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Abstract: This paper presents the development of a symbolic transformation based strategy with 8 

interpretability and visualisation for building energy performance assessment. The strategy was 9 

developed using shape definition language based symbolic transformation and hierarchical 10 

clustering. Advanced visualisation techniques including dendrogram, heatmap and calendar view 11 

were used to assist in understanding building energy usage behaviours. A comparison of this 12 

proposed strategy with a Symbolic Aggregate approximation (SAX) based strategy was also 13 

performed. The performance of the proposed strategy was tested and evaluated using the three-14 

year hourly heating energy and electricity usage data of a higher education building. The result 15 

demonstrated that the proposed strategy can identify distinct building energy usage behaviours. 16 

The visualisation techniques used also assisted the information discovery process. The discovered 17 

information helped to understand building energy usage patterns. The comparison of the 18 

proposed strategy with the SAX based strategy showed that that the proposed strategy 19 

outperformed the SAX based strategy for the case building tested in terms of the variations in 20 

building energy usage. This proposed strategy can also be potentially used to evaluate the 21 

operational performance of building heating, ventilation and air-conditioning (HVAC) systems. 22 
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1. Introduction 25 

The operation of buildings and building Heating, Ventilation and Air-conditioning (HVAC) 26 

systems may suffer from various issues such as equipment malfunctions, sensor reading faults, 27 

inappropriate operating procedures, incorrectly configured control systems and equipment 28 

performance degradation [1, 2]. Building energy performance assessment is therefore essential to 29 

understand building energy performance levels and timely assist in identifying the potential 30 

operational issues that may influence building energy efficiency and indoor thermal comfort. 31 

Over the last several decades, many efforts have been made on the development of 32 

appropriate methods for effective building energy performance assessment [3]. Pang et al. [2], for 33 

instance, proposed a framework to facilitate the comparison between the building actual 34 

performance and the expected performance predicted by an EnergyPlus model. Based on a set of 35 

performance indicators, Kosai and Tan [4] developed a framework for quantitative analysis of 36 

energy performance of zero energy buildings. Yan et al. [5] developed a multi-level strategy for 37 

energy performance diagnosis of buildings with limited energy usage data available. Through a 38 

case study, Dascalaki et al. [6] concluded that building typologies can be considered as a useful 39 

tool in assessing the energy performance of residential buildings.  40 

Data mining, as an interdisciplinary subfield of computer science, is attracting increasing 41 

attention and is now being considered as an alternative solution to address the challenges faced 42 

by conventional building energy performance assessment methods [7-12]. Gao and Malkawi [8], 43 

for instance, presented a methodology using k-means clustering for building energy performance 44 

benchmarking. The methodology consisted of four steps, including feature selection, cluster 45 

analysis, cluster validation and interpretation. Raatikainen et al. [9] described a method using 46 
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self-organizing maps, U-matrix representation, Sammon’s mapping, k-means clustering and 47 

Davis-Bouldin index to analyse the energy consumption of school buildings.  do Carmo and 48 

Christensen [10] used k-means cluster analysis to identify the typical heating load profiles of 49 

Danish single-family detached homes in order to facilitate the development of cost effective 50 

demand side management solutions. The use of Partitioning Around Medoids clustering 51 

algorithm and Pearson Correlation Coefficient based dissimilarity measure to identify the typical 52 

heating load profiles of higher education buildings was presented in [11], in which the typical 53 

daily load profiles were identified on the basis of the variation similarity. A clustering method 54 

using k-shape algorithm was used by Yang et al. [12] to identify the shape patterns of time series 55 

building energy usage data in order to improve the accuracy of forecasting models. From the 56 

above studies, it can be seen that cluster analysis is the primary data mining algorithm used in 57 

building energy performance assessment and the results showed the effectiveness of using data 58 

mining algorithms in the identification of the hidden information from the massive amount of 59 

building operational data. 60 

In data mining strategies, data transformation is often used to transform the time series data 61 

into suitable formats to support the data mining process. Symbolic transformation is one of the 62 

common families of a time series representation approach which converts numeric time series 63 

data into symbolic forms [13]. There are two types of symbolic transformation methods, which 64 

were developed based on the means of the time segments and the volatility change, that are 65 

commonly used [13]. Symbolic Aggregate approXimation (SAX) was used by Miller et al. [14] 66 

to transform building energy usage data into alphabets to identify discords and create 67 

performance motifs. SAX was also used by Fan et al. [15] to develop a methodology for temporal 68 

knowledge discovery of big data collected from building automation systems (BASs). Based on 69 

the operational cycle of a chiller identified using a k-means clustering algorithm, Habib et al. [16] 70 
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first transformed the operational cycles into symbols using SAX and the symbolic representation 71 

was further transformed into a bag of word representation for hierarchical clustering. The 72 

performance of an air handling unit was studied by Dedemen et al. [17], in which SAX was used 73 

to detect the frequently occurring patterns and unexpected patterns in the sensor data provided by 74 

the BAS. An extension of SAX was used by Kalluri et al. [18] to extract the features that are 75 

characteristic of individual appliance transient states in an office. From the above studies, it can 76 

be seen that SAX is the main methods used for symbolic transformation of the time series data to 77 

facilitate the data mining process. 78 

With the wide deployment of building management systems and smart meters, a massive 79 

amount of high-resolution energy usage data from buildings can now be readily available. This 80 

provides a great opportunity to better understand building energy usage characteristics and 81 

operational performance through discovering the hidden information behind this massive amount 82 

of data. However, without advanced data analytic techniques, the valuable information 83 

underneath the massive data may not be properly extracted. This paper presents a strategy for 84 

building energy performance assessment using shape definition language based symbolic 85 

transformation and hierarchical clustering. Different from the majority of the previous studies 86 

used cluster analysis with a focus on the load magnitude for building energy performance 87 

assessment, this study used the volatility change based symbolic transformation to convert the 88 

time series data into symbolic forms and the typical building energy usage profiles were 89 

identified based on the energy usage variations. The advanced visualisation techniques including 90 

dendrogram, heatmap and calendar view were used to assist in building energy performance 91 

assessment. A comparison of the proposed strategy with a SAX based symbolic transformation 92 

strategy was also performed. The performance of this proposed strategy was tested and evaluated 93 
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using the three-year hourly district heating energy and electricity usage data collected from a 94 

higher education building in Norway. 95 

2. Development of the building energy performance assessment strategy 96 

2.1 Outline of the proposed strategy  97 

The outline of the proposed symbolic transformation based strategy to examine the building 98 

energy performance is presented in Fig. 1. It mainly consists of four steps, including data 99 

collection, data pre-processing, data mining, and an evaluation and interpretation of the results. 100 

The first step is the collection of building energy usage data from BASs. The collected data is 101 

then pre-processed in the second step, which consists of five main tasks including outlier removal, 102 

data segmentation, small variation segments removal, data normalisation and symbolic 103 

transformation of the time series data. In this study, the generalised Extreme Studentised Deviate 104 

(ESD) test method was used to identify and remove the outliers from the raw data as it can detect 105 

one or more outliers in a univariate data set that follows an approximately normal distribution 106 

[19]. The details of this test method can be found in [19, 20]. Data segmentation is to transform 107 

the data into 24-hour segments in order to form daily load profiles. In order to identify the typical 108 

daily energy usage profiles that have distinct patterns, the segments with a small difference 109 

between the daily maximum and minimum energy usage were discarded. In this study, 5.0% of 110 

the segments with the least difference among all the daily segments were considered as the small 111 

difference and were discarded. The daily load profiles were then normalised to a range of 0-1, 112 

where 1 is the daily maximum, and 0 is the daily minimum. The last step in the data pre-113 

processing is to transform the segments of the normalised data through the symbolic 114 

representation which will be introduced in Section 2.2. 115 

The data mining process starts to identify the pre-defined symbols and shapes and then 116 

summarises the distribution of the symbols and shapes to provide a preliminary understanding of 117 
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the building energy usage behaviour. The Dice coefficient between each pair of the daily load 118 

profiles is then calculated to determine the dissimilarity measure for clustering the daily load 119 

profiles, which will be introduced in Section 2.3. A hierarchical clustering technique is used to 120 

determine the structure and the number of the clusters with the assistance of the heatmap and 121 

dendrogram based visualisation techniques. Typical daily load profiles are then formed by 122 

calculating the mean value of all the load profiles in each cluster. The distribution of the typical 123 

daily load profiles is further plotted as a calendar view to better understand the temporal 124 

distribution of the typical daily load profiles identified.  125 

2.2 Symbolic transformation 126 

In this study, a volatility change based method was used to capture the variations in the 127 

building energy usage data. The normalised daily load profiles were transformed into a symbolic 128 

representation form based on the Shape Definition Language (SDL) proposed by Agrawal et al. 129 

[21]. SDL is a small language which allows a variety of queries about the shapes found in 130 

histories and has the capability for blurry matching to give the primary focus on overall shape 131 

rather than the specific details [21]. Table 1 summarises the symbols used in this study for 132 

symbolic transformation, and the corresponding description and definitions. The values used in 133 

Table 1 were determined by referring to Agrawal et al. [21]. It is worthwhile to note that these 134 

values used might not be the optimal values. In this method, the symbols were defined according 135 

to the difference between the value at the ith time step and the corresponding value at the (i-1)th 136 

time step. For instance, the value at the ith time step is transformed to the symbol “stable” if the 137 

difference between the values at the ith time step and the (i-1)th time step is between -0.05 and 138 

0.05.  139 
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Four shapes, including rise, fall, spike, and sink, were also defined based on certain 140 

combinations of the symbols to assist in understanding the variations in building energy usage. 141 

Table 2 provides a description and definition of the shapes used in this study. 142 

2.3 Dice coefficient based dissimilarity  143 

Similarity/dissimilarity is fundamental to the definition of a cluster [22]. Various similarity 144 

and dissimilarity measures such as Euclidean distance, Pearson correlation coefficient, Dice 145 

coefficient, Hausdorff distance, probability-based distance, edit distance and dynamic time 146 

warping distance have been used in cluster analysis [11, 14, 23-24]. In this study, Dice coefficient 147 

based dissimilarity measure as shown in Eq. (1) was used to measure the dissimilarity between 148 

the two symbolically represented daily load profiles. Dice coefficient is defined as the ratio of the 149 

number of n-grams that are shared by two strings to the total number of n-grams in both strings 150 

and is shown in Eq. (2) [25]. 151 

 ( , ) 1Diced X Y Dice= −   (1) 152 

 
2 ( ) ( )

( ) ( )
n grams X n grams Y

Dice
n grams X n grams Y
× − ∩ −

=
− + −

  (2) 153 

where n-grams is a function which divides the original string into substrings with a length of n. In 154 

this proposed strategy n was selected as one. X and Y are the strings, which are the symbols 155 

representing the daily load profiles with a size of 24 in this study.  156 

2.4 Hierarchical clustering 157 

Hierarchical clustering is a relatively simple and unbiased method that is often used to 158 

determine whether a given set of data from one group closely resemble another group [26]. There 159 

are two hierarchical clustering methods, i.e. agglomerative and divisive, depending on whether 160 

the hierarchical decomposition is formed in a bottom-up or top-down approach [27]. One 161 
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advantage of hierarchical clustering is that the overall process can be represented by a tree 162 

structure graph called a dendrogram. The dendrogram can help to visualise the cluster structure 163 

and assist in determining the optimal number of clusters. 164 

In this study, clustering the symbols to represent the daily load profiles was achieved based 165 

on an agglomerative hierarchical clustering with the complete linkage as shown in Eq. (3) [27]. In 166 

the complete linkage, the measurement of the distance between two clusters is 167 

the maximum distance between any daily load profile in cluster A and any daily load profile in 168 

cluster B. At a specific point, the two clusters that have the smallest complete linkage will be 169 

merged into a larger cluster [28]. 170 

  { ( , ) : , }max dist a b a A b B∈ ∈   (3) 171 

where a, b are the two daily load profiles belong to the clusters A and B, respectively, and dist is 172 

the distance represented by the Dice coefficient-based dissimilarity.  173 

3. Performance test and evaluation of the proposed strategy 174 

In this study, the proposed strategy was implemented in R [29]. The majority of the figures 175 

presented in this study were generated using R package ggplot2 [30]. 176 

The energy usage data of a higher education building at the Norwegian University of Science 177 

and Technology (NTNU) in Trondheim, Norway, were used to test and evaluate the performance 178 

of this proposed strategy. The building concerned was built in 1965 and is used for laboratory 179 

and office purposes with a total floor area of 3,030 m2. The building heating was provided from 180 

district heating. The hourly building heating energy and electricity usage data were collected 181 

through a web based Energy Monitoring System.  182 

Fig. 2 presents the collected heating energy and electricity usage data from 2011 to 2013. It 183 

can be seen that the heating energy usage varied significantly with the variation in the weather 184 
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conditions. More heat was generally required from September to April, and there was almost no 185 

heating demand during the summer periods (i.e. May to August) in 2012 and 2013, but a small 186 

amount of heating energy was still required during the summer periods in 2011 mainly for the 187 

domestic hot tap water purpose. The observed building implemented three retrofit measures 188 

during 2012, including a) the building was connected to the local university district heating ring 189 

with a lower supply water temperature; b) an electric boiler for the domestic hot tap water 190 

purpose was installed and; c) the air recirculation was introduced in one of the ventilation 191 

systems. These three measures might lead to different heating energy usage patterns in 2012 and 192 

2013 from 2011. In order to identify the typical daily heating energy usage profiles, the heating 193 

energy data collected from May to August were discarded and the analysis was focussed on the 194 

high heating energy demand periods. From Fig. 2, it can also be observed that the electricity 195 

usage data in the first few months of 2011 differed from those during the rest of the time, which 196 

should be further investigated. After discussion with the building operator, it seems that the data 197 

logging was not working appropriately during that time period. Unlike the heating energy usage 198 

data, there was no clear relationship between the variation in the building electricity usage and 199 

the seasonal changes. In order to make the analysis be consistent, the electricity data from May to 200 

August were also discarded in the following analysis.  201 

3.1 Performance test results based on the heating energy usage data 202 

The generalised ESD test method was first used to detect and remove outliers, the data were 203 

then segmented into the daily load profiles and the segments with small variations were removed.  204 

The daily load profiles were then normalised to the range of 0-1 and transformed into pre-defined 205 

symbolic representations. After the data pre-processing, a total of 686 daily load profiles 206 

remained and were used in the following analysis.  207 
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The temporal distribution of the symbols and shapes was presented in Fig. 3 to provide a 208 

preliminary understanding of the building heating energy usage characteristics. Each bar 209 

represents how many times the symbols and shapes appeared at a specific hour. It can be seen 210 

that the symbols “up”, “down” and “stable” appeared at the most hours during a day. The symbol 211 

“jump” mainly appeared at 03:00, 04:00, 05:00, 07:00, 09:00 and 11:00, while the symbol 212 

“plunge” mainly appeared at 08:00, 10:00, 17:00 and 18:00. Moreover, there was a considerable 213 

amount of spikes at 05:00, 07:00 and 09:00 and a large number of sink at 10:00. These symbols 214 

and shapes indicated that there was a significant change in the heating energy usage at these 215 

hours. The rise and fall shapes showed that the increase in the heating energy demand was mainly 216 

occurred at around 03:00-5:00 and 09:00 and the decrease in the heating energy demand was 217 

occurred at around 16:00-19:00.  218 

Fig. 4 demonstrates the dendrogram of the hierarchical clustering and how the symbols were 219 

distributed in the daily load profiles as ordered by the dendrogram. It can be seen that four major 220 

clusters were formed when a threshold of 0.97 was used to ensure a relatively uniform 221 

distribution of the symbols in each cluster and the clusters 2, 3, 4 were formed with distinct 222 

features. For instance, the most daily load profiles in the cluster 2 had the symbol “jump” 223 

appeared at 09:00 and 11:00 and the symbol “plunge” appeared at 10:00. The most daily load 224 

profiles in the cluster 3 had the symbol “jump” appeared at 04:00 and 07:00 and the symbol 225 

“plunge” appeared at 08:00 and 17:00.  226 

The typical daily load profiles formed by the identified clusters are shown in Fig. 5. The 227 

number on the top right-hand corner indicated the total number (T) of the daily load profiles in 228 

the cluster. The boxplot at each hour showed the variance of all daily load profiles at this specific 229 

hour, and the width of the box was the significance of the variance. The typical daily heating load 230 

profile 1 only represented 38 daily load profiles and the variance of the represented profiles 231 
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during the main heating demand period was also significant. The major heating demand period 232 

shown in the typical daily heating load profile 2 was shorter than the other three typical daily load 233 

profiles, and there was a significant spike followed by a sink in the morning. The typical daily 234 

load profiles 3 and 4 showed a significant spike at 07:00 and 05:00, respectively, and the main 235 

heating demand period occurred from the early morning to about 16:00. Table 3 summarises the 236 

main characteristics of the identified typical daily heating load profiles.  237 

Fig. 6 shows the distribution of the typical daily heating load profiles in a calendar view, 238 

where the profile 0 represented the days with small variations that were excluded from the 239 

analysis. It was shown that the typical daily heating load profiles 2, 3, and 4 mainly represented 240 

the daily load profiles of the weekends, and from Tuesday to Friday and Monday, respectively. 241 

The typical daily heating load profile 1 mainly appeared in October 2013, and the potential 242 

causes are therefore worthwhile to further investigate. The patterns in October 2013 also showed 243 

the disordered energy usage with a mixture of different types of typical daily heating load profiles.   244 

3.2 Performance test results based on the electricity usage data  245 

The electricity usage data of the case study building was also analysed. A total of 673 daily 246 

electricity load profiles were transferred to a symbolic representation form after the data pre-247 

processing. Fig. 7 shows how symbols and shapes were distributed over the 24 hours. It can be 248 

seen that the electricity demand obviously increased at around 09:00-12:00 and decreased at 249 

around 17:00-23:00.  250 

Fig. 8 shows a dendrogram of the electricity usage clustering result and the distribution of the 251 

symbols in the daily load profiles as ordered by the dendrogram. The threshold of 0.94 was also 252 

determined by visualising the distribution of the symbols in order to have a relatively uniform 253 

distribution of the symbols in each cluster. A total of seven clusters were formed. It can be seen 254 
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that the symbol distribution in some clusters showed very distinct characteristics. For instance, in 255 

the cluster 3, the symbols “jump” and “plunge” appeared alternately, which indicated that the 256 

electricity usage fluctuated significantly and is therefore worthy of further investigation.   257 

 The typical daily electricity load profiles identified are presented in Fig. 9. The typical daily 258 

electricity load profiles 1, 2, 4, 5 and 6 had a similar trend where the electricity usage started to 259 

increase at about 09:00 and decrease at about 17:00. The typical daily electricity load profiles 3 260 

and 7 showed significant fluctuations during the most hours, indicating that the building might be 261 

operated under the abnormal conditions. Table 4 summarises the key features of the typical daily 262 

electricity load profiles identified. 263 

Fig. 10 presents a calendar view of the temporal distribution of the typical daily electricity 264 

load profiles. It is noted that the daily electricity load profile 0 represented those days with small 265 

variations that were excluded from the analysis. It can be seen that there was a very uniform 266 

distribution of the typical daily electricity load profiles in the first four months of 2011, where 267 

Monday to Wednesday were under the typical daily electricity load profile 4, Thursday and 268 

weekends were under the typical daily electricity load profile 3, and Friday was under the typical 269 

daily electricity load profile 6. Over the remaining time, the operation was mainly under the 270 

typical daily electricity load profile 1 during the majority of the days, especially the weekdays. 271 

The typical daily electricity load profile 2 mainly occurred in September and the first week of 272 

October 2012, which is also an interesting pattern for further investigation. In summary, the 273 

calendar view of the typical daily electricity load profiles did not show a uniform electricity 274 

usage distribution during a week. 275 

4. Interpretation of the information discovered 276 

As shown in the calendar view (Fig. 6), during the majority of the weeks, the heating energy 277 

usage data had a uniform distribution pattern. In order to confirm this, the heating energy usage 278 
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data from one week starting from the third Monday of November 2013, which was considered as 279 

a typical heating week, were presented in Fig. 11(a). Another week starting from the second 280 

Monday of October 2013, which was considered as a non-typical heating week, was presented in 281 

Fig. 11(b). The shaded areas were the time periods with the heating load higher than 40% of the 282 

daily maximum heating load, while the orange and light blue colours represented the weekdays 283 

and weekends, respectively.  284 

From Fig. 11(a), it can be observed that the general trend of the daily heating load profile was 285 

in line with that of the typical daily load profiles identified. The heating demand profiles on 286 

Monday to Friday were very similar but the heating demand on Monday was one hour earlier 287 

than those from Tuesday to Friday, which was consistent with that presented in the typical daily 288 

heating load profiles identified.  289 

The data from the non-typical week indicated that the main heating demand period during the 290 

weekdays was the same as the weekdays of the typical week, but with a different trend. For 291 

instance, the heating load profiles of the non-typical week from Tuesday to Friday did not show a 292 

spike at 07:00. The heating load profile at the weekends was significantly different from those in 293 

the typical week. These heating energy usage patterns were not presented by the identified typical 294 

daily load profiles, which indicated that the patterns of the disorder in the calendar view can help 295 

to identify the abnormal heating energy usage.   296 

Four weeks of the electricity usage data with interesting patterns were presented in Fig. 12. 297 

The first two consecutive weeks extracted starting from the first Monday of January 2011 as the 298 

similar patterns lasted for four months in 2011. The third interesting week started from the first 299 

Monday of November 2013, corresponding to the typical daily electricity load profile 1 during 300 

the weekdays and the typical daily electricity load profile 6 during the weekends. The fourth 301 
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interesting week started on the third Monday of September 2012 and the electricity usage was in 302 

line with the typical daily electricity load profile 2.   303 

The electricity usage data of the first two interesting weeks (Fig. 12a) showed that there was 304 

a large fluctuation in the electricity usage, especially on weekends. This means that the data from 305 

this period cannot reflect the typical electricity usage of the building. However, the reason behind 306 

this is worthwhile to investigate.  307 

The third interesting week (Fig. 12b) represented the typical weekdays where the daily load 308 

profiles were in line with the typical daily electricity load profile 1. The electricity energy usage 309 

began to increase significantly at around 10:00 and dropped significantly in the late afternoon at 310 

around 18:00. However, the actual daily electricity load profiles of each weekday were different. 311 

The daily electricity load profiles during the weekends were consistent with that of the typical 312 

daily electricity load profile 6 with a small amount of electricity usage although they shared the 313 

similar trends.  314 

The daily load profiles of the fourth interesting week (Fig. 12c) from Monday to Saturday 315 

were in line with that of the typical daily electricity load profile 2, while the daily electricity load 316 

profile on Sunday was consistent with that of the typical daily electricity load profile 1. The trend 317 

of the electricity usage for the first six days had different patterns, but they all shared a common 318 

feature that a significant increase in the electricity usage started at 09:00 except on Saturday and 319 

the main electricity usage lasted until the late night. This is an interesting point for the further 320 

investigation to understand why the electricity usage behaviour for this week was different from 321 

the others. 322 

The electricity usage was related to the activities of the occupants. The building has a wind 323 

tunnel that was used about 200 days per year for the research purpose. The wind tunnel was used 324 

randomly based on the research requirement. The analysis showed that the high electricity 325 
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demand started at around 09:00. On some days, the large electricity demand remained until the 326 

late night even though the heating supply significantly decreased at 18:00. The extended 327 

electricity demand might be due to light and computer use, because researchers might work 328 

longer than the typical working time. The heating and ventilation systems were usually scheduled 329 

to provide a higher temperature and a larger amount of air during the typical working time.  330 

Unlike the heating energy usage, the electricity usage data showed more variations. This is 331 

reasonable as the electricity was used by various facilities such as lighting, computers, and 332 

laboratory equipment. This means that all behaviours in the three-year electricity usage data 333 

cannot be fully represented by the typical daily electricity load profiles identified. However, the 334 

identified typical daily electricity load profiles can be used to assist in understanding the 335 

electricity usage behaviours and to provide the guidance on the electricity usage data analysis as 336 

well as to detect the abnormal electricity usage behaviours.   337 

5. Comparison between the proposed strategy with a Symbolic Aggregate approXimation 338 

based strategy 339 

Symbolic Aggregate approXimation (SAX) [31] is another commonly used symbolic 340 

transformation method for time series data analysis and has been used in a number of building 341 

energy studies [14, 15]. In this section, a comparison between the proposed strategy with a SAX 342 

based symbolic transformation strategy was presented to confirm the effectiveness of the 343 

proposed strategy. 344 

In this comparison, all the other steps in the SAX based strategy were the same as that of the 345 

proposed strategy, but SAX was used to replace the SDL to transform the time series data. In the 346 

SAX based strategy, the original time series data were transformed into the segments with a 347 

length n and the mean value of a segment was represented by A letters such as a, b and c. Since 348 

this data was normalised to a range of 0-1, the equal size breakpoints were used, which means 349 
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that each letter represents 1/A in the range of 0-1. In the comparison, each hour data was 350 

considered as a segment (i.e. n=1) and the five letters were used to represent the time series data 351 

(i.e. A = 5 with the letters of a, b, c, d and e). Fig. 13 shows the dendrogram of the SAX based 352 

clustering and the corresponding heatmap by using the heating energy data. It can be seen that 353 

there were four clusters identified by using the same method used in the proposed strategy. The 354 

heatmap showed that the two clusters with the most daily heating load profiles (i.e. orange and 355 

red) had different and distinctive patterns.  356 

Fig. 14 shows the typical daily heating load profiles formed by the identified clusters. The 357 

typical daily heating load profiles 1 and 2 only accounted for a small number of the daily load 358 

profiles, while the typical daily heating load profiles 3 and 4 were similar to the typical daily 359 

heating load profiles 3 and 2 presented in Fig. 5 identified by the proposed strategy. The temporal 360 

distribution of the typical daily heating load profiles is shown as a calendar view in Fig. 15. It can 361 

be seen that the SAX based strategy successfully isolated the weekend and weekday load profiles, 362 

but the unique heating energy usage pattern on Monday identified by the proposed strategy was 363 

not identified by the SAX based strategy.  364 

This comparison demonstrated that both strategies can identify the key patterns related to the 365 

building heating energy usage, but the proposed strategy can identify more features and better 366 

reflect the unique energy usage behaviours from the perspective of the energy usage variation, in 367 

comparison to the SAX based strategy.  368 

6. Conclusion 369 

This paper presented a combination of symbolic transformation and cluster analysis based 370 

strategy to evaluate the building energy performance. In this strategy, the building daily load 371 

profiles were first transformed into the volatility change based symbols. The symbols were then 372 

grouped to represent the daily load profiles through hierarchical clustering and Dice coefficient 373 
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based dissimilarity measure to identify the typical daily load profiles. A key advantage of this 374 

strategy is that it can utilise the advanced visualisation techniques to help understand the 375 

information extracted from the raw data.  376 

The performance of this strategy was evaluated using the three-year heating energy and 377 

electricity usage data from a higher education building in Norway. The results showed that the 378 

proposed strategy can discover the information related to the building energy usage behaviour. 379 

The visualisation techniques also helped to discover the hidden information and better understand 380 

the typical patterns of energy usage as well as identify the unique energy usage behaviours. The 381 

results from this study can be further used to assist in the fault detection and diagnosis. It was 382 

shown that the proposed strategy worked better with the heating energy usage data than the 383 

electricity usage data mainly due to the fact that the electricity was consumed by different 384 

equipment and varied considerably in daily operations. During some weekends, the electricity 385 

usage was much lower than that of the weekdays but with a similar trend and it was therefore 386 

classified into the same cluster. This means that the magnitude of the energy usage should be 387 

considered as a factor in the further improvement of the proposed strategy. The results also 388 

showed that proposed strategy showed a better performance to identify the characteristics of 389 

energy usage behaviours of the case study building in comparison with a SAX based strategy in 390 

terms of the variations in building energy usage. In order to capture more information from 391 

building energy usage data, it might be worthwhile to develop advanced strategies which can take 392 

both magnitude similarity and variation similarity into consideration simultaneously. The 393 

proposed strategy has a potential to be used to evaluate the operational performance of building 394 

HVAC systems.  395 
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Table 1 Description and definition of the symbols 473 

Symbol Description Lower bound Upper bound 
stable virtually no variation -0.05 0.05 
jump significant increase 0.20 1.00 

up slight increase  0.05 0.2 
down slight decrease -0.20 -0.05 
plunge significant decrease -1.00 -0.20 

 474 

Table 2 Description and definition of the shapes 475 

Shape Description Definition 
rise continues the increasing trend continuous up or jump symbols 
fall continues the descending trend continuous down or plunge symbols 

spike a significant peak a jump followed by a plunge 
sink a significant trough a plunge followed by a jump 

 476 

Table 3 Key characteristics of the identified typical daily heating energy usage profiles 477 

Typical 
heating load 
profile No. 

Estimated high 
heating demand 

period 

Total 
number 
of days 

Main characteristics 

1 04:00-17:00 38 The heating demand greatly increased from 03:00 
with two small peaks at 7:00 and 11:00. 

2 09:00-17:00 190 The major heating period started with a significant 
spike at 09:00 and ended at 17:00. 

3 04:00-17:00 344 The main heating period started at 04:00 and 
lasted until 17:00 with a significant spike at 07:00. 

4 03:00-17:00 114 The main heating period started at 03:00 and 
lasted until 17:00 with a significant spike at 05:00. 

 478 

 479 

 480 

 481 

 482 

 483 

 484 

 485 
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Table 4 Key characteristics of the identified typical daily electricity load profiles 486 

Typical 
electricity load 

profile No. 

Estimated high 
electricity 

demand period 

Total 
number 
of days 

Main characteristics 

1 10:00-19:00 373 
The electricity demand increased significantly from 

09:00 and reached the peak at around 13:00 and 
then started to decrease at 17:00. 

2 09:00-20:00 63 
The trend of the demand variation was similar to the 
profile 1 except that the decrease was not as sharp 

as the profile 1 at around 18:00. 

3 Not clear 53 The profile had a large fluctuation, indicating very 
unstable electricity usage behaviour. 

4 09:00-21:00 100 
The trend was similar to the profiles 1 and 2 but 
with more fluctuations. A small peak occurred at 

21:00. 

5 10:00-21:00 28 The profile was similar to the profiles 1 & 2 except 
a small peak at 07:00. 

6 09:00-21:00 46 The overall trend was similar to the profile 4 but 
with more fluctuations. 

7 Not clear 10 The profile only represented a few days with the 
fluctuating electricity usage behaviour. 
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Figure Captions 488 

Fig. 1 Outline of the proposed symbolic transformation based strategy. 489 

Fig. 2 Illustration of building heating energy and electricity usage data. 490 

Fig. 3 Temporal distribution of the symbols and shapes - heating energy usage data. 491 

Fig. 4 Dendrogram of the hierarchical clustering result and distribution of the symbols in the 492 

daily load profiles ordered by the dendrogram - heating energy usage data. 493 

Fig. 5 Typical daily heating load profiles formed by the identified clusters. 494 

Fig. 6 Calendar view of the distribution of the typical daily heating load profiles. 495 

Fig. 7 Temporal distribution of the symbols and shapes - electricity usage data. 496 

Fig. 8 Dendrogram of the hierarchical clustering result and distribution of the symbols in the 497 
daily load profiles as ordered by the dendrogram - electricity usage data. 498 

Fig. 9 Typical daily electricity load profiles formed by the identified clusters. 499 

Fig. 10 Calendar view of the distribution of the typical daily electricity load profiles. 500 

Fig. 11 The heating energy usage data of a typical week and a non-typical week. 501 

Fig. 12 The electricity usage data of the four selected interesting weeks. 502 

Fig. 13 Distributions of the symbols in the daily heating load profiles ordered by the dendrogram 503 
using SAX based method. 504 

Fig. 14 Typical heating load profiles formed by the identified clusters using the SAX based 505 
strategy. 506 

Fig. 15 Calendar view of the distribution of typical heating load profiles using the SAX based 507 
strategy. 508 
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 510 
Fig. 1 Outline of the proposed symbolic transformation based strategy. 511 

 512 

 513 

 514 
Fig. 2 Illustration of building heating energy and electricity usage data. 515 
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 517 
Fig. 3 Temporal distribution of the symbols and shapes - heating energy usage data. 518 

 519 
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 521 

Fig. 4 Dendrogram of the hierarchical clustering result and distribution of the symbols in the 522 
daily load profiles ordered by the dendrogram - heating energy usage data. 523 

 524 
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 525 
Fig. 5 Typical daily heating load profiles formed by the identified clusters. 526 

 527 

 528 
Fig. 6 Calendar view of the distribution of the typical daily heating load profiles. 529 
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 530 
Fig. 7 Temporal distribution of the symbols and shapes - electricity usage data. 531 
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 532 

Fig. 8 Dendrogram of the hierarchical clustering result and distribution of the symbols in the 533 
daily load profiles as ordered by the dendrogram - electricity usage data. 534 

 535 
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 536 

Fig. 9 Typical daily electricity load profiles formed by the identified clusters. 537 
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 539 
Fig. 10 Calendar view of the distribution of the typical daily electricity load profiles. 540 

 541 

 542 

Fig. 11 The heating energy usage data of a typical week and a non-typical week. 543 
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 544 
Fig. 12 The electricity usage data of the four selected interesting weeks. 545 

 546 
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 548 

Fig. 13 Distributions of the symbols in the daily heating load profiles ordered by the dendrogram 549 
using SAX based method. 550 
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 551 
Fig. 14 Typical heating load profiles formed by the identified clusters using the SAX based 552 

strategy. 553 

 554 
Fig. 15 Calendar view of the distribution of typical heating load profiles using the SAX based 555 

strategy. 556 
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