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Abstract—Matrix-matrix multiplication is a key computational
kernel for numerous applications in science and engineering,
with ample parallelism and data locality that lends itself well to
high-performance implementations. Many matrix multiplication-
dependent applications can use reduced-precision integer or fixed-
point representations to increase their performance and energy
efficiency while still offering adequate quality of results. However,
precision requirements may vary between different application
phases or depend on input data, rendering constant-precision
solutions ineffective. We present BISMO, a vectorized bit-
serial matrix multiplication overlay for reconfigurable computing.
BISMO utilizes the excellent binary-operation performance of
FPGAs to offer a matrix multiplication performance that scales
with required precision and parallelism. We characterize the
resource usage and performance of BISMO across a range of
parameters to build a hardware cost model, and demonstrate a
peak performance of 6.5 TOPS on the Xilinx PYNQ-Z1 board.

I. INTRODUCTION

Using constant precision for all operations is the predominant
practice when designing digital systems, since logical and
arithmetic operations, registers, memories, and interconnects
can be designed to accommodate one specific precision. Their
main disadvantage is the associated overhead in storing,
communicating, and performing operations with full precision
when an application only requires a fraction of the supported
precision. Numerous applications, in the engineering, scientific,
and multimedia domain, can use reduced precision and still
produce adequate results. This property has been leveraged
in approximate computing [1] and quantized neural networks
(QNNs) [2], [3], to improve performance and energy efficiency
and to reduce area by tailoring computations to the required
precision. This precision may vary between different phases
of the application. As an example, Park et al. [3] achieve the
best performance-accuracy tradeoff for QNNs by using fewer
bits for the intermediate layers.

Matrix-matrix multiplication is a commonly used computational
kernel and represents one of the seven Berkeley dwarfs, which
are important computational constructs for engineering and
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scientific computing [4]. The amount of computations required
for matrix multiplications makes it highly beneficial to adapt
the operational precision to an application’s requirements.
FPGAs are a good fit for low-precision operations and for
instantiating efficient matrix multiplication accelerators with
a specific precision. However, fixed-precision accelerators are
not suitable for applications with variable precision as they
either require multiple instances of the same accelerator, each
with a different precision, or require dynamic reconfiguration
with associated overhead and system complexity.

A promising alternative to fixed-precision accelerators is
to use bit-serial computations [5] where the integer matrix
multiplication is expressed as a weighted sum of binary matrix
multiplications (Section II). The bit-serial alternative provides
the possibility to use an efficient binary matrix multiplication
accelerator to compute matrix multiplications of any precision.

We present a scalable bit-serial matrix multiplication overlay
called BISMO that can be efficiently instantiated on an FPGA.
The core of BISMO is a software-programmable weighted
binary matrix multiplication engine and associated hardware
for fetching data and storing back the result (Section III-A).
The hardware architecture is design-time configurable and we
provide a cost model for estimating the resource usage for a
given set of parameters (Section III-B). BISMO’s software
programmability makes it possible to operate on any matrix
size and any fixed-point or integer precision (Section III-C).

We evaluate BISMO on the Xilinx PYNQ-Z1 board and show
i) that the number of look-up-tables (LUTs) scales linearly
with the number of parallel binary dot-product operations
and ii) an average 94% accuracy for the proposed cost
model (Section IV-A). We also show that the performance
scales linearly with allocated resources and that the runtime
scales better than expected when increasing the dot-product
precision. BISMO achieves a peak performance of 6.5 binary
TOPS and an energy efficiency of up to 1.4 binary TOPS/W
(Section IV-B), which is best-in-class with only a dedicated
ASIC accelerator showing better performance (Section V).
BISMO is open-sourced at https://git.io/fWb0m [6].



Algorithm 1 Bit-serial matrix multiplication on signed integers.
1: Input: m× k l-bit matrix L, k × n r-bit matrix R
2: Output: P = L ·R
3: for i← 0 . . . l − 1 do
4: for j ← 0 . . . p− 1 do
5: sgnL← (i == l − 1 ? −1 : 1)
6: sgnR← (j == p− 1 ? −1 : 1)
7: weight = sgnL · sgnR · 2i+j

8: # Binary matrix multiplication between L[i] and R[j]

9: for r ← 1 . . .m do
10: for c← 1 . . . n do
11: for d← 1 . . . k do
12: Prc = Prc +weight · (L[i]

rd ·R
[j]
dc)

II. BIT-SERIAL MATRIX MULTIPLICATION

Fixed-precision operations have to be designed to accommodate
the largest supported precision, which causes overheads in cases
where the required precision of an application varies throughout
its execution or when the precision depends on its input data.
In contrast, bit-serial operations are inherently frugal since they
only compute as many bits as specified by the precision of the
operands. However, their serial nature causes high latencies
and potentially poor performance.

Matrix multiplication is a suitable kernel for taking advantage
of the frugality of bit-serial operations while overcoming
the high-latency by performing many bit-serial operations in
parallel. Umuroglu and Jahre showed that by expressing a
matrix multiplication as a weighted sum of binary matrix
multiplications (Algorithm 1) it is possible to efficiently
compute matrix multiplications of variable precision using
the logical AND and population count (popcount) instructions
available in most modern processors [5]. In addition, the
algorithm works for both integer as well as fixed point number
representations, where the new fixed point location is given by
the product of the input matrices’ scaling factors.

Fig. 1 illustrates Algorithm 1 for the example where the two
input-matrices (L and R) consists of 2-bit unsigned integer
numbers. By expressing L and R as weighted sums of binary
matrices, the matrix product (P = L · R) can be expressed
as a weighted sum of products between binary matrices. The
matrix multiplication can thus be expressed as a large number
of binary operations that can be performed in parallel.

L =

[
2 0
1 3

]
= 21L[1] + 20L[0] = 21

[
1 0
0 1

]
+ 20

[
0 0
1 1

]
R =

[
0 1
1 2

]
= 21R[1] + 20R[0] = 21

[
0 0
0 1

]
+ 20

[
0 1
1 0

]
P =L ·R = (21L[1] + 20L[0]) · (21R[1] + 20R[0])

=22L[1] ·R[1] + 21L[1] ·R[0] + 21L[0] ·R[1] + 20L[0] ·R[0]

Fig. 1. Example of a bit-serial matrix multiplication on unsigned integers
(Algorithm 1: for-loop on line 3 and 4 unrolled and weight on line 7 always
positive).
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Fig. 2. Overview of BISMO’s’ hardware architecture.

III. THE BIT-SERIAL MATRIX MULTIPLICATION OVERLAY

BISMO consists of a hardware part and a software part. The
hardware part is composed of a scalable bit-serial matrix
multiplication datapath and associated memory and control
logic. The software part generates instructions for the hardware
for a given matrix size and precision. The key features offered
by this hardware-software design are as follows:

Precision-scalable. By expressing an integer or fixed-point
matrix multiplication as a weighted sum of binary matrix
multiplications (Section II), the same hardware can be utilized
for a range of different precisions. Lower-precision matrix
multiplications are finished quickly, while higher-precision
requires more clock cycles.

Hardware-scalable. Our overlay generator can scale the
memory and compute resource utilization to match system-level
requirements. This is achieved by controlling the parameters
described in Section III-A. We also provide a cost model to
estimate the resource usage for a given set of parameters as
described in Section III-B.

Software-programmable. Our hardware architecture is
software-programmable at the granularity of instructions as
described in Section III-C. This offers several advantages such
as the ability to tailor block sizes and dynamically skip bit
positions for sparse or approximate computing.

A. Hardware Architecture

Fig. 2 provides an overview of the BISMO hardware. The
architecture is organized into three pipeline stages fetch, execute,
and result. Each stage communicates data to the next stage via
shared on-chip memory buffers. Inter-stage synchronization
is achieved by blocking reads and writes to synchronization
FIFOs. All stage operations, including datapath control and
synchronization, are controlled by instructions, which are
fetched from instruction queues and executed in order.

The core of the hardware architecture is the bit-serial matrix-
matrix multiplication datapath illustrated in Fig. 3. Accelerator
performance and resource usage can be controlled by the
parameters specified in Table I.
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Fig. 3. Key components of the BISMO datapath.

TABLE I
KEY BISMO HARDWARE PARAMETERS.

Symbol Description

Dm, Dn Number of DPUs in the DPA
Dk DPU input bit width (popcount width)

Bm, Bn Depth of input matrix buffers
Br Depth of result matrix buffer
A Accumulator bitwidth
F Main memory read channel bit width
R Main memory write channel bit width

1) The Fetch Stage: is responsible for reading matrix data
from main memory and populating the matrix buffers with
data. Internally, the fetch stage contains a simple DMA engine
and route generator called a StreamReader, as well as a linear
array interconnect. The StreamReader sends read requests to
main memory and determines where read responses are to
be written, as specified by fetch instructions. The read data
and its destination form a packet that is carried through the
interconnect to the appropriate matrix buffer. The interconnect
is bandwidth-matched to the main-memory read channel to
avoid any bottlenecks and ensure efficient use of off-chip
bandwidth. The synchronization with the execute stage is
ensured prior to fetching data, which greatly simplifies the
design of the interconnect as there is no backpressure. The
fetch stage can be scaled at design time to match the memory
read bandwidth (F ) of a particular platform.

2) The Execute Stage: is responsible for performing the matrix
multiplication on the data present in the matrix buffers. The core
of the stage consists of an array of dot product units (DPUs),
where each DPU is fed with a design-time configurable number
of bits (Dk) from the left-hand-side and right-hand-side matrix
buffers. The DPUs on the same row of the data processing
array is fed with the same data broadcasted by the left-hand-
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Fig. 4. The BISMO dot product unit (DPU).

side matrix buffer. Similarly, the DPUs on the same column
is fed with the same data broadcasted by the right-hand-side
matrix buffer (Fig. 3). A single software controllable sequence
generator is responsible for reading out the appropriate data
from the matrix buffers. The same generated sequence is used
for both the left- and right-hand-side matrix buffers but with
different offsets. The execute stage can easily be scaled at
design time by configuring the number of rows (DM ) and
columns (DN ) of DPUs.

The DPU pipeline can be seen in Fig. 4. The DPU computes
a partial result of the dot product between a row and column
of two bit-matrices, line 12 in Algorithm 1. The single-bit
multiplications are performed by a bitwise logic AND operation
and the summation is a simple population count (popcount)
of the result. The weight in Algorithm 1 is implemented by a
left-shift unit and an optional negation, which are controllable
by software. The partial results are accumulated and stored
in a register (Acc.) of width A, which is typically 32 bits to
avoid overflows [5], [7].

3) The Result Stage: is responsible for writing the results
generated by the execute stage to main memory. The stage
consists of a StreamWriter, which contains a downsizer (wide-
in-narrow-out) to resize the array of results into the appropriate
width needed by the memory channel and a DMA engine
with striding support to carry out the actual memory write
operations. The striding is needed to produce the result matrix
one tile at a time. When the execute stage has produced a new
set of results, the accumulated dot-products are written to the
result buffer from which the result stage writes them to main
memory. This enables the two stages to work independently
and to overlap computations and data transfers. The result
stage can be scaled at design time to match the memory write
bandwidth (R) of a particular platform.

B. Cost Model

For any parametrizable overlay architecture, it is beneficial
to provide a model of how the FPGA resource usage relates
to configuration parameters. This enables quick performance
estimation when scaling to larger devices.

1) LUT cost: We propose the following equations to model
the LUT usage of a BISMO instance:

LUTtotal = LUTbase + LUTarray (1a)

LUTarray = Dm ·Dn · (LUTDPU + LUTres) (1b)

LUTDPU = αDPU ·Dk + βDPU (1c)



Equation 1a breaks the total cost into LUTbase, which covers
the DPA size-independent LUT usage such as the DMA engines
and other fixed platform infrastructure, and LUTarray which
covers the DPA size-dependent part. In turn, Equation 1b
further breaks down LUTarray into LUT cost for the DPU and
for result generation, multiplied by the array size. Finally, we
model LUTDPU as a linear function of the popcount width
Dk in Equation 1c, and LUTres as a constant. The constants
αDPU, βDPU,LUTbase and LUTres are determined empirically
in Section IV-A.

2) BRAM cost: Assuming dual-port 36 · 1024-bit Xilinx
BRAMs, we model the BRAM usage as follows:

BRAMtotal = BRAMbase +BRAMarray (2a)

BRAMarray =

⌈
Dk

32

⌉
·
(
Dm ·

⌈
Bm

1024

⌉
+Dn ·

⌈
Bn

1024

⌉)
(2b)

In Equation 2a, BRAMbase refers to the BRAMs used for
DPA-size independent infrastructure, such as DMA buffers and
instruction queues. BRAMarray is the cost for the input matrix
buffers. We use 32 of the native 36-bit width due to constraints
from the fetch stage, since DRAM buses are typically power-
of-two-wide and we require BRAM read/write widths to be
an integer multiple of each other. We assume that the result
matrix buffer consists of small LUTRAM buffers, and cover
their cost in Equation 1b.

C. Programming BISMO

BISMO provides programmability through the use of instruc-
tions that control each of the pipeline stages. Taking into
account the dimensions of the input matrices and the data
layout in memory it is possible for a programmer to perform
scheduling in various ways. The capabilities facilitated by these
instructions and their usage are illustrated in this section.

1) Instructions: There are three types of instructions per
pipeline stage in BISMO, namely Wait, Signal and Run.
Table II provides a summary of these instructions with the
usage described as follows:

a) The Synchronization Instructions: are used for synchro-
nization between two different pipeline stages. The Signal
instruction issues a token to the associated synchronization
FIFO, while the Wait instruction blocks on the associated
synchronization FIFO until it receives a token. For both the
fetch and result stage the only associated synchronization FIFO
is their respective FIFO for the execute stage. The execute stage
has consequently two associated FIFOs for synchronization
with either the fetch or the result stage. The tokens do not
convey any information and a programmer is free to decide
what each synchronization represents, e.g., that a particular
matrix buffer is now full or empty.

TABLE II
BISMO’S INSTRUCTION SUMMARY

Instruction type Fields
Wait & Signal Associated FIFO:

Fetch stage: Execute
Execute stage: Fetch or Result
Result stage: Execute

RunFetch Source (main memory) parameters:
Base address
Block size (bytes)
Block offset (bytes)
Number of blocks to fetch

Destination (matrix buffer) parameters:
Matrix buffer offset
Starting matrix buffer
Range of matrix buffers
Consecutive words per matrix buffer

RunExecute Matrix buffer offset
Weight
Accumulator reset

RunResult Result base address in main memory
Address offset

b) The Run Instructions: are used to carry out the particular
function of a pipeline stage.

The RunFetch instruction specifies from where in main
memory to read data and the destination matrix buffers to
store read data. The parameters with regard to main memory
are: i) the base address from where the fetch should begin, ii)
the size of the contiguous block to be fetched, iii) the offset
between such blocks (providing strided accesses), and (iv) the
number of blocks to be fetched. The parameters with regard to
matrix buffers are: i) the buffer offset at which to start writing
data, ii) the matrix buffer to begin writing to (all buffers are
enumerated from zero to Dm ·Dn−1), iii) the range of matrix
buffers to be written (number of consecutive buffers), and iv)
the number of consecutive words to be written in each matrix
buffer before switching to the next. These set of parameters
enable consecutive data blocks to be placed in one matrix
buffer before moving to the next or to place the blocks in a
cyclic fashion across a range of buffers.

The RunExecute instruction specifies the matrix buffer offset
from where to begin reading data, the weight controlling the
shift amount and if the dot product should be negated (line 7
in Algorithm 1), and the possibility to reset the accumulators
before performing any computations.

The RunResult instruction specifies the base address of the
result matrix stored in main memory and an offset to which
the current results are to be written.

2) Instruction Scheduling: The BISMO instructions enable
the possibility to tailor the computation to the input matrix
characteristics, e.g., by taking their dimensions into account.

Fig. 5 shows one possible schedule for the matrix multiplication
example in Fig. 1. Here, the DPA is assumed to be as large
as the input matrices for simplicity. The computation would
otherwise have to be divided into separate tiles resulting in
many more instructions. Furthermore, it is assumed that only
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TABLE III
INITIALIZED INSTRUCTION QUEUES FOR THE EXAMPLE SHOWN IN FIG. 1

Fetch Execute Result

F1 Run L[0] E1 Wait Fetch R1 Wait Execute
F2 Run R[0] E2 Run P =+ L[0] · R[0] R2 Run P
F3 Signal Execute E3 Wait Fetch
F4 Run L[1] E4 Run P =+ L[2]· R[0]

F5 Signal Execute E5 Signal Fetch
F6 Wait Execute E6 Wait Fetch
F7 Run R[1] E7 Run P =+ L[0]· R[1]

F8 Signal Execute E8 Run P =+ L[1]· R[1]

E9 Signal Result

three of the four binary matrices (L[1], L[0], R[1], and R[0]) fit
at the same time in the matrix buffers to make the schedule
slightly more interesting. The corresponding instructions for
each pipeline stage can be seen in Table III, with P denoting
the matrix that accumulates the result of these operations.

The fetch stage begins by fetching L[0] and R[0] (instruction
F1 and F2) and then signals the execute stage (F3) that it can
perform the first binary-matrix multiplication (E2). While the
execute stage computes the dot product between L[0] and R[0],
the fetch stage continues fetching L[1], effectively achieving an
overlap between data fetch and execution (F4 and E2 performed
in parallel). Once the execute stage finishes the first binary-
matrix multiplication, it receives the signal from the fetch stage
(F5) that L[1] resides in the matrix buffers (E3). The execute
stage continues by executing L[1] · R[0] (E4) while the fetch
stage has to wait since all the buffer space is occupied (F6).
When the execute stage finishes the matrix multiplication, it
signals the fetch stage (E5). Since R[0] is no longer needed,
the fetch stage fetches R[1] (F7) enabling the execute stage to
finish the remaining matrix multiplications (E7 and E8). Once
the execute stage has finished all binary matrix multiplications,
it signals the results stage (E9) which writes the result P to
main memory (R2).

The schedule in Fig. 5 causes the fetch stage and execute
stage to stall (F6 and E6) since there is not enough space to
fetch R[1] before L[1] ·R[0] has been computed. An alternative
schedule could be to split the binary matrices into tiles enabling
greater flexibility in what data to bring into the matrix buffers
and the possibility of overlapping fetch and execute.

IV. EVALUATION

We implement the BISMO parametrizable hardware generator
in Chisel [8] and use Xilinx Vivado 2017.4 for synthesis,
placement, and routing. We add registers to critical paths on
the pipeline and enable register retiming instead of manual
floorplanning and timing optimizations to achieve higher clock
frequencies. We target the PYNQ-Z1 board, which has a Xilinx
Z7020 FPGA with 53,200 LUTs, 140 BRAMs, and 3.2 GB/s
of DRAM bandwidth.

As binary operations are the building block for bit serial
computations, we use them as the common denominator for
performance measurements. We treat AND and popcount as
analogues to multiplication and addition when counting binary
operations, i.e., a binary dot product between two n-element
binary vectors is counted as 2n binary operations.

A. Synthesis Results and Resource Cost

We start by presenting synthesis results across a range of
parameters for different components of the BISMO architecture.
Our aim is to explore the resource cost of scaling performance
along different axes of parallelism and building up a hardware
cost model in the process. All data in this section is obtained
by using out-of-context synthesis for the Z7020, with a target
clock period of 1 ns to prioritize timing optimizations.
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1) Popcount: Fig. 6 plots the LUT usage and maximum
frequency (Fmax) versus input bitwidth for the popcount unit.
We observe that the least squares regression line is a good fit
for the LUT usage, indicating a resource cost of approximately
one LUT per input bit. This may be further improved by incor-
porating better compressor synthesis techniques, as proposed
by Preußer [9]. The reported maximum clock frequency Fmax

is between 320 and 650 MHz for all tested popcount widths.

2) Dot Product Unit: In addition to the popcount unit cost, the
DPU cost includes the AND operation, barrel shifter, negator,
and accumulator. We expect that the resource cost of the three
latter gets amortized for larger values of Dk as their size grows
proportional to log2Dk. Fig. 7 shows the LUT usage as well
as the LUT cost per binary operation. We observe that the cost
per operation starts at 2.8 LUTs for Dk = 32 and decreases to
1.07 LUTs for Dk = 1024. The parameters αDPU and βDPU of
the BISMO cost model (Section III-B1) are 2.04 and 109.41,
respectively. For the tested bitwidths, the reported maximum
frequency (Fmax) is between 300 and 350 MHz.
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3) Fetch and Result Stage: We evaluate the cost of the fetch
and result stages for a single 64-bit memory channel on the
PYNQ-Z1, with F=R=64, A=32, and Br=2. The fetch stage
includes a DMA engine and the interconnect to move data
into matrix buffers. We observe that the LUT cost of the fetch
stage is approximated well by 1.89 · (Dm +Dn) + 463. We
do not include the 1.89 · (Dm +Dn) component in the cost
model since it is small even for large DPAs. The result stage
includes a DMA engine, result matrix buffers, and a downsizer
(parallel-to-serial unit), which are all implemented using LUTs.
The result buffer requires approximately 87.3 ·Dm ·Dn LUTs,
while the DMA engine and the downsizer need 32.8 · Dm ·
Dn + 255 LUTs. Completing the cost model, the fetch and
result stages contribute 463 + 255 = 718 LUTs to LUTbase,
which may increase with more advanced DMA engines, and
the LUT cost per DPU associated with the result stage is
LUTres = 87.3 + 32.8 = 120.1. The DMA engine currently
limits Fmax to 200 MHz, and may be pipelined to further
increase Fmax for the entire accelerator.

4) Cost model validation: We generated 34 different BISMO
designs ranging from (Dm=2, Dk=64, Dn=2) to (Dm=8,
Dk=256, Dn=8) in size to validate the cost models described
in Section III-B. The BRAM predictions were 100% accurate
for this particular range of designs. Fig. 8 shows the LUT usage
from synthesis results versus the prediction from the cost model.
The model’s prediction is 93.8% accurate on average. Fig. 9
shows how the prediction error is affected by the size of the
design. We observe that large designs are accurately predicted,
while smaller designs tend to be overestimated by the model,
likely due to the effect of additional synthesis optimizations
applied by Vivado for small designs.
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5) LUT-BRAM Tradeoffs: Fig. 10 shows three BISMO in-
stances with the same performance and buffer depth but
different overlay dimensions (Dm, Dk, Dn) and plot the
number of BRAMs used and the LUT cost per binary operation.
We observe a tradeoff between BRAM and LUT cost by
scaling different parameters. We see that larger Dk results
in lower LUT cost, but requires more BRAMs to deliver the
bandwidth. Conversely, smaller Dk needs fewer BRAMs, but
has larger LUT cost. We note that the DPA dimensions should
be matched to the workload dimensions for higher efficiency,
e.g., Dn > 1 is wasteful for matrix-vector multiplication, but
LUT and BRAM budget may impose additional constraints.

6) Hardware Cost of Flexible Precision: When required
precision is known beforehand, a matrix multiplier that uses
fixed-precision bit-parallel arithmetic is the commonly used
alternative, though bit-serial could still be used. To quantify
the overhead associated with bit-serial for those cases, we
implemented a version of the DPU with w × a-bit multipliers
instead of AND, an adder tree instead of popcount, and
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TABLE IV
BISMO INSTANCES FOR RUNTIME MEASUREMENTS.

# Dm Dk Dn LUT BRAM GOPS

1 8 64 8 19545 (37%) 121 (86%) 1638.4
2 8 128 8 27740 (52%) 129 (92%) 3276.8
3 8 256 8 45573 (86%) 129 (92%) 6553.6
4 4 256 4 13352 (25%) 129 (92%) 1638.4
5 8 256 4 24202 (45%) 129 (92%) 3276.8
6 4 512 4 21755 (41%) 129 (92%) 3276.8

F = R = 64 and Fclk = 200 MHz unless otherwise stated.

no shifter and negator. This bit-parallel DPU performs the
equivalent of 2 · w · a · Dk binary operations per cycle.
Fig. 11 compares the LUT cost for binary operation equivalents
between the BISMO DPU and several bit-parallel variants. We
first observe that the LUTs per operation decreases with higher
bit-parallel precision, from 1.1 for 2×1 down to 0.73 for 3×3.
Beyond 3× 3 bits we did not observe further lowering of the
LUT cost. As expected, bit-parallel DPUs have lower cost per
bit operation compared to bit-serial as they do not suffer from
the shifter/negator overhead. For larger dot product sizes, the
overhead is amortized and the worst-case gap between BISMO
and 3 × 3 closes down to 0.5 LUT per operation. We note
that this is not a fully fair comparison since 1) the BISMO
hardware supports significantly larger precisions, and 2) our
implementation is not fully optimized down to the LUT level.

B. Runtime Performance

In this section, we assess the runtime performance and energy
efficiency achievable by BISMO instances running on the
PYNQ-Z1. We assume that the input matrices are stored
in DRAM using a bit-packed data layout [5], and that one
matrix is transposed. We create matrix multiplication workloads
with different dimensions and bitwidths, manually build the
corresponding instruction sequences, and run the workloads
on the enumerated BISMO instances listed in Table IV to
evaluate how the overlay size interacts with workload size.

1) Peak Binary Compute: We start by measuring the maximum
achievable binary matrix multiply performance dictated purely
by the execute stage. For this experiment, we assume the
matrices have already been fetched into on-chip memory and
disregard the cost of result writing. Fig. 12 plots the achieved
performance for different number of columns as a percentage
of observed peak performance. We observe that the efficiency
increases with more columns, and that instances with larger
Dk require wider matrices than smaller Dk ones to be efficient.
As an example, for a matrix with 8192 columns, instance #3
reaches 64% efficiency, while instance #1 achieves 89%. The
inefficiency for narrow matrices is due to the lack of work
to fill the DPA pipeline, e.g., the DPA pipeline may be 10-
deep but each dot product is finished in 6 cycles. This can be
remedied by issuing more work to the DPA without waiting
for the previous execution to finish, or by decreasing the DPA
pipeline depth. Wide matrices achieve close to 100% of the
peak performance for all instances.
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Fig. 12. Execute stage efficiency depending on Dk and matrix width k.
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Fig. 13. Runtime with increasing precision on instance #2.

2) Peak Bit-Serial Compute: Per Algorithm 1, if the runtime
of a binary (1× 1) matrix multiplication of a given size is t,
we expect the runtime of a w × a-bit matrix multiplication of
the same size to be w · a · t. Fig. 13 plots the performance
for 8× 2048× 8 and 8× 16384× 8 with increasing w, a on
instance #2. We observe slightly better performance than the
projected w · a · t since multiple dot products are accumulated
together for the multi-bit case, behaving like a longer dot
product and increasing the execute stage efficiency (Fig. 12).

3) Stage Overlap: We now quantify the performance gain
by overlapping the fetch, execute, and result stages for larger
matrix multiplications. We create an instruction sequence to run
a 256×4096×256 binary matrix multiplication on instance #1,
similar to the example in Section III-C2. The input matrices
here are twice the size of the on-chip memory. By overlapping
the operation of different stages, the multiplication finishes in
121133 cycles, achieving a speedup of 2.2× compared to the
266510 cycles when the stages are executing without overlap.

TABLE V
POWER CONSUMPTION DATA FROM BISMO INSTANCES ON PYNQ-Z1.

Configuration Power (W) Binary Binary
(Instance, Fclk) Idle Exec F & R Full GOPS GOPS/W

(#1, 200 MHz) 2.53 +0.33 +1.09 4.07 1638 402.16
(#2, 100 MHz) 2.10 +0.19 +0.87 3.11 1638 527.51
(#3, 50 MHz) 1.76 +0.30 +0.63 2.53 1638 646.39
(#4, 200 MHz) 2.53 +0.34 +1.09 3.86 1638 424.98
(#5, 100 MHz) 2.05 +0.24 +0.92 3.06 1638 536.02

(#3, 200 MHz) 2.87 +0.71 +1.19 4.64 6554 1413.39



TABLE VI
COMPARING BISMO TO RECENT WORK.

Work Platform Type Precision Binary GOPS GOPS/W

BISMO Z7020 on PYNQ-Z1 FPGA bit-serial 6554 1413.40

in
cl

.D
R

A
MFINN [7] Z7045 on ZC706 FPGA binary 11613 407.50

Moss et al. [10] GX1150 on HARPv2 FPGA reconfigurable 41 849.38
Umuroglu et al. [5]† Cortex-A57 on Jetson TX1 CPU bit-serial 92 18.80
Pedersoli et al. [11]† GTX 960 GPU limited bit-serial 90909 757.60

Judd et al. [12]† ASIC ASIC limited bit-serial 128450 4253.30

BISMO Z7020 on PYNQ-Z1 FPGA bit-serial 6554 1889.70

ex
cl

.D
R

A
M

FINN [7] Z7045 on ZC706 FPGA binary 11613 992.50
Umuroglu et al. [5]† Cortex-A57 on Jetson TX1 CPU bit-serial 92 43.80
Umuroglu et al. [5]† i7-4790 CPU bit-serial 355 12.20

† indicates our experiments from released code or projections based on paper.

4) Power Consumption: BISMO’s power efficiency is mea-
sured using a PYNQ-Z1 board powered over a USB port with
a power meter attached while running one or more stages in a
loop. Table V lists five instances where the frequency (Fclk) is
adjusted to achieve the same peak binary performance (GOPS)
followed by the top-performing BISMO instance. We list four
power readings: the idle power with no stages running, the
increment from idle with only the execute stage running, the
increment with only the fetch and result stages running, and the
full power with all stages running. We find that on average the
execute stage contributes 9.7% of the full power consumption,
while the fetch and result stages contribute 27.2% and the
idle power constitutes 65.6%. For the cases with constant
performance, we see that a large but slow-clocked design
achieves 1.5× better power efficiency than a small but fast-
clocked design, similar to what is reported in FINN [7]. The
majority of this increase in power efficiency can be attributed
to lower idle power due to a slower clock.

V. RELATED WORK

Table VI compares BISMO against several recently-proposed
implementations for low-precision matrix multiplication, using
peak binary performance and performance per watt as metrics.
The top part of the table includes DRAM power, while the
bottom part only considers on-chip compute and memory power.
To our knowledge, BISMO is the first FPGA implementation
for bit-serial matrix multiplication, but comparable related
work on binarized neural networks by Umuroglu et al. [7]
and low-precision matrix multiplication by Moss et al. [10]
report 3.5× and 1.6×, respectively, lower power efficiency
than ours. Although the GPU binary matrix multiplication
kernels proposed by Pedersoli et al. [11] achieve an impressive
90 TOPS for large matrices, their work does not report power
measurements. Assuming a power consumption of 120 W for
the GTX 960, BISMO achieves 1.9× better power efficiency
in comparison. On CPUs, the single-threaded implementation
by Umuroglu and Jahre [5] performed far worse than BISMO,
and is still outperformed by more than an order of magnitude
even assuming 4× performance improvement with multi-core
parallelization. Finally, Stripes by Judd et al. [12] outperforms
ours by 3× due to the performance and efficiency of an
ASIC implementation.

VI. CONCLUSION

We have presented BISMO, a bit-serial matrix multiplication
overlay that can scale its precision to match an application’s
computational requirements and its hardware to match available
system resources. The proposed cost model accurately predicts
FPGA resource utilization and enables quick performance
estimations. BISMO is software programmable, providing
the possibility to adapt its execution to the dimension and
precision of any input matrix. Our evaluation indicates that
BISMO achieves a peak performance of 6.5 TOPS with an
energy efficiency of up to 1.4 TOPS/W on a PYNQ-Z1 board.
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