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Abstract

Analyzing latent Gaussian models by using approximate Bayesian inference methods has
proven to be a fast and accurate alternative to running time consuming Markov chain
Monte Carlo simulations. A crucial part of these methods is the use of a Gaussian ap-
proximation, which is commonly found using an asymptotic expansion approximation.
This study considered an alternative method for making a Gaussian approximation,
the expectation propagation (EP) algorithm, which is known to be more accurate, but
also more computationally demanding. By assuming that the latent field is a Gaussian
Markov random field, specialized algorithms for factorizing sparse matrices was used
to speed up the EP algorithm. The approximation methods were then compared both
with regards to computational complexity and accuracy in the approximations. The ex-
pectation propagation algorithm was shown to provide some improvements in accuracy
compared to the asymptotic expansion approximation when tested on a binary logistic
regression model. However, tests of computational time requirement for computing ap-
proximations in simple examples show that the EP algorithm is as much as 15-20 times
slower than the alternative method.

Keywords: Expectation propagation, approximate Bayesian inference, latent Gaus-
sian models, Gaussian Markov random fields, asymptotic expansion approximations.
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1 Introduction

One of the main topics in modern statistics is studying problems using Bayesian infer-
ence. This often involves large hierarchical models which are typically analyzed using
simulation methods such as Markov chain Monte Carlo (MCMC) methods, see Gamer-
man and Lopes (2006). These methods are relatively easy to use, even for large complex
Bayesian models. Though, owing to their computer intensive nature MCMC simula-
tions can for large problems use hours or even days to complete (Rue et al., 2009). For
a special class of Bayesian models, namely the latent Gaussian models, Rue et al. (2009)
proposed to bypass MCMC completely by employing deterministic approximation meth-
ods instead. The methods suggested by Rue et al. (2009) were shown to be remarkable
fast and accurate, and provides a valuable tool in Bayesian statistics as the use of latent
Gaussian models is widespread in practical applications. However, some parts of the
approximation procedure were under a bit of scrutiny in the discussion part of Rue et al.
(2009, pp. 353-388) as approximations methods from the machine learning literature
were not properly tested with this procedure. In particular the expectation propagation
(EP) algorithm was mentioned as a possible option for improving the accuracy in the
approximations. This consideration forms the starting point of the study presented here.

The main purpose of this paper is to study the expectation propagation algorithm
for use in approximate Bayesian inference of latent Gaussian models. Special attention
will be on accuracy gain versus computational time increase compared to the method
used in Rue et al. (2009).

The paper will have the following structure. Section 2 will give an overview of Gaus-
sian Markov random fields and particularly numerical methods for dealing with GMRFs.
The most important point is how to efficiently deal with sparse symmetric positive defi-
nite matrices, and easy to implement algorithms for band matrices are presented. Use of
GMRFs in hierarchical Bayesian models, yielding the so-called latent Gaussian models,
is treated in Section 3. As we will see, latent Gaussian models provides a powerful mod-
elling tool which can be applied to a wide range of problems, see Rue et al. (2009) for
examples. Analysis of these models using the approximate Bayesian inference scheme
developed by Rue et al. (2009) is presented in Section 4. This section will discuss why
these models are particularly well suited for approximate inference and present the basic
steps involved in the approximation process. Particularly we will see the need of com-
puting an unnormalized Gaussian approximation. Two methods for dealing with this
task are presented in Sec. 5. The first method is based on an asymptotic expansion
and is the method used by Rue et al. (2009). The second method is the expectation
propagation algorithm developed by Minka (2001), and is based on optimization. This
algorithm has become quite popular in the machine learning community, where it is of-
ten used with models where the latent Gaussian field is not assumed to have the Markov
property (Minka, 2001; Rasmussen and Williams, 2006). The EP algorithm is known
to provide better Gaussian approximations than the asymptotic expansion method, see
Minka (2001) and Rasmussen and Williams (2006), however it is also known to be slower
(Rue et al., 2009). By allowing the latent field to be a GMRF one can improve the ef-
ficiency of EP by incorporating the numerical methods from Sec. 2. This paper will
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investigate if the computational complexity is reduced to such an extent that EP can be
used for fast inference when applied in the approximate scheme from Sec. 4. If so, the
approximation scheme can enjoy the improved accuracy in cases where the asymptotic
expansion method does not work so well. The analysis presented in Sec. 6 will address
the speed and accuracy tradeoff associated with the two methods. Computational time
requirement is studied by looking at examples where the band algorithms from Sec. 2
can be applied. Both methods and the linear algebra routines used by the methods are
implemented from scratch in C, and the idea is to study the two methods on an equal
footing. The accuracy gain by applying EP is studied by analyzing a data set where the
asymptotic expansion method does not give the best approximations. Hopefully this will
shed some light on the issues raised by machine learning researchers in the discussion
part of Rue et al. (2009, pp. 353-388).

1.1 Notation

The notation used in text is more or less identical to what is used in Rue et al. (2009).
Probability distributions are denoted such that m(z) is the distribution of a random
variable (r.v.) z and m(z|y) is the distribution of a r.v. z conditioned on a second
r.v. y. The Gaussian distribution holds a special place in this text and the following
convention is used: @ ~ N (p,X) means that the x is Gaussian distributed with mean
p and covariance matrix ¥. A Gaussian probability density function (pdf) with these
moments, evaluated at x, is denoted NV (x|p, X).

Scalars and vectors are denoted by small Latin or Greek letters and are identified
by the use of boldface fonts for vectors, e.g. @ = (x1,...,2,)T. Matrices are written
with bold face capital letters, and to indicate that a matrix A have elements A;; (for
suitable combinations of ¢ and j) we write A = (A4;;). Similarly, a matrix with column
vectors ai,...,a, is written A = (a;). In algorithms the process of solving for x in
a linear system of equations Ax = b is denoted & = A\b in which it should be clear
from context what algorithm to use for this purpose. Also, the process of solving «
is sometimes shorted down to ‘solving A~'b’ (thus it is not b we are solving for). In
vectors, matrices and sets the removal of a subsets of elements is indicated by a minus
in the subscript, say if z = (z1,...,2,)" then T_{13) = (T2, 74,5, .. ,xn)T. Lastly,
regular sequences of numbers are given the usual way, that is if 7, 7 € N and ¢ < j, then
iij=(,i4+1,...,5—1,5)7T.

The rest of the notation used should be self-explanatory or be introduced along the
way.

2 Gaussian Markov Random Fields

The overall goal in this text is to study the expectation propagation algorithm for use in
approximate Bayesian analysis of latent Gaussian models. The key feature of the models
discussed here is that the observations are assumed to depend on an underlying (or
unobserved, also referred to as latent) field with special properties. Throughout this text
the underlying field is a Gaussian Markov random field (GMRF), which turns out to have
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some highly desirable properties with regards to reducing the computational workload
involved in the analysis. Using GMRFs in this context is a fairly new phenomenon in
computational statistics and the first complete account of this topic is given in Rue and
Held (2005). This section presents a selection of the theory concerning Gaussian Markov
random fields and is basically a summary of Rue and Held (2005, Ch. 2).

2.1 Preliminaries

In short a Gaussian Markov random field is a collection of random variables which are
jointly Gaussian distributed and have conditional independence properties given by a
graph. In order to gain an understanding of what this means a quick introduction of
the Gaussian distribution and some ideas from graph theory is needed, starting with the
multivariate Gaussian distribution.

2.1.1 The Gaussian distribution

Definition 2.1 (Multivariate Gaussian distribution). Let & = (z1,...,7,)" be a n-
dimensional random vector with expectation E(x) = p and (symmetric positive definite)
covariance matrix cov(xz) = ¥. We say that a is multivariate Gaussian distributed,
written @ ~ N (u, X), if the probability density function is on the form

m(xz) = (27) "% (det &) 1/2 exp{ - %(:13 )= Nz - u)}, x € R" (2.1)

This distribution is perhaps the most widely used of all multivariate distributions in
statistics and some of its popularity is due to a few highly useful analytical results. A
summary of the most important properties with the Gaussian distribution is given in
Result 2.1.

Result 2.1. Let © be a Gaussian random vector with mean p and covariance matriz 3
and consider any partition of the elements in @ and the corresponding partitions in
and X, given as*

T A A a4 XaB
v <m3> H <HB> o <EBA 233) (2:2)

Then the following results apply

1. Linear transformation: Let A € RF¥*" Lk < n, be a rank k matriz and define
y=Ax. Theny ~N(Au, AZAT).

2. Marginalization: o ~ N (g, X a4).
3. Independence: x4 and xp are independent <= X 4p = 0.

4. Conditional distribution: xalxp ~ N (4, X ) where
Pap = Ma+ZapSgp(wp — pp) and yp = i — TapSzpTpa.

!Ordering of the elements in @ is irrelevant so all partitions can be written this way.
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A proof of the first property can be found in Kingman and Taylor (2008, pp. 372-
373) and the rest of the properties are treated in Johnson and Wichern (2007). Another
useful (and non-statistical) property with the Gaussian distribution function is that the
product of two Gaussian pdfs of the same argument is an un-normalized Gaussian pdf
in that argument. By considering the product of N (x|a, A) and N (x|b, B) we have

Nz |a,A) -N(x|b,B)=Z'N(z|cC), (2.3)

where c=C(A 'a+ B 'b), C = (A" + B ')l and
77 = (2m) 2(det(A + B)) P exp{ — L(a~b)"(A+ B)(a—b)}.

This identity can be verified by simply multiplying the pdfs and grouping together terms
in the exponent so that the only term involving @ is quadratic. The result then follows
by comparing with the pdf in Eq. (2.1). This result also shows that a ratio of Gaussian
distribution functions is Gaussian, which is useful in the derivation of the expectation
propagation algorithm in Sec. 5.2.

2.1.2 Undirected graphs and the Markov property

Before specifying what a Markov random field is a few basic ideas about graphs must be
introduced. The reason for this is that graphs are very useful for defining the Markov
property for a random field.

A graph G is an ordered pair G = (V, £), where V is a set of vertezes (or nodes) and
£ is a set of edges connecting elements in V. This text will only consider graphs that
are undirected and labeled. An undirected graph has the property that the edges are
symmetric, i.e.

(v1,v2) = (v2,v1) for all (vi,v2) €E, wi,v2 € V.
In a labeled graph the elements in V are labeled by the natural numbers so that V =
{1,2,...,|V|}. An example of an undirected labeled graph is shown in Figure 2.1. In this

graph the set of vertexes is V = {1, 2, 3,4} and the set of edges is £ = {(1, 2), (2,4), (3,4), (1,3)}.
Two vertexes ¢ and j in V are considered neighbors, denoted by i ~ j, if the edge (i, 7)

O
@—)

Figure 2.1: Example of an undirected graph.
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is contained in €. The collection of all the neighbors of a vertex 7 is denoted ne(i), i.e
ne(i) ={j€eV|(i,j e}t ieV.

For instance in Figure 2.1 we have ne(1) = {2,3}. A path p in a graph G is a sequence
of distinct vertexes v1,v2,...,v;_1,v; € V, so that £ contains edges between successive
vertexes, i.e. (vg,vp1) € € for 1 < k < j. Examples of different paths in Fig. 2.1 are
for instance p = (1,2,4) and p = (3,1,2). By letting A be a non-empty subset of V we
can define a sub-graph of G as

Ga=(A&x), ACV, Ea={(i,j) el |i,jec A}

If A, B and C are disjoint subsets of V then C is said to separate A and B in G if
there are no paths going from a vertex in A to a vertex in B that does not contain a
vertex from C. For this to make sense the sets A and B are required to be non-empty,
however C' is not restricted to be non-empty. In the case where C is empty, A and B
are separated in G to begin with.

The Markov property defines a special conditional independence structure in a ran-
dom field. By definition the random vectors w and w are conditionally independent
given the value of a random vector v if

m(u,w | v) =n(u | v)r(w | v),
or equivalently if
m(u|w,v)=7(u|v) (<= m(w]|u,v)=rw]|v)),

in which case we write w L w|v. A random field z = (z1,...,7,)" is said to be a Markov
random field (MRF) with respect to G = (V, €) if w(x) satisfies a Markov property. Rue
and Held (2005) lists three different types of Markov properties which is given in the
following list.

1. Pairwise Markov property:
x; Laj|ax_y foriz#jandiojinG.
2. Local Markov property:
T L ®_pei)ufi} | Tnes) for every i € V.
3. Global Markov property:
xg Laxp|lze, ABCCVY

for every disjoint A, B and C, where A and B are non-empty and C' separates A
and B in G.
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Note that the global Markov property implies both the local and pairwise property. Also,
according to Rue and Held (2005), it is possible to show that under certain conditions
the three properties are equivalent.

One of the simplest examples of a Markov random field is a discrete time Markov
chain with ne(i) = {i — 1,7+ 1} for ¢ € V, as shown in Fig. 2.2. Common practice with
Markov chains of this type is to define the Markov property by

T(Tnt1 | Tim) = T(Tpt1 | 2n), 1<i<mn,

which has the intuitive interpretation that a future state only depend on the most
recent observation when conditioning on the entire (or parts of the) past. This notion is
generalized for MRFs with more complex graphs, that is, elements in a random field with
the Markov property is conditionally independent ‘far away’ data when given sufficient
amount of ‘close’ data.

Figure 2.2: Graphical representation of a discrete time Markov chain.

2.2 GMRF

A Gaussian Markov random field is simply a Markov random field & with respect to an
undirected labeled graph G with the additional property that & ~ N (p, X). It turns out
that in a Gaussian random field conditional independence between two elements given
the rest of the field is given directly in the precision matrix (inverse covariance matrix)
as is stated in Theorem 2.2.

Theorem 2.2. Let € ~ N (p, Q™ Y). Then
r; L x; ’ xr_ij — Qij =0 foralli =+ j. (2.4)

A proof can be found in Rue and Held (2005, p. 22). One direct consequence of this
theorem is that for a GMRF with graph G the off-diagonal terms @;; will be zero unless
i and j are neighbors in G (by the local Markov property). This result is very useful
when it comes to the computational aspect of dealing with GMRFs as it implies that if
the graph G is sparse (i.e. ne(i) < n for most i € V) then X! = @Q is sparse as well
(i.e. many elements are zero). Theorem 2.2 and the connection with the graph giving
the conditional independence structure is used directly in the definition of a GMRF by
Rue and Held (2005). This definition is adopted here.

Definition 2.2 (Gaussian Markov Random Field). A collection of random variables
x = (21,...,2,)T € R" is called a Gaussian Markov Random Field with respect to a
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labeled graph G = (V,£) with mean p and precision matrix Q > 0 if its density is on
the form

7(@) = (2n) "2(det @) exp { — (@~ ) QL — )} (2.5)

and
Qij =0 <<= (i,5)¢ & foralli#j.

It may appear as though this defines a Markov random field with the local Markov
property but in the case of GMRFs it turns out that the three Markov properties are
equivalent, see Theorem 2.4 in Rue and Held (2005). Unlike the elements in the co-
variance matrix the precision matrix elements do not have any specific interpretation
for single elements in a random field. However, the precision matrix elements can be
interpreted in light of the full conditionals of x as is shown in the next theorem, which
is found in Rue and Held (2005, p. 22).

Theorem 2.3. Let  be a GMRF with respect to a graph G, and let E(x) = p and
prec(x) = Q > 0. Then,
Bl [2-0) = i~ 5 Y Quiley — i)
Qu jijni
prec(z; | ;) = Qi, and

Qij
V@QiiQjj

The diagonal elements of @ are interpreted as the precision in the correspond full
conditional distributions, and the off-diagonal elements give, when properly scaled, the
correlations between two elements given the rest of field.

The perhaps simplest non-trivial examples of a Gaussian Markov random field is the
auto-regressive process (with Gaussian inventions) of order 1 shown in the next example.

i # .

corr (x4, x5 | T_ij) =

Example 2.1 (The AR(1) process). The AR(1) process is a stochastic process,

T, N(O,Ug),

(2.6)
Tyl = Qre &, t=2,...,m,

where |¢| < 1 (a stationary requirement) and

g ~N(0,02), t=1,...,n.
The joint distribution of = (z1,...,2,)T is Gaussian,  ~ N(0,Q~!), and the con-
ditional dependence structure of this process is given by the graph shown in Figure
2.2. This means that the precision matrix elements satisfy @Q;; = 0 if |i — j| > 1 for
1,7 =1,...,n. Thus, Q has bandwidth 1.

The auto-regressive processes are well-known from time series modelling and it turns
out that the precision matrix of an AR(p) process has bandwidth p as is discussed in
the next example.
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Example 2.2 (The AR(p) process). The AR(p) process with Gaussian inventions can
be written as

Tt+1 ’ L1t ™~ N(¢1[Et +--- ¢pxt—p7 Uz)a t= 17 sy n, (27)

where we set 20 = 1 = -+ = z_,41 = 0, see Rue and Martino (2007, p. 3182).
Just as with the AR(1) process the weights ¢1, ..., ¢, must satisfy certain conditions
for the process to be stationary, though these conditions will not be discussed here. The
precision matrix for an AR(p) process can be found by expanding the joint distribution
of x in the following way

m(x) = m(xp|T1m—1) X T(Tn_1|T1m—2) X -+ X 7(z2|T1) X T(X1). (2.8)
By using that m(z441 | 1) x exp ( — ﬁ($t+1 — 17 — -+ — ¢pwi—p)?) and that the
joint distribution can be written as

m(x) o exp ( — %:UTin),

we get Q;; = 0 for |i — j| > p.2 Thus, an AR(p) process have a precision matrix with
bandwidth p. To illustrate how this effects the graph of such a process Figure 2.3 shows
the graph of an AR(2) process.

e T T
SEEECEOzEe>

Figure 2.3: The graph G of an AR(2) process. Since Q;; = 0 for |i — j| > 2, there are no
edges between vertexes that are separated by more than two other vertexes. Also notice
how k and k + 3 are separated by the set {k + 1,k + 2}, a feature which is discussed in
more detail in Sec. 2.3.3.

Rue and Held (2005) lists three types of typical applications for GMRF models,
which are: GMRF models in time or on a line, spatial GMRF models and spatiotempo-
ral GMRF models. The GMRF models in time, such as the auto-regressive processes,
usually have precision matrices with a band structure and the following sections in-
cludes algorithms specialized for dealing with these types of sparse matrices. More
general algorithms for sparse matrices are just briefly mentioned as these are much more
complicated.

2To see why just compare 7 Qx = Zij x;2;Q;; with the factorization we get from (2.8) and observe
that there are no cross terms z;x; for |i — j| > p, i.e. we must have Q;; = 0.



2.3 Linear algebra and GMRFjs 9

2.3 Linear algebra and GMRFs

Linear algebra problems, like solving Ax = b for invertible A € R™*™ and x,b € R",
often arise when dealing with Gaussian fields, see Sec. 5 and also Rue and Held (2005,
pp. 33-40). Typically these problems involve the precision matrix or the covariance
matrix depending on the parameterization used. The issue with linear algebra problems
is that general algorithms usually have complexities like O(n?®) or O(n?), where n is the
dimension of the problem, which is problematic when n is large. Thus, recognizing and
exploiting special structures in the problems we are looking is of great importance as this
can reduce the computational workload significantly. First, however, a brief introduction
about symmetric positive definite matrices is given.

2.3.1 Symmetric positive definite matrices

As we can see from Definition 2.1 the covariance matrix of a multivariate Gaussian
variable is required to be symmetric positive definite (SPD). This type of matrices are
in a sense very well behaved as they have some particularly favorable properties.

Definition 2.3 (Positive definite matrix). Let A be a (real) square matrix with dimen-
sion dim(A) = n x n. Then A is said to be positive definite (PD), denoted A > 0, if it
satisfies

xTAx >0 forall = eR" where x#0.

A PD matrix satisfying AT = A is said to be symmetric positive definite.

From this definition it should be clear that a positive definite matrix is always in-
vertible (i.e. the inverse matrix exists) since the null space (or kernel) of a PD matrix
only contains the zero vector. The following theorem summarize the most important
properties with SPD matrices

Theorem 2.4. Let A € R™™™ be symmetric. Then the following is equivalent
1. A is SPD.
2. All the eigenvalues of A are real and strictly positive.

3. There exists a lower triangular L € R™ "™ such that A = LLT. If all the diagonal
elements of L are positive then L is unique.

Proofs and comments for this theorem are available in for instance Strang (2006, pp.
318-320). The lower triangular L is commonly referred to as the Cholesky triangle of A
and the factorization A = LL7 is called the Cholesky decomposition of A. Other useful
properties of positive definite matrices are given in Result 2.5.

Result 2.5. Let A, B € R"*" be PD matrices, C € RF*" be a rank k matriz where
k <mn, and a and 3 be strictly positive scalars. Then the following results apply

1. A~ is PD.
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2. aA+ BB is PD.
3. CAC" is PD.
4. Any principal sub matrices of A is PD.

All of these results follow almost immediately from Definition 2.3 and are crucial in
for instance Result 2.1.

2.3.2 Numerical methods for SPD systems

The focus in this section will be on computing the Cholesky decomposition of a SPD
matrix and usage of the Cholesky triangle. For now let Q@ € R™ " denote a general
symmetric positive definite matrix and let its Cholesky decomposition be Q@ = LL"T
where L € R™ " is lower triangular, i.e. if L = (L;;) then L;; = 0 for j > i. A
general algorithm for computing L is provided in Alg. 2.1 which obtained from Rue
and Held (2005). Other versions of the Cholesky factorization can be found in Golub
and Van Loan (1996). The complexity of this algorithm is, as argued by Rue and

Algorithm 2.1 Cholesky decomposition of a SPD matrix @ € R"*".
1: input Q >0
2: for j=1ton do
3: Vjn = Qj:n,j

4: fork=1toj—1do

3 Vjn = VUjin — Lj,ij:n,j
6: end for

T Ljng=vjn/\/vj

8: end for

9: return L

Held (2005), O(n3/3) in the general case. Numerical stability and error bounds when
using the Cholesky factorization for computing determinants, solving linear systems and
computing the inverse is considered in Martin et al. (1965). They showed that the
Cholesky factorization is numerically stable (elements in L are bounded) and that the
errors involved in computations using L can be bounded by the condition number (based
on the 2-norm) of @,

cond(Q) = ||Q|5 HQ_1H2 = Amax/Amin,

where Apax and Apin are the largest and smallest eigenvalues of @, respectively. Thus
unless @ is ill-conditioned (cond(Q) > 1) it is safe to use Cholesky triangle.

The reason for computing L is that solving systems of equations and computing
determinants are much easier to do for triangular matrices than for general ones. Con-
sider the problem of solving for  in Qx = b where b is known and @ is SPD. By
using the factorization @ = LLT the unknown vector can be computed by first solving
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Lu = b and then solving LTx = w. Triangular systems of equations are treated in
Golub and Van Loan (1996, pp. 88-89) where upper triangular systems are solved by
forward-substitution and lower triangular systems are solved by back-substitution, both
of which algorithms have complexity O(n?) in general. The inverse of @ can be obtained
by solving n systems of equations Qz(? = e, using the above method, where
@ 0 for i # j,

ST feri=j
Then Q™' = (:Iz(i)) and cost of computing the inverse is O(n3). By using that the
determinant of a triangular matrix is the product of all the diagonal elements we can
find the determinant of Q as

n
det(Q) = det(LL") = det(L)* = [[ L}
i=1
The complexity of this algorithm, assuming L is known, is simply O(n).

2.3.3 Numerical methods for sparse systems

In Section 2.2 it was briefly mentioned that for a GMRF with a sparse graph G = (V, €)
the precision matrix, @, will also be sparse. It turns out that the sparse structure of Q
induces a certain sparse structure in the Cholesky triangle L which we can read off from
G using the following theorem and corollary.

Theorem 2.6. Let x be a GMRF wrt to G = (V, &) with mean p and precision Q > 0.
Let L be the lower Cholesky triangle of Q and define for 1 <i < j <n the set

F(i,5)={i,i+1,...,7—1,74+1,...,n},
which is the future of ¢ except j. Then
z; L T | TF(i,5) — L]’i = 0. (2.9)

This is Theorem 2.8 in Rue and Held (2005) where a proof is also provided. As
pointed out by Rue and Held (2005) this property is really not that helpful since it
requires us to verify that z; L zj|x F(i,j)- However, by using the equivalence between
the Markov properties (recall the last part of Section 2.1.2) for GMRFs Rue and Held
(2005) use the global Markov property to identify zeros in L, which is summarized by
the following corollary to Thm. 2.6.

Corollary. If F(i,j) separates i < j in G then Lj; = 0.

The implication of this result is that we only need to compute Lj;, @ < j, when 7 and
Jj are not separated by F'(i,7), which can offer great improvements of efficiency when
utilized in Alg. 2.1. As Rue and Held (2005) points out, this result also show that L is
more or equally dense than the lower triangular part of @Q since F'(i,j) never separates
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1 < j if i and j are neighbors. The difference between the number of non-zero elements
in L and Q are referred to in Rue and Held (2005) as the fill-in.

For the auto-regressive process of order p, see Example 2.2, the precision matrix
was shown to be a band matrix with bandwidth p, thus Q;; = 0 for |i — j| > p. This
result implies that F'(i,j) separates i < j in G if j — 4 > p, or in other words, there
are no paths going from 7 to j not containing an element from F'(i,j) (see Fig. 2.3).
In turn, this implies that L will have a lower bandwidth p, i.e. Lj; = 0, j — 1 > p,
which is, as mentioned by Rue and Held (2005), the well-known result that the Cholesky
triangle inherits the band structure from @, see also Golub and Van Loan (1996, p. 152).
The Cholesky factorization algorithm can easily be modified to handle band matrices
efficiently. The modified algorithm, which can be found in Rue and Held (2005), is
given in Alg. 2.2. This algorithm requires O(b2n) flops to factorize a SPD matrix
with bandwidth b,,, which is linear in the problem dimension, n. Back- and forward-
substitution algorithms for banded triangular systems are given in Golub and Van Loan
(1996, p. 153) and their complexities are both O(b,n) (bandwidth b,, and dimension n)
when solving LT = b and Lz = b.

Algorithm 2.2 Cholesky decomposition of @ € R™*" SPD with bandwidth b,,.
1: input Q >0 with Q;; = 0 if [i — j| > by
2: for j =1ton do
30 A=min(j + by, n)

4 0= Qg

5. for k = max(1,j — b,) to j —1 do
6: i = min(k + by, n)

7 Vi = Vi — LjgpLj;j

8: end for

9: Lj:)\,j = 'vj:,\/,/'uj

10: end for

11: return L

One important point to remember is that the labeling of a GMRF is not unique.
Permuting the elements in a random vector x is formally the same as a multiplication
by a permutation matrix P. It is not difficult to show that (use PTP = I)

N(Pz | Pp,(PQPT) ) =N(z | p,Q")

which means that the permuted vector and the original are identically distributed. For a
GMRF with respect to a graph G a reordering of the random vector simply corresponds
to a relabeling of the vertexes. The Cholesky triangle of the precision matrix of a
GMRF does, however, depend on the labeling (or ordering) of the vertexes, especially
with regards to the sparseness. Rue and Held (2005) presents two ideas for dealing
with GMRFs with more general precision matrices, both based on reordering of & and
factorization of the permuted precision matrix.

The first method, referred to as bandwidth reduction, reorders the elements in & with
the goal to reduce the bandwidth of the resulting precision matrix, which can then be
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factorized using Alg. 2.2. Note that in the case where G contains global vertexes, for
instance if ¢ € V has ne(7) = V' \ {i}, then the precision matrix for the reordered GMRF
will always have a large bandwidth (worst-case being b,, = n — 1) and a factorization
using Alg. 2.2 requires O(n?) flops as in the general case. The second method, called
nested dissection, reorders the vertexes a bit differently by focusing on reducing the fill-in
and not the bandwidth (Rue and Held, 2005). The basic idea is that by finding a set of
vertexes which separates parts of the graph and ordering so that the separating vertexes
have a higher index than the vertexes in the separated sets will reduce the fill-in. This
is illustrated quite well in an example in Rue and Held (2005, p. 49).

One important detail to notice with the re-ordering schemes is that the permutations
are done with regards to the sparse structure of the precision matrix and not the value
of the non-zero elements. Thus, if a suitable permutation has been obtained, this can
be used in the factorizations of matrices with the same sparse structure, i.e. we only
compute the permutation once.

A point made by Rue and Held (2005) is that sparse matrix factorization routines
based on reordering schemes are far from trivial implement, though already implemented
libraries are available (Rue and Held, 2005, pp. 52-53).

2.4 Solving for marginal variances

As seen from the previous sections using the precision matrix, @, rather than the co-
variance matrix, 3, in the parameterization of the distribution of a GMRF can be quite
beneficial. However, some of the elements in the covariance matrix may be of interest
in the analysis, such as the marginal variances which are found on the diagonal, e.g.
Y = var(x;). One possible option for obtaining certain elements of ¥ is of course to
compute Q1. Though, this is un-necessarily expensive to do if one, for instance, only
want diag(3). This section will present a faster way of computing some of the elements
of 3 by avoiding computations of other elements.

In the following let @ be a zero mean GMRF with respect to a graph G and let Q > 0
denote its precision matrix. The Cholesky factorization of Q is given as Q = LL™. The
idea is based on the following result, see Rue and Martino (2007, p. 3180),

Result 2.7. Let z ~ N(0,I) and Q = LLT (SPD). Then the solution of LY@ = z has
a Gaussian distribution with precision matriz Q, i.e.  ~ N(0,Q™1).

This result can be verified by using Property 1 in Result 2.1 and actually provides
a way of sampling « ~ N (0, Q') by first sampling a vector of n independent standard
normals, z, and then solving LT@ = z. Writing out the n equations in this system and
isolating for x; yields

Z5 1 " .
T, =— — — Lyixy, 1=mn,...,1. 2.10

Now the trick is to multiply these equations by x;, j > i, and take the expectation, E(-),
on both sides. By recalling that @ has zero mean and noting that x; only depends on
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zi for k > j we get

6 1 &
Sij=—2—— Y LSy, j=i i=n,...1, (2.11)
1 42 .
L” L”k:z—i-l

where 0;; is the Kronecker delta (6;; = 0 for ¢ # j and é;; = 1). Using Equation (2.11)
to compute X;; for j =n,...,i, and i = n,..., 1, is the same as computing the whole of
3, but it turns out that not all the X;;’s have to be computed if we are only interested
in diag(3).

First we recall from Section 2.3.3 that Ly; = 0 for k > 4 if F(i, k) separates i and k
in G. Thus, in (2.11) the sum only have to include terms where Ly; are not known to be
zero. For fixed 7, the set of indexes k for which Lj; are not known to be zero is defined
as

Z(i) =4k |k >1, F(i,k) does not separate ¢ and k in G}.
Summing over this set in (2.11) gives us

52‘]‘ 1

Sij=—9—7— Y, LSy, j>i i=n,...1L (2.12)
Ly Li kEL(i)
The elements of interest are the marginal variances X11,...,%,, and the goal is to

compute these by using Eq. (2.12) as a recursion while not computing any unnecessary
off-diagonal elements, X;;, ¢ # j, in the process. It is obvious that in order for Eq. (2.12)
to define a recursion Xj; (or ¥j;), k € Z(i), must be computed before ¥;; for fixed i, j
s.t. j > 4. In other words if J defines the set of (unordered) pairs of indexes {i,j} of
the elements 3;; that must be computed in the recursion then J must contain {7,:} for
1 <17 < n, but also satisfy

i>i, {i,j}ed = {k,j}eJ forallkeI(i),

see Rue and Martino (2007, p. 3181). The size of J determines how efficient the
recursions can be solved and of course we want | 7| to be as small as possible. Rue and
Martino (2007) shows that by taking

J={{i,j} €V xV|j>i, F(i,j) does not separate i and j in G},

the recursions are solvable (both of the above conditions are satisfied) and J is minimal.
By taking j € Z(i) U{i} in decreasing order for i =n,...,1 and computing ¥;; from Eq.
(2.12) defines solvable recursions which do not compute any obsolete X;;’s.

In particular if @ is a band matrix with bandwidth b,, the set of indexes of computed
Lj;, for fixed ¢ where j > i, is Z(i) = {i + 1,...,min(i + by, n)}, see Sec. 2.3.3. The
recursions for the case when @ is a band matrix is given in Algorithm 2.3 and the
complexity is O(b2,n) (Rue and Martino, 2007). Beware that this algorithm implicitly
use the symmetric property of X, i.e. Xp; = Y.
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Algorithm 2.3 Solving for diag(X) where @ = X! is a (SPD) band matrix with
bandwidth b,,.

1: input L (where Q = LLT > 0 symmetric)

2: ¥:=0

3: fori=nto1ldo

4 A =min(i + by, n)

5. for j=Atoido

6: Sij = 0ij /L% — (Cheir1 LeiSk;)/ Lii

7 end for

8: end for

9: return diag(X) = (X11,..., %)t (or 7)

3 Latent Gaussian models

Latent Gaussian models are examples of hierarchical Bayesian models where observations
are assumed to depend on a latent field for which a Gaussian prior is used. In Rue et al.
(2009) this framework is used with so-called structured additive models and the result is
a powerful and flexible modelling tool.

In structured additive models the observations y = (y1,...,yn)" are assumed to

have a distribution belonging to the exponential family. Like with the generalized linear
models, the mean of observation y; is linked to a linear predictor through a monotonic
link function g(-), i.e. g(Ey;) = n; where

ng ng
m:a—i-Zf(])(uij)—i-Zﬁkzki—i-Ei, i=1,...,N. (31)
j=1 j=1

In Eq. (3.1) av is a common intercept term, (3, is the weight of the covariate z;, fU)(-) is
an unknown function of covariate u;; and ¢; is the noise associated with measurement i.
The difference between the structured additive models and the generalized linear models
is the added flexibility of letting 7; depend on the covariates u;; through unspecified func-
tions, opening these models for a wealth of applications. Examples of such applications
can be found in Rue et al. (2009, pp. 321-322) and in Section 6.2. The latent field in the
Bayesian model is taken to be all the unobserved terms in (3.1), i.e. a, {fU)(ui;)}, {8}
and {n;}, and we denote this field by . The prior for « is as mentioned a (zero mean)
Gaussian distribution which depend on some hyperparameters 68;. The observational
distribution can also depend on parameters, denoted by 62, which are not a part of the
Gaussian latent field, and the observations are assumed to be conditionally independent
given x and @5. Parameters which are not in the latent field are collected in the vector
0 = (07,07)" and according to Bayesian formalism a prior distribution is also chosen
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for 8. The full model can then be formulated as,

N
yl 0~ [l n602),
=1 (3.2)
x|0~NOW16))),
0 ~ m(0).

Note that the Gaussian prior for the latent field has been parameterized using the preci-
sion matrix rather than the covariance matrix, i.e. prec(x|@) = W (0). This is a practical
formulation when applying an additional assumption to the latent field, namely that it
is a Gaussian Markov random field which, as discussed in Section 2.2, implies a certain
sparse structure in W. As the latent field often is of large dimension,

dim(z) =n = N +ns +ng ~ 1010,

see Rue et al. (2009), assuming that x is a GMRF is quite useful as the approximate
inference method presented in Sec. 4 inevitably involves factorizing W, which can then
be done by the methods described in Sec. 2.3.3.

In the following sections treating approximate Bayesian analysis the modelling will
be left more in the background and we will assume that the dimension of the latent field
is the same as the number of observations to simplify notation. Also, the dependence of
y on the hyperparameters will be suppressed. The simplified model is then given as

n
yla~[[rwil ),
=1

x| 0~ N0, W(0)),
0~ 7(0).

(3.3)

Examples 3.1-3.3 show three possible scenarios where (3.3) (and (3.2)) can be applied.

Example 3.1 (Real valued data). For real-valued data, i.e. y; € Rfori=1,...,n, a
possible choice for the conditional distribution for the observations is simply using the
Gaussian distribution with (assumed) known variance O‘Z and mean equal to the latent
field value,

y1;|xi~/\f(ﬂci,a§), 1=1,...,n. (3.4)

Example 3.2 (Counting data). For observations taking values in N, e.g. counting data,
a possible conditional distribution is the Poisson distribution

yi | ©i ~ Poisson(e™), i=1,...,n. (3.5)

Example 3.3 (Binary data). For binary data, i.e. y; € {0,1}, the conditional dis-
tribution is usually defined with success probability given by a sigmoid function, see
Rasmussen and Williams (2006), o : R — [0, 1] so that

yi | ©; ~ Bin(o(x;)) i=1,...,n. (3.6)
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Possible choices of ¢(-) include any cumulative distribution function, like the Gaussian,

o(z) = d(x /242, z €R, (3.7)

1 x
== e

21 J -
or for instance the inverse logistic function

1

7(w) = logit ™! (2) = 1.
(&

z €R. (3.8)

4 Approximate Bayesian Inference

In Bayesian analysis the idea is to do inference about unobserved elements in a model
(e.g. a latent field and hyperparameters) using posterior distributions, that is distribu-
tions where the observations are fixed. In models such as (3.3) posterior distributions
of interest are for instance the joint distribution of the hyperparameters, 7(0|y) and
marginal distributions for the latent field elements, e.g. m(z;|y). The posterior dis-
tributions in a Bayesian model can be written in terms of the data likelihoods (data
distributions as functions of the parameters) and prior distributions by using Bayes’
rule, say if y are observations with known distribution 7(y|@) for parameters 8, then

_70.y) X T T
(0| y) = W) (y | 0)m(6), (4.1)

where 7(0) is a prior. By normalizing the latter expression the posterior for € is de-
termined and can be used for estimation, computing expectations of functions of 6
and making probability statements (e.g. to find confidence intervals). The problem
in Bayesian analysis is that one often encounters integrals (or sums) which cannot be
computed analytically. Also, different deterministic numerical integration schemes are
infeasible options due to computational complexities that are often exponential in the
parameter dimension. In general Bayesian models are most commonly studied using sim-
ulation based integration methods such as Markov chain Monte Carlo (MCMC) methods
(Gamerman and Lopes, 2006). The strength of MCMC methods for doing Bayesian anal-
ysis is that these methods can be applied (relatively) easily to quite complex models and
the error associated with methods can be made arbitrary small by doing long simulation
runs. The main problem with MCMC is related to their computer intensive nature as
running simulations for large models can require extensive amount of time (Rue et al.,
2009).

An alternative to MCMC is to use approzimate Bayesian analysis as discussed by Rue
et al. (2009). The basic idea in this approach is to combine parametric and numerical
approximations to different distributions in a way that eliminates the need of computing
high dimensional integrals by MCMC. Rue et al. (2009) argues that approximate analysis
is particularly well suited for latent Gaussian models as will be motivated here. To
illustrate the methodology consider the inference problem of computing the expectation
of h(8), for a well-behaved function h(-), under the posterior distribution of 6 from the
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model in (3.3). That is, computing

0)|y) = /h (0 | y)d (4.2)

This is a difficult task for two reasons, m(8|y) is not, or may not be, known parametrically
and even if it were the integral could be impossible to compute analytically. A remedy
for the latter problem is to use numerical integration, and if m = dim(@) is not too
large (Rue et al. (2009) suggest m < 6 as a reasonable limitation) this can be done by a
deterministic approximation, commonly referred to as a quadrature integration scheme,

/h (0 | y)d6 ~ Zh()k (65 | y)As. (4.3)

In this approximation the collection {6} forms a grid of values to interpolate the inte-
grand function in the sample space of 8, and A} is the area weight associated with grid
point ;. Now, the functional form of 7(8|y) is, as mentioned, not necessarily known so
in general it cannot be evaluated in (4.3). Though we can make pointwise approxima-
tions 7(0|y) for fixed @. The idea is to consider the factorization in Eq. (4.1) and focus
on the factor m(y|@), referred to as the evidence. By using the total law of probability
we find that

(y | 6) = /Tr(:l:,y | 6)da. (4.4)

Note that 7(y|@) is viewed as a function of 8, as in (4.1), so y is fixed. Contrary to
the posterior distribution of hyperparameters, the integrand in (4.4) is in general known
parametrically from the factorization w(x,y|0) = w(y|x)r(x|@), where both factors are
given in the model, see Eq. (3.3). The problem with (4.4) is the large dimension of
the latent field, so if the integral cannot be computed analytically there are few other
options than Monte Carlo integration. However, for latent Gaussian models there is one
possible bypass of simulation based integration which is to fix 8 and approximate the
integrand in (4.4) by a function of & which we know how to integrate analytically, i.e.

7y |6)~1(y.6) = [ (x| y.0)dz, where n(a,y|0)~ f(@]y.0)

The natural choice of function to approximate 7(x, y|@) turns out to be an unnormalized
Gaussian distribution in x, so that

fle|y,0)=7(z,y|0)=ZN(z|pmQ") (4.5)

By using this approximation the integration is trivial since a Gaussian distribution nor-
malizes (i.e. integrates to 1), thus

#y |6) = [ Fla.y | 0)de = 2

In order to see why it is natural to approximate m(x, y|@) by an unnormalized Gaus-
sian distribution we consider a factorization obtained by using Bayes’ rule,

m(x,y | 0) =7(y | O)r(z|y,0). (4.6)
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By comparing factors in (4.5) and (4.6) it is clear that the approximation has the fol-
lowing interpretation,

#y|0)=2 and #(z|y,0)=N(z|pQ"),

thus the posterior of latent field conditioned on the hyperparameters is approximated
parametrically by a proper Gaussian distribution and 7(y|@) is simply 'what is left’
(or what does not depend on x). As we can see it is important that the Gaussian
approximation captures as much of the probability mass of 7(x|y, @) as possible since
any deviance will contribute to an error in 7(y|@). Due to the Gaussian prior assigned
to |0 in (3.3) it is natural to assume that 7(x|y, @) will be ‘close’ to Gaussian if y is not
too informative, and this is usually the case for real problems and data sets, according to
Rue et al. (2009). It is this property, combined with the availability of fast and accurate
methods for computing the unnormalized Gaussian approximation to 7(x, y|0) (see Sec.
5), that makes this approximation scheme so appealing for use with latent Gaussian
models such as (3.3).

It is important to stress that 7 (x,y|@) is a parametric approximation as a function
of @, so this can only be used for pointwise approximations of m(y|@). However, this
is exactly what we need in (4.3) as the numerical integration only involves interpolated
values of 7(0|y) for 8 € {6;}. These are then replaced by

70| y) = o7y | O)m(60). 0€ {0y},

where K = 7(y) is the approximated normalizing constant of m(0|y). It is very impor-
tant to compute K so that 7(0|y) is properly scaled, and this is done using the same
integration technique outlined in (4.3), i.e.

K =Y #(y | 0)m(0r)Ay.
P

Now, just to recapture the process, an approximation to E(h(8)|y), denoted E(h(8)|y),
is computed using the following scheme:

E(h(0)ly) = > h(0)7 (01 | y)Ar, (4.7)
k
where )
7Ok | y) = 27 (y | Ox)7(6%), (4.8)
and 7(y|0y) is the constant Z in the unnormalized Gaussian approximation
@,y | 0r) = ZN(z | p,Q7").

The normalization constant K and the grid {6y} must of course be computed in advance.
There are still a few loose ends which need to be commented on. First of all, how
to make the unnormalized Gaussian approximation to 7(x, y|@) has not been discussed,
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however this is treated in Section 5. Secondly, we have not seen how to make a grid of
values {0y} to interpolate h(0)7(0|y). A method of finding such a gird is discussed in
Rue et al. (2009) where the key point is to explore 7(8|y) in a clever way to determine
where it is significantly different from zero. This method will not be discussed any
further here, though we can note that once a grid has been determined it can be used
for all inference tasks involving the integration of 7(8|y) over the sample space (or parts
of the sample space) of 8. Particularly, if we can make pointwise approximations to
m(x;y, @), denoted 7(x;|y, @), we can approximate the posterior marginal of x; by

w(ai |y) = [ (e |y, 07(Oly)d0 ~ 3 7l | 3,070, | ).
k

where {6} can be taken to be the same as in Eq. (4.7). Making pointwise approxima-
tions 7(x;|y, @) is treated in detail in Rue et al. (2009) and Cseke and Heskes (2010).

4.1 The Laplace approximation

One of the key points in the previous section was the approximation of 7(x,y|@) by
an unnormalized Gaussian distribution (when y and € are fixed), which can easily be
integrated analytically over R™. As was shown, this yields the approximated 7(y|0)
which can be used in

(0 |y) x7(y | O)n(0),

the (unnormalized) approximated posterior of 8. In Rue et al. (2009) we find that the
posterior of the hyperparameters is approximated by

m(x,6,y)

_ , 4.9
TrG(m | O?y) $=$*(0) ( )

(0 | y) o

where x*(f) = argmax, 7(x|0,y) and 7¢(x|6,y) is the Gaussian approximation ob-
tained by matching the mode and curvature at the mode of 7(x|0,y), see also Sec. 5.1.
As pointed out by Rue et al. (2009) this is equivalent to the Laplace approximation sug-
gested by Tierney and Kadane (1986).3 The expression in (4.9) looks deviously similar
to the exact identity

m(x,0,y)

(0 | y) o @[ 0.y) (4.10)
which is valid for any @. Authors in the machine learning community, see for instance
Minka (2001) and Rasmussen and Williams (2006), have reported that improvements
to the Gaussian approximation in (4.9) is possible by applying a different approxima-
tion scheme, the expectation propagation algorithm, see Sec. 5.2. A tempting approach

3 Actually, the Laplace approximation used by Tierney and Kadane (1986) is an approximation to the
normalized w(0|y), as opposed to (4.9) where the normalizing constant is found by numerical integration.
The name ’Laplace approximation’ stems from the use of Laplace’s method for integrals, a technique
for analytically approximating integrals by using an asymptotic expansion of the integrand, see Tierney
and Kadane (1986).



21

for improving 7(0|y), justified by the identity in (4.10), is to simply replace the Gaus-
sian approximation used in (4.9) by the improved Gaussian approximation, denoted
7ep (2|0, y), and evaluate the whole expression in the mode of Tgp(x|0,y), i.e

707
Fen(® | y) o ")

—_— . (4.11)
Ter(x | 0,Y) x=p(6)

The idea is that since 7gp(x|@,y) is an improved approximation to 7(x|6,y), then
7ep(0|y) should be an improved approximation to 7(0|y) as well.

It may be difficult to see at first glance, but there is a fundamental difference between
the approximation approach used in (4.9) and the one used in (4.11) other than the
way the Gaussian approximation is computed. Even though both approaches seem to
be based on (4.10), this is only the case for the expectation propagation approach, the
Laplace approximation is actually based on the principle used in the previous section (i.e.
approximating 7(x, y|@) by an unnormalized Gaussian distribution). The result, as will
be shown in an example in Sec. 6.2 is devastating for the expectation propagation based
approximation given in (4.11). However, as we will see in Sec. 5.2 the EP algorithm also
computes the approximation 7(y|@) and can therefore be applied in the approximate
Bayesian analysis in the same way as the Laplace approximation.

5 Approximation Methods

The approximate Bayesian analysis scheme discussed in Sec. 4 relies heavily on the point
that for latent Gaussian models the distribution 7(x, y|0) (y fixed) can be approximated
well by a function 7 (x, y|0) = ZN (x|y, Q~'). As was pointed out the constant Z can be
interpreted as an approximation to 7(y|@) and the Gaussian distribution can be seen as
an approximation of 7(x|y, #). The key point, as was also mentioned, is that 7(x|y, )
will be close to Gaussian due to the Gaussian prior chosen for x|@. All of this would
of course be of no value to us if there where no methods available for computing the
approximation 7(x,y|@) in a fast and accurate way, but luckily there are. This section
will present two possible options for computing 7(x,y|@), one based on a asymptotic
expansion and one based on iterative optimization.

In order to reduce the clutter in this presentation a simplified notation is introduced.
The data likelihoods, 7(y;|z;), will throughout this section be viewed as functions of the
latent field z; and denoted by t;(x;). Furthermore the following simplifications will be
used

m(z,y | 0) = m(z),
7['(£L' ‘ y,0) = TrPOSt(:B)y (5.1)
m(y | 0) = Zyjo-

All approximations are identified by a tilde, e.g. 7(x) ~ 7(x) and t;(x;) ~ #;(z;), and
the (proper) Gaussian approximation will be denoted 7 (), thus

(x) = ZyN (@ | 1, Q") = Zyjpiic (). (5.2)
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5.1 Analytical approximation

The analytical approximation method for computing 7(x) is a well familiar approx-
imation technique used for instance by Tierney and Kadane (1986) in their Laplace
approximation (see also Sec. 4.1) and by Rasmussen and Williams (2006) for computing
a Gaussian approximation 7¢(x).# The basic idea is quite simple, approximate log 7 ()
by a second order Taylor expansion around its mode. If * denote the (highest) mode
of m(x), i.e. * = argmax, 7m(x), then the analytical approximation is defined as

log 7t(x) = log 7(x*) — %(az —2)'Q(x — x), (5.3)

where Q = —V?log 71(Z)|z=e+- Note that Vlogm(x)|z—z+ = 0 since x* is a stationary
point of 7(x). Factorizing the expression in (5.3) so that 7(x) is the product of a
constant and a proper Gaussian density in x gives us the following approximations
~ m(x*)
Zy|0 = 5

(2m) /2 det(Q) (5.4)
fo(x) =N(z | z*, Q1.

The denominator in Zy‘g can be identified as the Gaussian approximation evaluated at
the mode, and thus the approximated posterior distribution of the hyperparameters can
be written (=) (0)
~ m(x™)mw
7(0 | y) o< Zygm(0) = Tz
This expression is equivalent to Eq. (4.9), the Laplace approximation suggested by
Tierney and Kadane (1986).

As we can see from (5.4) the Gaussian approximation resulting from this approach
has mean equal to the mode of 7(x) and precision equal to the negative Hessian matrix
evaluated at the mode.® For this to be a valid Gaussian density the precision matrix must
be positive definite, however this is not a problem as long as 7(x) is twice differentiable
at * as the Hessian is always negative definite (i.e. the negative Hessian is PD) when
evaluated at a maxima (a generalization of the second derivative test in calculus). A
particularly useful result with the precision matrix of 7 () is that the sparse structure of
the prior precision W' is inherited in @ (see Eq. (5.6)). This means that if « is a GMRF
with respect to a graph G then the Gaussian approximation will define a GMRF with
respect to the same graph. It is important that the Gaussian approximation corresponds
well with the conditional posterior for the latent field in order for the approximate
inference to be accurate. Before discussing the implementation we consider two cases

“In machine learning literature, e.g. Rasmussen and Williams (2006), #g () is often referred to as the
Laplace approximation. This must not be confused with the Laplace approximation suggested by Tierney
and Kadane (1986) where the Gaussian approximation is integrated out to obtain approximations such
as 7(0)y).

5The Hessian of a scalar function taking a vector argument is defined as the (symmetric) matrix of

2
second derivatives, V2h(t) = (gtihgfj ) .
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where the analytical approximation is not the best choice, one where it fails and one
where it can be inaccurate.

It is not difficult to construct examples where the analytical approach runs in to
problems, though it involves relaxing the assumption that ¢;(z;) is a member of the
exponential family. A prime example, considered for instance by Cseke and Heskes
(2010), is letting ¢;(x;) be the Laplace distribution

A .
tz(xl) = §e_|xz_y1|/)\7 Yi € Ra

i.e. a symmetric exponential distribution defined on the real line. This distribution is
continuously differentiable with respect to x; everywhere except at the mode, y;. As a
result, the Hessian

2] t i
V2log () = V?log mo(x —i—za og tilz:)

does not exists if any of the elements in the mode x* satisfy =] = y;.

An important point to keep in mind when using a Gaussian distribution as an ap-
proximation is that a Gaussian distribution has certain properties which, to some extent,
should be present in the approximated distribution as well. For instance, a Gaussian
distribution with mean g and covariance matrix X is symmetric around the axes deter-
mined by the eigenvectors of 3 when using p as a reference point (Johnson and Wichern,
2007). Even though the true distribution we are trying to approximate, mpost (), is as-
sumed to be almost Gaussian it does not have to be symmetric, it can for instance be
slightly skewed. Since an approximation is trying to capture as much of the probability
mass of mpest () as possible, fitting a Gaussian with mean equal to the mode may not
be a good idea if the true distribution is skewed. To illustrate this, consider Figure 5.1
where a Gaussian distribution has been fitted to approximate a skew-normal distribution
using the analytical method. As we can see from this figure the Gaussian distribution
has too little probability mass on one side and too much on the opposite side. A better
Gaussian approximation in this case can be obtained by using moment matching which
is the basis for the expectation propagation algorithm considered in Section 5.2.

5.1.1 Implementation

The way the analytical approximation is obtained in practice is by using some variant
of the Newton-Raphson algorithm to solve

Vlegn(x) =0, (5.5)

with respect to « in order to find the mode and then evaluating VZlogn(x) at this
point (Rasmussen and Williams, 2006; Rue et al., 2009). Note that a solution to (5.5)
is not guaranteed to be the mode of 7(x), but can be any type of stationary point like
a minima or a saddle point. For general likelihoods, 7(y|x) = [~ ti(x;), the solution
of (5.5) should be verified to make sure that it is in fact the argument maximizing m(x),
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Figure 5.1: Gaussian approximations to a skew-normal distribution with mean 0, stan-
dard deviation 1 and scale parameter 1.5.
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however, for log-concave likelihoods this is not necessary. The reason for this is that
concave functions only have one stationary point which is the maxima.

Implementing the analytical method is fairly straightforward. The Newton-Raphson
method used for solving arg,{g(x) = 0}, where g : R — R" is a vector function,
involves iterating

Lm+1 = Tm — [Vg(w)|m:mm]_lg(mm), m=0,1...,
until some convergence criterion is satisfied. In our case g(x) = V log 7(x) and by using
that

1 n
log 7(x) = const — inWa: + glog ti(zi),

we get6

Viegm(x) = —Wa + v,
Viiogn(z) = -W - C,

where v = (vy,...,v,)T and C = diag(c) are given by

_ Ologt;(x;)

" B 02 logt;(x;)
v (%c,

and ¢; = 92
¥

fori=1,...,n.

The Newton-Raphson iterations can then be written as

Tl = T + (W + Cp) H(=Way, + v,),
= (W +Cp) H(~Way, + (W + Cr)xm + vm),
= (W + Cp) H(Crnm + vm),
= Q;' b,

where Q,,, = W+ C, and b,, = C,,,x,,, +v,,. The subscript m is used for all the terms
that depend on x,,. Iterating according to Eq. (5.7) until convergence yields

(5.7)

lim x,, =2 and lim Q,, =Q,
m—0o0 m—0o0
where x* is the mode of log (), which is used as the mean in the Gaussian approxi-
mation, and the matrix Q evaluated at this point is used as the precision matrix. As
we can see from (5.7) using the Newton-Raphson routine is simply a matter of solving
the system @, 'b,, several times. As mentioned in Section 2.3.1 one can do this by first
computing the Cholesky triangle L of @ and then solving two triangular systems, though
this requires Q to be symmetric positive definite for every xg, 1, ..., in the iterations.”

5The gradient and Hessian of quadratic forms are found from V(z"Wzx) = 2Wz and V(Wz) = W,
respectively. See for instance Rasmussen and Williams (2006).

"If Q is not SPD for all values of = one can of course still solve Q;, b,, though other methods than
the Cholesky factorization must be applied. Possible options are for instance the LU-factorization or
one of the iterative Krylov space methods, see Golub and Van Loan (1996) and Saad (2003).
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This is not guaranteed in the general, but if ¢;(x;) is log-concave (logt;(x;) is concave)
then
32 log t; (l’l)
Ox?

which means that diag(c) is SPD® and thus Q@ = W + diag(c) will be SPD as well
by Property 2 in Result 2.5. This is used in Algorithm 5.1 which shows a possible
implementation of the analytical approach for computing an unnormalized Gaussian
approximation to m(x). The most computationally expensive part of this algorithm is

<0 forall z; € R,

Algorithm 5.1 Compute a Gaussian approximation to m(x).

1: input W > 0 and 7(y|x) = [[}-; ti(x;) (log-concave)
2: repeat
3 C:=-V’logn(y|z)
4:  b:=Cz+ Vlogn(y|z)
5: Q=W+C
6: L = chol(Q)
7. x=LT\L\b
8: until convergence
9: log Zy|0 =1 logt(z;) + log(det(W)) — 2aTWa — log(det(Q))
10: return x, L (or Q) and log Zyg

the repeated Cholesky factorization of @ which in general has complexity O(n?). If
is a GMRF, however, this can be done much faster by the methods discussed in Section
2.3.3 as @ has the same sparse structure as W since adding C' only changes the diagonal.

5.2 The expectation propagation algorithm

The expectation propagation (EP) algorithm provides an alternative to the analytical
approach for computing an unnormalized Gaussian approximation 7(x) to m(x). This
method has gained much popularity in the machine learning community, due to its
improved accuracy for computing a Gaussian approximation when compared with for
instance the analytical approach (Minka, 2001; Rasmussen and Williams, 2006).

The idea in the EP algorithm is to use a suitable approximation to 7(x), 7(x) =
ZN (x|, Q_l), that depends on some free parameters and optimize the approximation
with respect to these parameters. By being able to tune the free parameters we have
in way better control over the approximation than with the analytical approach which
relies on an asymptotic expansion.

The starting point in deriving the expectation propagation algorithm is the factor-

ization
n

7T(:13) = 7['0(:]2) H tz(l'z) (58)

i=1

8For a diagonal matrix to be SPD all the elements must be larger than zero. This is easy to see by
observing that: T diag(as,...,an)x = Z?:l az?>0 V £#0 < a; >0 i=1,...,n.
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The idea is to approximate the likelihoods by un-normalized Gaussian functions in x;,
i.e.

ti(zi) = ti(2;) = ZiN (v | fu,02), i=1,...,n. (5.9)
The parameters (Z;, i;, 52) are referred to as site parameters and these are the param-
eters we use to tune the approximation. As pointed out by Rasmussen and Williams
(2006), the likelihood approximations should not be normalized as functions of the la-
tent field since the exact likelihoods do not have this property (recall that ¢;(z;) is a
distribution for y; not x;). The product of the likelihood approximations can now be
written in terms of a multivariate Gaussian distribution in @ times a constant, i.e.

Hfz(xl) =N(z|p,X H (5.10)
i=1

=1

where i = (fi1,...,jin)" and ¥ = diag(6?,...,62). The latent field prior is also a

Gaussian pdf, mo(x) = N (2|0, W™!), and by using the identity for product of Gaussian
pdfs in Eq. (2.3), the approximation to m(x) is found as

= N(z |0, W‘I)N(w | 2,2) [] 2, (5.11)
i=1
=[TIZNO|&W+Q ) x N | Q™"
i=1
where Q = ) diag(Gy 2. ,6.-2). The precision and mean in the Gaussian distri-

bution, NV (x|w, Q1), are given respectively as
Q=W+Q and p=Q 'Qj. (5.12)

By comparing the factors in (5.11) with the interpretation that 7(x) is the product of
the approximated evidence and a Gaussian approximation to the conditional posterior
of the latent field,

77'(:13) = Zy|0ﬁ-G(w)7
we identify the following approximations

Zylg_[n JNO a2 W@ ™),
fio(x) = Nz | p. Q7).

(5.13)

Note that since Q is a diagonal matrix the precision matrix Q will have the same
sparse structure as W, thus the Markov property of « is preserved in the approximated
Gaussian distribution.
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The difference between the expectation propagation algorithm and the analytical ap-
proach discussed in the previous section is the way the parameters in the local likelihood
approximations are computed. Whereas the analytical approach is based on the Taylor
expansion, which is an asymptotical technique, the expectation propagation algorithm
optimize the site parameters (Z;, fis,57), i = 1,...,n, by minimizing the difference be-
tween 7(x) and w(x) using a distance measure. A popular distance measure used for
this purpose is the Kullback-Leibler divergence, or relative entropy, which for two distri-
butions m; and 7 is defined as

o (x)
KL (1 || m2) = Er, | log Wj (w)] (5.14)

A few comments about the KL-divergence can be found in Appendix A. Common prac-
tice with the KL-divergence is to let m; play the role of the approximating distribution
and let mo be the exact distribution, and then minimize KL(7||m2) by tuning the pa-
rameters of 7;. This is the basis of the variational Bayes approximation schemes (Rue
et al., 2009). In the expectation propagation algorithm this is done in reverse by letting
w9 be the Gaussian approximation and 7 be the original distribution and then mini-
mizing KL(m1||m2). However, according to Rasmussen and Williams (2006) minimizing
KL(7(x)||7(x)), where the approximation 7(x) is Gaussian, turns out to be analytically
intractable. To simplify the problem the expectation propagation algorithm optimize
the site parameters by minimizing the KL-divergence between marginal distributions,
i.e. by minimizing
KL(7(x;) || 7(x;)), i=1,...,n.

There are still some problems with this procedure like the fact that the marginals 7(x;),
1 =1,...,n, are not readily available. In the EP algorithm this problem is circumvented
by working with pseudo-exact marginals, based on the Gaussian approximation, rather
than the exact marginals. This is what makes up the core of the EP procedure as is
explained in the next section.

5.2.1 Outline of the EP algorithm

The expectation propagation algorithm is an iterative procedure where in one step the
site parameters of a single local likelihood approximation are updated. Assuming that
7(x) is an intermediate (or not optimal) approximation to m(x) an iteration step in the
EP algorithm is done according to the following procedure, see Minka (2001, p. 20),

1. Choose one #;(x;) to update.

2. Compute the cavity distribution of x;, m—;(x;), which is the normalized ratio be-
tween the posterior marginal of z; under 7(x) and #;(x;)
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3. Define p;(z;), the pseudo-exact posterior marginal distribution of x;, as
pi(wi) = ti(w)T—i(;).

4. Fit an un-normalized Gaussian distribution, §(z;) = ZiN (x|, 67), to pi(z;) by
minimizing the KL-divergence, i.e. compute

(Zi, i, 6%) = argmin KL(p;(z;) || 4(x:))-
(Zif1:,62)

5. Update (Zi,/]i,éiz) so that

EZ‘ (xz) =

The interpretation of p;(z;) as a pseudo-exact marginal likelihood can be justified by
considering the posterior marginal of z; under 7 (x),

#(zi) = / (@) de_; = F(zs) / mo() [ 7 (5)der; o« £(ai) ().

i#]

Likewise, the true posterior marginal of x; is

(@) = ta(z) / wo(@) [[ () de; o ti(i)m_i(xs).
i#£j

Step 3 in the above procedure is thus the same as replacing #;(z;) by its exact counter-
part in the posterior marginal (under the Gaussian approximation) of x;, which is the
formulation used by Minka (2001). The resulting marginal, p;(z;), is then a hybrid of
the approximated and true marginal distribution of z;. The normalization requirement
of the cavity distribution might seem a bit odd considering that we are in fact computing
an un-normalized Gaussian approximation. One might think that we loose some infor-
mation about the constants Zj, j # 1, though these are accounted for automatically in
Step 5 of the update procedure, which can be shown by skipping the normalization of

Another observation to make is that Step 4 and 5 of the update procedure is just
a way of optimizing the marginal posterior distribution 7 (z;) by only tuning the site
parameters of #;(x;), i.e by computing

(Z;, iz, 57) = argmin KL(p;(z;) || #(z)).
(Zi,1i,52)

One should note that each set of site parameters (ZZ-, fii, &%) generally depends on all
the other site parameters through the cavity distribution. This means that once the
parameters of ¢; are optimized according to the above procedure, the parameters of all
the other fj’s, j # i, must be re-optimized. In practice #;, i = 1,...,n, are usually
updated sequentially and this process is repeated several times, see Rasmussen and
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Williams (2006, p. 58). Ideally, this works as a fixed-point iteration where the site
parameters eventually converge, though according to Rasmussen and Williams (2006,
p. 59) there is no formal guarantee of convergence for the EP algorithm. However,
the algorithm usually works fine for latent Gaussian models (Rasmussen and Williams,
2006).

5.2.2 Details on the update procedure

In order to implement the EP algorithm we need to have a closer look at the update
procedure from the last section. Before an update the Gaussian approximation is

(@) = ZyoN (@ | 1. Q).

Assuming that #; is chosen for update the marginal distribution of 2; must be determined,
which can be done by using Property 2 in Result 2.1. If u; denotes element ¢ in g and
o2 is the ith diagonal element of ¥ = Q! then the marginal distribution of x; is
7 (x;) = const x N (z;|pi, 0?). Recalling that &;(z;) = Z;N (x4)ji;, 67) and using that the
product of two Gaussian distributions is Gaussian, which of course also applies for ratios,

the cavity distribution is found to be

ﬁ_l(xl) = N(SL‘Z",M—i, U%z)

2 2 -2 ~72)—1
)

5.15
—i(UZQMi - 5;2/11‘) and o2, =(0;"—¢ ( )

where p_; =0

by using Eq. (2.3) and normalizing. Step 3 of the update procedure is simply defining
the pseudo exact marginal distribution p;(x;) = t;(z;)7—;(x;), and one should note that
pi(x;) will not be normalized. Step 4 require us to minimize the Kullback-Leibler diver-
gence between p;(;) and an un-normalized Gaussian distribution, §;(z;) = ZN (3]s, 62),
by tuning the parameters of ¢;(x;). From Appendix A it is clear that this is the same as
matching the moments of p;(x;) and §;(z;), i.e.

Z;i = /Pi(fvi)dxi,

ﬂi = Z-_l/xipz‘(l’i)dl’i, (516)
67 = Zi_l/xzzpi(%)d% - 3.

Since neither p;(z;) nor §;(x;) are normalized, also the zeroth moment is required to
match as argued by Rasmussen and Williams (2006). The site parameters of #;(x;) is
then updated in step 5 by letting #;(z;) = §;(x;)/7_i(x;) which means that

(67 i —oZ ), (5.17)

again by using Eq. (2.3).
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In order to include the updated set of site parameters in the full approximation
the precision matrix and mean vector of #(x) must be updated with the new (fi;, 57).
This is easy to do for @ as it only involves re-computing element 7 on the diagonal, i.e.
Qi = Wy + 0, 2, but the mean vector is more involved to update since this must be
done by solving p = Q 'Qf with the updated Q. The constant Zy‘g does not play an
active role in the update procedure (due to the normalization of the cavity distribution)
and can be computed after the algorithm has converged.

5.2.3 Implementation

There are two details in the expectation propagation algorithm which requires extra
attention with regards to the implementation. Those are,

1. At what point do we include the updated site parameters in the full approximation?
2. How do we deal with the integrals in Eq. (5.16)7

This first question is the most crucial for making an efficient implementation of the
EP algorithm as updating the full approximation is the most computationally expensive
operation, at least when n is large. The issue is that newly updated site parameters, e.g.
(fii,52), do not influence the update of a second local likelihood approximation Z;, j # 1,
until they are included in @ and p. Still, updating several #;’s before including the new
information in the full approximation does have its merits as the cost of updating Q
and p only grows linearly with the number new sets of site parameter to include. We
must also keep in mind that @ must be partly inverted as the marginal variances, i.e.
diag(X), is needed in the update procedure of ;. Since x is a Gaussian Markov random
field this can be done (relatively) efficiently by using the method outlined in Sec. 2.4
where the sparse structure of Q was exploited. The problem is that, just as with u, all
the elements in 3 are in general sensitive to changes to the diagonal of @, even if only
one element is changed. One option for an EP implementation is to update all the ;’s
independently and then update the full approximation in one go. The update of 7 (x) is
then done by first computing

Q=W +Qu,

then compute the Cholesky factorization Q = LLT which is used for solving . = Q' Q1
and computing diag(3X). This approach is used in Cseke and Heskes (2010), where it
is called a parallel expectation propagation scheme, referring to the fact that the #;’s
are (or can be) updated in parallel. An implementation using this approach is given
in Algorithm 5.2. Note that if the Gaussian approximation is parameterized using the
covariance matrix rather than the precision matrix, as done by Rasmussen and Williams
(2006, pp. 57-58), other issues arise. On the positive side the marginal variances are
not necessary to compute as these are already available, though the new problem is how
to update the covariance matrix with a newly updated 6?. In Rasmussen and Williams
(2006) this is done by using a rank-one update once a newly updated pair (ji;,52) is
available. This way new information is used immediately in the following updates which
can speed up convergence. Once all the local approximations have been visited the full
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covariance matrix is recomputed from X = (W + Q,.,,) " as the rank-one updates are
known to be slightly inaccurate, see Rasmussen and Williams (2006). The problem with
this procedure is that the rank-one updates are computational expensive with a cost of
O(n?) flops, and also any Markov property assumption can not be utilized as this does
not imply sparseness of 3. Thus, the total cost of the EP algorithm using the covariance
matrix is always O(n?).

Moving on to the question of how to implement the moment matching procedure,
Eq. (5.16), we see that the choice is either to use numerical integration or to solve the
integrals analytically. Rasmussen and Williams (2006) chose the latter approach in an
example using Gaussian latent fields for binary classification, and it is clear that solving
the three integrals analytically can involve much preliminary work. Using numerical
integration for solving (5.16) is inevitable in most cases, and a good choice of method is
the Gauss-Hermite quadrature. The Gauss-Hermite quadrature rule is usually written
as

/OO f(z)e*‘z?/de ~ Zwif(zi),

where the abissca points {z;} are the zeros in the kth order Hermite polynomial and
the weights are given in terms of the (k — 1)th order Hermite polynomial (Abramowitz
and Stegun, 1964). Since all the integrals in (5.16) can be rewritten to be in the same
from as the above integral (recall that the cavity distribution is Gaussian) the Gauss-
Hermite scheme is particularly well suited for computing the first three moments of
pi(x;). The abissca points and weights can be computed in advance (or found in a table)
and the Gauss-Hermite quadrature then has complexity O(csk), where ¢y the complexity
associated with the function evaluations of f(-) (usually taken to be constant, i.e. O(1)).

By considering each step of Alg. 5.2 we see that this EP implementation is dominated
by the Cholesky factorization of @ and solving for diag(X) using L by the method from
Sec. 2.4. For a dense precision matrix @ both tasks have complexity O(n?), though
assuming that @ is a GMRF can reduce this cost quite a lot. For instance if  has
bandwidth by, the complexity of the EP algorithm is O(b2n) as this is the cost of both
factorizing @Q and solving for diag().

6 Analysis and Results

The analysis part in this text has been conducted with the aim of investigating two
issues: comparison of the analytical approach and the expectation propagation algorithm
discussed in Sec. 5 with regards to time required for computing 7(6|y), and the accuracy
in the approximations. For testing computational time use the two methods are used
on simulated data for models where the latent field have a band precision matrix. The
linear algebra routines can then be implemented using the algorithms presented in Sec.
2.3.3-2.4. For comparison of accuracy in approximating 7(0|y) the models were tested
on a real data set where it is known that the analytical approach does not give sufficiently
good approximations. In this case the expectation propagation approximation should
be an improvement.
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Algorithm 5.2 Expectation propagation algorithm (precision matrix version)

1: input W (precision matrix), y (data), m(y|z) (data distribution)
2:Q=0,a=0.

3: repeat

4: L = chol(Q)

5. p=L"\L\Qf

6:  Compute diag(X) = (02,...,02)T from L
7. fori:=1tondo

8: Compute p_; and o2, from (5.15)

9: Compute Z;, ji; and 2 from (5.16)

10: Compute Z;, fi; and 52 from (5.17)
11:  end for

12 Q=W+Q

13: until convergence

14: L = chol(Q)

15: p = L'\L\Qji

16: Compute log Z, ¢ from (5.13)
17: return Q (or L), p

6.1 Simulated data — Test of efficiency

The first part of the analysis has been done by studying simulating data from two
different models. The first is a stochastic volatility model with an AR(1) latent field,
and the second model is a binary logistic likelihood model with an AR(2) latent field.
These examples are slightly modified versions of two examples studied by Rue et al.
(2009, Sec. 5), and are deigned so that the precision matrix will have a band structure.
In particular this means that there cannot be any common mean element in the latent
field as this ruins the band structure.

6.1.1 Stochastic volatility model

Stochastic volatility models are commonly used with financial time series. In Rue et al.
(2009, Ex. 5.3) such a model was applied with data consisting of the daily difference of
a currency exchange rate over a certain period of time.

The model used here is formally given as

y | @ iiNd/\/'(O,exp(azt)), t=1,...,n,
x| ¢, 7 ~N(0,1/((1 = ¢*)7)),

x| & T, g~ N((bxt_l,T_l), t=2,...,n, (6.1)
7 ~ Gamma(0.001,0.001),
¢~ N(0,3),

where ¢/ = log((¢ +1)/(¢ — 1)) (i.e. |¢p| < 1 means ¢ € R) and the Gamma distribu-
tion is parameterized so that E(7) = 1 and var(7) = 1000. The hyperparameters are
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collected in a vector @ = (¢/,7)" and the elements are taken to be independent, i.e.
(@) = 7(¢')m(r). It was briefly mentioned in Sec. 2.2 that an AR(1) process such
as then one given in (6.1) is a GMRF with respect to the graph in Fig. 2.2, which in
turn means that the precision matrix, prec(x|@) = W1(6), has bandwidth 1. The prior
for the first latent field variable has been chosen in way that makes the precision ma-
trix invariant when reversing the order of the nodes. Explicitly computing the precision
matrix of & can be done by the method outlined in Example 2.2, and we find that

L -9
—¢ 1+¢* —¢
Wi0)=r1 .
—¢ 1+¢* —¢
—¢ 1
The the simulated data used in this analysis is shown in Figure 6.1. As we can see the

observations fluctuate around a zero mean with a deviation depending on the level of
the latent field.

o o Observations
™ - —— Latent field

10 20 30 40 50

Figure 6.1: Simulated data and true latent field for the stochastich volatility model. The
number of observations is n = 50 and the true parameter values are ¢ = 0.91 and 7 = 2.

The approximated joint posterior of the hyperparameters was computed with both
the analytical approach and the expectation propagation algorithm from Sec. 5, and the
results are shown in Figures 6.2a and 6.2b. By using deterministic numerical integration,
as discussed in Sec. 4, approximations to the posterior marginal distributions were also
found and are shown in Fig. 6.2c and 6.2d. As we can see from these figures the analytical
approach and the expectation propagation algorithm yields similar approximations for
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this data set. It is hard to tell whether or not these approximations provides a reasonable
fit to the true posterior distributions, and ideally the approximations should have been
compared with results from MCMC simulations.
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Figure 6.2: Approximate Bayesian analysis of the hyperparameters in the stochastic
volatility model, Eq. (6.1).
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6.1.2 Logistic model

The second model in this study is the logistic model for binary data, often used for
classification problems, see Rasmussen and Williams (2006). This model is given as

vi | ~ (logit_l(a:i))y"(l — logit_l(xi))l_yi,
x|k~ N0, Wz_l(/i)), (6.3)
k ~ Gamma(0.001,0.001),

where logit ™! (z;) = 1/(14exp(—=;)). The latent field is assumed to be an AR(2) model
xt\wlz(t_l) ~ N(pr1x1—9 + o1, H_l), t=2,...,n. (6.4)

As with the AR(1) model the priors for z1 and z3|z; are Gaussian and chosen so that
precision matrix is invariant when reversing the ordering of the nodes. The results is

1 —qbl C
—¢1 1+¢2 b ¢
c b a b ¢
Wo(k) =k , (6.5)
c a b c
b 1+¢7 —¢1
Cc _¢1 1
where
a=1+¢]+ 43,
b= —¢1+ d102, (6.6)

Cc = —¢2.

The weights in the AR(2) model are assumed known and chosen so that the process is
stationary, ¢1 = 0.7 and ¢ = 0.2.

The simulated data for this model are shown in Figure 6.3. Just as with the stochastic
volatility data both the analytical approach and the expectation propagation algorithm
was used to compute the approximated posterior distribution for the single hyperpa-
rameter in this model. The results are displayed in Figure 6.4. As we can see the
approximations are quite similar except that the mode of the EP approximation is a bit
shifted towards zero and flat out more rapid than the analytical approximation. Still,
since MCMC simulations was not run for this case it is hard to determine if the EP
algorithm offer much of an improvement compared to the analytical approximation.

6.1.3 Computational time requirement

The main purpose with the analysis of the simulated data is to compare the compu-
tational time requirement for the expectation propagation algorithm with that of the
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Figure 6.3: Simulated data and true latent field for the binary data logistic model. The
number of observations is n = 50 and the true parameter values are ¢ = 0.70, ¢o = .20
and Kk = 2.
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Figure 6.4: Approximate marginal posterior distribution for .
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analytical approach. Both of these methods have a computational complexity of O(b2n)
when the precision matrix of the latent field is has bandwidth b,,. Of course, efficiency
of each of the algorithms depends on many factors, especially how many time consuming
operations are needed per iteration. For instance, every iteration step the expectation
propagation algorithm requires the computation of the diagonal of the inverse precision
matrix and 3n numerical integrations, in addition to computing a Cholesky factorization
and solve a system of equations. The Newton-Raphson routine used by the analytical
approximation, on the other hand, only computes the Cholesky factorization of the pre-
cision matrix and solves for the expectation. To test how fast the two algorithms are
compared to each other they were tested using implementations written from scratch in
the C programming language. The numerical linear algebra routines needed were also
implemented using C, and were used by the both the approximation algorithms. Since
the precision matrices for both models, Eq. (6.1) and (6.3), have a band structure the
numerical linear algebra routines are implementations of the algorithms presented in
Sec. 2.3.3 and 2.4. By using this approach the two algorithms are tested on a more or
less equal footing and the results should give an indication of how fast the expectation
propagation algorithm can be, compared with the analytical approximation.

All the tests were performed in R (R Development Core Team, 2010) and the times
were collected using the built-in function system.time.” The results of the time tests
are given in Table 6.1. These results show that the implementations behaves roughly
as expected, the analytical approximation is about 15-20 times faster to compute than
the EP approximation, and both the implementations have a linear time increase as a
function of the latent field dimension n. It is quite clear that computing the expecta-
tion propagation approximation requires a substantial amount of extra computational
time compared to the analytical approximation, even for quite simple models where the
precision matrix has a band structure. The time difference between the two methods
would likely be greater if more complex latent field models, like spatial or spatiotem-
poral fields, were studied. This is because the more general linear algebra methods are
much more computationally demanding than the band matrix algorithms. Say if the
latent field is a spatial GMRF then the Cholesky factorization of the precision matrix
will in general have a complexity of @(n®/?) (Rue and Held, 2005). Partially inverting
the precision matrix to obtain the marginal variances also increase in complexity and
for the spatial case this is an O(nlog(n)?) operation (Rue and Martino, 2007). It is safe
to say that the time requirement of EP is a bit inhibiting for this algorithm to be used
for fast inference. The approximated posterior distributions were also quite similar, so
in these two models the analytical approximation method is preferable to EP for use in
the approximate Bayesian inference scheme discussed in Sec. 4.

6.2 Binary data from a longitudinal study — Test of accuracy

In the analysis of the simulated data the expectation propagation algorithm and the
analytical approximation gave quite similar approximations to the posterior distribution

9The C implementations of the expectation propagation and the analytical algorithm were compiled
to make a shared object which was loaded and called from R using the .Call function.
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Table 6.1: Results from the time tests of the C implementations of the expectation prop-
agation and the analytical approximation algorithms. The tests were done by computing
7(0|y) for 16 values of 8, and were conducted on a computer with a dual core (2.4GHz)
processor running a Linux operating system.

Model n  Time EP [s] Time Analytic [s] EP Analytic time ratio
Stochastic vol. 50 1.740 0.100 17.4
Stochastic vol. 200 7.600 0.560 13.6
Logit 50 1.130 0.070 16.1
Logit 200 4.690 0.260 18.0

of the hyperparameters, m(0@|y). In this section we investigate a data set where the
analytical approximation does not fit well with the corresponding MCMC simulation,
used as a gold standard. As we will see the expectation propagation approximation
offers a slight improvement in this particular case.

The data used here is the toenail data set found in the R-package glmmAK (Komarek,
2010). This is data from a longitudinal clinical trial in dermatology conducted for testing
the efficacy of two oral treatments of toenail infections. Each patient was given one of the
two treatments and the degree of onycholysis, which expresses the degree of separation
of the nail plate from the nail-bed, was recorded on between 1 to 7 visits made by the
individual patient. There were a total number of m = 294 patients participating in this
study and a total of NV = 1908 observations were recorded. The number of visits for
patient number 4 is denoted n; and the result on visit number j is denoted y;; € {0, 1}.
The data are coded so that y;; = 0 means that the degree of oncholysis was either mild or
absent and 1;; = 1 means that the degree of onycholysis was either moderate or severe.

The goal now is to fit a generalized linear model with the covariates trt;; (treatment
received patient ¢ visit j) and time;; (time of visit j for patient ¢) to these observations,
and analyze this model by using the inference methods discussed in Sec. 4. The model
suggested in Komarek (2010) is a logistic regression model with the linear predictor given
as

logit(m(yi; = 1| B, pi)) = Bo + fitrt;; + Potime;; + F3(trty; X time;;) +u;,  (6.7)

where 3 = (8o, ..., 33)" are fixed random effects and u; is random noise associated with
patient 7. In order to formulate a latent Gaussian model we need to define the latent
field and choose Gaussian prior distributions for its elements. The priors used in this
model are

B~ N(0,0°I),
u~N(,771), (6.8)
T~ T (s,7),

thus B and u are considered to be latent variables, 7 is a hyperparameter, and o2 = 104,
s = 0.01 and r = 0.01 are fixed parameters.
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In order to use the methods from Section 5 in the approximate analysis we need the
dimension of the latent field to be larger than or equal to the number of observations.
This is because both the analytical approximation and the expectation propagation
algorithm requires the likelihoods to depend on a single latent field variable. We achieve
this by adding zero mean noise terms e;; ~ N(0,x~ ") with assumed high (and fixed)
precision, e.g. k& = 105 in Eq. (6.7). Due to the high precision this is more or less
the same as adding a deterministic term equal to zero, which should not make much
difference in the analysis. By defining

logit(7(yi; = 1| B, wi, €5)) = ij (6.9)
the linear predictor term is on the same form as in Eq. (3.1),
Nij = Po + Prtrty; + Gotime;; + B3(trty; x timey;) + u; + €55, 1<i<m,

. (6.10)
1<) <n,

The full latent field in this model is = (nT,«",3T)T, with dimension dim(z) =
N +m+4 = 2206. In order to find the distribution of the latent field given 7 (the only
hyperparameter) we can consider the following factorization

7T(33 | '7') — W(’?,ﬁau | T)’
— x(n | B,wr(B)(u | 7).

xexp{ = 5n-C(0) (n-C(§) - 5 56"8 - Juu}, (1D
= exp{ - %CL‘TW(T):L'}

Thus, the prior for the latent field is |7 ~ N(0, W~!(7)). The matrix C is defined as
C = (B,U) where

1 trtyg timeq; trti; X timeqq 10 --- 0

1 trt time trt X time 10 --- 0
B = Ing : Ing Ing : Ing and U =

1 trtor timeoq trto; X timeo 0 1 -0

1 trtyg, timen,, trtmn,, X timemn,, 00 --- 1

Explicitly computing the precision matrix W (7) is a bit cumbersome and the details
have been omitted. The result is

Iy -U -B
W)=« |-U" U'U+ 1, U'B : (6.12)
-BT B'U BB+ (0%k)7'1,
The model can now be summarized as
vij | mij "~ (logit™" (7:5))%9 (1 — logit ™" (i)' ~¥,
x| 1T ~NO,W (), (6.13)

T ~ Gamma(0.01,0.01).
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Even though it has not been explicitly mentioned « is a Gaussian Markov random field
with respect to a very sparse graph. Figure 6.5 displays the precision matrix of |7 with
the non-zero elements indicated by a black dot. The total number of non-zero elements
in this matrix is 18422, which means that only 0.4% of the total number of elements
are different from zero. Observe, however, that W (1) does not have a band structure
(the bandwidth is 2205) so to efficiently factorize this matrix we must used the general
sparse factorization methods discussed in the end of Sec. 2.3.3.

1500 1000 500

2000

T T T T
500 1000 1500 2000

Figure 6.5: The precision matrix W (7) in the model given by Eq. (6.13).

The primary task in the analysis of model (6.13) is to compute the approximated
posterior distribution for the hyperparameter 7, that is, the precision for the random
effects associated with each individual patient. Recall from Sec. 4 that this distribu-
tion is approximated using the constant Z in the unnormalized Gaussian approximation
7(x,y|T) = ZN (z|p, Q'). Both the analytical approximation method (Taylor expan-
sion) and the expectation propagation algorithm was used here for computing 7(x, y|7).
For assessing the errors in these approximations a long MCMC simulation, with a total
of 3 x 10° samples, was run by using the glmmAK package (Komarek, 2010). In addition
to the analytical approximation method and EP a third approximation scheme using EP
in the Laplace approximation (discussed in Sec. 4.1), was tested. Figure 6.2 displays
the result of this analysis. It is clear from this figure that the EP approximation is an
improvement to the analytical even though non of the approximations are really opti-
mal. To get a quantitative measure of how good these approximations are, the symmet-
ric Kullback-Leibler divergence, see Appendix A, between the approximations and the
MCMC gold standard was also computed. The results are SKL(mvcomcl|mma) = 1.865
for the analytical approximation and SKL(myvomcl|mep) = 0.917 for the EP approxima-
tion. The difference between the two approximation methods is clearly non negligible
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for this particular data set, and by halving the symmetric Kullback-Leibler divergence
the EP approximation is clearly the better choice.

As mentioned in Sec. 4.1 using the Gaussian approximation to m(x|y, 7), computed
by EP, in the exact identity (4.10) and evaluating in the mode of 7(x|y,7) is not a
good idea. This Laplace-EP mixture is shown in Figure 6.2 as the dotted line and
clearly this approximation miss the true distribution by quite a bit. The symmetric KL-
divergence in this case is a staggering 7.782. Thus, this identity given in Eq. (4.10) should
not be used for constructing approximations to the posterior of the hyperparameters.
One should rather stick to the approximation obtained from the unnormalized Gaussian
7(x,y|T) = ZN(x|p,Q7Y), ie. n(r|y) o Z7(T).

— MCMC
- - Analytical
o | -—- EP 1 (evidence)
< -+ EP 2 (Laplace)
o |
™
>
e
o
R &
o |
—
o —

Figure 6.6: The posterior marginal distribution for the hyperparameter 7 in model (6.13).

6.2.1 Marginal distributions for the latent field

It was briefly mentioned in the end of Sec. 4 that finding point-wise approximations
to m(z;|y, ) is helpful for computing the posterior marginals of the latent field as the
hyperparameter(s) can be integrated out by using numerical integration. One way of
obtaining these approximations is simply using the marginal distributions of 7 (x|y, 7),
which is easy to obtain as this is a Gaussian distribution with mean g and precision
Q. The approximated marginal is then 7(z;|y,7) = N (24|, 0?), where o2 is the ith
diagonal element in the inverse of Q. Rue et al. (2009) show that the marginals ob-
tained from the Gaussian distribution computed by the analytical approach does not
yield good approximations, and they suggest a way to correct these marginals to im-
prove upon the approximations. Here we will see that the marginals obtained from the
Gaussian distribution computed by the expectation propagation algorithm also yield
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better approximations. It is also possible to correct the EP computed marginals as
discussed by Cseke and Heskes (2010). Figure 6.7 shows the approximated marginal
distributions for the fixed effects in (3.1) (recall that 3 is part of the latent field), where
7 = 0.06 is fixed. To assess the error in these marginals MCMC simulations were run
with a Gamma(1000 x 0.06, 10002) prior for 7 (i.e E(7) = 0.06 and var(7) = 0.001) using
the glmmAK package. The MCMC results are also displayed in Figure 6.7, and as we
can see the marginals obtained by EP corresponds quite well with the MCMC results.
The marginals obtained from the analytical Gaussian approximation are on the other
hand not so good, especially for Gy and 3. The symmetric Kullback-Leibler divergence
between the approximated marginals and the MCMC gold standard is given in Table
6.2. This shows that the EP computed marginals offer great improvements compared
with the analytical approximation marginals. Of course this result is not very surprising
since the expectation propagation method works by optimizing sites parameters with
respect to the (pseudo-exact) marginals, as was discussed in Sec. 5.2.

The correction methods used by Rue et al. (2009) for improving the analytical ap-
proximation marginals were not considered here, nor the corrections of the EP marginals
discussed by Cseke and Heskes (2010). Both of these methods would likely give better
fit than what we get from just using the marginals obtained from 7 (x|y, 7).

Approximated marginal SKL(mvcomc!||Tanalytic)  SKL(mvemc||TEP)

#(Boly, 7) 3.697 0.027
#(Byly, 7) 0.035 0.005
#(Boly, ) 0.913 0.033
#(Bs|y, 7) 0.133 0.003

Table 6.2: Symmetric Kullback-Leibler divergence between the approximated and the
MCMC computed marginal distributions for Sy, 81, 82 and Gs.

7 Conclusion

The main theme in this text has been to study the expectation propagation algorithm for
use in the approximate Bayesian inference scheme for latent Gaussian models, introduced
by Rue et al. (2009). The goal has been to compare EP to the analytical approximation
used by Rue et al. (2009) for computing an unnormalized Gaussian approximation to the
conditional posterior distribution of the latent field. This approximation is an important
part of the approximate Bayesian analysis as it is used for approximating posterior
distributions for hyperparameters and posterior marginal distributions for the latent
field variables. The assumption that the latent field is a Gaussian Markov random field
is not particularly common in texts where EP used, e.g. Rasmussen and Williams (2006),
and one point that has been studied here is the usage of specialized algorithms for sparse
matrices, discussed by Rue and Held (2005), to speed up EP.

The findings in this analysis are not very surprising nor revolutionary. For the
logistic regression case in Sec. 6.2 the expectation propagation algorithm improved
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Figure 6.7: The posterior marginal distributions for the fixed effects (6.13). Note that
the hyperparameter 7 has not been integrated out.
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the approximations to m(7|y) slightly compared to the approximation obtained by the
analytical approach. However, the EP approximation was still a bit off compared to the
long MCMC simulation gold standard. On the other hand, the marginal distributions
obtained from the EP Gaussian approximation 7(x|y,T) was a great improvement to
the corresponding marginals obtained from the analytical approximation. By correcting
these approximations further, for instance by the methods suggested by Cseke and Heskes
(2010), the EP computed marginals can probably be made quite exact. Though, the
integrated nested Laplace approximations used by Rue et al. (2009) already does this job
quite well and at a lower computational cost.

The cost factor is really the essential draw back with EP compared to the analytical
method. The test of computational time use for both algorithms on simple (almost triv-
ial) problems suggests that EP is at least a factor of ten times slower than the analytical
method. Of course, there are probably numerous ways to speed up both algorithms so
the results are not definite. However, this indicates that unless the analytical approach
is known to perform poorly for a certain model, this method is preferable to EP, at least
if time is an issue.

7.1 Suggestions for further studies

As discussed throughout this text the main issue with the expectation propagation al-
gorithm is speed. Omne option for making improved approximations by using EP is to
first compute the analytical approximation and use this as an initial condition for EP.
By only performing a small number of iteration steps in the EP algorithm, the approx-
imation will be improved and the computational time use is likely to be reasonably
low. This has been suggested by Cseke and Heskes (2010) as an alternative to the sole
use of the analytical approximation in the approximate Bayesian inference scheme. It
is also interesting to look at, as has been done in Cseke and Heskes (2010), corrected
approximated posterior marginals of elements of the latent field and to consider models
where the analytical approximation fails (e.g. models with Laplace likelihoods). The
expectation propagation algorithm is a valuable contribution to the field of approximate
Bayesian inference and further studies of EP for use in the analysis methods introduced
by Rue et al. (2009) should probably use the recent work of Cseke and Heskes (2010) as
a starting point.

A Kullback-Leibler divergence

The Kullback-Leibler divergence is a pseudo-metric for probability distributions. If
m1(x) and mo(x) are two probability density functions, the Kullback-Leibler divergence
KL(m||m2) is defined as

71’1(:13
71'2(:13

KL(71|m2) = Em{log 77;(:1:)] = /log

(@) ;wl(ac)dac (A.1)
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The KL-divergence share some of the characteristics of a metric since

KL(71||me) >0, KL(m||m) =0 <= m = m almost everywhere.!?
The symmetry condition, however, do not hold as KL(7||m2) # KL(m2||71), clearly from
equation (A.1). Also the triangle inequality is not satisfied for this measure. To remedy
the symmetry issue it is possible to define the symmetric KL-divergence between m; and
o as

SKL(m|[m2) = KL(m1[|m2) + KL(m2[[71),

which is used by Rue et al. (2009) as a measure of agreement between distributions.

A useful result with the KL-divergence, also mentioned by Rasmussen and Williams
(2006), is that if 7 is a general distribution and 7o is a N (s, ¥) distribution, the minimal
Kullback-Leibler divergence KL (7 ||72) is achieved when p = E, (z) and X = cov,, (x),
i.e. when the first and second order moments of w9 equals those of 7.
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