

Figure 4: The point-cloud on the left seems to have been sampled from a circle. One way
to build a simplicial complex is to draw edges between the points who are closer to each
other than some distance ε under the metric in question. From this we get a simplicial
complex and something even more resembling a circle. Through the lenses of homology
this is exactly the same as a circle or a loop. So from points that are 0-dimensional
objects we have inferred a 2-dimensional property.

To conclude the introduction, it seems that topology has favourable features to ana-
lyze such types of large data sets, like those coming from microarray experiments. This
way of applying topology may be viewed as a discrete version of topology, where ideas
in topology are being applied on discrete sets in some way. We will look into simplicial
homology and present some simplicial constructions which tries to approximate topolog-
ical spaces from points sampled from them. Then we will introduce persistent homology,
barcodes, and an algorithm for computing these barcodes from a point cloud. Further-
more, we will run some tests on points sampled from the unit torus and sphere with a
program called JPlex which uses this algorithm. We will also introduce a method called
Mapper, which is yet another method for creating simplicial complexes. Mapper does
mainly produce low dimensional simplicial complexes that are easily visualizable for us
humans, and hence exploits our own innate ability to detect features and structures. We
will also test the Mapper method on a simple data set. From now on it is assumed that
the reader has knowledge about general topology. For this topic, one may for example
consult [20].
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2 Simplicial homology

The main material in this introduction on simplicial homology has been gathered from
[10], [30]. The reader is assumed to have knowledge of basic abstract algebra. For this
topic, consult for example [1].

In the introduction we motivated the use of creating simplicial complexes on data sets
to approximate the homology of a underlying space. We will now introduce simplicial
homology. The homology theory which is applicable to all topological spaces is called
singular homology, which can be viewed as the "correct" answer, but we will not de�ne
singular homology here. Now, we would like to have some automatic way to compute
the homology of spaces via computer computations, but singular homology is not suited
for this and computational methods are done by hand. However, the computation of
simplicial homology can be made combinatorial, which makes it available for computer
computations. The underlying topological spaces will naturally not be simplicial com-
plexes but, if the underlying space is homotopy equivalent to a simplicial complex, then
their homology will be the same. If such a homotopy equivalence does not exist, the
constructed simplicial complex will hopefully still approximate the space in some way
and tell us something about it.

2.1 Homological algebra

Since we are going to introduce a homology theory we introduce some basic homological
algebra.

De�nition 2.1. A chain complex (A∗, d∗) is a sequence of abelian groups or modules,

· · · Ap+2 Ap+1 Ap Ap−1 Ap−2 · · ·
dp+2 dp+1 dp dp−1

connected by homomorphisms dp : Ap → Ap−1 such that the composition of any two
consecutive maps is zero, i.e. dp−1 ◦ dp = 0 for all n. These maps are called boundary
operators.

De�nition 2.2. If C = (A∗, d∗) is a chain complex, then we de�ne the p-th homology
of this chain complex to be the quotient

Hp(C) =
ker(dp)

im(dp−1)
.

This is ok since the property d ◦ d = 0 gives that im(dp+1) ⊆ ker(dp).

De�nition 2.3. If (A∗, d
A
∗ ) and (B∗, d

B
∗ ) are two chain complexes then a chain map φ :

(A∗, d
A
∗ )→ (B∗, d

B
∗ ) is given by a sequence of homomorphisms φp : (A∗, d

A
∗ )→ (B∗, d

B
∗ )

such that dBp ◦ φp = φp−1 ◦ dAp .
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2.2 Simplicial complexes

Simplicial homology is based on computing homology of simplicial complexes so we start
with de�ning simplices and simplicial complexes.

De�nition 2.4. Let x and y be points in Rn. De�ne the segment from x to y to be
{(1 − t)x + ty|0 ≤ t ≤ 1}. A subset C ⊆ Rn is convex if for all pairs (x, y) in C the
segment from x to y lies entirely in C. Note that an arbitrary intersection of convex
sets is convex. Let A ⊆ Rn, and de�ne the convex hull of A to be the intersection of all
convex sets in Rn which contain A.

De�nition 2.5. A p-simplex σ in Rn is the convex hull of a set of pointsK = {v0, v1, ..., vp}
such that {v1 − v0, v2 − v0, ..., vp − v0} are p linearly independent vectors in Rn. We call
{v0, v1, ..., vp} the vertices of σ.

If we had chosen any other ordering σi0 , σi1 , ..., σip of the vertices, then {σi1 −
σi0 , σi1σi0 , ..., σip − σi0} would still be p-linearly independent vectors in Rn.

De�nition 2.6. Let σ be a p-simplex de�ned by K = {v0, v1, ..., vp} ⊂ Rn. A simplex τ
de�ned by L ⊆ K is called a face of σ, and if |τ | = (p−n), then τ is called a (p−n)-face
of σ.

De�nition 2.7. If a p-simplex σ is de�ned by the set S = {e0, e1, ..., ep} consisting of
the unit vectors in Rn, then σ is called the standard p-simplex.

0-simplex 1-simplex 2-simplex 3-simplex

Figure 5: Examples of simplices.

De�nition 2.8. A simplicial complex S in Rn is a set of simplices s.t.

1. If σ ∈ S, then every face of σ is in S.

2. If σ, τ ∈ S and σ ∩ τ 6= ∅, then σ ∩ τ is a simplex whose vertices are also vertices
of both σ and τ .

See Figure 3 again.

De�nition 2.9. Let S be a simplicial complex. The support |S| =
⋃
σ∈S σ of S in Rn is

the union of the simplices which belong to it.

De�nition 2.10. Let S and T be two simplicial complexes. A map f : S → T is called
a simplicial map if whenever a set of vertices {v0, ..., vn} of S span a simplex in S, then
{f(v0), ..., f(vn)} span a simplex in T .
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De�nition 2.11. A subcomplex of a simplicial complex S is a simplicial complex L ⊆ S.

De�nition 2.12. A �ltration of a simplicial complex S is a nested sequence of subcom-
plexes

∅ = S0 ⊆ S1 ⊆ · · · ⊆ Sm = S.

We call a simplicial complex S with a �ltration for a �ltered complex.

This was the geometric de�nition of a simplicial complex. However, we can de�ne
simplicial complexes without any geometry involved. This de�nition is purely combina-
torial, and hence easily stored and manipulated in a computer. So it is this type that is
used during applications, however, as we will see, we can still think of them intuitively
as the geometric ones.

De�nition 2.13. An abstract simplicial complex is a pair (K,Σ), where Σ is a collection
of nonempty �nite subsets of K, called (abstract) simplices, such that:

1. For all v ∈ K, {v} ∈ Σ. The sets {v} are called the vertices of K.

2. If τ ⊆ σ ∈ Σ, then τ ∈ Σ.

Moreover, we call (K,Σ) a �nite abstract simplicial complex if |K| is �nite. A simplex σ
is a p-simplex if |σ| = p+ 1 and if |σ| = 1 then σ is called an edge. If τ ⊆ σ, then τ is a
face of σ.

We can relate this combinatorial de�nition to the geometric one.

De�nition 2.14. Let S be a simplicial complex and let K be the vertex set of S, i.e. all
the vertices in S. Furthermore, let Σ be the collection of all subsets {vi0 , vi1 , ..., vin} of
K such that the vertices {vi0 , vi1 , ..., vin} span a simplex of S. The collection Σ is called
the vertex scheme of S.

De�nition 2.15. If the abstract simplicial complex (K,Σ) is isomorphic with the vertex
scheme of the simplicial complex S, then S is said to be a geometric realization of (K,Σ).

De�nition 2.16. Given a �nite abstract simplicial complex (K,Σ) we can create a
geometric realization |(K,Σ)| of it in the following way. Let φ : K → {1, 2, ..., n} be a
bijection. We then de�ne |(K,Σ)| to be the subspace of Rn given by the union ∪σ∈Σc(σ),
where c(σ) is the convex hull of the set {eφs}, and where ei are the unit vectors Rn. The
space |(K,Σ)| is a simplicial complex and we will call it the standard geometric realization
of (K,Σ).

Example 2.17. Let φ be the map that maps φ(a) = 1, φ(b) = 2, φ(c) = 3 and
φ(d) = 4. Let the abstract simplicial complexes be given by K = {a, b, c}, Σ =
{{a, b}, {a}, {b}, {c}}, Σ′ = {{Σ {a, c}, {b, c}}, and Σ′′ = {{Σ′, {a, b, c}}. Then we get
the following showed in Figure 6. If K = {a, b, c, d} and Σ′′′ = {{Σ′′}, {a, d}, {d}}, then
we get the following showed in Figure 7.
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|(K,Σ)| |(K,Σ′)| |(K,Σ′′)|

(1,0,0)(0,1,0)

(0,0,1)

a

b

c

ab

c

ab

c

Figure 6: See Example 2.17 for an explanation.

|(K,Σ′′′)|

ab

c

d

Figure 7: See Example 2.17 for an explanation.

Theorem 2.18. All geometric realizations of an abstract simplicial complex are homo-
topy equivalent.

Hence, all geometric realizations of an abstract simplicial complex are viewed as the
same in eyes of homology.

Finally, abstract subcomplexes and �ltrations are de�ned in a similar manner as we
did earlier for simplicial complexes. Hence, due to the similarity we will often just say a
complex to refer to both the geometric and abstract version.

2.3 Simplicial homology

To de�ne a homology on simplicial complexes, we create chain complexes from the sim-
plicial complexes. We create our abelian groups in the chain complex as follows.

De�nition 2.19. Let S be a simplicial complex. An orientation of a p-simplex σ =
{v0, v1, ..., vp} ∈ K is an equivalence class of orderings of the vertices of σ, where

(v0, v1, ..., vp) ' (vτ(0), vτ(1), ..., vτ(p))

are equivalent if the parity of the permutation τ is even. A simplex with an ordering is
called an oriented simplex, and is denoted by [σ].

De�nition 2.20. The p-th chain group Cp(S) of a simplicial complex S, is the free
abelian group on the oriented p-simplices, where [σ] = −[τ ] if σ = τ and σ and τ
have di�erent orientation. An element c ∈ Cp(S) is called a p-chain and is of the form
c =

∑
nq[σq] with σq ∈ S and coe�cients nq ∈ Z.
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a

[a]

a b

[a, b]

a b

c

[a, b, c]

Figure 8: Oriented simplices.

Next we need a boundary operator ∂p : Cp → Cp−1 so that ∂p−1 ◦ ∂p = 0. Let us
consider a basis element σ = [v0, ..., vp] ∈ Cp. If we do a sum over all the (p − 1)-faces
of σ in a way such that if we do it twice we end up with the empty set, then this is our
desired operator.

De�nition 2.21. Let S be a simplicial complex and let σ = [v0, v1, ..., vp] ∈ S. The
boundary homomorphism ∂p : Cp(S)→ Cp−1(S) is given by

∂pσ =
n∑
i=0

(−1)i[v0, v1, ..., v̂i, ..., vn],

where [v0, v1, ..., v̂i, ..., vn] denotes that vi is removed. This is well de�ned; that is, ∂k is
the same for every ordering in the same orientation. Also ∂ ◦ ∂ = 0.

We are now able to de�ne the homology of a simplicial complex.

De�nition 2.22. Elements in Zp = ker(∂p) are called cycles.

De�nition 2.23. Elements in Bp = im(∂p+1) are called boundaries.

De�nition 2.24. Let S be a simplicial complex. The p-th homology group of S is
de�ned to be the quotient

Hp(S) =
Zp
Bp

.

Example 2.25. The following triangle T is a simplicial complex consisting of one 2-

v0 v1

v2

simplex and its faces.

Let us check if ∂ ◦ ∂ = 0. Since ∂0([vi]) = 0 we have that ∂0 ◦ ∂1 = 0. Let z ∈ Z,
then for ∂1 ◦ ∂2 we have that:

∂1 ◦ ∂2(z[v0, v1, v2]) = ∂1(z[v1, v2]− z[v0, v2] + z[v0, v1])

= z([v2]− [v1]− [v2] + [v0] + [v1]− [v0])

= 0.
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Since there are no p-chains for p > 2, we get that ∂p ◦ ∂p+1 = 0 for all p.

Next let us compute H0(T ). Let a, b, c, zi ∈ Z.

∂1(a[v0, v1] + b[v1, v2] + c[v0, v2]) = (a− b)[v1]− (a+ c)[v0] + (b+ c)[v2].

A 0-chain z0[v0] + z1[v1] + z2[v2] is in im(∂1) i� z0 = a− b, z1 = a+ c and z2 = b+ c for
some a, b, c ∈ Z. This gives two degrees of freedom, i.e. im(∂1) ' Z⊕Z. Since ∂0[vi] = 0,
ker(∂0) = {a[v0] + b[v1] + c[v2]|a, b, c ∈ Z} ' Z⊕ Z⊕ Z. This gives that

H0(T ) =
Z⊕ Z⊕ Z
Z⊕ Z

∼= Z.

Now, we would like to use this de�nition of homology on other topological spaces
than simplicial complexes. The idea is to turn a given space into a simplicial complex
in a way that does not change the homology of the space. This is not always possible,
but if it is the resulting simplicial complex we can then handle. Let us �rst recall the
following.

Theorem 2.26. If X and Y are two topological spaces and f : X → Y is a homotopy
equivalence, then X and Y induce the same homology in any homology theory.

Particularly remember than any homeomorphism between two spaces is a homotopy
equivalence.

De�nition 2.27. A triangulation of a topological space X is a homeomorphism T :
|S| → X from the support of S to X. If such a triangulation of X exists, we say that X
is triangulable.

De�nition 2.28. If T : |S| → X is a triangulation of X, then we de�ne the p-th
homology group of X with respect to T as

HT
p (X) = Hp(S). (1)

To de�ne the simplicial homology Hsimp(X) of a triangulable topological space X,
we would have to consider re�nements of triangulations and taking a direct sum, we will
not do that. However we can think of Hsimp(X) as the same as HT

p (X), where T is any
triangulation ofX, since the following theorem will ensure us that they are isomorphic. It
also ensures us that HT

p (X) and Hsing
p (X) are the same isomorphically, where Hsing

p (X)
denotes singular homology.

Theorem 2.29. If T : |S| → X is any triangulation of a topological space X then there
are natural isomorphisms

Hsimp
p (X) ∼= Hsing

p (X) ∼= HT
p (X),

where Hsimp
p (X) denotes p-th simplicial homology group and Hsing

p (X) denotes the p-th
singular homology group.
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Remark 2.30. Note that a complex does not necessarily need to be a triangulation of a
topological space X to have the same homology. It is enough that it is a triangulation of
a topological space Y that is homotopy equivalent to X.

As a consequence of Theorem 2.18, the homology of geometric realizations of an
abstract simplicial complex are all the same. The �abstract simplicial homology� is
constructed exactly in the same manner as for the simplicial homology, just exchange
the p-simplex from a simplicial complex with its corresponding abstract p-simplex giving
us the same thing. Computation of the simplicial homology does then become purely
combinatorial.

2.4 Alternative coe�cients and betti numbers

Earlier we created chain groups Cp(S) with coe�cients in Z. We can however view
these groups as a Z-modules, and as a result the homology groups Hp(S) also become
Z-modules. In this case we say that the homology groups have ground ring of coe�cients
in Z. Now, we can change this ground ring of coe�cients. So, if the ring is a Principal
Ideal Domain(PID) D, we will obtain homology groups that can be viewed as D-modules.

De�nition 2.31. Let S be a simplicial complex, and let D be a PID. Then we let
Hp(S;D) denote the homology group of S with coe�cients in D.

The structure of such �nitely generated D-modules is given by the following theorem.

Theorem 2.32. If D is a PID and M is a �nitely generated D-module, then

M ∼=
(
DB
)
⊕

(
m⊕
i=1

D

diD

)
,

where di ∈ D such that di | di+1, and B ∈ Z. The left part in the above expression is
called the free part while the right part is called the torsion part. If D = F is a �eld, then
the torsion part dissappears as a �eld does not have any non-trivial ideals, that is, any
element in F generates F . Hence, if M is an F -module it has the form

M ∼= DB.

De�nition 2.33. Let S be a simplicial complex, and let D be a PID. Then

Hp(S;D) ∼= (Dr)⊕

(
m⊕
i=1

D

diD

)

and the p-th betti number of S with coe�cients in D is r. The context will make clear
what space and ground coe�cient ring is used, and we will denote the p-th betti number
by Bp.

Remark 2.34. Singular homology groups over any topological space also have this struc-
ture, and betti numbers is de�ned in the same way.



2.4 Alternative coe�cients and betti numbers 13

The torsion part is what recognizes torsion in a space. If the space is without torsion,
then the space is fully described by its betti numbers which then is the same for any ring.
We may also mention that subcomplexes of S3 do not have torsion. We can understand
the p-th Betti number Bk as a measure of the p-dimensional connectivity of a space. For
a better intuitive notion, let us see what this means in dimensions two and three. In two
dimensions B0 is the number of connected components while B1 is the number of holes
and all higher betti numbers are zero. In three dimensions B0 is again the number of
connected components, B1 is the number of tunnels or handles, and B2 is the number of
voids.

Example 2.35. In Figure 9 we have three(triangulable) spaces. The �gure to the left is
two annuluses connected together, the �gure in the middle is a torus, and the �gure to
the right is S2.

B0 = 1, B1 = 2

In R2 :

B0 = 1, B1 = 2, B2 = 1

In R3 :

B0 = 1, B1 = 0, B2 = 1

In R3 :

Figure 9: Betti numbers for di�erent topological spaces.

Later on when we introduce persistent homology and barcodes, it is these betti num-
bers we will use to track features and see how they change and persist over time for a
�ltered complex.

We may add that even though computing homology over �elds does not detect torsion
in a space directly, it can be detected indirectly. That is, if we compute homology over a
space with two di�erent �elds as coe�cients and the results are di�erent, then the space
has torsion. Let us give an example.

Example 2.36. Let K be the Klein bottle(which is triangulable). The homology of the
Klein bottle is as follows.

Hsimp
0 (K) = Z

Hsimp
0 (K) = Z× Z2

Hsimp
0 (K) = 0

Now if we compute homology over the �elds Z2 and Z3, we get the betti numbers,

Bp(K,Z2) = {1, 2, 1}
Bp(K,Z3) = {1, 1, 0}
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for p = 0, 1, 2 respectively. We see that with coe�cients in Z2 the Klein bottle is misiden-
ti�ed as the torus, but we understand that it is not the torus as the betti numbers over
Z3 gives a di�erent result.

3 The nerve

Material in this section is gathered from [3], [24], and [29].

In this section we will introduce an important construction called the nerve complex
of a topological space X, which is construcuted from an open cover of X. It is an ab-
stract simplicial complex, and we will assert that there is a continuous map between the
space X and the nerve complex, and furthermore that with a certain type covers it is a
homotopy equivalence. This assures us that they induce the same homology. The nerve
complex is the basic idea from which we will construct simplicial complexes from point
clouds in a hope to create a good model of the underlying space.

In this section let X be a a topological space, and let U = {Uα}α∈A be a �nite open
cover of X.

De�nition 3.1. A p-simplex σ of U is an ordered collection of p+ 1 sets {Uα0 , ..., Uαq}
where Uαi ∈ U such that

⋂q
i=0 Uαi 6= ∅. This intersection is called the support of σ and

is denoted |σ|.

De�nition 3.2. The Nerve of U is the collection of p-simplices in U , and we denote it
by N (U).

De�nition 3.3. N (U) is an abstract simplicial complex. And we will call the standard
geometric realization of N (U) for the nerve complex of U .

We want to �nd a connection between X and N (U), and we will do this via the
following construction.

De�nition 3.4. Let U = {Uα∈A} be a �nite open cover of X. Then let

• 4[A] denote the standard simplex with vertex set A.

• 4[S] ⊆ 4[A], where ∅ 6= S ⊆ A denote the face of 4[A] with vertex set S.

• X[S] =
⋂
s∈S

Us ⊆ X.

By the Mayer-Vietoris blowup of X associated to U , we mean the subspace

M(X,U) =
⋃

∅6=S⊆A

4[S]×X[S] ⊆ 4[A]×X.

We note that there are two natural projection maps f : M(X,U) → X and g :
M(X,U)→4[A]. Let us �rst adress the map f .



15

0 1 2

M(X,U) =

0

1

0 1 2

⊆
0

1

0 1 2

4[A]×X

Figure 10: A covering of X = [0, 2] by U = {[0, 3/2), (1/2, 2]}]} with corresponding
Mayer-Vietoris blowup constructionM(U).

Theorem 3.5. The projection map f :M(X,U) → X is a homotopy equivalence when
X has the homotopy type of a �nite simplicial complex and the covering consists of open
sets. Furthermore, one can obtain an explicit homotopy inverse ρ : X →M(X,U) of f .

Let us see how we can express this homotopy inverse ρ, for that we need the following
de�nition.

De�nition 3.6. A partition of unity subordinate to the �nite open covering U is a family
of real valued functions {φα}α∈A such that

• 0 ≤ φα(x) ≤ 1 for all α ∈ A and x ∈ X.

•
∑
α∈A

φα(x) = 1 for all x ∈ X.

• The closure of the set {x ∈ X | φα(x) ≥ 0} is contained in the open set Uα.

Now, assume we are given a partition of unity {φα(x)}α∈A. Then let T (x) ⊂ A be
the set of all α so that x ∈ Uα. Next de�ne ρ : X →M(X,U) by

ρ(x) = (φα0 , φα1 , ..., φαl)× {x},

where {α0(x), α1(x), ..., αl(x)} is an enumeration of the set T (x). The map ρ is easily
checked to be continuous. An example is given in Figure 11.

Moving on to the projection map g : M(X,U) → 4[A]. Let us �rst de�ne the
following.

De�nition 3.7. A cover U such that all the sets X[S] are either empty or contractible
is called a good cover.
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1
2

1 3
2

2

φ0 φ1
1

ρ(x)0

1

0 1
2

1 3
2

2

Figure 11: The top �gure shows a covering of X = [0, 2] by U = {[0, 3/2), (1/2, 2]}]}
with a partition of unity {φ0, φ1} subordinate to the covering. The bottom �gure shows
the Mayer-Vietoris blowup construction with the map ρ(x) : X →M(X,U) constructed
via the partition of unity. We see that (f ◦ ρ) ' idX and (ρ ◦ f) ' M(X,U), whre
f : M(X,U) → X is the projection map. Hence, f is a homotopy equivalence and
X 'M(X,U).

Now note that im(g) = N (U), an illustration is given in Figure 12, and consider the
following theorem.

Theorem 3.8. The projection map g :M(X,U)→4[A] is a homotopy equivalence onto
its image, i.e. the nerve complex, if the cover U is a good cover.

We now observe that g ◦ ρ : X → N (U) gives us an explicit map from X to N (U).
Furthermore if we have a good covering, then g ◦φ is a homotopy equivalence. This gives
us the following lemma.

Lemma 3.9. (Nerve lemma) Let U be a good cover of a topological space X, then the
geomtric realization of N (U) is homotopy equivalent to X.

As a consequence N (U) and X are the same in view of homology theories.

4 Simplicial complex constructions

There are several ways to construct simplicial complexes from point clouds so to approx-
imate the underlying topological space. We will present some important constructions
here. Resources have been gathered from [5], [3], [11], [7], and [8].
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U =U =

N (U) =

0 1 2 3

M(X,U) =

im(g) = ⊆ = 4[A]

Figure 12: Example of a good cover U such that g is a homotopy equivalence onto its
image, furthermore we see that the image of g is the same as the nerve complex of U .

In this section let X be the underlying topological space that we want to approximate
and let Z ⊂ X be a �nite set of sample points from X and assume Z is embedded in
some metric space.

4.1 The �ech and Vietoris-Rips complexes

We start by introducing the �ech complex.

De�nition 4.1. Given some real number ε > 0. Let βε(Z) = {Bε(z)}z∈Z be the set
of open balls under the given metric. The �ech complex of Z is then de�ned to be the
nerve of βε(Z) and will be denoted by Č(Z, ε).

This is a very useful construction. The set
⋃
z∈Z Bε(z) is a good cover of an open set

in X, hence the nerve lemma (Lemma 3.9) tells us that Č(Z, ε) is homotopy equivalent
to
⋃
z∈Z Bε(z). Also, consider the following theorem.

Theorem 4.2. Let X = M be a compact Riemannian manifold. Then there exists an
e > 0 such that the nerve of βε(Z) = {Bε(z)}z∈Z is homotopic equivalent to M whenever
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ε < e. Moreover, for all ε ≤ e there exists a subset Z ⊂M such that Č(Z, ε) is homotopy
equivalent to M as well.

As we know homotopy equivalent spaces induce the same homology. The �Cech com-
plex is however computationally expensive. This is because to check if k+1 vertices forms
a p-simplex we have will have to check if the interesction of k+1 ε-balls is non-empty.
And all of these high dimensional simplexes has to be stored. To avoid this we can
construct the following complex.

De�nition 4.3. Given some ε > 0. Let the Vietoris-Rips complex for Z denoted by
V R(Z, ε) be the complex whose vertex set is Z, and where {z0, z1, ..., zk} spans a p-
simplex i� d(zi, zj) ≤ ε for all 0 ≤ i, j ≤ k.

In this construction we only need to calculate the distance between pairs of vertices
and store this. From this it is straight forward to generate the whole complex.

For the �Cech and the Vietoris-Rips complex we have inclusions

Č(Z, ε) ⊆ V R(Z, 2ε) ⊆ Č(Z, 2ε),

which is easy to check. It is possible to �nd tighter bounds and which also depends on the
dimension, but this is enough to make the following point. This bounds gives us some
control over the Vietoris Rips complex. Any feature that persist under the inclusion
V R(Z, ε) ↪→ V R(Z, 2ε) has to be a topological feature of C(Z, 2ε). This idea of features
persisting as such ε varies is the key idea in persistent homology, which we will treat later
on. Figure 13 illustrates the di�erence between the two complexes.

Č(Z, ε) V R(Z, 2ε)

Figure 13: Illutration of the di�erence between the �ech complex and the Vietoris-Rips
complex.

4.2 Motivating witness complexes

The �ech and Vietoris-Rips complexes are theoretically very nice, but they are using
the whole sample set Z as vertex set. This gives us very high dimensional complexes
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and makes them computationally very expensive. It would be nice if we could construct
complexes with fewer vertices, but somehow still use the information given by the rest
of the points in Z, so to still give us a good approximation of the underlying space. An
idea is that the points not used as vertices can be used as �witnesses� for the existence
of a potential simplex. An illustration of this is in �gure 14. To make this idea more
tangible we start by introducing Voronoi decomposition of a metric space.

Figure 14: Here we have a set of points lying on a circle. Both �gures on the right
manage to replicate the same homology of a circle, but the one on the far right does it
with fewer points. If we use a bit of imagination we may be able to view the points, not
used in the construction, as witnesses for the existence of the edges.

De�nition 4.4. Let Y be any metric space. Let L ⊂ Y be a �nite subset called, the
landmark points of Y . We will discuss the selection of these later. Let l ∈ L and de�ne
the Voronoi cells associated to l by

Vl = {y ∈ Y |d(y, l) ≤ d(y, l′)} for all l′ ∈ L.
This is called the Voronoi-decomposition of Y with respect to L. The Voronoi cells

form a covering of Y , and we call the nerve of this covering for the Delaunay complex,
denoted by Del(Y,L). An illustration of a Voronoi-decomposition is given in Figure 15.

In the Delaunay complex the points {l0, ..., ln} ⊆ L span a p-simplex only if their cor-
responding Voronoi cells have a point in common, i.e. a "witness". Hence, the Delaunay
complex creates very small and low dimensional complexes. If X ⊂ Rn is a submanifold
of euclidean space and L ⊂ X is sampled �nely enough then by the nerve lemma (Lemma
3.9) the complex Del(X,L) is homotopy equivalent to X. However, as we want to study
�nite sets, the Delaunay complex does not seem to give us much. When given a �nite
point set, the probability that there is a point equidistant between two landmark points
equals zero and the Delaunay complex will consist of just the vertices. However, we can
make this idea of a witness work with some modi�cation. This leads us to the witness
complexes. They can be viewed as approximations to the Delaunay complex.

4.3 Witness complexes

Maybe the most natural modi�cation of the Delaunay complex is to allow points to
�move around a little bit�; so to weaken the criteria that witnesses have to be equidistant
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l0

l1
l2

l3

l4

l5

Figure 15: Voronoi-decomposition of a subspace in R2 with corresponding Delaunay
complex.

between landmark points.

Let L ⊂ Z be a set of landmark points and let ε be some real number greater than
zero.

De�nition 4.5. For every point z ∈ Z \ {l0, ..., lp} let mz denote the minimum distance
from z to any point in L. We say that z is an ε-strong witness for {l0, ..., lp} i� d(z, li) ≤
mz + ε for all 0 ≤ i ≤ p. If this holds for ε = 0, then z is called a strong witness.

Note that this also allows the remaining landmark points to be witnesses.

De�nition 4.6. The strong witness complex W s(Z,L, ε) is the complex with vertex set
L, where {l0, l1, ..., lp} ⊆ L spans a p-simplex i� {l0, ..., li} have an ε-strong witness for
all i = 0, 1, ..., p.

De�nition 4.7. Let {l0, l1, ..., lp} ⊆ L span a p-simplex i� all the pairs {li, lj} has a
ε-strong witness. This is a Vietoris-Rips version of the strong witness complex, and we
denote it by W s

V R(Z,L, ε).

Remark 4.8. W s(Z,L, 0) is the same complex as Del(Z,L). This supports the notion
of the strong witness complex being an approximation of the Delaunay complex.
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Next up is the ε-weak witness. It might be less apparent why this witness type gives
us an approximation of the delaunay complex, but we will argue that it does.

De�nition 4.9. Let z ∈ Z \ {l0, ..., lp}. We say that z is a ε-weak witness for {l0, ..., lp}
i� d(z, l) + ε ≥ d(z, li) for all l ∈ L \ {l0, ..., lp} and for all i = 0, 1, ..., p. If ε = 0 then we
just call z a weak witness.

Again this allows landmark points to be witnesses.

De�nition 4.10. The weak witness complex Ww(Z,L, ε) is the complex with vertex set
L, and where {l0, ..., lp} ⊆ L spans a p-simplex i� all τ ⊆ {l0, ..., lp} have an ε-weak
witness.

De�nition 4.11. Let {l0, l1, ..., lp} ⊆ L span a p-simplex i� all the pairs {li, lj} have
a ε-weak witness. This is a Vietoris-Rips version of the weak witness complex and we
denote it by Ww

V R(Z,L, ε).

De�nition 4.12. If ε = 0 then we will just write Ww(Z,L) and Ww
V R(Z,L) for the two

weak witness complexes.

Remark 4.13. The weak witness complex Ww(Z,L) is often called the strict witness
complex.

First we can note that the Delaunay complex can be viewed as the strict witness
complex with the additional requirement that the witnesses are equidistant from the
landmarks. Secondly we have a theorem telling us that they are the same in Rn.

Theorem 4.14. Suppose L ⊂ Rn is a �nite collection of points. Then {l0, l1, ..., lp} ⊂ L
has a strong witness i� {l0, l1, ..., lp} and all its subsets have a weak witness.

Figure 16 is a diagram illustating that it is plausible that X is homotopy equivalent
to Ww(Z,L).

X Del(X,L) Ww(X,L) Ww(Z,L)

Figure 16: Here X ⊂ Rn is a submanifold of euclidean space, Z is some reasonable
sample of X and L ⊂ Z is some well distributed set of landmark points. Then by the
nerve lemma (Lemma 3.9) it is possible that X is homotopy equivalent to Del(X,L).
Next, we may have that Del(X,L) = Ww(X,L) which would be similar to theorem 4.14.
Finally, it is not unreasonable that Z contains weak witnesses that does the same job as
the weak witnesses in X, hence we may have that Ww(X,L) = Ww(Z,L). Together this
makes it atleast plausible that X is homotopy equivalent to Ww(Z,L).

We add one more witness type construction.
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De�nition 4.15. Let z ∈ Z \ {l0, ..., lp}. We say that z is an ε-witness for {l0, ..., lp} i�
d(z, li) ≤ ε for all 0 ≤ i ≤ p. Then SW (Z,L, ε) will the complex with vertex set L, and
where {l0, ..., lp} spans a p-simplex o� all τ ⊂ {l0, ..., lp} have an ε-witness. We will call
this the simple witness complex.

The motivation for the Simple witness complex is the following relation.

W (Z,L, ε) ⊆ V R(L, 2ε) ⊆W (Z,L, 2ε).

Remark 4.16. The Weak witness complex, Vietoris-Rips weak witness complex, and the
Simple witness complex may also be viewed as instances of a group of complex construc-
tions called Lazy witness complexes, where these three are the important ones. The Simple
witness complex is just a name given in this paper. See [8].

In the following �gures 17, 18 and 19 we are in R2, the li's, with red dots correspond
to landmark points while the z′is, with blue dots represent the rest of the points in the set.
The intention is to illustrate the di�erences between the di�erent complex constructions.

What is good about the witness complexes is that we will be able to control the size
of them by choosing fewer or more landmark points, the number of higher dimensional
simplices is small given the number of vertices and they are said to give relieable topo-
logical estimates when tested empirically. The drawback is that they do not possess the
same theoretical tractability that the �Cech and Vietoris-Rips complexes has.

4.4 Choosing landmark points

There are two ways that are being are used to choose landmark points, the random
method and the maxmin method. The maxmin method works as follows. Given a
metrix space (X, d), �rst choose a landmark, l1 ∈ X by random. Then, inductively,
if l1, l2, ..., li−1 have been chosen, let li ∈ X \ {l1, l2, ..., li−1} be the data point which
maximises the function

z 7→ min{d(z, l1), d(z, l2), ..., d(z, li−1)}.

The maxmin method will generally pick out more evenly placed landmarks than the
random method, but it has a tendency to pick extremal points as landmarks which is
often just noise. The random method will most likely pick points be located in high
density areas and not pick extremal points. At any rate, both methods are said to work
well.

4.5 Combinatorial delaunay triangulation

We introduce one more complex construction, the combinatorial Delaunay triangula-
tion(CDT). Given Z with a metric, we will then create a new metric on Z. This is done
by making a weighted graph from Z. Let z0, z1 ∈ Z, then [z0z1] is an edge in the graph
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l0

l1
l2

z0

z1

z2 ε

2ε

Ww(X,L),Ww
V R(X,L)

W s(X,L, ε),W s
V R(X,L, ε)

W s(X,L, 2ε)

W s
V R(X,L, 2ε)

Figure 17: There are no points equidistant between the landmark points. Hence the
Delaunay complex consists of just the vertices. Every pair {li, lj} of landmark points
have a weak witness, and since {l0, l1, l2} are the only landmark points the triple also has
a weak witness. This results in a 2-simplex for the two weak witness types. For some
ε > 0 the points z1 and z2 becomes ε-strong witnesses for the pairs {l0, l1} and {l1, l2}
respectively, resulting in a simplicial complex with two connected edges for the ε-strong
witness types. If we increase to 2ε we get a an ε-strong witness ("2ε-strong witness") for
{l0, l2} as well

.

i� z1 is one of the k nearest neighbors of z0 and visa versa. Alternatively, we can say
that [z0z1] is an edge i� d(z0, z1) < ε for some real number ε > 0. Then we assign the
weight of each edge [z0z1] as the distance d(z0, z1). This generates a weighted graph G.
G de�nes a new metric dG by considering the path of least weight(shortest path). We
can now de�ne the CDT.

De�nition 4.17.

CDT ((X,L) = Ww((Z, dG),L)

CDTV R((X,L) = Ww
V R((Z, dG),L)

where dG is as bove.

The advantage of this complex is that due to the construction of the graph G it
copes better to curvature in the sample set. That is, the CDT creates better models of
spaces with a lot of curvature. For example, consider the letter �U�. What is the distance
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l1 l2

l3

z
r

Figure 18: In this �gure z is not an ε-weak witness for the edge between l1 and l2 if ε = 0,
due that l3 is closest to z. The landmark point l3 is however a witness for the edge. If ε
is increased enough, say to r, then z becomes a weak witness for the edge as well.

between the two top most points? If we have to move along the �U�, then this will be
much longer than the actual distance on the paper. This is what the CDT takes into
account.

5 Some algebra

Material in this section is gathered from [1], [18], and [2].

In this section we will go through the algebraic theory we will need when we introduce
persistent homology in the next section.

We will always assume that R is a commutative ring with identity. Hence we will not
talk about left or right modules as they coincide, and just say modules.

5.1 Graded rings and modules

We start by introducing the algebraic structures that we will be needing.

De�nition 5.1. A ring R is called graded if there exists a family of subgroups {Rn}n∈Z
of R such that

1. R =
⊕

nRn (as abelian groups).

2. Rn ·Rm ⊆ Rn+m for all n,m.

A graded ring is called non-negatively graded or N-graded if Rn = 0 for all n ≤ 0. A
non-zero element x ∈ Rn is called a homogeneous element of R of degree n.

De�nition 5.2. 1. Any ring can be made into a graded ring by setting R0 = R and
Rn = 0 for all n 6= 0. This is called the trivial grading.
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ε ε

l1 l2

W (Z,L, ε), V R(L, ε)

ε ε

l1 l2
W (Z,L, ε)

V R(L, ε)

(a)

(b)

Figure 19: Motivating the relation between the ε-witness complex and the Vietoris-Rips
complex. (a) The two complexes are the same, but if the blue witness point is perturbed
slightly then W (Z,L, ε) ≤ V R(L, ε). (b) W (Z,L, ε) is potentiallly larger than V R(L, ε)
since it can have a witness, as in this example.

2. Let S = R[x1, ..., xd] be the polynomial ring over R with d indeterminates, and
let m = {m1,m2, ...,md} and Xm = {xm1

1 , xm2
2 , ..., xmdd }. Then we can assign a

grading to S by setting

Sn = {
∑
m∈Nd

rmx
m | rm ∈ R and m1 + · · ·+md = n}.

This is called the standard grading on the polynomial ring R[x1, ..., xd], and it is a
nonnegative grading.

Remark 5.3. Particularly we have that the standard grading on R[t] is R[t]n = {rtn |
r ∈ R}. If we set 1 = (1, 0, 0, ...), t = (0, 1, 0, ...), t2 = (0, 0, 1, 0, ...) etc., then we can
write a0 + a1t+ a2t

2 + · · · antn ∈ R[t] as (a0, a1, a2..., an).

De�nition 5.4. Let R =
⊕

nRn be a graded ring. A subring S of R is called a graded
subring of R if S =

∑
n(Rn∩S). Equivalently, a subring S is graded if for every element

f ∈ S, all the homogeneous components of f regarded as an element in R, are in S.

Example 5.5. Let R[t] be the polynomial ring with the standard grading. Now R[t] =
{a0 + a1t + a2t

2 + · · · } = {(a0, a1, a2, ...)} where ai ∈ R. Then tnR[t] = {tn(a0 + a1t +
a2t

2 + · · · )} = {(0, ..., 0, a0, a1, a2, ...)}, with zeros in the n �rst positions. Consequently
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we have that

(tnR[t])k =

{
0 if 0 ≤ k ≤ n
tkR if k ≥ n

where tkR = {tkr | r ∈ R}.

De�nition 5.6. Let R be a graded ring andM an R-module. We say thatM is a graded
R-module if there exists a family of subgroups {Mn}n∈Z of M such that

1. M =
⊕
Mn (as abelian groups).

2. Rn ·Mm ⊆Mn+m for all n,m.

A nonzero element x ∈Mn is called a homogeneous element of M of degree n.

Example 5.7. 1. If R is a graded ring, then R is a graded R-module.

2. If {Mλ} is a family of graded R-modules, then
⊕

λMλ is a graded R- module.

Remark 5.8. Recall that if {Ri}ni=1 is a �nite family of rings, then the notions of direct
sum and direct product coincide. Hence we will freely change between the two.

De�nition 5.9. Let M be a graded R-module, and let n ∈ N. Then we can de�ne a
new graded R-module M(n) by setting M(n)k = Mn+k. We say that M is shifted by n.

Example 5.10. Let R[t] be the polynomial ring with the standard grading and we can
view it as a graded R[t]-module. We then have that R[t](n)k = (tnR[t])k.

Next, let N be a submodule of a graded R-module M . We can assign a grading to
N by setting Ni = N ∩Mi. We give the following de�nition.

De�nition 5.11. A submodule N , of a graded R-module M , is said to be a graded
submodule of M if its grading is de�ned by Ni = N ∩Mi.

Example 5.12. Equip R[t] with the standard grading and let M = tα1R[t]⊕ tα2R[t]⊕
· · · ⊕ tαnR[t], then N = tβ1 (tα1R[t]) ⊕ tβ2 (tα2R[t]) ⊕ · · · ⊕ tβn (tαnR[t]) is a graded
submodule of M .

Proposition 5.13. Let R be a graded ring, M a graded R-module and N a graded
submodule of M . Then M/N is a graded R-module, where

(M/N)n = (Mn +N)/N = {m ∈Mn}.

Proof. Proof is found in [18].

De�nition 5.14. The graded R-module M/N is called the graded quotient module of
M modulo N .
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Example 5.15. EquipR[t] with the standard grading then tαR[t] is a gradedR-submodule
of R[t], and we have that

R[t]

tαR[t]
= {a0[1],+a1[t] + a2[t]2 + · · · },

where the equivalence classes [tn] = [tm] i� m− n = rα, for n,m, r ∈ Z.

De�nition 5.16. Let R be a graded ring and M,N graded R-modules. Let f : M → N
be an R-homomorphism. Then f is said to be graded of degree d if f(Mn) ⊆ Nn+d for
all n.

Example 5.17. Let R be a graded ring, M a graded R-module, and r ∈ Rd. De�ne
µr : M 7→ M by µrm = rm for all m ∈ M . Then µr is a graded R-homomorphism of
degree d.

De�nition 5.18. Let M and N be two graded R-modules. We say that M and N are
isomorphic as graded R-modules if there exists a degree zero isomorphism from M to N
and we denote this by M ∼=0 N .

Remark 5.19. Notice that

n⊕
i=1

R[t] ∼= tα1R[t]⊕ tα2R[t]⊕ · · · ⊕ tαnR[t],

but that
n⊕
i=1

R[t] �0 t
α1R[t]⊕ tα2R[t]⊕ · · · ⊕ tαnR[t],

unless α1 = α2 = · · · = αn = 0.

Proposition 5.20. Let M,N be graded R-modules. If f : M → N is a graded R-
homomorphism, then

• ker(f) is a graded submodule of M , and

• im(f) is a graded submodule of N .

Proposition 5.21. If C = {C∗, ∂∗} is a chain complex of graded R-modules with graded
maps. Then the homology R-modules Hi(C) are graded for all i.

Theorem 5.22. (fundamental theorem of [graded] R-homomorphisms). Let M and
N be graded R-modules and let f : M → N be a degree 0 R-homomorphism. Then
M/ker(f) ∼=0 f(M).
Proof. This is proved in exactly the same manner as for the normal fundamental theorem
of R-homomorphisms by adding the fact that f is of degree 0.
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Theorem 5.23. Let A and B be graded R-submodules of graded R-modules M and N ,
respectively. Then

M ×N
A×B

∼=0
M

A
× N

B
.

Proof. De�ne a mapping

f : M ×N → M

A
× N

B

by f(m,n) = (m+A,n+B),m ∈M,n ∈ N , and f is clearly onto and of degree 0. Now

ker(f) = {(m,n) | (m+A,n+B) = (0 +A, 0 +B)}
= {(m,n) | m ∈ A,n ∈ B}
A×B.

Hence, by theorem 5.22 we have

M ×N
A×B

∼=0
M

A
× N

B
.

De�nition 5.24. A �nite sequence x1, .., xn of elements of an R-module M is called
linearly dependent if, for any a1, ..., an ∈ R,

∑n
i=1 aixi = 0 implies a1 = a2 = · · · = an =

0. A �nite sequence is called linearly independent if it is not linearly independent.

Now recall the following for non-graded modules.

De�nition 5.25. A subset B of an R-module M is called a basis if

1. M is generated by B.

2. B is a linearly independent set.

De�nition 5.26. Suppose R is a ring with identity, and let M = Rn be an R-module.
Now let ei = (0, ..., 1, 0, ..., 0), be the n-tuple where all the components are zero except
the ith component which is 1. Then {e1, e2, ..., en} is a basis for Rn, and we call it the
standard basis for Rn.

De�nition 5.27. An R-module is called a free R-module if M admits a basis.

Theorem 5.28. Let M be a free R-module with a basis {e1, ..., en}. Then M ∼= Rn.

Lemma 5.29. Let R be a PID, and let M be a free R-module with a basis of m elements.
Then any submodule N of M is also free with a basis consisting of n elements, where
n ≤ m.

For graded modules we have the following.

Theorem 5.30. IfM is a graded free R-module, then there exists a unique set of integers

{n1, n2, ..., nk} such that M ∼=0

k⊕
i=1

R(ni).

Proof. See [18].
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Example 5.31. Let R[t] be graded with the standard grading, and let M be a graded
free R[t]-module. Then

M ∼=0 t
α1R[t]⊕ tα2R[t]⊕ · · · ⊕ tαnR[t], where α1, α2, ..., αn ∈ N.

Moreover, it has a basis consisting of homogeneous elements {e1, e2, ..., en} where ei =
(0, ..., tαi , 0, ..., 0) with all zeros except at position i. We will call this the standard basis
of a graded free R[t]-module.

Lemma 5.32. Let R be a graded PID, and let M be a graded free R-module with a basis
of m elements. Then any graded submodule N of M is also free with a basis consisting
of n elements, where n ≤ m.
Proof. See [1] for non-graded case.

Remark 5.33. Particularly recall that if F is a �eld, then F [t] is a PID.

Finally, the structure for all �nitely generated graded modules over a graded PID is
given by the following theorem.

Theorem 5.34. Every �nitely generated graded module over a graded PID D can be
uniquely written as (

n⊕
i=1

D(αi)

)
⊕

 m⊕
j=1

D

djD
(γj)

 where dj |dj+1.

Particularly, if D = F [t], then the module can be written as(
n⊕
i=1

tαiF [t]

)
⊕

 m⊕
j=1

tγj
F [t]

tβjF [t]

 where tBj |tBj+1 .

Proof. The proof of this theorem is the same as for the non-graded case, one just have to
make sure that all the isomorphisms in the proof are graded isomorphisms.

5.2 Matrix representations

When we introduce persistent homology in the next section, we will create chain com-
plexes consisting of graded free F [t]-modules, and the maps will be graded F [t]-homomorphisms
of degree 0. To compute the homology modules we will express the boundary maps as
matrices. These matrices will depend on the bases we choose for the graded free chain
modules. So, in this section we will show how to obtain such matrix representations and
how such matrices with respect to di�erent bases are related. We will assume that all
polynomials R[t] are given the standard grading.

Notation 5.35. Let

(a1, a2, ..., am) =


a1

a2
...
am
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De�nition 5.36. Let M be a �nitely generated free module over R, and let B =
{e1, e2, ..., em} be any basis for M . If g ∈ M we can express it as a unique linear
combination of the basis elements, i.e. g =

∑m
i=1 bieiwherebi ∈ R. Furthermore, de�ne

gB = (b1, b2, ..., bm) to be the element g relative to the basis B. We will call the collection
MB = {gB | g ∈ M} for the free R-module M relative to the basis B, and note that
MB = Rm.

Notation 5.37. If B = {e1, e2, ..., em} is a basis for a �nitely generated free R-module
M, then we will write [B] = [e1, e2, ..., em], where the ei's expand in the columns, so it is
an m×m matrix.

Remark 5.38. If g ∈M and B is a basis for M , then [B]gB = g.

Example 5.39. Let M = tα1R[t] ⊕ tα2R[t] be a graded free R[t]-module, and let
B = {(tα1 , 0), (0, tα2)} and C = {(tα1 , tα2), (0, tα2)} be two bases on M .

Now, suppose that g = (tα1 , tα2) ∈M . Then,

g = 1 · (tα1 , 0) + 1 · (0, tα2),

which gives us that gB = (1, 1). Also, we have that

g = 1 · (tα1 , tα2) + 0 · (0, tα2),

so gC = (1, 0).

Next, suppose that h = (a1t
β1 , a2t

β2) ∈M , where a1, a2 ∈ R and Bi ∈ N and Ai ≤ Bi,
for i = 1, 2. Then

h = a1t
β1−α1 · (tα1 , 0) + a2t

β2−α2 · (0, tα2),

so hB = (a1t
β1−α1 , a2t

β2−α2). Also, we have that

h = a1t
β1−α1 · (tα1 , tα2) + (a2t

β2−α2 − a1t
β1−α1) · (0, tα2),

so hB = (a1t
β1−α1 , a2t

β2−α2 − a1t
β1−α1).

De�nition 5.40. Let M and N be �nitely generated free R-modules with bases B =
(e1, e2, ..., em) and C = (f1, f2, ..., fn) respectively. Let φ : N →M be anR-homomorphism
given by

φ(fj) =

m∑
i=1

aijei,

where j = 1, ..., n, and aij ∈ R. Then the matrix A = (aij) is called the matrix represen-
tation of φ relative to the bases B and C. Furthermore we can de�ne a R-homomorphism
µA : NC →MB by setting µA(gC) = AgC .



5.2 Matrix representations 31

Remark 5.41. With the above de�nition we have that φ(g) = [B]AgC, and also that

g ∈ ker(φ)⇔gC ∈ ker(µA) = null space ofA, and

f ∈ im(φ)⇔fB ∈ im(µA) = column space A.

De�nition 5.42. If φ is as in De�nition 5.40, then the dimension of im(φ) is called the
rank of φ.

De�nition 5.43. Let B = {e1, e2, ..., em} and B′ = {e′1, e′2, ..., e′m} be two ordered bases
of M . Then we can write each e′j as a linear combination of ej 's and visa versa. So we
can write

e′j =
m∑
i=1

pijei,

where j = 1, ...,m, and pij ∈ R. The m ×m matrix P = (pij) is called the matrix of
transformation from B′ to B.

Remark 5.44. If P is a matrix transformation from B′ to B and if Q is a matrix
transformation from B to B′, then PQ = I = QP , which also implies that P and Q are
invertible matrices.

De�nition 5.45. Let M and N be two �nitely generated free modules over R, and let
φ : N → M be an R-homomorphism. Then the matrix representation of φ relative to
the standard bases of M and N will be called the standard matrix representation. This
goes for the graded case as well.

Theorem 5.46. Let M and N be �nitely generated free modules over R. Let A =
(aij) be a matrix representing an R-homomorphism φ : N → M relative to bases B =
{e1, e2, ..., em} and C = {f1, f2, ..., fn} of M and N , respectively. Then we have the
following

1. The matrix of φ relative to a new pair of bases B′ = {e′1, e′2, ..., e′m} and C′ =
{f ′1, f ′2, ..., f ′n} ofM and N , respectively, is P−1AQ, where P and Q are the matrices
of transformation from B′ to B and C′ to C, respectively.

2. For any pair of invertible matrices P ∈ Rm×m and Q ∈ Rn×n, there exists bases B′
of M and C′ of N , such that the matrix representation of φ relative to B′ and C′ is
P−1AQ.

Remark 5.47. Suppose conditions are as in the theorem above, and that g ∈ N . Then
we have the following

φ(g) = [B]AgC

= [B′]A′gC′
= [B′]P−1AQgC′ .

Particularly im(φ) = φ(N) = [B]ANC = [B′]P−1AQRn.
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Example 5.48. Suppose M = R[t] ⊕ R[t] ⊕ tR[t] and N = tR[t] ⊕ tR[t] ⊕ t3R[t] are
two graded free R[t]-modules. Furthermore let B = {e1, e2, te3} and C = {te1, te2, t

3e3}
be bases for M and N , respectively, where {e1, e2, e3} denotes the standard basis for
R3. Now, suppose we have an R[t]-homomorphism φ : N → M which is given by
φ(a, b, c) = (a+ c, a+ b, b+ c). Then

φ(te1) = φ(t, 0, 0) = (t, t, 0) = t · e1 + t · e2 + 0 · te3

φ(te2) = φ(0, t, 0) = (0, t, t) = 0 · e1 + t · e2 + 1 · te3

φ(t3e3) = φ(0, 0, t3) = (t3, 0, t3) = t3 · e1 + 0 · e2 + t2 · te3.

Hence, the matrix representation of φ with respect to B and C is

A =


te1 te2 t3e3

e1 t 0 t3

e2 t t 0
te3 0 1 t2

 .
Now, suppose that g = (at2, bt4, ct3). We then have that

g = at · (t, 0, 0) + bt3 · (0, t, 0) + c · (0, 0, t3),

so gC = (at, bt3, c). This means that

[B]AgC =

 1 0 t3

0 1 0
0 0 t

 t 0 t3

t t 0
0 1 t2

 at
bt3

c

 .
Hence

[B]AgC = (at2 + ct3, at2 + bt4, bt4 + ct3) = φ(g).

Next, suppose that B′ = B and C′ = {te1, te2, t
3e3− t3e2− t3e1} are alternative bases

for M and N . Then

P =

 1 0 0
0 1 0
0 0 1


is the matrix transformation from B′ to B, and

Q =

 1 0 −t2
0 1 −t2
0 0 1


is the matrix transformation from C′ to C. Now

g = (at+ ct2) · (t, 0, 0) + (bt3 + ct2) · (0, t, 0) + c · (−t2,−t2, t3),

so gC′ = (at+ ct2, bt3 + ct2, c). Finally, this gives us that

[B′]P−1AQgC′ = (at2 + ct3, at2 + bt4, bt4 + ct3) = φ(g) = [B]AgC .
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5.3 Basis changes by elementary matrix operations

We now know how to obtain matrix representations of our alleged boundary maps. Next,
via elementary matrix operations we can put the matrix representations in a form called
Smith normal form, from which it will be easy to deduce the homology modules. Each
elementary matrix operation corresponds to multiplying the matrix on the left or right
with an invertible matrix. So, in this section we will go through how to keep track of the
basis changes as we put our matrix representation into Smith normal form.

Let D be a PID, and speci�cally recall that F [t], where F is a �eld, is a PID.

De�nition 5.49. Let A be an m × n matrix over D. The following three types of
operations are called elementary row (column) operations.

1. Swap row i (column i) with row j (column j).

2. Multiply a row (column) with a nonzero invertible element q ∈ D.

3. Add q times row j (column j) to row i (column i), where i 6= j and q ∈ D.

Notation 5.50. Let eij be the n×n matrix with zeros everywhere except at position i×j
where it is 1. Also let I denote the identity matrix.

These operations can be identi�ed with multiplying A with the following invertible
matrices.

Theorem 5.51. Let A be an m× n matrix over D.

1. Let Eij = I − eii− ejj + eij + eji, where i 6= j. Then EijA(AEij) amounts to doing
elementary row (column) operation of type 1. Also note that E−1

ij = Eij.

2. Let Li(q) = I+(q−1)eii, where q ∈ D is invertible. Then Li(q)A(ALi(q)) amounts
to doing elementary row (column) operation of type 2. Also note that Li(q)−1 =
I(q−1 − 1)eii.

3. If Mij(q) = I + qeij, where i 6= j and q ∈ R. Then Mij(q)A(AMji(q)) amounts
to doing elementary row (column) operation of type 3. Also note that Mij(q)

−1 =
I − qeij.

De�nition 5.52. Two m×n matrices A and B over D are said to be equivalent if there
exists an invertible matrix P ∈ Rm×m and Q ∈ Rn×n such that B = PAQ.

Theorem 5.53. If A is a an m×n matrix over a PID. Then A is equivalent to a matrix
that has the diagonal form
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a1

a2

. . .
ak

0
. . .

0


where ai 6= 0 and a1 | a2 | · · · | an. The nonzero diagonal elements a1, ..., an are called

the invariant factors of A.

Suppose now that M and N are �nitely generated free D-modules and that φ : N →
M is a D-homomorphism. Let A = (aij) be the representation of φ relative to some bases
B = {e1, e2, ..., em} and C = {f1, f2, ..., fn} for M and N , respectively. Then A ∈ Dm×n,
so we can reduce it to the Smith normal form. Now, all of the elementary matrices, Eij ,
Li(q), andMij(q), are invertible, consequently any composition of them is invertible, and
reducing A will result in a new representation matrix for φ relative to some new bases.
So, let us explore what the basis changes are when we do elementary row and column
operations.

We start with elementary row operations. Multiplication on the left by some invertible
matrix amounts to a change in the basis for M from B to some new basis B′.

1. Swap row i with row j. This is the same as the multpiplication EijA. The matrix
of transformation from B′ to B is then E−1

ij = Eij = I−eii−ejj+eji. Consequently
we have the following change in basis:

e′i = ej

e′j = ei

e′l = el for all l 6= i, j.

2. Multiply row i with some invertible element q ∈ D. This is the same as the
multiplication Li(q)A. The matrix of transformation from B′ to B is then Li(q)−1 =
I(q−1 − 1)eii. Consequently we have the following change in basis:

e′i = q−1ei

e′l = el for all l 6= i.

3. Adding q times row j to row i, q ∈ D. This is the same as the multiplication
Mij(q)A. The matrix of transformation from B′ to B is then Mij(q)

−1 = I − qeij .
Consequently we have the following change in basis:

e′j = ej − qei
e′l = el for all l 6= j.

(2)
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Going about in the same fashion we will get the following basis changes for column
operations.

1. Swap column i with column j. This gives the following change in basis:

f ′i = fj

f ′j = fi

f ′l = fl for all l 6= i, j.

2. Multiply column i with some invertible element q ∈ D. This gives the following
change in basis:

f ′i = qfi

f ′l = fl for all l 6= i.

3. Adding q times column j to column i, q ∈ D. This gives the following change in
basis:

f ′i = fi + qfj

f ′l = fl for all l 6= j.
(3)

What if D = F [t] is a graded ring over a �eld F , and M and N are �nitely generated
graded free F [t]-modules? What will elementary matrix operations do to the degree and
homogeneity of basis elements? Let us explore.

1. Swapping rows (columns). This clearly does not change any degree.

2. Multiplying a row (column) by an invertible element. We notice that the only
invertible elements in F [t] are the elements q ∈ F0 = F . Consequently deg(e′i) =
deg(q−1e′i) = deg(ei) [deg(f ′i) = deg(qf ′i) = deg(fi)].

3. Adding q times row j (column i) to row i (column j), q ∈ F [t]. Then the change
in basis is e′j = ej − qei [f ′i = fi + qfj ]. Now, if

deg(q) = deg(ej)− deg(ei)

[deg(q) = deg(fi)− deg(fj)],
(4)

then deg(e′j) = deg(ej) [deg(fi) - deg(fi)]. And this is the type of type 3 elementary
operations that we need in order to eliminate rows (columns) in reducing a matrix.

Any composition of such operations will naturally not alter anything as well. We
conclude that reducing the representation matrix with such elementary matrix operations
will not alter the degree or homogeinity of the basis elements.
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5.4 Computing graded homology modules

In this section we will show how to compute the graded homology modules we have been
talking about. Now, we will assume that we know what the cycle modules are, as this
will be part of an inductive process in the next section.

Let F be a �eld and assign the standard grading to F [t]. Now, suppose we have a
chain complex (Cn, ∂n) of graded free F [t]-modules, with degree 0 F [t]-homomorphisms
as boundary maps. We know by lemma 5.32 that all graded submodules of a graded free
module is free. Hence, let us suppose that for some k we have the following,

ker(∂k) = tγ1F [t]⊕ tγ2F [t]⊕ · · · ⊕ tγnF [t], and

Ck+1 = tα1F [t]⊕ tα2F [t]⊕ · · · ⊕ tαmF [t],

where αi ≥ γi for all i, j. Now, we want to compute Hk = ker(∂k)/im(∂k+1), so we need
to �nd im(∂k+1). Let ei and fi be the standard bases for Fm and Fn, respectively. Then
we have that

B = {tγjfj}nj=1 = {0, ..., tγj , 0, ..., 0}nj=1 is a basis for Zk and

C = {tαiei}mi=1 = {0, ..., tαi , 0, ..., 0}ni=1 is a basis for Ck+1

are bases for ker(∂k) and Ck+1. Next we apply our boundary operator on the basis
elements of Ck+1, which gives us that

∂k+1(tαiei) = tαi(a1i, a2i, ..., ani),

for some aji ∈ F [t]0 = F , and this is necessarily so since ∂k+1 is of degree 0. We continue
by expressing the result as a sum of basis elements of Zk, so

tαi(a1i, a2i, ..., ani) = tαi
n∑
j=1

ajit
−γj (tγjfj)

=
n∑
j=1

ajit
αi−γj (tγjfj).

The resulting matrix representation is then

Mk+1 = (tαi−γjaji),

where aji ∈ F .

Next, by doing elementary row and column operations we can put Mk+1 into Smith
normal form, which we know is equivalent to multpiplying Mk+1 on the right and left
by appropriate invertible matrices P−1 and Q. From these we can deduce the new basis
elements and their degrees as we have discussed. Now, note that since aji ∈ F , these
elements have inverses, hence these will all dissappear in the Smith normal form as they
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are easily removed by type 2 elementary operations. The image of ∂k+1, remembering
our notation for this, will be the following.

im(∂k+1) = ∂k+1(Ck+1) = [B]Mk+1[Ck+1]C

= [{tγjfj}]PMk+1QF [t]m

= [{tγjlfjl}]



tαi1−γj1

tαi2−γj2
. . .

tαir−γjr

0
. . .

0


F [t]m

= (tαi1−γj1 )tγj1F [t]⊕ (tαi2−γj2 )tγj2F [t]⊕ · · · ⊕ (tαir−γjr )tγjrF [t].

Where r is the rank of ∂k+1, and {il} and {jl} are some permutations of the sets
{1, ...,m} and {1, ..., n}, respectively. Next we note that (tαil−γjl )tγjlF [t] is a graded
submodule of tγilF [t], and hence by Theorem 5.23 we have that

Hk = ker(∂k)/im(∂k+1)

=
tγj1F [t]⊕ tγj2F [t]⊕ · · · ⊕ tγjnF [t]

(tαi1−γj1 )tγj1F [t]⊕ (tαi2−γj2 )tγj2F [t]⊕ · · · ⊕ (tαir−γjr )tγjrF [t]

∼=0 t
γj1

F [t]

(tαi1−γj1 )F [t]
⊕ · · · ⊕ tγjr F [t]

(tαir−γjr )F [t]
⊕ tγjr+1F [t]⊕ · · · ⊕ tγjmF [t].

6 Persistence

Material in this section is gathered from citeulike:3148973, [3], [9], and [11].

Our simplicial complex constructions presented earlier, from the �Cech complex to
the witness complexes, all induce a sequence of increasing complexes as the parameter ε
increases. That is, they induce a �ltered complex. In Figure 20 we have an example of
this. Here points have been sampled from a space with two holes, like a double annulus,
and from this �Cech complexes for various choices of ε have been constructed. Now, ho-
mology will view the double annulus as one connected component with two loops, that is
B0 = 1 and B1 = 2. However none of the corresponding �Cech complexes for the various
values for ε, displayed here, manage to obtain the same homology as the the original
space. Furthermore, if we do not know what the underlying space the samples come
from, which will be the reality of things, we may not even have any idea of how to begin
choosing an ε. Hence, instead of searching for one correct choice for ε, what we will do is
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consider whole �ltered complexes and see if we can single out features that persist longer
than others.

δ

2δ

3δ

4δ

5δ

6δ

Figure 20: A �ltered complex created by the �Cech complex construction. Yellow indi-
cating 2-simplices and darker red indicating higher dimensional simplices.

Let us look at the exmaple in Figure 20. At ε = δ we have two loops. The biggest
one lasts through all values up to ε = 6δ where it is closed up. The other loop that is
created at ε = δ, only lasts until ε = 3δ. This might indicate that the �rst loop is more
likely to be an actual feature of the data set, which it actually is, while the other loop is
less likely to be such a feature, which it actually is not.

The types of features we will be measuring are those that are detected by betti num-
bers, that is the number of connected components, number of loops, number of voids,
and so on. What we will do is create what we will call Barcodes. The barcodes for
Figure 20 is shown in Figure 21. Each interval represents a feature , which in this case
is connected components or loops. The start of the intervals indicates the time of birth
of such a feature, and the endpoint the time of death of such a feature. Counting the
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number of blue and red lines in Figure 21, at some value for ε, gives us B0 and B1 for
that value of ε, respectively

1δ 2δ 3δ 4δ 5δ 6δ 7δ 8δ

B0

B1

Figure 21: Betti 0 and 1 barcodes for the �ltered complex in �gure 20.

In this section we will create a homology structure that contains information from all
the complexes in such a �ltered complex. It will be a graded F [t]-module, and we will
relate these modules to sets of intervals which will be the barcodes. Finally, we introduce
an algorithm for computing these barcodes from a �ltered complex.
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6.1 Persistent homology and structure

In the following we assume that R is a commutative ring with identity.

De�nition 6.1. A persistence complex C is a family of chain complexes {Ci∗}i≥0 over R,
together with chain maps f i : Ci∗ → Ci+1

∗ , which gives us the following diagram

C0
∗

f0−→ C1
∗

f1−→ C2
∗

f2−→ · · · .

If we extend in the vertical direction we get the diagram in Figure 22.

C0
0 C1

0 C2
0 · · ·

C0
1 C1

1 C2
1 · · ·

C0
2 C1

2 C2
2 · · ·

f0 f1 f2

f0 f1 f2

f0 f1 f2

∂3

∂2

∂1

∂3

∂2

∂1

∂3

∂2

∂1

Figure 22: A persistence complex expanded in the vertical direction.

If we have a �ltered complexK and form chain complexes from the subsets {Ki}0≤i≤m,
then we get a persistence complex where the f i's are the induced inclusion maps. That
is, we have the following commutative diagram, shown in Figure 23, where C∗ is the
functor taking complexes to chain complexes.

Ki

Ki+1

Ci∗

Ci+1
∗

ιi

C∗

f i = C∗(ιi)

C∗

◦

Figure 23: Chain complexes formed from a �ltered complex.

De�nition 6.2. A persistence module M is a family of R-modules {M i}, together with
R-homomorphisms φ : M i →M i+1.

For example, the homology of a persistence complex is a persistence module, where
the map φi just maps a homology class to the one that contains it. Also, if we have
a persistence complex C as above, the chain groups {Cik}i with the chain maps {f i}i
become a persistence module.
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De�nition 6.3. A persistence complex {Ci∗, f i} is of �nite type if each component com-
plex, i.e., each {Cij} ∈ {Ci∗} is a �nitely generated R-module, and if the maps f i are
isomorphisms for i ≥ m for some m ∈ N.

Similarly we de�ne.

De�nition 6.4. A persistence module {M i, φi} is of �nite type if each M i is a �nitely
generated R-module, and if the maps φi are isomorphisms for i ≥ m for some m ∈ N.

For example, if we form a persistence module C from a �ltered complex K = {Ki}
it will be of �nite type. Then, we can turn C into a persistence module of �nite type
by taking the homology of the chain complexes in C. That is, we have the following
commutative diagram shown in Figure 24.

Ci∗

Ci+1
∗

Hk(K
i)

Hk(K
i+1)

f i

Hk

φi = Hk(f
i)

Hk

Ki

Ki+1

ιi

C∗

C∗

◦◦

Figure 24: A persistence module induced by a �ltered complex.

De�nition 6.5. Let M = {M i, φi} be a persistence module over a ring R. Form the
polynomial ring R[t] and equip it with the standard grading. We can now form a graded
R[t]-module by setting

α(M) =

∞⊕
i=0

M i,

where the action of multiplying by t is given by

t(m0,m1,m2, ...) = (0, φ0(m0), φ1(m1), φ2(m2), ...),

that is, a shift upward in gradation.

Theorem 6.6. The correspondence α de�nes an equivalence of categories between the
category of persistence R-modules of �nite type, and the category of �nitely generated
N-graded modules over R[t].

There does not exist any simple classi�cations of graded R[t]-modules where R is not
a �eld, for example Z. However, if R = F is a �eld, then we know that the structure is

[ n⊕
j=1

tγjF [t]
]
⊕
[ n⊕
i=1

tαi
F [t]

(tni)F [t]

]
.

So, let us see if we can make some sense of things if we start with a �ltered complex,
and a �eld F as ground ring of coe�cents.
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De�nition 6.7. Let C = {C∗, f i} be a persistence complex generated by a �ltered
complex K, then the {Cik, f i} are persistence modules where the Cik's are free F -modules
generated by the k-simplices σ ∈ Ki. Let the σ's form the standard basis for Cik. Then,
{Cik, f i} corresponds to a graded free F [t]-module. So let us de�ne Ck = α({Cik, f i}).

Next, suppose that Ck+1 = tα1F [t]⊕· · ·⊕ tαmF [t], where each αi ∈ N is the �ltration
time at which some k-simplex was added. Moreover, let {σ′1, ..., σ′m} form the standard
basis for CMk+1 = Fm, where M is the maximum �ltration time in the �ltered complex
so that this is the biggest complex in the �ltered complex. This will induce the standard
basis {σi = tαiσ′i}mi=1 for Ck+1. We call the σi for graded simplices. Also, the boundary
maps ∂ik+1 : Cik+1 → Cik, induce a boundary map ∂k+1 : Ck+1 → Ck, and applying it on
the basis elements we have that

∂k+1(σi) = ∂k+1(tαiσ′i) = tαi∂ik+1(σ′i).

Clearly ∂ ◦ ∂ = 0, and we see that ∂ is a graded F [t]-homomorphism of degree 0.
Hence, we have a chain complex

· · · → Ck+1
∂k+1−−−→ Ck

∂k−→ Ck−1 → · · · .

De�nition 6.8. Given the above chain complex, we then de�ne the k-th persistent
homology F [t]-module to be

Hpers
k

ker∂k
im∂k+1

.

If we assume as we did earlier, in the end of Section 5, that

Ck+1 = tα1F [t]⊕ tα2F [t]⊕ · · · ⊕ tαmF [t] and

Zk = tγ1F [t]⊕ tγ2F [t]⊕ · · · ⊕ tγnF [t]

then,

Hk = tγj1
F [t]

(tαi1−γj1 )F [t]
⊕ · · · ⊕ tγjr F [t]

(tαir−γjr )F [t]
⊕ tγjr+1F [t]⊕ · · · ⊕ tγjmF [t].

We interpret this as follows. The γjl 's tell us when a k-cycle is created with the birth
of some k-simplex in Kγjl , which in turn generates a tγjlF [t] part in the cycle group Zk.
The αil 's tell us when a k-cycle becomes the boundary of some (k + 1)-chain with the
birth of some (k + 1)-simplex in Kαil , which turns the corresponding part in the cycle
group into a torsion part in the homology F [t]-module. Basically this means that the
γjl 's tell us when a generating k-cycle occurs, and the di�erences (αil − γjl) tell us how
long until they become a boundary. So, it seems that to each such homology group we
can relate it to a set of intervals.

De�nition 6.9. A P-interval is an ordered pair (i, j) with 0 ≤ i ≤ j ∈ Z∞ = Z ∪ {∞}.

We can associate a graded F [t]-module to a set S of P-intervals via a bijection Q.
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De�nition 6.10. De�ne the bijection Q from the set of P-intervals to the set of �nitely
generated graded F [t]-modules by

Q(i, j) = ti
F [t]

tj−iF [t]
,

where Q(i,∞) = tiF [t]. Furthermore, if S = {(i1, j1), (i2, j2), ..., (in, jn)} is a set of
P-intervals, de�ne

Q(S) =
n⊕
l=1

Q(il, jl).

Corollary 6.11. The correspondence S → Q(S) de�nes a bijection between the �nite
sets of P-intervals and the �nitely generated graded modules over the graded ring F [t].
Consequently, the isomorphism classes of persistence modules of �nite type over F are in
bijective correspondence with the �nite sets of P-intervals.

Hence, we have our barcodes.

6.2 Algorithm.

In this section we present an algorithm for computing barcodes from a �ltered complex.
We will use the �ltration in Figure 25 as a running example, and we will do the compu-
tations over Z2 coe�cients. Table 1 shows the simplices in Figure 25 sorted according to
their degree.

a
b

c
d

5

acd

a
b

c
d

4

abc

a
b

c
d

3

ac

a
b

c
d

2

cd,ad

a
b

c
d

1

c,d,ab,bc

a
b

0

a,b

Figure 25: A �ltered complex. Newly added simplices are dashed or semitransparent.

Table 1: Simplices in Fig 25 sorted according to degree.
a b c d ab bc cd ad ac abc acd
0 0 1 1 1 1 2 2 3 4 5

Throughout this section we let {ej} and {êi} represent homogeneous bases for Ck
and Ck−1, respectively. Since we use Z2 coe�cients we deduce from what we have done
earlier that the matrix representation Mk of ∂k has the following property

deg Mk(i, j) = deg ej − deg êi,
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where Mk(i, j) denotes the element at position (i, j). In our example ∂1 represented
relative to the standard bases {a, b, c, d} ⊂ C0 and {ab, bc, cd, ad, ac} ⊂ C1, will be

M1 =


ab bc cd ad ac

d 0 0 t t 0
c 0 1 t 0 t2

b t t 0 0 0
a t 0 0 t2 t3

 .
To compute the homologies we need to represent ∂k : Ck → Ck−1 by a homogeneous

basis for Ck and Zk−1, reduce it to Smith normal form, and read o� the description
for Hk as we have discussed. We will do this inductively in increasing dimension. For
k = 0 we have that ∂ = 0, hence Z0 = C0, hence we can use the standard basis for C0

to represent Z0. Now, suppose we have a representation of Mk relative to the standard
bases for Ck and Zk−1. Let {ej} be the standard basis for Ck and {êi} be a homogeneous
basis for Zk−1. First sort the basis elements {êi} in reverse order and {ej} in increasing
order. This is done in our matrix representation M1. Then we reduce the matrix to
column echelon form, i.e.

1. All zero columns are at the right of the matrix.

2. Moving from left to right. The leading element, called the pivot, of each nonzero
column after the �rst, is below the previous pivot element in the previous row. A
row (column) with a pivot is called a pivot-row (column).


* 0 0

* 0 · · ·

∗ ∗ 0
...

∗ * 0 · · ·
∗ ∗ 0 · · · 0

 .

Figure 26: The column-echelon form. An * indicates a nonzero element and one of bold
type * indicates a pivot.

An illustration is given Figure 26, and in our example we get that

M̃1 =


cd bc ab z1 z2

d t 0 0 0 0
c t 1 0 0 0
b 0 t t 0 0
a 0 0 t 0 0

 ,
where z1 = ad− cd− t · bc− t · ab and z2 = ac− t2 · bc− t2 · ab forms a homogeneous

basis for Z1. The way we achieve this column echelon form is via elementary column
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operations of type 1 and type 3.

Column reduction algorithm:

1. From the left moving to the right in the columns, call the �rst column with leading
entry at some row index j, a pivot column, making row j a pivot row.

2. Again, moving from the left to right, we pick out nonpivot columns. Then mov-
ing from top to bottom in each column, remove elements in pivot rows with the
corresponding pivot columns by using type 3 column operations. This we can do
since we have ordered our basis for Ck in increasing order, furthermore, they will
not alter the degree of the basis elements. We continue removing elements in the
column until the column is all zeros, or if we arrive at a new pivot element giving
us a new pivot column.

3. Finally we use swaps to put the matrix in wanted column echelon form.

Let us apply the algortihm on our example. First we �nd the initial pivot columns,
and we have marked them below.

M1 =


ab bc cd ad ac

d 0 0 t t 0
c 0 1 t 0 t2

b t t 0 0 0
a t 0 0 t2 t3

 .
Then, following the above recipe we get


ab bc cd ad ac

d 0 0 t t 0
c 0 1 t 0 t2

b t t 0 0 0
a t 0 0 t2 t3


(col 4)→
(col 4)
−1·(col 3)−−−−−−→

(1)


ab bc cd ad

−cd ac

d 0 0 t 0 0
c 0 1 t t t2

b t t 0 0 0
a t 0 0 t2 t3


(col 4)→
(col 4)
−t·(col 2)−−−−−−→

(2)


ab bc cd ad−cd

−t·bc ac

d 0 0 t 0 0
c 0 1 t 0 t2

b t t 0 t2 0
a t 0 0 t2 t3


(col 4)→
(col 4)
−t·(col 1)−−−−−−→

(3)


ab bc cd ad−cd

−t·bc−t·ab ac

d 0 0 t 0 0
c 0 1 t 0 t2

b t t 0 0 0
a t 0 0 0 t3


(col 5)→
(col 5)

−t2·(col 2)−−−−−−−→
(4)


ab bc cd ad−cd

−t·bc−t·ab
ac
−t2·bc

d 0 0 t 0 0
c 0 1 t 0 0
b t t 0 0 t3

a t 0 0 0 t3


(col 5)→
(col 5)

−t2·(col 1)−−−−−−−→
(5)


ab bc cd ad−cd

−t·bc−t·ab
ac−t2·bc
−t2·ab

d 0 0 t 0 0
c 0 1 t 0 0
b t t 0 0 0
a t 0 0 0 0





46 6 PERSISTENCE

col (3)↔col (1)−−−−−−−−−→
(6)


cd bc ab ad−cd

−t·bc−t·ab
ac−t2·bc
−t2·ab

d t 0 0 0 0
c t 1 0 0 0
b 0 t t 0 0
a 0 0 t 0 0


Lemma 6.12. The pivots in column-echelon form are the same as in Smith normal form.
Moreover, the degree of the basis elements on pivot rows is the same in both forms.

Proof. Because of our sort of the basis elements for Zk−1, the degree of row basis
elements êi is decreasing moving from the top to bottom row. This implies that in a
column deg Mk(i, j) ≤ deg Mk(i

′, j), where i ≤ i′. Therefore we can eliminate nonzero
elements below pivots, and we know that such operations will not alter the pivot elements
or the degrees of the new basis elements.

The corollary of this is that we can read of the description for the homology directly
from the column echelon form without the need for any row operations.

Corollary 6.13. Let M̃k be the column-echelon form for ∂k relative to bases {ej} and
{êi} for Ck and Zk−1, respectively. If row i has pivot M̃(i, j) = tn, it contributes

tdeg êi
F [t]

tn

to the description of Hk−1. If row i does not have a pivot element, then it contributes

tdeg êiF [t]

to the description of Hk−1.

In our example with M̃1 we get

H0 = F [t]⊕ F [t]

tF [t]
⊕ t F [t]

tF [t]
.

Finally, we want to represent ∂k+1 relative to the basis we have computed for Zk.
Let Mk and Mk+1 be the standard matrix representations. Since the domain of ∂k and
codomain of ∂k+1 are the same, column operations done on Mk induce row operations
on Mk+1. Type 1 and type 3 column operations on Mk will do the following.

• Swap column i with column j in Mk ⇔ swap row i with row j in Mk+1.

• Replace column i with column i + q·column j in Mk ⇔ ei → ei + qej in Ck ⇔
e′i → e′i + qe′j in Ck+1 ⇔ replace row j with row j - q·row i in Mk+1.

In our example we have
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M2 =



abc acd

ac t t2

ad 0 t3

cd 0 t3

bc t3 0
ab t3 0

 .

The previous column operations in M1 then becomes the following row operations in
M2. 

abc acd

ac t t2

ad 0 t3

cd 0 t3

bc t3 0
ab t3 0


(1)−−→



abc acd

ac t t2
ad
−cd 0 t3

cd 0 0
bc t3 0
ab t3 0


(2)−−→



abc acd

ac t t2
ad−cd
−t·bc 0 t3

cd 0 0
bc t3 t4

ab t3 0


(3)−−→



abc acd

ac t t2
ad−cd
−t·bc−t·ab 0 t3

cd 0 0
bc t3 t4

ab t3 t4


(4)−−→



abc acd
ac
−t2·bc t t2

ad−cd
−t·bc−t·ab 0 t3

cd 0 0
bc 0 0
ab t3 t4


(5)−−→



abc acd
ac−t2·bc
t2·ab t t2
ad−cd
−t·bc−t·ab 0 t3

cd 0 0
bc 0 0
ab 0 0



(6)−−→



abc acd
ac−t2·bc
t2·ab t t2
ad−cd
−t·bc−t·ab 0 t3

ab 0 0
bc 0 0
cd 0 0


However, we will see that we can obtain this representation in a very easy manner.

Let us notice a few things. We have that ∂k∂k+1 = 0 which implies that we must have
MkMk+1 = 0, and this relationship will be unchanged during such paired elementary
operations as above. Then, if Mk is reduced to column echelon form M̃k, we must have
that the induced matrix M̆k+1 from Mk+1 must be of the form as illustrated in Figure
27.
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= 0

j i

j

i

Figure 27: Since ∂k∂k+1 = 0 then we must have that MkMk+1 = 0. When Mk is put
into column echelon form corresponding row operations must zero out rows inMk+1 that
correspond to pivot columns in Mk.

Notice that for each pivot column j in M̃k, row j in M̆k+1 is all zeros. This means
that when we do type 3 column operations to remove all other pivot elements in pivot
row j, then the corresponding row operations on Mk+1 will eventually zero out row j in
Mk+1, as we see in our running example. Furthermore, these operations will not a�ect
row i in Mk+1. Thus, we can easily obtain the representation of Mk+1 relative to the
standard basis for Ck+1 and the basis computed for Zk.

Lemma 6.14. To represent ∂k+1 relative to the standard basis for Ck+1 and the basis
computed for Zk, simply delete rows in Mk+1 that correspond to pivot columns in M̃k.

Consequently, we do not need row operations at all. In our running example we get
the following. Removing the three bottom rows in M2 corresponding to pivot columns
in M̃1 we have

M̆2 =

 abc acd

z2 t t2

z1 0 t3

 .
Here ad and ac are replaced with their corresponding basis elements z1 = ad− cd−

t · bc− t · ab and z2 = ac− t2 · bc− t2 · ab.

6.3 Pseudocode.

From our previous section we have seen that if we sort our basis, we only need to do col-
umn operations. Furthermore, by just eliminating rows corresponding to pivot columns
in the previous dimension, we get the desired basis change. Due to this we do not need
matrix representations, instead we will represent the boundary operators with boundary
chains corresponding to the boundary columns. To keep track of all our moves, we will
create an array T .

First of all we give a total ordering of all the graded simplices. We order the simplices
�rst by increasing degree, then by dimension, and then it does not matter, so we assign
arbitrarily. If m is the number of simplices then T will have m slots and slot i is denoted
by T [i]. A simplex is added accordingly to its index in the total ordering. A σi can be
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marked if its boundary corresponds to a non-pivot column. Finally, if the boundary d of
a simplex σj corresponds to a pivot-column, it is stored in T[i], where i is the index of
the highest indexed row basis element in d.

Table 2: A table for the array T for the �ltration in Fig. 25.

0 1 2 3 4 5 6 7 8 9 10

Simplex a b c d ab bc cd ad ac abc acd
(Degree) 0 0 1 1 1 1 2 2 3 4 5
Marked x x x x x x

Pivot column b
−a

c
−b

d
−c ad ac

The actual algorithm is as follows.

ComputeIntervals(K)
for k = 0 to dim(K) do
Lk = ∅
for j = 0 to m− 1 do
d = RemovePivotRows(σj)
if d = ∅ then
Mark σj

else

i = maxindex d; k = dim(σj)
Store d in T [i]
Lk = Lk∪ (deg σi,deg σj)

end if

end for

for j = 0 to m− 1 do
if σj is marked and T [j] is has no pivot column entry then
k = dim σj ; Lk = Lk∪(deg σj ,∞)

end if

end for

end for

where RemovePivotRows is

chain RemovePivotRows(σ)
k = dim σ; d = ∂kσ
Remove unmarked terms in d
while d 6= ∅ do
i = maxindex d
if T [i] is empty then
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break
end if

Let q be the coe�cient of σi in T [i]
Let b be the coe�cient of σi in d
d = d− bq−1T [i]

end while

return d

RemovePivotRows. RemovePivotRows takes as input a simplex σ. The boundary
column d of σ is computed, and all terms in d corresponding to marked simplices are
removed. Then, by drawing on the pivot columns stored in T , it does gauss eliminations
resulting in either a empty column or a new pivot column. The empty column or pivot
column is then returned.

ComputeIntervals. We traverse through the simplices according to their index.
Suppose we have arrived at simplex σj . The �rst thing the algorithm does is to check,
via RemovePivotRows, whether σi's boundary column corresponds to a zero column or
a pivot column. If a pivot-column is returned we store it in the appropriate slot T [i].
This will give us a P-interval (deg σi, deg σj). When we have traversed through all the
simplices we go through the �ltration once more, in search for in�nite P-intervals, i.e.
marked simplices with no pivot column entry.

Running time. The algorithm has the same running time as Gaussian elimination
over �eld, i.e. it is O(m3), worst case.

In our example we wil get the following P-intervals. L0 = {(0,∞), (0, 1), (1, 1), (1, 2)}
and L1 = {(2, 5), (3, 4)}.

t
1 2 3 4 5

B0

B1

Figure 28: Barcodes for the �ltered complex in �gure 25.
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7 JPlex tests

JPlex is a Java software package for computing the persistent homology of �ltered com-
plexes using the algortihm we have presented. Furthermore, it makes use of some of our
complex constructions to create �ltered complexes. They are, the Vietoris-Rips complex,
Strong witness complex, Weak witness complex, Vietoris-Rips weak witness complex,
and the Simple witness complex. The authors are Harlan Sexton and Mikael Vejdemo
Johansson. JPlex can be used together with Beanshell or MATLAB. In this paper JPlex
has been used together with MATLAB.

7.1 Sphere

In this test 500 points have been sampled from the unit sphere by using uniformly
distributed pseudorandom numbers to generate spherical coordinates of the unit sphere.
From these, 20 landmark points have been chosen by random. Then the above mentioned
complex constructions have been used to create �ltered complexes, and barcodes have
been computed. Simplices are also constricted to dimension 3, as this is only what we
need to compute betti numbers up to dimension 2. Typical barcodes obtained is shown
in �gures 29 to 33. The correct betti numbers for the sphere is B(B0) = 1, B(B1) = 2,
and B(B2) = 1. For all constructions we present typical ε values for when the correct
betti numbers are achieved. We also state the total number of simplices in the corre-
sponding complexes for these ε values. All the results presented for the di�erent complex
constructions are obtained by the same set of sample and landmark points, except for
the Vietoris-Rips complex. For this complex it was necessary to generate a new set of 20
points.

First of all we notice that the barcodes for the Simple witness and Vietoris-Rips con-
structions are not as convincing as the others. They manage, but not necessarily always,
to obtain the correct betti numbers. But again, the barcodes are not that convincing.
Furthermore they create, as we will see, a lot more simplices before they obtain the cor-
rect betti numbers. This results in a much longer computation time. The Vietoris-Rips
complex and the Simple complex in �gures 29 and 30 obtain the correct betti numbers
at ε ≈ 1.65 and ε ≈ 1.65, resulting in 950 and 1257 simplices, respecitvely. They also
give very similar barcodes. That is, W (Z,L, ε) is very similar to V R(L, 2ε). This makes
sense. Recall �gure 38. If two landmark points are a bit closer to each other than 2ε,
then there is great amount of potential witness points (498 for an edge). Hence, there
is a good chance that there is one in the intersection of the two ε-balls around each point.

We observe that the two weak witness type constructions, Vietoris-Rips weak witness
and Weak witness, almost get it right right from the start at about ε ≈ 0, 05. This is not
surprising due to the weak witness de�nition allowing a point to be a witness right from
the start. That is, (p + 1) landmarks spans a p-simplex if they are the (p + 1) closest
points to another point. They also show almost identical barcodes. Altough the starting
points for all the edges is the same for both, all barcodes in the Vietoris-Rips version
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Figure 29: Barcodes for the Vietoris-Rips complex with sample points from a sphere.

Figure 30: Barcodes for the Simple witness complex with sample points from a sphere.

ends quicker due to the Vietoris-Rips complex is a �lled in version of the Weak witness
complex. Note that the scales are di�erent for the two barcode sets. The number of
simplices at achieved correct betti numbers for the Vietoris-Rips weak witness complex
and the Weak witness complex is 348 and 324, respectively. The Vietoris-Rips weak
version constructs as expected more simplices. However it is much quicker. It did not
matter much for this test, but for a greater number of sample or landmark points it is
much quicker, without actually having done any extensive research on this except a few
tests. But it �gures as the Vietoris-Rips weak version only need to compute distances
between two points.

Figure 31: Barcodes for the Weak witness complex with sample points from a sphere.
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Figure 32: Barcodes for the Vietoris-Rips weak witness complex with sample points from
a sphere

The strong witness complex obtain correct betti numbers at ε ≈ 0.15 with 228 sim-
plices. This is less than the weak witness types, which makes sense as the strong witness
is a stricter witness type. Recall �gure 17.

Figure 33: Barcodes for the Strong witness complex with sample points from a sphere

7.2 Torus

In this test 1002 points have been sampled from a 100 × 100 grid on the 2-dimensional
unit torus in R4, and then noise has been added. From these, 50 landmark points have
been chosen randomly. Then the witness complex constructions have been used to cre-
ate �ltered complexes, and barcodes have been computed. Simplices are constricted to
dimension 3, as this is only what we need to compute betti numbers up to dimension 2.
Typical barcodes obtained is shown in �gures 34 to 38. The correct betti numbers for the
sphere is B(B0) = 1, B(B1) = 0, and B(B2) = 1. For all constructions we present typical
ε values for when the correct betti numbers are achieved. We also state the total number
of simplices in the corresponding complexes for these ε values. All the results presented
for the di�erent complexes are obtained by the same sets of sample and landmark points,
except for the Vietoris-Rips complex. For this complex it was necessary to generate a
new set of points, so 72 points were generated.

The Simple witness and Vietoris-Rips construction numbers are, respectively, ε ≈
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FAIL and ε ≈ 1.36. The Vietoris-Rips does a better job on this one. I do not know
what the explanation for this might be, but maybe it has something to do with the wit-
ness points making for a more prololonged continuous like conversion from vertices to
edges, to 2-simplices, and to 3-simplices. While with the Vietoris-Rips the conversions
are more abrupt and gathered. Looking at the barcodes for the other witness construc-
tions we see that they look much better.

Figure 34: Barcodes for the Vietoris-Rips complex with sample points from a torus.

The weak complexes get it right practically right from the start. The valid interval
for the Vietoris-Rips weak witness complex is much shorter than for the Weak witness
complex. Which again is as expected as the the Vietoris-Rips weak complex is a �lled
in version of the Weak witness complex. The Vietoris-Rips weak witness construction
seems to get into some trouble at ε ≈ 0.07 when the �lling og the simplices with the
Vietoris-Rips part goes a skew. The numbers are ε ≈ 0.003 for both, and 449 simplices
for the Weak witness complex and 475 for the Vietoris-Rips weak witness complex.

The Stong witness complex does a very good job in this one and the numbers are
ε ≈ 0.05 and 73, with the same explanations as for the sphere test.
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Figure 35: Barcodes for the Simple witness complex with sample points from a torus.

Figure 36: Barcodes for the Weak witness complex with sample points from a torus.

Figure 37: Barcodes for the Vietoris-Rips weak witness complex with sample points from
a torus.
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Figure 38: Barcodes for the Strong witness complex with sample points from a torus.
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8 Mapper

Material in this section is gathered from [3] and [24].

Up to this point we have used homology, speci�cally betti numbers and barcodes, as
indicators of intrinsic geometric features of data sets. However, humans are very good
at recognizing patterns in dimensions less than 3. It seems then like a good idea to
develop methods that tap into this potential. The simplest way to visualize a space is
by seeing its component structure, hence any clustering algorithm can be regarded as a
visualization method. The method we will introduce now is called Mapper and is based
on topological ideas with the nerve complex construction at the core.

8.1 Topological idea

Recall from the nerve section that we obtained a map g ◦ ρ : X → N (U) where U was
a cover for a topological space X. Now whether or not g ◦ ρ is a homotopy equivalence
we still have a continuous map giving us a kind of coordinization of the space X. An
illustration is given in Figure 39. An ordinary coordinization provide a map to Euclidean
space of some dimension, and can provide useful insight into the space under investi-
gation. We have now instead obtained a map from our space to a complex. We then
say that this complex represent our space, and if it is of low dimension it may be easily
visualized.

X

U

N (U)

Figure 39: Illustrating the values of a coordinization map from an interval X with cov-
ering U , to the corresponding nerve complex of U .

We will now introduce a new variant of the nerve construction which produces a more
sensitive target for our coordinization map.

De�nition 8.1. Let X be any topological space, and let U = {Uα}α∈A be a covering of
X. For each α ∈ A we can write Uα =

⋃
i∈I(Uα,i) where {Uα,i}i∈I are the path connected
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components of Uα. The set Û = {Uα,i}α∈A,i∈I then forms a new covering of X, and we
de�ne a new nerve complex

N π0(U) = N (Û).

We illustrate the di�erence with an example.

Example 8.2. Let X = S1, and let U be a covering of X given by the sets U0 = {(x, y) |
y < 0}, U1 = {(x, y) | y > 0}, and U2 = {(x, y) | y 6= ±1}. Note that U0 and U1 have one
connected component each, while U2 has two connected components. We observe that
N π0(U) is homeomorphic to X while N (U) is not. This is illustrated in Figure 40.

U0

U1

U2

N π0(U) = N (U) =

Figure 40: See Example 8.2.

Now, we need a way to construct coverings of spaces. Earlier we have done this by
covering the space with open ε-balls. Now we introduce a new method. Suppose we are
given a continuous map ρ : X → Z from our topological space X to a metric space Z.
The map ρ is called the reference map or the �lter, and the metric space is called the
parameter space. Suppose that U = {Uα}α∈A is a open or closed covering of Z, then the
set ρ∗U = {ρ−1(Uα)}α∈A is a covering of X, for which we can compute N π0(ρ∗U).

Typical parameter spaces are R, Rn and S1.

Example 8.3. Let Z = R then we can construct the covering U(R, e) which consists of
all intervals [kR−e, (k+1)R+e] where k ∈ N. This gives us two parameter choices, and
as long as e ≤ R/2 there will never be more than two intervals intersecting, restricting
the resulting nerve complex to dimension 1. Product of such intervals give coverings of
Rn.

Example 8.4. Let Z = S1, N ≥ 2 in N, and ε ≥ 0 in R. Then a covering of S1 is
U [N, ε] = {Uj}0≤j≤N where

Uj = {(cos(x), sin(x)) | x ∈ [
2πj

N
− ε, 2πj

N
+ ε]},

whenever ε ≥ π
N .
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We give an example of the whole topological idea.

Example 8.5. Let X = S1, Z = [0, 1], and let U = U(1
3 ,

1
9) be a covering of Z. Further

suppose we have a map ρ : X → Z given by ρ(x, y) = y. Then we have the following
illustrated in in Figure 41.

Z =
0 1

3
2
3

1

U

ρ−1

N π0(ρ∗U)

Figure 41: See Example 8.5.

8.2 Statistical version

We want to apply the above idea to point clouds. We can still make a reference map
ρ : X → Z from a point cloud X to a parameter space Z, and ρ∗U = {ρ−1(Uα)}α∈A is
still a covering of X. However it is meaningless to split up this covering into its path
connected components, which is just points. The idea is instead to replace the notion of
path connected components with the notion of clusters of points. So, instead of �nding
the path connected components of ρ−1(Uα), we �nd the clusters of ρ−1(Uα). We can
then write

Xα = ρ−1(Uα) =
⋃
c∈C

(Xα,c),
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where {Xα,c}c∈C is the set of clusters in ρ−1(Uα)} found by the clustering algorithm.
Analogous to the topological case we can now de�ne a new covering

ρ̂∗U = {Xα,c}α∈A,c∈C .

for which can compute N (ρ̂∗U).

U1 U2

Topological

N

Cluster 1 Cluster 2

Statistical

N

Figure 42: Moving from the notion of connected components to the notion of clusters.

Any clustering method will do, but the method we will be using is called single link-
age clustering, and works as follows. Set a paramenter ε. The clusters {Uα,c} of Xα will
be equivalence classes under the equivalence relation ∼ε de�ned by x ∼ε y i� d(x, y) ≤ ε.
Note that this is exactly the same way we decide whether or not there is an edge between
two points in V R(X, ε), and hence the number of connected components in V R(X, ε)
is the same as the number of clusters found single linkage clustering. This will enable
us to take advantage of persistent homology with this clustering algorithm to �nd good
choices for ε. But we come back to that later in the end of this section.

Let us recap our method.

1. De�ne a reference map ρ : X → Z from a point cloud X to a metric space Z.

2. Create a covering U = {Uα}α∈A of Z.

3. Construct the subsets Xα = ρ−1(Uα).

4. Use some clustering scheme to �nd the clusters {Xα,c}c∈C of Xα.

5. Compute N (ρ̂∗U) = N ({Xα,c}α∈A,c∈C).

An example is given in Figure 43.
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Z =
0 1

3
2
3

1

U

ρ−1

N π0(ρ∗U)

Figure 43: Here X are points sampled from an annulus in R2 with outer diameter equal
to 1 and inner diameter equal to 1/2. The parameter space is Z = [0, 1], and the covering
for Z is U = U [1/3, 1/9]. The reference map ρ : X → Z is given by f(x, y) = y.

8.3 Multiresolution, topological idea

We would like to produce a multiresolution, or multiscale structure, so that we can try
to distinguish between true features and artifacts in the data set. The intuition is that
features appearing at many di�erent resolutions or scales are more likely to be actual
features of the set than those appearing at fewer resolutions or scales. We start by giving
the following de�nition.

De�nition 8.6. Let U = {Uα}α∈A and V = {Vβ}β∈B be two coverings of a topological
space X. A map of coverings from U to V is a set map θ : A→ B so that for all α ∈ A,
we have Uα ⊆ Vθ(α).

Moreover, given a map of coverings θ : A→ B from U to V we have an induced map
of complexes N (θ) : N (U)→ N (V).

Example 8.7. Let U [R, e] be the covering of R as de�ned earlier. Then the identity
map i : Z→ Z yields a map of coverings U [R, e]→ U [R, e′] whenever e ≤ e′, which also
induces a map of complexes between the corresponding nerve complexes. Figure 44 is an
example with two coverings U(1, 1/4) and U(1, 1/3).
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0 1 2 3 4

N

Figure 44: See Example 8.7.

Example 8.8. The map of integers k → bk2c yields a map of coverings from U [R, e] →
U [2R, e], which further induces a map of complexes between the corresponding nerve
complexes. Figure 45 is an example with two coverings U(1, 1/4) and U(2, 1/4).

0 1 2 3 4

N

Figure 45: See Example 8.8.

These two examples can naturally be generalized to higher dimensions.

Let us now consider a topological space X, together with a reference map ρ : X → Z
from X to a metric space Z, coverings U = {Uα}α∈A and V = {Vβ}β∈B, and a map of
coverings θ : A→ B from U to V on Z. Now if Uα ⊆ Vθ(α), then ρ−1(Uα) ⊆ ρ−1(Vθ(α)),
consequently each path connected component of ρ−1(Uα) is a subset of exactly one path
connected component of ρ−1(Vθ(α)). Hence we obtain a map of coverings

ρ̂∗U = { ̂ρ−1(Uα)}α∈A → ρ̂∗V = { ̂ρ−1(Vβ)}β∈B,

which induces a map of complexes

N π0(ρ∗U)
N (θ)−−−→ N π0(ρ∗V).

Consequently, if we have a family of coverings {Ui}Ni=0, and maps of coverings {θi :
Ui → Ui+1}Ni=0, there is an induced diagram

N π0(ρ∗U0)
Nπ0 (θ0)−−−−−→ N π0(ρ∗U1)

Nπ0 (θ1)−−−−−→ · · · N
π0 (θN−1)−−−−−−−→ N π0(ρ∗UN ).

We see that moving to the left in the diagram results in a �ner resolution, while
moving to the right results in a coarser resolution.

Example 8.9. Let X be the shape at the top in Figure 46. The parameter space
is Z = [0, 8] with coverings U(1, 1/4), U(2, 1/4), and U(4, 1/4), and let the maps of
coverings be the one induced by the integer map k → bk2c as in the Example 8.8. Looking
at Figure 46 we notice that �ner coverings gives a complex that captures �ner features
of the space X. Furthermore we see which vertices of a �ner resolution corresponds to
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which vertices of a coarser resolution. It is just like zooming in to discover �ner details,
but with the greater danger of being deluded by artifacts, atleast when we get to the
statistical version.

0 1 2 3 4 5 6 7 8

Mapper

Figure 46: Figure for example 8.9.

8.4 Multiresolution, statistical version

We want to apply the above technique to point clouds. So we assume the same conditions
as above, but let X be a point cloud. To apply the same idea to point clouds there is
one thing we need to be sure of. In the topological version above we knew that each
connected component of ρ−1(Uα) was included in exactly one connected component of
ρ−1(Vθ(α)). Similarily if X is now a point cloud, we need to know that each cluster of
ρ−1(Vα) is included in exactly one cluster of ρ−1(Vθ(α)). An illustration is given in Figure
47.

We arrive at the following de�niton for clustering algorithms satisfying this property.

De�nition 8.10. Suppose X and Y are point clouds such that X ⊂ Y , and that we
have an inclusion map ι : X → Y . A clustering algorithm is said to be functorial if
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Figure 47: Suppose the clustering algorithm partitions the above point cloud into the
two obvious clusters. Next, we apply the algorithm to the subset of the point cloud
denoted by the red areas. Then the clustering algorithm must not partiton the subset
point cloud in such a way that we get a cluster containing points both from the left and
right clusters found earlier. In other words, for instance, the two red areas close to each
other should not then become a cluster.

the inlcusion of each cluster constructed in X is included in exactly one of the clusters
constructed in Y . That is, the diagram in Figure 48 commutes.

X

Y

Clusters of X

Clusters of Y

ι Inclusion of clusters

Figure 48: See de�nition 8.10.

Let us recap. We are given a point cloud X together with a reference map ρ : X → Z
from X to a metric space Z, coverings U = {Uα}α∈A and V = {Vβ}β∈B of Z, and a map
of coverings θ : A→ B. We then obtain inclusions ρ−1(Uα) ⊆ ρ−1(Vθ(α)). By applying a
functorial clustering algorithm we �nd ρ̂∗U and ρ̂∗V, where now each element(cluster) in
ρ̂∗U can be included in exactly one element(cluster) in ρ̂∗V. Hence we obtain a simplical
map

N π0(ρ∗U)
N (θ)−−−→ N π0(ρ∗V).

Moreover, if we again have a family of coverings {Ui}Ni=0, and maps of coverings
{θi : Ui → Ui+1}Ni=0, there is an induced diagram

N π0(ρ∗U0)
Nπ0 (θ0)−−−−−→ N π0(ρ∗U1)

Nπ0 (θ1)−−−−−→ · · · N
π0 (θN−1)−−−−−−−→ N π0(ρ∗UN ).

Where moving to the left in the diagram results in a �ner resolution, while moving
to the right results in a coarser resolution.

8.5 Filters

The big question is ofcourse how to �nd appropriate and good reference maps. These
may be some user de�ned functions given someone who has a certain knowledge about
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the data sets in question. However, there are some maps frequently used in the statistical
�eld of analyzing point clouds, which are natural to use. They are functions that carry
interesting geometric features about data sets in general.

Density. Any density estimator applied to the point cloud can provide useful informa-
tion about the data set. Often it is exactly this information one is looking for. For
example, letting ε > 0, we can estimate density by using a Gaussian kernel as:

fε = Cε
∑
y

exp(
−d(x, y)2

ε
),

where x, y ∈ X, Cε is a constant such that
∫
fε(x)dx = 1, and ε works as a smooth-

ing parameter.

Figure 49: Points in high density areas in red, and points in low density areas in blue.

Eccentricity. Maps in this family is based on the notion of measuring the distance
points have to some notion of the center in the data set. The set does not necessarily
actually have a center, but a point minimizing such a function can be thought as
being one. For example one can use the function

Ep(X) = (

∑
y∈X d(x, y)p

N
)1/p,

where x, y ∈ X.

Mapper used with such reference maps is good at recognizing qualitative properties
of certain shapes, e.g. mapper should easily be able to recover the shape in Figure
51.

Graph Laplacians. This family of functions originate from considering a Laplacian
operator on graphs. In particular, their eigenfunctions produce functions on the
vertex set of the graphs. These eigenfunctions can produce useful �lters. See [15]
for details.
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Figure 50: Illustration of eccentricity. Red points are points with high eccentricity, while
blue points are points with lower eccentricity.

Figure 51: Mapper used with a eccentricity function as reference map, should easily be
able to recover this shape.

8.6 Scale space

In our construction we need to specify an ε for the clustering method. Finding good
choices for ε is generally di�cult. Furthermore, it is likely that we want to specify dif-
ferent choices for ε for di�erent regions. In this section we will present a systematic way
to help choosing ε as described above, based on the single linkage clustering method.

Recall that single linkage clustering produces the same edges as V R(X, ε), and hence
they have the same number of connected components(clusters). We can then obtain
interesting information about the behaviour of the clusters under all values of ε by com-
puting the barcodes for B0 for V R(X, ε).

Let E(X) ⊂ [0,∞) be the collection of all endpoints of the intervals occuring in
the barcode. This gives us a �nite set E(X) = [e1, e2, ..., et] where ei < ei+1. Now,
let ei ≤ η < η′ < ei+1, then the inclusion V R(X, η) ↪→ V R(X, η′) is an isomorphism,
which induce a bijection on the sets of connected components. Each interval (ei, ei+1] is
therefore called a stability interval.

De�nition 8.11. Let X be a point cloud, ρ : X → Z a reference map to a metric space,
and U = {Uα}α∈A a covering of Z. We de�ne a complex SS = SS(X, ρ,U) as follows.
The vertices of SS are pairs (α, I), where α ∈ A, and where I is a stability interval for
the point cloud Xα = ρ−1(Uα). The set {(α0, I0), (α1, I1), ..., (αp, Ip)} forms a p-simplex
i�

1. Uα0 ∩ · · · ∩ Uαp 6= ∅.
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2. I0 ∩ · · · ∩ Ip 6= ∅.

Now, the vertex map (α, I) → α induce a map of complexes p : SS → N (U). A scale
choice for X and U , is a simplicial map s : N (U)→ SS such that p ◦ s = IdN (U).

So, the choice of a scale map s will, in principle, give us a choice for the scale
parameter for di�erent regions α. Say we choose a scale map s for X and U , and that
we set s(α) = (α, Iα). Now for each α we may choose an εα ∈ Iα, and it does not matter
which one we choose, as long as we just choose one. Then we have chosen scale parameters
varying with α and we can create a complex with these scale parameter choices as input
for the single linkage clustering method. Speci�cally, we create a complex with vertex
sets (α, c) where c is a cluster obtained by applying single linkage clustering to ρ−1(Uα)
with scale parameter choices εα.

Example 8.12. Let X be some point cloud, and let our parameter space Z be an inter-
val with a covering U as illustrated in Figure 52.

Z =

U = Uα1 Uα2 Uα3

Figure 52: Parameter space Z with covering U .

Now suppose that we have a map ρ : X → Z, and that computing the B0 barcodes for
the Vietoris-Rips complexes on the sets ρ−1(Uαi) yields the following stability intervals
marked in red, green and blue in Figure 53

ε

K2
K1

J3
J2

J1

I1 I2

α3

α2

α1

Figure 53: Supposed barcodes.

We can now create the simplicial complex SS(X, ρ,U), and we can look for scale
choices for X and U . In Figure 54 are two simplicial maps that are possible scale choices,
and where the colored dots in the barcodes in Figure 53 are possible ε choices corre-
sponding to these scale choices.
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N (U) = SS(X, ρ,U) =

α1

α2

α3

s

s′

(α1, I1) (α1, I2)

(α2, J1) (α2, J2) (α2, J3)

(α3,K1) (α3,K2)

Figure 54: Two possible scale choices.

Note that even though for example I1 ∩K2 = ∅, there is a scale choice s where we
can pick an ε in each I1 and K2. This is due to the fact that I1∩J2 6= ∅ and K2∩J2 6= ∅.
So J2 connects the two stability intervals together and ensures continuity in the choices
for ε. Hence, the di�erence in choices for ε are allowed to be quite di�erent in di�erent
regions, as long as this continuity is preserved.

Let us review what the method o�ers.

• There is a kind of continuity in the choice of the scale parameter varying with α.
Likely the data sets will be of such a nature that continuously varying the ε as
above is the natural way to go. For example, we most likely want to choose small
epsilons in high density areas and bigger epsilons in less dense areas.

• Stability intervals have a notion of length, hence it is possible to compare di�erent
choices of s. The intuitive idea is again that scale choices that are stable over long
ranges of parameter choices is better than the more unstable ones. For example,
we can sum up all the stability intervals corresponding to a scale choice s, maybe
even with some weights, and make comparisons.

8.7 Mapper on population data

In this test an implementantion of the Mapper method in MATLAB is used, and the
author is Gurjeet Singh. The results have been visualized using an open source graph
visualization software called Graphviz.

We are given samples from an unknown population of people, which we want to know
more about. The total amount of 3150 samples have been taken from this population.
For each sample two measurements have been taken.

• The current radius of their eyes, that is the current size of their eyes, for which it is
believed to indicate how much experience an individual is taking in at the moment.
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• The curvature of the mouth, indicating anything from a smiling to a neutral to a
sad person.

Furthermore, in this test we assume, for obvious reasons, that a persons eyes or smile
cannot change instantaniously to another form, but has to transform in some continuous
way. So no instant jumping from a smiling mouth to a sad mouth without some tran-
sitory fase. Now, the eyes and mouth give us two parameters for each individual, and
hence we can map each individual onto the plane in R2 giving us a point cloud X ⊂ R2.
This is illustratet in Figure 55. The data set obtained from the 3150 samples is shown
in Figure 56. The color of each point indicates the value of the �lter map on that point.

Sm
al
le
r
ey
es

More sad

Figure 55: Individuals mapped to the plane according to the size of their eyes and
curvature of mouth.

The �lter map chosen for this test is a kernel density function ρ : X → R, as in-
troduced earlier. The Mapper implementation sets the parameter space to be Z =
[min(ρ),max(ρ)]. A covering of this space is then created by �rst de�ning subintervals
of length (max(ρ) − min(ρ)) ∗ resolution, where the resolution is an input parameter
for Mapper. Then another input parameter speci�es the percentage overlap between the
intervals, giving us a covering of Z. So, let us see if we can detect any structure with the
Mapper method.

In Figure 57 the results for di�erent resolutions are shown. The percentage of overlap
is 25 percent. As we can see the �ner the resolution the �ner structures we obtain. The
main structure of this data set seems to be best represented by the resolution in Figure
57(c), i.e. three connected components. Resolutions in Figure 57(a) and 57(b) seems
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Figure 56: Population sample mapped to the plane. Red indicates high �lter value, while
blue indicates low �lter value, that is high and low density estimates. Each sample point
is placed accordingly to the mapping illustrated in Figure 55.

to be too coarse compared to the others, while Figures 57(d) and 57(e) starts to show
properties that seem likely to be artifacts.
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(a) Resolution =
1/3

(b) Resolution = 1/5 (c) Resolution = 1/10

(d) Resolution =
1/20

(e) Resolution = 1/30

Figure 57: The Mapper method has been applied to the data set in Figure 56. The
�lter map is a kernel density estimator. The percentage overlap was chosen to be 25
percent, and Figures 57(a) to 57(e) shows the results for di�erent resolutions. The size
of the nodes indicates the number of data points that belongs to this node, and the color
indicates the average value of the �lter map on the points belonging to this node. Again
red indicates a high value and blue a low value.
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These results may indicate a few properties about this population and we use Figure
57(c) as a reference. For the largest component with three endpoints(or �ve if we count
the two small blue ones) we have that

• the points corresponding to the �are with the bluest nodes are tracked down to
be points all over the plane, which explains the the low density represented by the
blue color. This is about 20 percent of the data set.

• the middle node that connects the three �ares consists of individuals with a neutral
mouth and big eyes. This indicates individuals having a shock, as a lot of experience
is taken in, but they have not yet grasped the consequences, which explains the
neutral mouth.

• the two other �ares, starting from the node in the middle of them, represents
individuals that goes from big eyes to medium sized eyes, and from neutral mouth
to either very happy or very sad. With increasingly higher density the further we
move out in these two �ares. They are about 25 percent each of the data set.

For the two other connected components we have that

• the points representing individuals in these components are all individuals with
very small eyes, and they are either happy or sad. They are about 15 percent each
of the data set.

It seems that about 50 percent of the individuals in this test moves between being
very sad and very happy, after having some kind of shock, and that most of the time they
resides in either of these states osr, after having a shock, about 25 percent go slightly
mad and behaves noisy. Furthermore it seems that 30 percent of the population just stay
either very happy or very sad, which makes sense due to their small eyes, as they do not
take in much experience and hence does not experience much that alters their state of
being.
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