
June 2010
Kristian Gjøsteen, MATH

Master of Science in Physics and Mathematics
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Mathematical Sciences

Analysis of the Transport Layer Security
protocol

Tia Helene Firing

Problem Description
In this master thesis, the student is supposed to analyse the TLS protocol by use of the UC
(Universal Composability) security framework. The analysis should focus on the Handshake
protocol, with particular emphasis on the recently discovered renegotiation attack and the fix
proposed by IETF.

Assignment given: 14. January 2010
Supervisor: Kristian Gjøsteen, MATH

Abstract

In this master thesis we have presented a security analysis of the TLS protocol with
particular emphasis on the recently discovered renegotiation attack. From our security
proof we get that the Handshake protocol with renegotiation, including the �x from
IETF, is secure, and hence not vulnerable to the renegotiation attack anymore.

We have also analysed the Handshake protocol with session resumption, and the Appli-
cation data protocol together with the Record protocol. Both of these protocols were
deemed secure as well.

All the security proofs are based on the UC (Universal Composability) security frame-
work.

i

Preface

When choosing a subject for my master thesis, it was important to me to write about
something practical, something that is used in more applied information security, so
when my supervisor suggested that I analysed TLS based on the UC security framework,
I said yes right away. Not only is TLS one of the most popular protocols within web
security, someone had also discovered a serious security �aw in one of its subprotocols
just a few months earlier. IETF published a �x for this new attack against TLS in
January. However, when I started working on this thesis, no other UC theory based
security analyses of TLS including this �x had been published yet, as far as I know. This
gave me the opportunity to analyse a protocol that had not been analysed before (again,
as far as I know), and it has made working on this master thesis even more motivating,
exciting and fun.

For me, writing this master thesis has been challenging, fun, frustrating and rewarding,
all at the same time. I have learned a lot about UC theory and how to use it to prove
security in cryptographic protocols. I have also learned a lot about TLS and how and
why it works. In addition, I now know the entire Handshake and Record protocols by
heart. This past semester truly seems like the perfect way to end my �ve years at NTNU.

Of course, I could not have done this without the help and support from others. I would
sincerely like to thank my supervisor, associate professor Kristian Gjøsteen. Thank you
for all the help, answers and support you have given me, for sharing your knowledge of
LATEX, and for all the motivating and interesting conversations about cryptography and
security in general. I would also like to thank Cato, my better half, for your sincere
interest in my work, and for supporting me and being there for me.

ii

iii

Contents

Preface ii

1 Introduction 1

2 UC theory 3
2.1 Games . 5
2.2 Useful de�nitions from probability theory 6
2.3 Examples of ideal functionalities . 7

2.3.1 Ideal functionality for signatures 7
2.3.2 Ideal functionality for public-key encryption 8
2.3.3 Ideal functionality for the TCP network 9

3 Ideal functionalities 11
3.1 Ideal functionality for authentication . 11
3.2 Ideal functionality for sending/receiving messages 12

4 TLS 14
4.1 The Handshake protocol . 15

4.1.1 Session resumption . 18
4.1.2 Renegotiation . 19

4.2 The Application data protocol/Record protocol 24
4.3 The renegotiation attack against TLS . 25
4.4 The proposed �x . 28

5 Proof of the Handshake protocol with renegotiation 29
5.1 Initial handshake . 30
5.2 Renegotiation part . 37

6 Proof of the Handshake protocol with session resumption 45
6.1 Initial handshake . 45
6.2 Resumption part . 47

7 Proof of the Application data protocol/Record protocol 53

iv

CONTENTS v

7.1 Handshake . 53
7.2 Application data protocol/Record protocol 55

8 Conclusion 60

Bibliography 61

Chapter 1

Introduction

This master thesis provides a security analysis of the Handshake protocol from TLS,
including the renegotiation and session resumption features. We will also look at TLS's
Application data and Record protocols. The analysis will be based on the UC security
framework developed by Canetti[1].

TLS is a very popular and commonly used protocol in web security, and it has already
been analysed several times. However, in September 2009 a serious security �aw was dis-
covered in the renegotiation feature in the Handshake protocol. The Handshake protocol
allows the communicating parties to renegotiate a session, but it does not tie these two
sessions together cryptographically. This is something an attacker can take advantage of
to perform a man-in-the-middle attack, where a harmful request from the attacker will
be treated as a pre�x to a legitimate client's request. We will describe the attack in more
detail in Chapter 4.3. The designers of the TLS standard, the IETF (Internet Engineer-
ing Task Force), has proposed a �x to prevent this vulnerability[7] that we present in
Chapter 4.4.

One of our main goals in this master thesis is to analyse the Handshake protocol including
this �x when we allow renegotiation. If we can give a successful security proof based on
the UC theory of this protocol, it will be a good indication that the �x will solve the
problem at hand, and that including it does not create any new security issues. Of course,
since this is a theoretical proof we can not guarantee that the protocol is secure against
all possible attacks, but it will be secure against many attacks.

To make the analysis more complete, we will also do similar security proofs for the
Handshake protocol with session resumption and for the Application data protocol. In
our analysis of the Application data protocol we will also include the Record protocol,
which we don't use in any of the handshake proofs.

The outline of the rest of this paper is as follows: We begin with presenting the basics
of the UC theory, and we design ideal functionalities for authentication (which is what
the Handshake protocol does when we don't use the Record protocol) and for sending

1

CHAPTER 1. INTRODUCTION 2

and receiving messages in a secure manner. Then we will take a closer look at TLS and
its subprotocols, and we will describe the attack and the �x. After that we are ready to
dive into the most interesting part: The security proofs.

Chapter 2

UC theory

There are many di�erent standards and suggestions when it comes to evaluating the
security of a cryptographic protocol. We will use the UC (Universal Composability)
security framework developed by Ran Canetti [1]. The basic idea of the UC security
framework is to compare the actual protocol to the ideal case. The ideal case would be
to use a trusted third party (TTP) instead of the protocol. The TTP would serve the
same purpose as the protocol, but if we use a TTP we can control what kind of in�uence
the attacker is allowed to have. In this scenario, the attacker can communicate with the
TTP, but we decide what kind of information the attacker gets access to. A model of
this situation is what we call an ideal functionality for the protocol. If we look at a key
exchange protocol, the ideal case would be a TTP that simply gave both parties the same
key and never shared the key with anyone else. We will present some examples of ideal
functionalities in Chapter 2.3.

However, if we want to prove that the protocol is secure, it should not be possible to
distinguish between a situation where the actual protocol is being used and one where the
participants use a TTP. This means that any e�ect that you can see when running the
protocol is supposed to be visible when using the TTP as well, so it will not be realistic
to deny the attacker all knowledge. At least he should be noti�ed that something is
happening, because an attacker who is monitoring the network tra�c will usually be
able to tell if, for instance, two parties are performing a key exchange.

We will now de�ne some important concepts used in this framework. See Figure 2.1 to
understand how they are connected. PX and PY are protocol machines. They are both
running one or more instances of the protocol we are interested in (or some subprotocol
of it). We can have many such protocol machines. Z is called the environment. Z
represents everything that is outside the protocol machines, for instance other programs
or even human users. A is the attacker. PX , PY , Z and A are modelled as interactive
Turing machines. This means that they take some input and produce some output, in
addition to being able to communicate with other such machines.

3

CHAPTER 2. UC THEORY 4

The protocol machines receive instructions from the environment, and give the results
back to Z. PX and PY communicate via the attacker. Z can give the attacker informa-
tion, and the attacker can try to in�uence the environment in some way. The situation
in Figure 2.1 can be seen as an abstract version of how the protocol works in reality.

We don't know exactly what Z and A do. To make it easier to work with this model
without losing security, we can de�ne a dummy attacker, D. The dummy attacker can
only forward messages. It is always possible to replace the (modelled) real attacker A
with the dummy attacker by rede�ning the environment. Now there is only one unknown
in the scheme: Z.

Figure 2.1: Illustration of how the protocol machines PX and PY , the environment Z
and the attacker A interact.

To model the ideal situation, we design ideal functionalities. An ideal functionality (F)
is also modelled as an interactive Turing machine. As illustrated in Figure 2.2, it will
receive some input from a protocol machine (or several protocol machines), and produce
some output to this or another protocol machine. It is also able to communicate with
both the protocol machines and the attacker. In the ideal situation we use S to represent
the attacker. S is called the simulating attacker. The protocol machines in Figure
2.2 are dummy protocol machines. This means that they can only forward messages.
It is modelled this way because there are no protocols, only the trusted third party
(represented by the ideal functionality), but the environment expects to use protocols.

We let the environment output some values, 1 or 0. It is usually best not to put any
meaning into it. We use this output to compare protocols when proving security: We
study the output from the environment when using the actual protocol and the output
in the ideal case (using the same input), and see if there are any statistical relationships
(for instance, the output could be more likely to be 1 when using the protocol than when
using the ideal functionality). If it is impossible to determine if we are using the actual
protocol (Figure 2.1) or the ideal functionality (Figure 2.2) given only the output from
Z, we say that the actual protocol UC-realizes the ideal functionality. This means that

CHAPTER 2. UC THEORY 5

Figure 2.2: Illustration of how the ideal functionality F , the dummy protocol machines
P̃X and P̃Y , the environment Z and the simulating attacker S are connected.

the protocol is secure.

So, to summarize: To prove security in a protocol, we must �rst make an abstract version
of the protocol. Then we have to de�ne an ideal functionality for the protocol using a
trusted third party and the concepts from UC theory. Finally we must prove that the
protocol realizes the ideal functionality.

Sometimes it is useful to let the parties use ideal functionalities in addition to regular
protocols. Such a protocol is called a hybrid protocol. The ideal functionality will act
as a separate subprotocol, and solve one particular challenge that is a part of the main
protocol.

We let π and ρ be two protocols. π[ρ] means that π uses ρ as a subprotocol. The
composition theorem from [1] says that if we have two protocols (π, ρ), and an ideal
functionality F where ρ UC-realizes F , then π[ρ] UC-realizes π[F]. We will not prove
this, see [1] for the complete proof. We can use this result to simplify the proof of a
complicated protocol by separating the subprotocols and create ideal functionalities for
them, and prove each subprotocol separately before combining them.

2.1 Games

A game consists of some interactive, probabilistic machines and the probability that some
security related event E will occur [8]. The game will give 0 or 1 as output, and can be

CHAPTER 2. UC THEORY 6

seen as a probability space over {0, 1}. These interactive, probabilistic machines will in
this context usually be the environment Z, the dummy adversary D and the protocol
machines. The output comes from the environment.

We can prove security in a cryptosystem by making a sequence of games, where each
game is only slightly di�erent from the previous game (the di�erence in the probability
of the output from Z is negligible)[8]. If we have n games where Game 1 is the actual
cryptoprotocol and Game n is the ideal functionality for this cryptoprotocol, we can
de�ne Ei to be the event that Z outputs 1 in Game i. If |Pr[Ei+1]−Pr[Ei]| is very small
for each i ∈ {1, ..., n − 1}, then the di�erence between the output from Z when using
the protocol is only negligibly di�erent from the output from Z when using the ideal
functionality. If this is the case, then the protocol UC-realizes the ideal functionality
(the two situations are indistinguishable). Hence the protocol is secure.

2.2 Useful de�nitions from probability theory

To complete our analysis of TLS we will need to use some concepts from probability
theory. From the previous section it is clear that distinguishing problems are important
here. A distinguishing problem is a triple (S,X0, X1) where S is a set of instances and
X0 and X1 are probability spaces over S, and given some data the task is to decide
which probability space the data most likely came from. A distinguishing problem is a
special case of a problem, which can be de�ned as a triple (S1, S2, X) where S1 is a set
of instances, S2 is a set of solutions, and X is a probability space over S1 × S2.

We can de�ne an algorithm A that solves the (distinguishing) problem. A has solved the
distinguishing problem if it guesses correctly which distribution some data came from.
The de�nition of A's success probability for solving a general problem is

SuccP (A) = Pr[z = s2|(s1, s2)
r← X, z ← A(s1)]

Since we want A to distinguish between two probability spaces, it would be right half of
the time just by guessing. We de�ne A's advantage against the distinguishing problem
to be

AdvP (A) = |SuccP (A)− 1
2
|

=
1
2
|Pr[A(x) = 1|x r← X1]− Pr[A(x) = 1|x r← X0]|

We are usually interested in �nding the advantage the attacker A has against some
protocol. This can be de�ned as

AdvA = |Pr[E1]− Pr[En]|

where Ei is the event that Z outputs 1 in Game i (i = 1 is the actual protocol and i = n
is the ideal functionality), as de�ned in the previous section.

CHAPTER 2. UC THEORY 7

2.3 Examples of ideal functionalities

We will now present some examples of ideal functionalities. We will look at ideal function-
alities for signatures, FSIG, and public-key encryption (RSA), FCPKE. We have borrowed
FSIG from Canetti [1] and FCPKE from Herzog and Canetti[2]. We will also de�ne an
ideal functionality for the TCP network, FNET. This functionality does not have any
cryptographic content, it is more like an abstract version of the TCP network, but where
we have the ability to control the attacker's in�uence and behaviour. Later, we will use
these ideal functionalities to simplify the security proofs of TLS.

2.3.1 Ideal functionality for signatures

A signature is the output of a function that takes a message and a private signing key as
input[10]. Since the signing key is private, only the owner of the key should be able to
produce the signature, and it should not be possible to change the message after it has
been signed (then the signature check should fail). Hence, the signature ties the message
to the participant who signed it. Anyone can verify the signature using a veri�cation
algorithm that takes the message, the signature and the sender's public veri�cation key
as input, and gives �true� or �false� as output.

Below we have the ideal functionality for signatures, FSIG, that we have borrowed from
Canetti [1]:

FSIG:

Key Generation: Upon receiving a value (keygen, sid) from some party P ,
verify that sid = (P, sid ′) for some sid ′. If not, then ignore the request. Else,
hand (keygen, sid) to the adversary. Upon receiving (algs, sid , s, v) from the
adversary, where s is a description of a PPT ITM, and v is a description of a
deterministic polytime ITM, output (ver− alg, sid , v) to P .

Signature Generation: Upon receiving a value (sign, sid ,m) from P , let σ =
s(m), and verify that v(m, s) = 1. If so, then output (signature, sid ,m, σ) to P
and record the entry (m,σ). Else, output an error message to P and halt.

Signature Veri�cation: Upon receiving a value (verify, sid ,m, σ, v′) from
some party V , do: If v′ = v, the signer is not corrupted, v(m,σ) = 1, and
no entry (m,σ′) for any σ′ is recorded, then output an error message to P and
halt. Else, output (verified, sid ,m, v′(m,σ)) to V .

ITM stands for �interactive Turing machine�, and PPT is short for �probabilistic polyno-
mial time�.

This ideal functionality is only designed for one session. If we want to use it for multiple
sessions and multiple parties, we let each party use its own independent instance of FSIG

CHAPTER 2. UC THEORY 8

to sign messages. We can add one instance of FSIG for each party without losing security
by using the UC theorem repeatedly (once for each time we add an instance of FSIG).

If some party P1 signed a message with its F (1)
SIG, then the receiving party P2 has to use

F (1)
SIG to verify the signature. If P2 tried to use its own F (2)

SIG to verify P1's signature, it

would fail since F (1)
SIG and F (2)

SIG are independent of each other, and they don't know what
the other has signed.

Canetti's session ID, sid , consists of the identity of the party and something more (sid ′)
that can be anything. Throughout this analysis we will use the identity of the party
as the input corresponding to sid , but we will not specify what we use as sid ′. It does
not really matter what sid ′ is, so we will just let it be something that is included in the
identity of the party.

2.3.2 Ideal functionality for public-key encryption

Public-key encryption (like RSA) allows two parties to communicate securely without ex-
changing keys �rst[10]. Both parties, let's call them PX and PY , have a public encryption
key that is used to encrypt messages, and a private decryption key to decrypt received
messages. When PX wants to send a message to PY , PX encrypts the message using
PY 's public encryption key. When PY receives the encrypted message, it will decrypt
it using its private decryption key. As long as the private key is kept secret, PY is the
only one that is able to decrypt the message. To not be forced to exchange keys before
communicating can be very useful in many situations. However, public-key encryption
and decryption operations are usually resource consuming and slow compared to the
operations in traditional symmetric cryptosystems, so it is often used just to establish a
symmetric key.

The public key of a participant is usually a part of that participant's certi�cate. Since
it can be quite cumbersome to model certi�cates and certi�cate authorities, we can say
that the participant sends its ID instead of its certi�cate. The ID itself does not contain
the public key, but we can use it to ask for the public key. Canetti and Herzog [2] has
de�ned an ideal functionality for certi�ed public-key encryption that allows us to encrypt
a message only knowing the ID of the receiver.

CHAPTER 2. UC THEORY 9

FCPKE:

FCPKE proceeds as follows, when parameterized by message domain M , a formal en-
cryption function E with domainM and range {0, 1}∗, and a formal decryption function
D of domain {0, 1}∗ and range M ∪ error. The SID is assumed to consist of a pair
SID = (PIDowner,SID ′), where PIDowner is the identity of a special party, called the
owner of this instance.

Encryption: Upon receiving a value (Encrypt,SID ,m) from a party P , where SID =
(PIDowner,SID ′) proceed as follows:

1. If this is the �rst encryption request made by P then notify the adversary that P
made an encryption request.

2. If m /∈M then return an error message to P

3. If m ∈M then:

• If PIDowner is corrupted, then let ciphertext ← Ek(m)
• Otherwise, let ciphertext ← Ek(1|m|)

Record the pair (m, c) and return c.

Decryption: Upon receiving a value (Decrypt,SID , c), with SID = (PIDowner,SID ′),
from PIDowner, proceed as follows. (If the input is received from another party then
ignore).

1. If this is the �rst decryption request made then notify the adversary that a de-
cryption request was made.

2. If there is a recorded pair (c,m), then hand m to PIDowner. (If there is more than
one value m that corresponds to c then output an error message to PIDowner.)

3. Otherwise, compute m = D(c), and hand m to PIDowner.

This ideal functionality is also just designed for one session. If we want to use it for
multiple sessions and multiple parties, we let each party use its own independent instance
of FCPKE, just like we did for FSIG.

2.3.3 Ideal functionality for the TCP network

TCP (Transmission Control Protocol)[11] is a network protocol that operates on top
of the IP layer, and we use it to send and receive messages. TCP guarantees that all
messages will be delivered, and that they are delivered in the correct order. The sender
will be noti�ed whenever a message is received. However, this will only hold as long as
there is no active attacker. None of these features are protected cryptographically, so if
an attacker wants to modify the delivery order and send fake message receipts, he can.

TCP allows us to create a direct �tunnel� between two instances of two protocol machines.
This means that each time the protocol machine PX sends a message to PY using the

CHAPTER 2. UC THEORY 10

same TCP connection identi�er coID , the ideal functionality will ask S to deliver the
message from PX,i to PY,j (the same instances are used every time). Whether the attacker
actually chooses to do this is a di�erent question.

The connection ID, coID , is chosen by the attacker and has to be unique.

FNET:

On input (connect, PY) from PX,i:

1. Send (connect, PX,i, PY) to S

On input (connect, coID , PX,i, PY)
from S:

1. Choose available instance PY,j

2. Record (coID , PX,i, PY,j)
3. Send delayed output

(connect, coID , PX , PY) to PX,i

and PY,j

On input (send, coID , PY ,m) from PX :

1. If recorded (coID , PY,j , PX,i) or
(coID , PX,i, PY,j), send
(send, coID , PY,j , PX,i,m) to S

On input (receive, coID , PX , PY ,m)
from S:

1. If recorded (coID , PX,i, PY,j) or
(coID , PY,j , PX,i), send
(receive, coID , PX ,m) to PY,j

In FNET we let the attacker be in complete control of the network. Two parties can not
begin a connection without the attacker's approval. The attacker is also in charge of
delivering the messages, so he can do pretty much whatever he wants: Delay messages,
change the contents, replay messages, send messages to other parties than the intended
receiver or not deliver the message at all.

Chapter 3

Ideal functionalities

As we will see in Chapter 4, the main tasks of TLS is to establish a secure session between
the participants with optional authentication, and sending and receiving messages in a
secure way. In this chapter we will de�ne general ideal functionalities for di�erent levels
of authentication and for sending and receiving messages. We will need these ideal
functionalities in the security proofs of TLS.

3.1 Ideal functionality for authentication

When designing an ideal functionality for authentication, what we need is just a trusted
third party that can verify that the participants are who they claim to be. To make the
ideal functionality realistic, however, we need to allow the attacker the same knowledge
and in�uence as if the participants used an actual authentication protocol. If the parties
were using an actual authentication protocol, the attacker would usually know which
parties were trying to authenticate themselves. Since we use the TCP network (modelled
as FNET), the attacker can delay messages, so he would also be able to choose when the
two parties should �nish the protocol.

We let the authentication happen between two protocol machines, PC and PS . We design
the ideal functionality FTLS−AUT for three di�erent kinds of authentication. When the
functionality receives a message marked establish, we let the attacker pick a unique
session ID (SID), and we authenticate PS . PC 's identity will not be veri�ed, which we
illustrate like this: P̂C . The tsid , a temporary session ID chosen by FTLS−AUT, ties the
parties and the session together with SID , in case the environment wants to run the
establish part more than once between PC and PS at the same time. tsid is only used in
the communication between the ideal functionality and the attacker.

If the functionality receives a message of the type resume or reneg, the parties must
have �nished the establish part successfully �rst. If the functionality receives a message

11

CHAPTER 3. IDEAL FUNCTIONALITIES 12

marked resume, we want it to resume an earlier connection that had this session ID.
PS will still be authenticated, and PC is still anonymous. If the functionality receives a
reneg message, we want to begin a new session where PC is authenticated as well. Since
we already have a unique session ID, SID , we don't need a tsid in the reneg and resume
parts.

P̃C and P̃S are dummy protocol machines for PC and PS that only forward what they
receive.

FTLS−AUT:
On input (establish, P̂C , PS) from P̃C/Z:

1. Choose unique, random tsid
2. Send (establish, PC , PS , tsid) to S
3. On (ok, tsid ,SID , PS) from S, SID is new, send (ok,SID , P̂C , PS) to P̃S

4. On (ok, tsid ,SID , PC) from S, send (ok,SID , PC , PS) to P̃C

5. Store (PC , PS ,SID , 0)

On input (reneg,SID , P̂C , PS) from P̃S/Z:
1. If (PC , PS ,SID , 0) not stored, stop.
2. Send (reneg,SID , PC , PS) to S
3. On (reneg− ok,SID ,SIDr, PS) from
S, send (reneg− ok,SIDr, PC , PS)
to P̃S

4. On (reneg− ok,SID ,SIDr, PC) from
S, send (reneg− ok,SIDr, PC , PS)
to P̃C

5. Store (PC , PS ,SIDr, 1), discard
(PC , PS ,SID , 0)

On input (resume,SID , P̂C , PS) from
P̃C/Z:

1. If (PC , PS ,SID , 0) not stored, stop.
2. Send (resume,SID , PC , PS) to S
3. On (resume− ok,SID , PS) from S,

send (resume− ok,SID , P̂C , PS) to
P̃S

4. On (resume− ok,SID , PC) from S,
send (resume− ok,SID , PC , PS) to
P̃C

The 0 that is stored together with PC , PS and SID in the establish part is set to 1 after
the reneg part has been executed to mark whether this has happened or not.

3.2 Ideal functionality for sending/receiving messages

If we use a trusted third party to send and receive messages, we can demand that the
messages are delivered in the correct order, and that the attacker does not know the
content of the messages. For the ideal functionality to resemble the reality, we must let
the attacker decide when the messages should arrive since we use the TCP network (but
they must still be in the correct order, and they can only be received once). The attacker
should also know the length of the message.

Before sending or receiving anything, we need to establish a secure connection where (at
least) one of the parties are authenticated, so we include the establish part from the

CHAPTER 3. IDEAL FUNCTIONALITIES 13

ideal functionality for authentication. This guarantees that at least PC knows that it is
receiving messages from PS , and not some other party.

FTLS:
On input (establish, P̂C , PS) from P̃C/Z:

1. Choose unique, random tsid
2. Send (establish, PC , PS , tsid) to S
3. On (ok, tsid ,SID , PS) from S, SID is new, send (ok,SID , P̂C , PS) to P̃S

4. On (ok, tsid ,SID , PC) from S, send (ok,SID , PC , PS) to P̃C

5. Store (PC , PS ,SID , 0)

For (X,Y) ∈ {(C, S), (S,C)}:

On input (send,SID , PY ,m) from P̃X/Z:
1. If (PX , PY ,SID) or (PY , PX ,SID)

not recorded, stop.

2. Record (PX , PY ,m) in a queue for
SID

3. Send (send,SID , PX , PY , |m|) to S

On input (deliver, PX , PY ,SID) from S:
1. If (PX , PY ,SID) not recorded, stop.
2. Choose next (PX , PY ,m) in the

queue for SID
3. Send (receive,SID , PX ,m) to P̃Y

We use PX and PY ((X,Y) ∈ {(C, S), (S,C)}) instead of PC and PS in the send and
receive parts to signal that both parties can send and receive messages.

Chapter 4

TLS

TLS (Transport Layer Security)[3] is a widely used protocol for secure connections be-
tween a server and a client1. By client we mean anyone who uses the server's services, like
displaying a webpage, downloading a �le or purchasing a product online. TLS provides
con�dentiality, data integrity and authentication, and can be used to protect all kinds of
tra�c between a client and a server. For example, TLS is often used to protect payment
information, such as the credit card number, when a customer purchases something from
an Internet shop[10].

Handshake
Protocol

Change
CipherSpec
Protocol

Alert
Protocol

App. data
Protocol

Record Protocol

TCP/IP

TLS

Figure 4.1: Illustration of layering of TLS subprotocols and TCP/IP

TLS communicates downwards with the TCP network and upwards with other higher
level applications or protocols, for example HTTP, FTP or SMTP[9]. When TLS com-
municates with the TCP network, it uses the Record protocol. This protocol receives
the message that some protocol wants to send, and fragments, compresses, encrypts and
sends it to the receiver via the TCP network. When the Record protocol receives an
encrypted message from the TCP network, it decrypts, decompresses and reassembles
the text before sending the result to the appropriate protocol. We will look at the Record
protocol in more detail in Chapter 4.2.

Above the Record protocol we have the Alert protocol, the ChangeCipherSpec protocol,

1We will only look at TLS version 1.2

14

CHAPTER 4. TLS 15

the Handshake protocol and the Application data protocol[3], as illustrated in Figure
4.1. The Alert protocol is a list of di�erent alert messages that can be sent during the
communication. Some of them signals a fatal alert (like handshake_failure) which
causes the protocol to abort. Others are just a warning (like no_renegotiation). We
will not go into details about this protocol. If we say that we stop the protocol, we mean
that a fatal error is sent. The ChangeCipherSpec protocol is used in the Handshake
protocol, and consists of a single message with just one byte: 1. This message is sent to
signal that from now on the Record protocol will use the newly negotiated algorithms and
ciphersuites to protect the tra�c. We will not use this protocol explicitly in our analysis.
The Application data protocol is responsible for sending and receiving application data
from the higher level applications like HTTP or FTP. By application data we mean the
actual messages for instance HTTP wants to send, and not messages that comes from
any of the other TLS subprotocols. We will study the Application data protocol more
closely together with the Record protocol in Chapter 4.2. The Handshake protocol is
used to set up a secure session between the client and the server. In the next section we
will take a closer look at the Handshake protocol, which is what we will focus on in most
of this analysis.

We represent the server as PS and the client as PC . We allow multiple parties and multi-
ple sessions in all the abstract versions of the TLS subprotocols we will present. Multiple
sessions means that we can have several instances (or local copies) of PC and PS (remem-
ber, the protocol that PC and PS are running can be run many times, creating di�erent
security parameters each time). For example, PCa,i and PCa,k

can be two instances of
PCa . When we have multiple parties, there are several protocol machines PCa , a > 1 and
PSb

, b > 1, that can communicate with each other.

Since TLS uses TCP, we let FNET choose which instance of the receiving party should be
used. When instances of PCa and PSb

have been chosen, these instances will communicate
with each other directly. Keep in mind that since the attacker is responsible for delivering
the messages, he can send messages to other instances if he wants to.

4.1 The Handshake protocol

The purpose of the Handshake protocol is to establish a secure connection between a
server, PS , and a client, PC . Through this protocol, the parties will agree upon which
algorithms the Record protocol should use for symmetric encryption, compression, MAC,
and signatures. We will not include this in our model. They will also negotiate secret,
shared keys for MACs and symmetric encryption. The computation of encryption and
MAC keys is really done by the Record protocol, not the Handshake protocol. The
Record protocol will receive the necessary parameters from the Handshake protocol, and
the Handshake protocol will never see the computed keys. However, in our analysis, we
will not use the Record protocol in the handshake, so we let the Handshake protocol
compute the keys in the same way as it is done in the Record protocol.

CHAPTER 4. TLS 16

The parties doing the handshake can choose if one or both of them should be authen-
ticated. Either both server and client are authenticated, or the server is authenticated
and the client is anonymous. An anonymous server is not allowed to ask the client to
authenticate itself. It is possible for both client and server to be anonymous, but then
the session will be vulnerable to a man-in-the-middle attack[3]. We will throughout this
analysis assume that the server should be authenticated.

We will now describe what happens in a handshake, cryptographically speaking. Have a
look at [3] for more technical details. A handshake between two parties usually begins
with the client (PCa) sending a random nonce, nC

a,i, to the server (PSb
). Sometimes the

server initiates the connection by sending a HelloRequest (an empty message) �rst, to
which the client answers with its random nonce. When the server has received the client's
nonce, it will choose a unique session ID (SID). Then PSb

will send this session ID and
its random nonce (nS

b,j) to the client, together with the server's ID (IDSb
) and a �ag that

indicates whether the client must authenticate itself (by presenting a valid certi�cate,
represented by the client's ID) or not. The server's ID is used to look up the server's
certi�cate, and hence its public encryption key (or veri�cation algorithm for signatures).

Now the server and client must �nd a way to share a premaster secret, pm. This premaster
secret will be used to compute the master secret, ms. There are mainly two ways of doing
this. Given that the server is not anonymous (it has presented a valid certi�cate), the
client can choose a random pm and encrypt it using RSA with the server's public key from
the certi�cate. They can also use the Di�e-Hellman key exchange. If the parties should
be authenticated, their Di�e-Hellman parameters must be a part of their certi�cates.
If both parties are anonymous, they must use Di�e-Hellman since the client doesn't
know the server's public key. As mentioned above, unauthenticated Di�e-Hellman is
vulnerable to a man-in-the-middle attack. In this analysis, we will use RSA to exchange
the premaster secret.

If the client is supposed to authenticate itself, it will now send its own ID, IDCa , and σ
in addition to the encrypted premaster secret. σ is the client's signature on all messages
that has been sent this far so that the server can verify the identity of the client and that
they agree upon what has been sent.

Now both server and client can compute the master secret, which they use to compute
the encryption and MAC keys. For the symmetric encryption we will use the same key
as we would if we used the Record protocol in the handshake. The encryption keys (and
MAC keys) are produced by a pseudorandom function (PRF) that uses the master secret
as key: keyblock = PRF(ms, ′′keyexp′′, nC

a,i +nS
b,j). This keyblock is usually divided into

four di�erent keys k1, k2, k3 and k4 (two for MACs and two for encryption). We have
one upstream key, rsU = (k1, k2), that is used in communication from client to server
and one downstream key, rsD = (k3, k4), that is used in the opposite direction. To
save space in the protocols, we will just say that the encryption key rs = (rsU‖rsD) is
PRF(ms, ′′keyexp′′, nC

a,i + nS
b,j).

To complete the handshake, both parties will send a finished message. These messages

CHAPTER 4. TLS 17

are encrypted using the new keys, and contain the hash value of all the messages in
this handshake. This lets both parties compare the received finished message to the
expected one. This marks the end of the handshake, and the parties are ready to exchange
application data.

A handshake between an anonymous client and an authenticated server looks like this:

Initial handshake (Protocol 1):

On input (establish, PCa , PSb
) from Z:

1. Choose some instance PCa,i with a
unique nonce nC

a,i

2. Send (connect, PSb
) to FNET

3. Receive (connect, coID , PCa , PSb
)

from FNET

4. Send (send, coID , PSb
, nC

a,i) to FNET

5. Receive (receive, coID , PSb
, (nS

b,j ,
SID , IDSb

, no_cert)) from FNET

6. Choose random pm

7. Send (enc, pm, IDSb
) to FCPKE

8. Receive (ciphertext, c1) from
FCPKE

9. Send (send, coID , PSb
, c1) to FNET

10. Compute
ms = PRF(pm, ′′ms′′, nC

a,i + nS
b,j) and

(rsU‖rsD) =
PRF(ms, ′′keyexp′′, nC

a,i + nS
b,j)

11. Compute fC = PRF(ms, ′′C′′,
hash(nC

a,i, n
S
b,j ,SID , IDSb

, no_cert,
c1))

12. Compute c2 = ErsU (fC) and send
(send, coID , PSb

, c2) to FNET, and
receive
(receive, coID , PSb

,ErsD(f̃S)) from
FNET

13. Check that f̃S = PRF(ms, ′′S′′,
hash(nC

a,i, n
S
b,j ,SID , IDSb

,
no_cert, c1)). If not, stop.

14. Store (PCa , PSb
,SID ,ms, (rsU‖rsD))

and output (ok,SID , PCa , PSb
) to Z

On input (receive, coID , ˆPCa , n
C
a,i) from

FNET:

1. Choose unique SID
2. Send (send, coID , ˆPCa , (nS

b,j ,SID ,
IDSb

, no_cert) to FNET

3. Receive (receive, coID , ˆPCa , c1)
from FNET

4. Send (dec, c1) to FCPKE

5. Receive (plaintext, pm) from
FCPKE

6. Compute
ms = PRF(pm, ′′ms′′, nC

a,i + nS
b,j)

and (rsU‖rsD) =
PRF(ms, ′′keyexp′′, nC

a,i + nS
b,j)

7. Receive
(receive, coID , ˆPCa ,ErsU (f̃C)) from
FNET

8. Check that
f̃C = PRF(ms, ′′C′′, hash(nC

a,i, n
S
b,j ,

SID , IDSb
, no_cert, c1)). If not,

stop.

9. Compute fS = PRF(ms, ′′S′′,
hash(nC

a,i, n
S
b,j ,SID , IDSb

, no_cert,
c1))

10. Compute c3 = ErsD(fS) and send
(send, coID , ˆPCa , c3) to FNET

11. Store (ˆPCa , PSb
,SID ,ms, (rsU‖rsD))

and output (ok,SID , ˆPCa , PSb
) to Z

FSIG, FCPKE and FNET are the ideal functionalities for signatures, public-key encryption

CHAPTER 4. TLS 18

and decryption and the TCP network that we looked at in Chapter 2.3.

4.1.1 Session resumption

The Handshake protocol o�ers session resumption[3], a feature that enables a client and
a server to resume an earlier session. When we say �resume�, we mean to use the same
master secret and algorithms as in this earlier session. The parties must compute new
encryption and MAC keys, but they can use the master secret from the earlier session
together with new nonces from this handshake. The authentication level will be the same
as well, so if the client was authenticated in the initial session, it will be authenticated
when resuming this session. The session resumption is always initiated by the client,
and the server is free to ignore it and force the client to do a complete handshake. If a
session ended with a fatal alert (which causes both parties to close the connection in an
abnormal way), it can not be resumed.

If PCa,i and PSb,j
have ended a session and the client wants to resume it, it will be the

same two instances that carry out the resumption handshake, since we use TCP. Still,
they have to use new nonces, so we assume that all instances have two nonces. Keep
in mind that since the attacker is responsible for delivering the messages, he can send
messages to other instances than PCa,i and PSb,j

if he wants to.

When starting a fresh session, the initial message from the client does not contain any
session ID. If the client wants to resume an earlier session with a server, the client can
include the SID from that session in the initial message. If the server accepts to resume
this session, the parties can go straight to the finished messages, if not, they have to
do a complete handshake.

Below we show the protocol for an initial handshake as described in Protocol 1 followed
by a session resumption, where the server is authenticated and the client is anonymous.
We assume that the �rst session was closed normally.

CHAPTER 4. TLS 19

Initial handshake (see Protocol 1)

Resumption:

On input (resume,SID , PCa , PSb
) from Z:

1. Check that
(PCa , PSb

,SID ,ms, (rsU‖rsD)) is
stored. If not, stop.

2. Send (send, coID , PSb
,

(nC
a,i,r,SID)) to FNET

3. Receive (receive, coID , PSb
,

(nS
b,j,r,SID)) from FNET

4. Compute (rsU,r‖rsD,r) =
PRF(ms, ′′keyexp′′, nC

a,i,r + nS
b,j,r)

5. Compute fC,r = PRF(ms, ′′C′′,
hash(nC

a,i,r,SID , nS
b,j,r,SID))

6. Compute c2,r = ErsU,r(fC,r) and send
(send, coID , PSb

, c2,r) to FNET, and
receive
(receive, coID , PSb

,ErsD,r(˜fS,r))
from FNET

7. Check that ˜fS,r = PRF(ms, ′′S′′,
hash(nC

a,i,r,SID , nS
b,j,r,SID)). If not,

stop.

8. Store (PCa , PSb
,SID ,ms,

(rsU,r‖rsD,r)) and output
(resume− ok,SID , PCa , PSb

) to Z

On input (receive, coID , ˆPCa ,
(nC

a,i,r,SID)) from FNET:

1. Check that (ˆPCa , PSb
,SID ,ms,

(rsU‖rsD)) is stored. If not, stop.
2. Send (send, coID , ˆPCa ,

(nS
b,j,r,SID)) to FNET

3. Compute (rsU,r‖rsD,r) =
PRF(ms, ′′keyexp′′, nC

a,i,r + nS
b,j,r)

4. Receive (receive, coID , ˆPCa ,
ErsU,r(˜fC,r)) from FNET

5. Check that ˜fC,r =
PRF(ms, ′′C′′, hash(nC

a,i,r,SID ,
nS

b,j,r,SID)). If not, stop.
6. Compute fS,r = PRF(ms, ′′S′′,

hash(nC
a,i,r,SID , nS

b,j,r,SID))
7. Compute c3,r = ErsD,r(fS,r) and

send (send, coID , ˆPCa , c3,r) to FNET

8. Store (ˆPCa , PSb
,SID ,ms,

(rsU,r‖rsD,r)) and output

(resume− ok,SID , ˆPCa , PSb
) to Z

4.1.2 Renegotiation

It is usually possible for a client and a server to renegotiate the cryptographic parameters
for an existing session[3]. This can happen if a server and a client are using an established
session, but need to change the algorithms, keys or permissions. One such situation
could be when the client is anonymous and tries to access a part of the server where
authentication is necessary. In the following we will assume that an authenticated server
has negotiated a session with an anonymous client. Then, when the initial handshake
has �nished and the parties have perhaps sent some application data back and forth, the
server sends a HelloRequest to the client to begin a renegotiation.

If PCa,i has completed a handshake with PSb,j
and the server wants a renegotiation, it

will be the same instances that carry out the renegotiation since we use TCP, but the
instances have to use di�erent nonces. So we still assume that all instances have two

CHAPTER 4. TLS 20

nonces: One for the initial handshake and one for renegotiation (or session resumption).
Since the attacker is responsible for delivering the messages, he is free to send messages
to other instances than PCa,i and PSb,j

.

Then the handshake continues similar to a normal handshake, except that all messages
up until the finished messages are encrypted using the keys from the initial session.
The finished messages from this handshake will be encrypted using the keys computed
from the new master secret.

The renegotiation described above can be illustrated like this:

CHAPTER 4. TLS 21

Initial handshake (see Protocol 1)

Renegotiation:

On input (reneg,SID , ˆPCa , PSb
) from Z:

1. Check that
(ˆPCa , PSb

,SID ,ms, (rsU‖rsD)) is
stored. If not, stop.

2. Send (send, coID , ˆPCa ,ErsD(reneg))
to FNET

3. Receive (receive, coID , ˆPCa ,
ErsU (nC

a,i,r)) from FNET

4. Choose unique SIDr

5. Send (send, coID , ˆPCa ,
ErsD(nS

b,j,r,SIDr, IDSb
, cert)) to

FNET

6. Receive (receive, coID , ˆPCa ,
(IDCa , c1,r, σ)) from FNET

7. Send (ver, (nC
a,i,r, n

S
b,j,r,SIDr,

IDSb
, cert, IDCa , c1,r), σ) to FSIG

8. If signature ok, send (dec, c1,r) to
FCPKE. If not, stop.

9. Receive (plaintext, pmr) from
FCPKE

10. Compute
msr = PRF(pmr,

′′ms′′, nC
a,i,r + nS

b,j,r)
and (rsU,r‖rsD,r) =
PRF(msr,

′′keyexp′′, nC
a,i,r + nS

b,j,r)
11. Receive (receive, coID , PCa ,

ErsU,r(˜fC,r)) from FNET

12. Check that ˜fC,r =
PRF(msr,

′′C′′, hash(nC
a,i,r, n

S
b,j,r,

SIDr , IDSb
, cert, IDCa , c1,r, σ)). If

not, stop.

13. Compute fS,r = PRF(msr,
′′S′′,

hash(nC
a,i,r, n

S
b,j,r,SIDr , IDSb

, cert,
IDCa , c1,r, σ))

14. Compute c3,r = ErsD,r(fS,r) and send
(send, coID , PCa , c3,r) to FNET

15. Store (PCa , PSb
,SIDr ,msr,

(rsU,r‖rsD,r)) and output
(reneg− ok,SIDr , PCa , PSb

) to Z

On input (receive, coID , PSb
,

ErsD(reneg)) from FNET:

1. Check that (PCa , PSb
,SID ,ms,

(rsU‖rsD)) is stored. If not, stop.
2. Send (send, coID , PSb

,
ErsU (nC

a,i,r)) to FNET

3. Receive (receive, coID , PSb
,

ErsD(nS
b,j,r,SIDr , IDSb

, cert)) from
FNET

4. Choose random pmr, send
(enc, pmr, IDSb

) to FCPKE

5. Receive (ciphertext, c1,r) from
FCPKE

6. Send (sign, (nC
a,i,r, n

S
b,j,r,SIDr,

IDSb
, cert, IDCa , c1,r)) to FSIG

7. Receive (signature, σ) from FSIG

8. Send (send, coID , PSb
,

(IDCa , c1,r, σ)) to FNET

9. Compute msr = PRF(pmr,
′′ms′′,

nC
a,i,r + nS

b,j,r) and fC,r = PRF(msr,
′′C′′, hash(nC

a,i,r, n
S
b,j,r,SIDr, IDSb

,
cert, IDCa , c1,r, σ)) and
(rsU,r‖rsD,r) =
PRF(msr,

′′keyexp′′, nC
a,i,r + nS

b,j,r)
10. Compute c2,r = ErsU,r(fC,r) and

send (send, coID , PSb
, c2,r) to FNET,

and receive
(receive, coID , PSb

,ErsD,r(˜fS,r))
from FNET

11. Check that ˜fS,r = PRF(msr,
′′S′′,

hash(nC
a,i,r, n

S
b,j,r,SIDr, IDSb

,
cert, IDCa , c1,r, σ)). If not, stop.

12. Store
(PCa , PSb

,SIDr,msr, (rsU,r‖rsD,r))
and output
(reneg− ok,SIDr, PCa , PSb

) to Z

CHAPTER 4. TLS 22

In the above protocol we use reneg instead of HelloRequest, because in TLS the
HelloRequest message does not necessarily mean �renegotiation�, it can also be used
any time the server wants to begin a new session.

In Figure 4.2 we show the message �ow in �rst an initial handshake where the server is
authenticated and the client is anonymous, and then this session is closed in the proper
way. Then we show the message �ow when the client wants to resume that session. The
last part of the illustration shows a renegotiation of this session.

CHAPTER 4. TLS 23

Client Server

nC
a,i

nS
b,j ,SID , IDSb

, no_cert

c1

ErsU (fC)

ErsD(fS)

Application data

Initial handshake

CloseConnection

CloseConnection

nC
a,i′ ,SID

nS
b,j′ ,SID

Ers′
U
(fC′)

Ers′
D
(fS′)

Application data

Session resumption

Ers′
D
(reneg)

Ers′
U
(nC

a,i,r)

Ers′
D
(nS

b,j,r,SIDr, IDSb
, cert)

Ers′
U
(IDCa , c1,r, σ)

ErsU,r(fC,r)

ErsD,r(fS,r)

Application data

Renegotiation

Figure 4.2: Illustration of initial handshake, resumption of this session and renegotiation
of the same session. Encrypted messages are marked with double arrows.

CHAPTER 4. TLS 24

4.2 The Application data protocol/Record protocol

The Application data protocol is used to send and receive application data to and from
higher-level applications, like HTTP[3]. When it receives a message m from for instance
HTTP, it will forward the message and what kind of message it is to the Record protocol
like this: (Application_data,m).

When a message is sent from one party to another using TLS, it is the Record protocol's
responsibility to divide the message up into fragments of the appropriate size, to compress
it, and to encrypt it symmetrically with the key that was computed in this session's
handshake[3]. It will also apply a MAC on the message to provide integrity of the
message. If there has not been an initial handshake and there are no shared keys, no
encryption or MAC is used. Since we only use the Record protocol on application data
(which is usually sent after the handshake has �nished), we will just stop the protocol if
there has not been an initial handshake between the parties. The Record protocol also
adds padding if the plaintext is not a multiple of the block size for block ciphers (such
as AES). We will not look at fragmentation, compression or padding in this analysis.

The Record protocol can receive messages that it is supposed to send from all the other
TLS subprotocols. All messages are marked with what type of message it is (Handshake,
Alert, ChangeCipherSpec and Application_data), like we showed above. This infor-
mation is not protected by encryption or MAC, and since we only look at the Record
protocol when it receives application data messages, we will not include this feature in
our model.

The Record protocol also includes a sequence number, seq. Each session has a sequence
number that increases with 1 each time a message is sent using this session ID. This
number makes sure that the packets are delivered in the correct order, and that a replay
will be caught. The sequence number can therefore only be used once. The sequence
number can not be larger than 264 − 1, so if the parties want to send more messages,
they must renegotiate the connection[3].

When sending a message, the sender �rst computes a MAC over both message (in plain-
text) and the sequence number so that the receiver can verify that none of them have
been changed along the way. Then both MAC value and plaintext message are encrypted
using the key from the handshake, and sent. How the encryption and MAC are used on
the message can vary depending on which cipher is used, but what we just described ap-
plies to many of the most common ciphers. After this we increase the sequence number
with 1 (because we just sent a message), and store it together with the SID .

When the receiver gets the ciphertext from the TCP network, it will �rst decrypt it
using the key from the handshake. Then it will check that the MAC value is correct
(and hence that the sequence number is as expected). If it is correct, we add 1 to the
sequence number before we store it, and then we send the message (in plaintext) to the
environment. If, for some reason, the MAC value is not what the receiver expects, the

CHAPTER 4. TLS 25

receiver will discard the message and close the connection by sending a fatal alert. If the
parties want to send more messages, they must do a complete handshake to set up a new
session.

Below we have showed an abstract version of sending and receiving (application data)
messages. We assume that the handshake has already �nished successfully before we start
sending and receiving messages using the Application data protocol/Record protocol.

Handshake (see Protocol 1)

Application data protocol/Record protocol:

For (X,Y) ∈ {(Ca, Sb), (Sb, Ca)}:

On input (send,SID , PY ,m) from Z:
1. If (PX , PY ,SID , (rsU‖rsD), seq) or

(PY , PX ,SID , (rsU‖rsD), seq) not
stored, stop.

2. Compute t = MACrsMAC (seq‖m)
3. Compute c = Ers(m‖t)
4. Send (send, coID , PY , c) to FNET

5. Store seq = seq + 1

On input (receive, coID , PX , c
′) from

FNET:

1. If (PX , PY ,SID , (rsU‖rsD), seq)
not stored, stop.

2. Compute (m′‖t′) = Drs(c′)
3. Check if t′ = MACrsMAC (seq‖m′).

If not, send out a fatal alert and
close the connection.

4. Store seq = seq + 1
5. Output m′ to Z

We use PX and PY instead of PCa and PSb
in the send and receive parts to mark that

both server and client can send and receive messages. We do not specify in the protocol if
the upstream or downstream keys should be used. Instead we just say rs, and remember
that if PX is the client, we use rsU (the upstream key) in the send and receive parts, and
the downstream key, rsD, if PX is the server.

We assume that the TCP connection from the handshake is remembered and used for
sending and receiving application data as well.

4.3 The renegotiation attack against TLS

The renegotiation attack against the Handshake protocol in TLS was discovered in
September 2009 by Marsh Ray[6]. This is how it works[7]:

A legitimate client tries to start a regular handshake with a server. This initial message is
caught by the attacker. The attacker then begins an anonymous session with the server.
Since the attacker is not authenticated, he will only get access to the publicly available
information on the server (which does not require authentication and special privileges).
The attacker will now send a request to the server that requires special privileges. The

CHAPTER 4. TLS 26

server will respond with a HelloRequest to begin a renegotiation so that the attacker
can identify himself. Then the attacker encrypts and sends the initial message from the
honest client to the server. The server responds with a new random nonce, its ID and
a �ag that indicates that the client should authenticate itself, all encrypted with the
key the server shares with the attacker. The attacker can now decrypt this message and
forward it to the client, who sees this as the response to the nonce it sent to the server
earlier. The client will not pay any attention to the fact that it is asked to authenticate
itself even if it didn't try to access anything that required authentication.

The server can not tell the di�erence between the attacker and the client (because the
attacker is anonymous), so it treats the response from the client as a renegotiation of the
session it had with the attacker since the messages are encrypted using their shared key.
In some protocols, for instance HTTPS, the negotiating parties can not distinguish be-
tween events that occured before and after the parties were authenticated[7]. This means
that when the client and the server are �nished negotiating a session where the client
was successfully authenticated, the illegal command from the attacker is remembered by
the server and used as a pre�x to the client's request.

We show the attack in Figure 4.3.

CHAPTER 4. TLS 27

Client Attacker Server

nC
a,i

nC
A,i

nS
b,j ,SID , IDSb

, no_cert

c1

ErsU (fC)

ErsD(fS)

Application data

ErsD(reneg)

ErsU (nC
a,i)

nS
b,j,r,SIDr, IDSb

, cert ErsD(nS
b,j,r,SIDr, IDSb

, cert)

IDCa , c1, σ ErsU (IDCa , c1, σ)

ErsU,r(fC,r)

ErsD,r(fS,r)

Application data

Figure 4.3: Message �ow in the renegotiation attack. Encrypted messages are marked
with double arrows.

CHAPTER 4. TLS 28

4.4 The proposed �x

IETF has proposed a solution to prevent the renegotiation attack[7]. We will now take
a look at it, and include it in our abstract version of TLS with one renegotiation.

The �x is added to the Handshake protocol as an extension called renegotiation_info,
which is included in the �rst message from the client and in the �rst response from the
server. The extension is supposed to tie the renegotiated session to the previous session
so that both parties agree upon what the previous session was, and if there was any. It
requires both client and server to store the finished messages from the previous session.

If this is the initial handshake, we add a 0 to the �rst message from the client and in
the �rst message from the server. If this is a renegotiation of a previous session, then
the �rst message from the client should contain the client's finished message from the
previous handshake, and the �rst message from the server should contain both server and
client's finished messages from the previous handshake. These values will be checked
when received to see if they match the stored finished messages from the previous
handshake.

If we try the renegotiation attack described in the previous section against this protocol,
it will obviously not work anymore. The �rst handshake from the (anonymous) attacker
will succeed, as it should. When the actual client sends its initial message, it will have an
empty renegotiation extension (0) since this is the initial handshake for this client. This
message is not encrypted, so the attacker, who is in the middle, can change the extension
to contain his own finished message from the �rst handshake, before encrypting it and
sending it to the server.

So far the attack is still working, and it continues to work until the client produces σ: The
client's signature on all the handshake messages, including the renegotiation extension.
This message will reveal to the server that the renegotiation extension in the client's �rst
message actually was empty (hence this was an initial handshake for the client). Since we
use an ideal functionality for signatures, the attacker can not change or forge the client's
signature. Hence this attack falls apart. However, the protocol can still be vulnerable to
many other attacks, so we will do a security proof of it (including the �x) in Chapter 5.

Chapter 5

Proof of the Handshake protocol
with renegotiation

We will now carry out a security proof of the Handshake protocol (including the new
�x) with renegotiation that we described in Chapters 4.1.2 and 4.4. We will only do the
proof with one renegotiation. The situation we are considering is one initial handshake
which is initiated by the client, and one renegotiation. The renegotiation starts when
the server sends a HelloRequest to the client. The proof still holds if the renegotiation
was initiated by the client (then we just skip the HelloRequest). We still use reneg in
the protocol instead of HelloRequest.

We must be aware that there also exists a protocol P ′C that allows the client to authen-
ticate itself in the initial handshake. We will not analyse this protocol here, but it is
important to know that it is a possibility that a client will authenticate itself in the initial
handshake (if not, the renegotiation attack would never have worked).

The proof will consist of a series of games. In the �rst eight games we will only look
at the initial handshake. First we have to prove that all nonces and premaster secrets
are unique. If several instances could have the same nonce, we could no longer use the
nonce to identify an instance uniquely. Since all instances of the server can decrypt the
premaster secret if they receive it, we must show that if two instances share premaster
secret, but not nonces, they can not compute the same master secret. We will also prove
that if some other party does not share neither premaster secret nor nonces with the
server and client that are doing the handshake, this other party can not guess the correct
master secret.

When we have proved all the above, we can connect the client instance and server instance
to their nonces, the premaster secret and the master secret. The master secret will be
unique, and only these two instances will know it.

Then we will show that it does not matter if the master secret is computed by the

29

CHAPTER 5. PROOF OF THE HANDSHAKE PROTOCOL WITH RENEG... 30

instances or chosen randomly outside the protocol and then given to the instances. We
do this because the master secret is used as key in the PRF (pseudorandom function)
when we compute the encryption keys, (rsU‖rsD), and we know that the key used in a
PRF has to be random for the PRF to be random. After that we must prove that it
is not necessary to decrypt the finished messages as long as the correct ciphertext is
received. Then we prove that we can send encrypted random noise instead of the actual
finished messages. Then the finished messages never leave the instances, so no other
party (or the attacker) will know what they are.

At this point we know that if PCa,i outputs (ok,SID , PCa , PSb
) to Z, then PSb,j

must

have outputted (ok,SID , ˆPCa , PSb
) to Z �rst. Then both instances must have agreed

upon the nonces, pm, ms, (rsU‖rsD) and the finished messages. They are also both
aware of the fact that this is their initial handshake.

Then we can look at the renegotiation part. We must �rst show that we don't have to
decrypt the �rst messages that contain the finished messages from the initial handshake
as long as we check that the ciphertext is correct, and then that we can send encrypted
random noise instead. We do this to make sure that the finished messages are secret
(which they must be now since they never leave the instances, just like we did for the
initial handshake).

After this, we must prove the same things as we did for the initial handshake so that
we can tie the new nonces, premaster secret and master secret together. Then we will
know that the master secret is unique, both instances have computed the same master
secret, and only these two instances know what it is. Then we have to prove that we can
send encrypted random noise instead of the new finished messages. Now, if the client
outputs (reneg− ok,SIDr, PCa , PSb

) to Z, we know that both parties agree upon the
new nonces, premaster secret, master secret, encryption keys and the finished messages
from the initial handshake.

5.1 Initial handshake

Game 1 Game 1 is simply multiple instances of the Handshake protocol with the
new �x running together with the environment Z, the dummy attacker D and the ideal
functionalities for signatures, public key encryption and the TCP network.

CHAPTER 5. PROOF OF THE HANDSHAKE PROTOCOL WITH RENEG... 31

Game 1, part 1 (Handshake, P (1)):

On input (establish, PCa , PSb
) from Z:

1. Choose some instance PCa,i with a
unique nonce nC

a,i

2. Send (connect, PSb
) to FNET

3. Receive (connect, coID , PCa , PSb
)

from FNET

4. Send (send, coID , PSb
, (nC

a,i, 0)) to
FNET

5. Receive (receive, coID , PSb
, (nS

b,j ,
SID , IDSb

, no_cert, 0)) from FNET

6. Choose random pm

7. Send (enc, pm, IDSb
) to FCPKE

8. Receive (ciphertext, c1) from
FCPKE

9. Send (send, coID , PSb
, c1) to FNET

10. Compute
ms = PRF(pm, ′′ms′′, nC

a,i + nS
b,j) and

(rsU‖rsD) =
PRF(ms, ′′keyexp′′, nC

a,i + nS
b,j)

11. Compute fC = PRF(ms, ′′C′′,
hash(nC

a,i, 0, n
S
b,j ,SID , IDSb

, no_cert,
0, c1))

12. Compute c2 = ErsU (fC) and send
(send, coID , PSb

, c2) to FNET, and
receive
(receive, coID , PSb

,ErsD(f̃S)) from
FNET

13. Check that f̃S = PRF(ms, ′′S′′,
hash(nC

a,i, 0, n
S
b,j ,SID , IDSb

,
no_cert, 0, c1)). If not, stop.

14. Store
(PCa , PSb

,SID , (rsU‖rsD), fC , fS)
and output (ok,SID , PCa , PSb

) to Z

On input (receive, coID , ˆPCa , (nC
a,i, 0))

from FNET:

1. Choose unique SID
2. Send (send, coID , ˆPCa , (nS

b,j ,SID ,
IDSb

, no_cert, 0)) to FNET

3. Receive (receive, coID , ˆPCa , c1)
from FNET

4. Send (dec, c1) to FCPKE

5. Receive (plaintext, pm) from
FCPKE

6. Compute
ms = PRF(pm, ′′ms′′, nC

a,i + nS
b,j)

and (rsU‖rsD) =
PRF(ms, ′′keyexp′′, nC

a,i + nS
b,j)

7. Receive
(receive, coID , ˆPCa ,ErsU (f̃C)) from
FNET

8. Check that
f̃C = PRF(ms, ′′C′′, hash(nC

a,i, 0, n
S
b,j ,

SID , IDSb
, no_cert, 0, c1)). If not,

stop.

9. Compute fS = PRF(ms, ′′S′′,
hash(nC

a,i, 0, n
S
b,j ,SID , IDSb

,
no_cert, 0, c1))

10. Compute c3 = ErsD(fS) and send
(send, coID , ˆPCa , c3) to FNET

11. Store
(ˆPCa , PSb

,SID , (rsU‖rsD), fC , fS)
and output (ok,SID , ˆPCa , PSb

) to Z

CHAPTER 5. PROOF OF THE HANDSHAKE PROTOCOL WITH RENEG... 32

Game 1, part 2:

On input (reneg,SID , ˆPCa , PSb
) from Z:

1. Check that
(ˆPCa , PSb

,SID , (rsU‖rsD),
fC , fS) is stored. If not, stop.

2. Send (send, coID , ˆPCa ,ErsD(reneg))
to FNET

3. Receive (receive, coID , ˆPCa ,
ErsU (nC

a,i,r, f̃C)) from FNET

4. Check that f̃C = fC . If not, stop.

5. Choose unique SIDr

6. Send (send, coID , ˆPCa ,
ErsD(nS

b,j,r,SIDr, IDSb
, cert, fC‖fS))

to FNET

7. Receive (receive, coID , ˆPCa ,
(IDCa , c1,r, σ)) from FNET

8. Send (ver, (nC
a,i,r, f̃C , n

S
b,j,r,SIDr,

IDSb
, cert, fC‖fS , IDCa , c1,r), σ) to

FSIG

9. If signature ok, send (dec, c1,r) to
FCPKE. If not, stop.

10. Receive (plaintext, pmr) from
FCPKE

11. Compute
msr = PRF(pmr,

′′ms′′, nC
a,i,r + nS

b,j,r)
and (rsU,r‖rsD,r) =
PRF(msr,

′′keyexp′′, nC
a,i,r + nS

b,j,r)
12. Receive (receive, coID , PCa ,

ErsU,r(˜fC,r)) from FNET

13. Check that ˜fC,r =
PRF(msr,

′′C′′, hash(nC
a,i,r, f̃C , n

S
b,j,r,

SIDr , IDSb
, cert, fC‖fS , IDCa , c1,r, σ)).

If not, stop.

14. Compute fS,r = PRF(msr,
′′S′′,

hash(nC
a,i,r, f̃C , n

S
b,j,r,SIDr , IDSb

, cert,
fC‖fS , IDCa , c1,r, σ))

15. Compute c3,r = ErsD,r(fS,r) and send
(send, coID , PCa , c3,r) to FNET

16. Store (PCa , PSb
,SIDr , (rsU,r‖rsD,r),

fC,r, fS,r) and output
(reneg− ok,SIDr , PCa , PSb

) to Z

On input (receive, coID , PSb
,

ErsD(reneg)) from FNET:

1. Check that (PCa , PSb
,SID ,

(rsU‖rsD), fC , fS) is stored. If not,
stop.

2. Send (send, coID , PSb
,

ErsU (nC
a,i,r, fC)) to FNET

3. Receive (receive, coID , PSb
,

ErsD(nS
b,j,r,SIDr , IDSb

, cert, f̃C‖f̃S))
from FNET

4. Check that f̃C = fC and f̃S = fS . If
not, stop.

5. Choose random pmr, send
(enc, pmr, IDSb

) to FCPKE

6. Receive (ciphertext, c1,r) from
FCPKE

7. Send (sign, (nC
a,i,r, f̃C , n

S
b,j,r,SIDr,

IDSb
, cert, fC‖fS , IDCa , c1,r)) to

FSIG

8. Receive (signature, σ) from FSIG

9. Send (send, coID , PSb
, (IDCa , c1,r, σ))

to FNET

10. Compute msr = PRF(pmr,
′′ms′′,

nC
a,i,r + nS

b,j,r) and fC,r = PRF(msr,
′′C′′, hash(nC

a,i,r, fC , n
S
b,j,r,SIDr,

IDSb
, cert, f̃C‖f̃S , IDCa , c1,r, σ)) and

(rsU,r‖rsD,r) =
PRF(msr,

′′keyexp′′, nC
a,i,r + nS

b,j,r)
11. Compute c2,r = ErsU,r(fC,r)

and send (send, coID , PSb
, c2,r) to

FNET, and receive
(receive, coID , PSb

,ErsD,r(˜fS,r))
from FNET

12. Check that ˜fS,r = PRF(msr,
′′S′′,

hash(nC
a,i,r, fC , n

S
b,j,r,SIDr, IDSb

,

cert, f̃C‖f̃S , IDCa , c1,r, σ)). If not,
stop.

13. Store (PCa , PSb
,SIDr, (rsU,r‖rsD,r),

fC,r, fS,r) and output
(reneg− ok,SIDr, PCa , PSb

) to Z

CHAPTER 5. PROOF OF THE HANDSHAKE PROTOCOL WITH RENEG... 33

Game 2 In Game 2 we put all the protocol instances into one simulator, P (2), see
Figure 5.1. The protocol instances are still doing the same as in Game 1, we have just
put them together. Since there are no actual change, Pr[E2] = Pr[E1].

Figure 5.1: The di�erent stages of the simulator through the games

Game 3 We de�ne Game 3 to be the same as Game 2, except that in the simulator
in Game 3, P (3), we check that the nonces and premaster secret are unique. If they are
not, we stop the game. We use the nonces to identify the protocol instances in a unique
way, and to tie one instance of PCa to one instance of PSb

to make sure that they end up
with the same premaster secret and master secret.

The nonces and premaster secret are chosen randomly from a large set of random values.

CHAPTER 5. PROOF OF THE HANDSHAKE PROTOCOL WITH RENEG... 34

The birthday paradox says that the probability of a collision (that two instances choose

the same nonce or pm) is approximately k2

n , where k is the number of used nonces and
premaster secrets (or sessions) and n is the number of all possible nonces and premaster
secrets [4]. In TLS the nonces are 32 bytes (256 bits)[3], so we have n = 2256 possible
nonces (since the premaster secrets are longer (48 bytes or 384 bits), they have a smaller
probability of a collision than the nonces). If we have k = 240 sessions (which is not an
unrealistically large number), the probability of a collision will be approximately 2−176.
This probability is negligible.

We de�ne the event F to be that two instances choose the same nonce or premaster
secret. Because of the birthday paradox we know that this probability will be small, so
we can say that Pr[F] ≤ ε, where ε is a small number. Given that F does not happen,
Game 2 and Game 3 are equal, or Pr[E3|¬F] = Pr[E2|¬F]. Then the Di�erence Lemma
from [8] says that |Pr[E3]−Pr[E2]| ≤ Pr[F] ≤ ε. This is what [8] calls a transition based
on failure events.

We observe that the only way any instance of the server, say PSb,j
, could know the nonce

belonging to the instance of the client (PCa,i), is if it received the initial message from
PCa,i . The corresponding is true for the nonce of the instance of the server.

We also know that the only ones that know the premaster secret are PCa,i who chose it,
and any instance of PSb

that receives it (the attacker can replay the message to several
instances). An instance of any other server that receives c1 from the client has no way of
�nding pm, because pm is not really sent. PCa,i sends (enc, pm, IDSb

) to FCPKE and gets
(ciphertext, c1) in return. Then c1 is sent to PSb,j

. Keep in mind that FCPKE acts as a
trusted third party, so c1 will not actually be the output of an encryption algorithm, it
will just be random noise. When PSb,j

(or any instance of PSb
) sends (dec, c1) to FCPKE,

it will get pm in return, because FCPKE knows that this message was intended for PSb
.

Any other party would just get an error if it tried to decrypt the same message. Hence,
since the premaster secret never leaves PCa,i and PSb

, only these instances know pm.

Game 4 We know from the discussion above that only PCa,i and instances of PSb

will share pm. If any other instances of PSb
(not PSb,j

) were to compute the same ms,
there has to be a collision in the pseudorandom function (we assume that the nonces
are unique). A collision means in this situation that PRF(pm, ′′ms′′, nC

a,i + nS
b,j) =

PRF(pm, ′′ms′′, nC
a,i + nS

b,l), where n
S
b,j 6= nS

b,l.

We now de�ne the simulator P (4) from Game 4 to be the same as in Game 3, except that
we stop the game if there is a collision in the PRF. We have a PRF that is used with the
same key (pm) by all instances that has received pm. We can say that a PRF with a key
is the same as a set of random functions, where the key decides which random function
should be used[5]. Since all instances use pm as the key, using the PRF to compute the
master secret will be equivalent to choosing it randomly.

If we use the birthday paradox again, we get that the probability that two instances

CHAPTER 5. PROOF OF THE HANDSHAKE PROTOCOL WITH RENEG... 35

choose the same ms is approximately k2

n , where k is the number of used master secrets
and n is the number of all possible master secrets [4]. The master secret is 48 bytes
(384 bits)[3], so we have n = 2384 possible master secrets. If we still assume that we
have k = 240 sessions, the probability of a collision will be approximately 2−304. This
probability is negligible.

We do the same as in Game 3, and de�ne the event F ′ to be that two instances choose
the same master secret. From the previous discussion we know that this probability will
be very small, so we say that Pr[F ′] ≤ δ, where δ is a small number. Given that F ′ does
not happen, Game 3 and Game 4 are equal, or Pr[E4|¬F ′] = Pr[E3|¬F ′]. We use the
Di�erence Lemma from [8] again, so we get that |Pr[E4]− Pr[E3]| ≤ Pr[F ′] ≤ δ.

We can conclude that since there are no collisions in the PRF, PRF(pm, ′′ms′′, nC
a,i +

nS
b,j) 6= PRF(pm, ′′ms′′, nC

a,i + nS
b,l), for n

S
b,j 6= nS

b,l. Hence, the instance of the client and
the instance of the server must have the same two nonces to compute the same master
secret.

Game 5 We have showed that only one instance of the server and one instance of the
client can compute a shared master secret. Since this master secret never leaves these
two instances, no other instance or party (and particularily not the attacker) will know
what it is. However, if some other party happens to end up with the same master secret
as PCa,i and PSb,j

, it is a potential problem.

In the simulator P (5) in Game 5, we add an additional check to make sure that the master
secret is unique. If it is not, we stop the game. If we use a PRF with two di�erent keys
(pm1 and pm2), it is equivalent to using two di�erent random functions. However, we
can still use the birthday paradox to compute the probability of a collision since both
functions are random.

So we use the birthday paradox as we did in the previous game to show that the proba-
bility of a collision will be approximately 2−304, which is negligible. We de�ne the event
F ′′ to be that an instance (of any party) chooses the same master secret as PCa,i and
PSb,j

have computed. We know that this probability will be very small, so we can say
that Pr[F ′′] ≤ λ, where λ is a small number. Given that F ′′ does not happen, Game 4
and Game 5 are equal, or Pr[E5|¬F ′′] = Pr[E4|¬F ′′]. By the Di�erence Lemma from [8]
we get that |Pr[E5]− Pr[E4]| ≤ Pr[F ′′] ≤ λ.

We observe that as soon as PCa,i and PSb,j
share nonces and premaster secret, they are

coupled (paired) together as the only two instances that will know the master secret,
because it is not possible for instances that don't share nonces and premaster secrets to
compute or guess the correct master secret.

Game 6 In Game 6 we let a unique ms be chosen randomly (independent of pm)
outside the protocol instances, and then given to the instances when they need it.

CHAPTER 5. PROOF OF THE HANDSHAKE PROTOCOL WITH RENEG... 36

In the previous games we have proved that PCa,i and PSb,j
(and only these two instances)

will compute a unique master secret. As we pointed out in Game 4, using a PRF with a
key is the same as using a random function, so if we compute the master secret from pm
or choose it randomly does not make any di�erence. Since we only give it to PCa,i and
PSb,j

, it will still be secret. Hence Pr[E6] = Pr[E5].

The key that the instances use for the symmetric encryption, (rsU‖rsD), is de�ned like
this: (rsU‖rsD) = PRF(ms, ′′keyexp′′, nC

a,i + nS
b,j), which is 128 bytes (1024 bits)[3].

We know from the previous games that ms is unique and secret, and that the PRF is
collision-free. If we use the same reasoning as we did for the master secret in Game
5, we get that the probability that some other party happens to end up with the same
(rsU‖rsD) is approximately 2−944, which is negligible.

Game 7 In Game 7 we will no longer decrypt the finished messages, we will just
check that the correct ciphertext is received. We know what the contents should be, so
it is not necessary to decrypt the ciphertext if it came from the right sender. We will
also stop those instances that don't share nonces and premaster secret with anyone (the
client instances will be stopped after they have sent their finished message, and the
server instances when they have received the premaster secret).

According to the Handshake protocol, the server should �rst receive a finished message
from the client that must be encrypted using the upstream encryption key rsU . This will
be the �rst message that is encrypted with this key, and hence the only valid ciphertext
that has been produced this far, so it can not be a replay. Because of the integrity of
ciphertexts (INT-CTXT) you can not produce a valid ciphertext without the key. We
have proved that only PCa,i and PSb,j

have rsU , and since the server never encrypts with
the upstream key, the message must have come from PCa,i . Then the finished message
(the plaintext) will be correct, and hence the ciphertext must be correct as well.

The reasoning above is true when the client receives the finishedmessage from the server
as well. Then we can conclude that it is enough to check that the correct ciphertext was
received.

The instances that don't share nonces and premaster secret with anyone will compute
their own master secret, but no other instance will know it. Hence they will not share
encryption keys (rs′U‖rs′D) with anyone. It follows from INT-CTXT that these instances
will never receive any finished message which is encrypted with the correct key from
another instance. Then we know that they will never �nish, so it doesn't matter if we
stop them.

Then we get that |Pr[E7]− Pr[E6]| is small, because of INT-CTXT.

Game 8 In Game 8 we will no longer send the actual finished messages. Instead we
will send some (encrypted) random noise of the same length. We still check that the
correct ciphertext is received, from the previous game.

CHAPTER 5. PROOF OF THE HANDSHAKE PROTOCOL WITH RENEG... 37

We know from the previous game that we don't have to decrypt the finished messages.
Because of the indistinguishability under chosen-ciphertext attack (IND-CCA)[5], the
attacker can not tell the di�erence between random noise and an actual message when
they are encrypted, so it doesn't matter what we encrypt as long as it has the right
length. Then we have that |Pr[E8]− Pr[E7]| is small because of IND-CCA.

We know that if PCa,i outputs (ok,SID , PCa , PSb
) to Z, then PSb,j

must have outputted

(ok,SID , ˆPCa , PSb
) to Z �rst. Then both instances must have agreed upon everything,

in particular the nonces, pm, ms, (rsU‖rsD) and the finished messages. They are also
both aware of the fact that this is their initial handshake.

5.2 Renegotiation part

Until now we have not changed anything in the renegotiation part of the simulator. We
need to prove that the instances agree upon the new nonces, premaster secret, the server's
identity, master secret, shared encryption key and finished messages for this part of the
simulator as well. In addition, we have to show that both instances know that this is a
renegotiation, and that the identity of the client is veri�ed. We observe that since several
of the messages in the renegotiation part are encrypted using the secret keys that PCa,i

and PSb,j
agreed upon in the initial handshake, (rsU‖rsD), both instances can be sure

that they are doing the renegotiation with each other, not any other (honest) party. Of
course, this is only the case when both PCa,i and PSb,j

are honest.

Game 9 In Game 9 the instances no longer decrypt the �rst messages of the renego-
tiation, ErsU (nC

a,i,r, fC) and ErsD(nS
b,j,r,SIDr, IDSb

, cert, fC‖fS). They will just check
that the correct ciphertext is received. All necessary information from these messages
(the nonces and SIDr) will be given to the instances when needed.

First, we observe that although these two messages are encrypted using the same keys
as the finished messages from the previous handshake, fC and fS from the previous
handshake are of di�erent form and length than these messages from the renegotiation
part, so the ciphertexts would also be of di�erent form and length.

(nC
a,i,r, fC) is encrypted using rsU , which we have proved in the previous games that

only PCa,i and PSb,j
know. Since it is not possible to produce a valid ciphertext without

knowing the key, the ciphertext must have been produced by PCa,i or PSb,j
. We also know

that only the client uses rsU for encryption, so the message must have come from PCa,i .
This means that the content must be correct, and then the ciphertext will be correct as
well. The same is true for the message from the server. Hence, |Pr[E9]−Pr[E8]| is small
because of INT-CTXT.

CHAPTER 5. PROOF OF THE HANDSHAKE PROTOCOL WITH RENEG... 38

Game 10 We let the simulator P (10) in Game 10 be the same as P (9) from Game 9,
except that the instances now send encrypted random noise of the same length instead
of ErsU (nC

a,i,r, fC) and ErsD(nS
b,j,r,SIDr, IDSb

, cert, fC‖fS).

We use the same reasoning as we did in Game 8: It follows from IND-CCA that the
attacker can not tell the di�erence between random noise and an actual message of the
same length when they are encrypted, so it does not matter what we encrypt since the
messages will not be decrypted anyway. Hence |Pr[E10] − Pr[E9]| is small, because of
IND-CCA.

Game 11 We know from Game 3 and Game 4 that only PCa,i and instances of PSb
will

share pmr, and that if any other instances of PSb
(not PSb,j

) were to compute the same
msr, there has to be a collision in the pseudorandom function (we still assume that the
nonces are unique).

We let the simulator in Game 11 be the same as in Game 10, except that we stop the
game if there is a collision in the PRF, just like we did in Game 4. As in Game 4, we
have a PRF that is used with the same key (pmr) by all instances that has received pmr.
So using the PRF to compute the new master secret will be equivalent to choosing it
randomly.

We use the birthday paradox again, and get that the probability that two instances
choose the same msr is the same as in Game 4, approximately 2−304. This probability
is negligible.

We let the event F (3) be that two instances choose the same master secret. This proba-
bility will be the same as in Game 4, so we get that |Pr[E11]− Pr[E10]| ≤ Pr[F (3)] ≤ δ,
where δ is a very small number.

Game 12 We still have that since the master secret never leaves the instances, only
PCa,i and PSb,j

will know it, but we also need to make sure that no other party can simply
�guess� the correct master secret. This is exactly the same as what we did in Game 5.

In the simulator P (12) in Game 12, we add an additional check to make sure that the
renegotiated master secret is unique. If it is not, we stop the game. As we discussed in
Game 5, we can still use the birthday paradox to compute the probability of a collision
when we pick two random numbers using two di�erent random functions since both
functions are random.

When we use the birthday paradox again as we did in the Game 5, we get that the
probability of a collision will be approximately 2−304, which is negligible. We can de�ne
the event F (4) to be that two instances (of any party) choose the same (renegotiated)
master secret. This probability will be the same as in Game 5, so we get that |Pr[E12]−
Pr[E11]| ≤ Pr[F (4)] ≤ λ, where λ is a very small number.

CHAPTER 5. PROOF OF THE HANDSHAKE PROTOCOL WITH RENEG... 39

Game 13 Corresponding to what we did for the initial handshake, we now let a unique
msr be chosen randomly (independent of pmr) outside the protocol instances, and then
given to the parties when they need it.

In the previous games we have proved that only two instances will share a master secret,
and that it is unique. We have also showed that there are no collisions in the PRF.
Then we know that PCa,i and PSb,j

(and only these two instances) will compute a unique
new master secret. From Game 4 we have that using a PRF with a key is the same
as using a random function, so computing msr from pmr and choosing msr randomly
are equivalent. Since we only give msr to PCa,i and PSb,j

, it will still be secret. Hence
Pr[E13] = Pr[E12].

It follows from the previous games that msr is unique and secret, and that the PRF
is collision-free. We use the same reasoning as we have done for the master secret and
encryption keys in Game 5 and Game 12. Then we get that the probability that some
other party happens to end up with the same (rsU,r‖rsD,r) is approximately 2−944, which
is negligible. Hence (rsU,r‖rsD,r) is unique and secret as well.

Game 14 In Game 14 we will no longer decrypt the finished messages, we will just
check that the correct ciphertext is received. We will also stop those instances that don't
share nonces and premaster secret with any other instance (we stop the client instances
after they have sent their finished message, and the server instances when they have
received the premaster secret). This is the same as what we did in Game 7. We know
what the contents of the finished messages should be, so it is not necessary to decrypt
the ciphertext as long as it came from the right sender.

The reasoning here is exactly the same as in Game 7: According to the protocol, the
server should �rst receive a finished message from the client that is encrypted using the
upstream encryption key rsU,r. This will be the �rst message that is encrypted with this
key, and hence the only valid ciphertext that has been produced this far, so it can not
be a replay. Because of the integrity of ciphertexts (INT-CTXT) you can not produce a
valid ciphertext without the key. We have proved that only PCa,i and PSb,j

have rsU,r,
and since the server never encrypts with the upstream key, the message must have come
from PCa,i . Then the finished message (the plaintext) will be correct, and hence the
ciphertext must be correct as well. The same is true for the finished message that the
client receives.

The instances that don't share nonces and premaster secret with anyone will compute
their own master secret, but no other instance will know it. Hence, these instances
will not share encryption keys (rs′U,r‖rs′D,r) with anyone. It follows from INT-CTXT
that these instances will never receive any finished message which is encrypted with
the correct key from another instance. Then we know that they will never �nish, so it
doesn't matter if we stop them. Hence, |Pr[E14]−Pr[E13]| is small because of INT-CTXT.

CHAPTER 5. PROOF OF THE HANDSHAKE PROTOCOL WITH RENEG... 40

Game 15 We keep following the proof for the initial handshake, so in Game 15 we will
no longer send the actual finished messages. Instead we will send some (encrypted)
random noise of the same length. We still check that the correct ciphertext is received,
from the previous game.

We have from Game 14 that we don't have to decrypt the finished messages as long as
they came from the right sender. Since the attacker can not tell the di�erence between
random noise and an actual message when they are encrypted because of IND-CCA, it
does not matter what we encrypt as long as it has the right length. Then it follows from
IND-CCA that |Pr[E15]− Pr[E14]| is small.

We know that if PCa,i outputs (reneg− ok,SIDr, PCa , PSb
) to Z, then PSb,j

must have
outputted (reneg− ok,SIDr, PCa , PSb

) to Z �rst. Then both instances must have agreed
upon the new nonces, pmr, msr, (rsU,r‖rsD,r) and the finished messages. They are
also both aware of the fact that this is a renegotiation, and they agree upon the finished
messages from the previous handshake.

Game 16 In Game 16 we will divide the simulator into P (16a) and P (16b), see Figure 5.1.
We let P (16a) take care of all communication between the simulator and the environment,
and let P (16b) be responsible for all communication between the simulator and the ideal
functionalities; FCPKE, FNET and FSIG. ˜PCa and P̃Sb

are dummy protocol machines for
PCa and PSb

that simply forward what they receive.

Game 16, P (16a):

On input (establish, ˆPCa , PSb
) from

˜PCa/Z
1. Choose unique, random tsid
2. Send (establish, PCa , PSb

, tsid) to
P (16b)

3. On (ok, tsid ,SID , PSb
) from P (16b),

SID is new, send (ok, sid , ˆPCa , PSb
)

to P̃Sb

4. On (ok, tsid ,SID , PCa) from P (16b),
send (ok,SID , PCa , PSb

) to ˜PCa

5. Store (PCa , PSb
,SID , 0)

On input (reneg,SID , ˆPCa , PSb
) from

P̃Sb
/Z:
1. If (PCa , PSb

,SID , 0) not stored, stop.
2. Send (reneg,SID , ˆPCa , PSb

) to P (16b)

3. On (reneg− ok,SID ,SIDr, PSb
)

from P (16b), send
(reneg− ok,SIDr, PCa , PSb

) to P̃Sb

4. On (reneg− ok,SID ,SIDr, PCa)
from P (16b), send
(reneg− ok,SIDr, PCa , PSb

) to ˜PCa

5. Store (PCa , PSb
,SIDr, 1), discard

(PCa , PSb
,SID , 0)

CHAPTER 5. PROOF OF THE HANDSHAKE PROTOCOL WITH RENEG... 41

Game 16, P (16b), part 1:

On input (establish, PCa , PSb
, tsid) from P (16a):

1. Choose some instance PCa,i with a unique nonce nC
a,i

2. Send (connect, PSb
) to FNET

3. Receive (connect, coID , PCa , PSb
) from FNET

4. Send (send, coID , PSb
, (nC

a,i, 0)) to FNET

5. Choose unique SID
6. Send (send, coID , ˆPCa , (nS

b,j ,SID , IDSb
, no_cert, 0)) to FNET

7. Receive (receive, coID , PSb
, (nS

b,j ,SID , IDSb
, no_cert, 0)) from FNET

8. Choose unique, random pm
9. Send (enc, pm, IDSb

) to FCPKE

10. Receive (ciphertext, c1) from FCPKE

11. Send (send, coID , PSb
, c1) to FNET

12. Receive (receive, coID , ˆPCa , c1) from FNET

13. Send (dec, c1) to FCPKE

14. Receive (plaintext, pm) from FCPKE

15. Choose unique, random ms and compute
(rsU‖rsD) = PRF(ms, ′′keyexp′′, nC

a,i + nS
b,j)

16. Choose unique, random fC

17. Compute c2 = ErsU (fC) and send (send, coID , PSb
, c2) to FNET

18. Receive (receive, coID , ˆPCa , c
′
2) from FNET

19. Check that c′2 = c2. If not, stop.
20. Choose unique, random fS

21. Compute c3 = ErsD(fS) and send (send, coID , ˆPCa , c3) to FNET

22. Output (ok, tsid ,SID , PSb
) to P (16a)

23. Receive (receive, coID , PSb
, c′3) from FNET

24. Check that c′3 = c3. If not, stop.
25. Output (ok, tsid ,SID , PCa) to P (16a)

CHAPTER 5. PROOF OF THE HANDSHAKE PROTOCOL WITH RENEG... 42

Game 16, P (16b), part 2:

On input (reneg,SID , ˆPCa , PSb
) from P (16a):

1. Send (send, coID , ˆPCa ,Ers′
D
(reneg)) to FNET

2. Choose unique, random m4

3. Compute c4 = ErsU (m4)
4. Send (send, coID , PSb

, c4) to FNET

5. Receive (receive, coID , ˆPCa , c
′
4) from FNET

6. Check that c′4 = c4. If not, stop.
7. Choose unique SIDr

8. Choose unique, random m5

9. Compute c5 = ErsU (m5)
10. Send (send, coID , ˆPCa , c5) to FNET

11. Receive (receive, coID , PSb
, c′5) from FNET

12. Check that c′5 = c5. If not, stop.
13. Choose unique, random pmr, send (enc, pmr, IDSb

) to FCPKE

14. Receive (ciphertext, c1,r) from FCPKE

15. Send (sign, (nC
a,i,r, f̃C , n

S
b,j,r,SIDr, IDSb

, cert, fC‖fS , IDCa , c1,r)) to FSIG

16. Receive (signature, σ) from FSIG

17. Send (send, coID , PSb
, (IDCa , c1,r, σ)) to FNET

18. Receive (receive, coID , ˆPCa , (IDCa , c1,r, σ)) from FNET

19. Send (ver, (nC
a,i,r, f̃C , n

S
b,j,r,SIDr, IDSb

, cert, fC‖fS , IDCa , c1,r), σ) to FSIG

20. If signature ok, send (dec, c1,r) to FCPKE. If not, stop.
21. Receive (plaintext, pmr) from FCPKE

22. Choose unique, random msr and compute
(rsU,r‖rsD,r) = PRF(msr,

′′keyexp′′, nC
a,i,r + nS

b,j,r)
23. Choose unique, random fC,r

24. Compute c2,r = ErsU,r(fC,r) and send (send, coID , PSb
, c2,r) to FNET

25. Receive (receive, coID , PCa , c
′
2,r) from FNET

26. Check that c′2,r = c2,r. If not, stop.
27. Choose unique, random fS,r

28. Compute c3,r = ErsD,r(fS,r) and send (send, coID , PCa , c3,r) to FNET

29. Output (reneg− ok,SID ,SIDr, PSb
) to P (16a)

30. Receive (receive, coID , PSb
, c′3,r) from FNET

31. Check that c′3,r = c3,r. If not, stop.

32. Output (reneg− ok,SID ,SIDr, PCa) to P (16a)

We observe that P (16a) is the ideal functionality for the handshake protocol, FTLS−AUT

(without the resumption option). P (16b) does both sides of the Handshake protocol with
renegotiation. Since we have only split the simulator into two parts and not added or
removed anything that changes the behaviour, there is no change from the previous game,
so Pr[E16] = Pr[E15].

CHAPTER 5. PROOF OF THE HANDSHAKE PROTOCOL WITH RENEG... 43

Let us assume that an honest server �nishes the renegotiation successfully, and it believes
it is communicating with an honest client, PCa . This means that the server outputs
(reneg− ok,SIDr, PCa , PSb

) after the renegotiation, where PCa is the identity of an
honest client. Then the server and the client must have the same premaster secret. This
premaster secret is chosen by the client, encrypted using the server's public key and then
signed, together with the finished messages from the initial handshake. Since we use
an ideal functionality for the signatures, it is not possible to forge a signature. Hence
the premaster secret must come from PCa and not any other party (or the attacker).

Since the finished messages from the previous handshake are also signed by PCa , both
parties must agree upon the initial handshake. Then it must have been PCa that the
server did the initial handshake with as well, not any other party (or the attacker).

We will now assume that an honest client thinks it is communicating with an honest
server, and that the client outputs (ok,SID , PCa , PSb

) after the initial handshake, where
PSb

is the identity of an honest server. Then the client and the server must have the same
premaster secret. The premaster secret is, as we know, chosen by the client and encrypted
with PSb

's public key. Since we use an ideal functionality for public key encryption, only
PSb

can decrypt the premaster secret. Hence the client is in fact communicating with
PSb

, and not any other party (or the attacker).

Now we assume that the honest client thinks it is communicating with an honest server,
and that the client outputs (reneg− ok,SIDr, PCa , PSb

) after the renegotiation, where
PSb

is the identity of an honest server. This implies that the client and the server must
have the same premaster secret, which is chosen by the client and encrypted with PSb

's
public key. Since we use an ideal functionality for public key encryption, only PSb

can
decrypt the premaster secret. Hence the client is in fact communicating with PSb

, and
not any other party (or the attacker). We also know that the finished messages from
the initial handshake is a part of the finished messages in this handshake, so both
parties must agree upon the initial handshake. Hence the client must have done the
initial handshake with PSb

, not some other party (or the attacker).

We can now de�ne the simulating attacker S to be P (16b), FCPKE, FNET, FSIG and the
dummy attacker D, as illustrated in Figure 5.1. The protocol machines are now a part
of S. S can use the secret keys to sign messages using the program from FSIG in the
simulation. However, since FSIG acts as a trusted third party it will remember that it
did not sign the messages that came from S, and so the veri�cation of the signatures
will only succeed when S tries to verify them. If the messages were sent to some other
protocol machine that is not in S, the veri�cation would fail. FCPKE will behave the
same way.

Game 17 In Game 17 we let the simulator be the ideal functionality, where S is as
de�ned above. We have only renamed P (16a) (it is the same as FTLS−AUT), and de�ned
S to be D, the ideal functionalities and P (16b). We have not changed how the simulator
behaves in any way, so Pr[E17] = Pr[E16].

CHAPTER 5. PROOF OF THE HANDSHAKE PROTOCOL WITH RENEG... 44

Using the de�nition from Chapter 2.2, we get that the adversary's advantage against the
Handshake protocol with the new �x can be described by this telescoping sum:

AdvA = |Pr[E1]− Pr[E17]|

= |
16∑
i=1

(Pr[Ei]− Pr[Ei+1])|

≤
16∑
i=1

|Pr[Ei]− Pr[Ei+1]|

We know that most of these di�erences are very small, approximately 2−304 and 2−944,
which means they are negligible. The most signi�cant contribution comes from |Pr[E3]−
Pr[E2]| ≤ ε, where ε is approximately 2−176, which is also negligible. We can conclude
that the attacker's advantage, and the di�erence in probability between the ideal func-
tionality and the Handshake protocol with �x and one renegotiation, is at most 2−176.
Then we can say that the Handshake protocol (including the �x) with renegotiation UC-
realizes FTLS−AUT (without the resumption part). Hence the protocol is secure according
to the UC theory.

Chapter 6

Proof of the Handshake protocol
with session resumption

We will now try to prove that the session resumption feature in the Handshake protocol
is secure. The situation we are looking at is an anonymous client doing the protocol
with an authenticated server. They will �rst do a complete initial handshake, close the
connection in the proper way perhaps after sending some messages back and forth, and
then the client will try to resume that session. We will include the �x for the renegotiation
attack in the Handshake protocol in this proof as well. When the client tries to resume
an earlier session, this request is treated as a new handshake, so it does not include any
finished message.

6.1 Initial handshake

Since the initial handshake is exactly the same as it was in the renegotiation proof from
Chapter 5.1, we will reuse most of those games in this part of the proof.

Game 1 Game 1 is just multiple instances of the Handshake protocol running together
with the environment Z, the dummy attacker D and the ideal functionalities for signa-
tures, public key encryption and the TCP network.

45

CHAPTER 6. PROOF OF THE HANDSHAKE PROTOCOL WITH SESSION... 46

Game 1, part 1 (Handshake, P (1)):

On input (establish, PCa , PSb
) from Z:

1. Choose some instance PCa,i with a
unique nonce nC

a,i

2. Send (connect, PSb
) to FNET

3. Receive (connect, coID , PCa , PSb
)

from FNET

4. Send (send, coID , PSb
, (nC

a,i, 0)) to
FNET

5. Receive (receive, coID , PSb
, (nS

b,j ,
SID , IDSb

, no_cert, 0)) from FNET

6. Choose random pm

7. Send (enc, pm, IDSb
) to FCPKE

8. Receive (ciphertext, c1) from
FCPKE

9. Send (send, coID , PSb
, c1) to FNET

10. Compute
ms = PRF(pm, ′′ms′′, nC

a,i + nS
b,j) and

(rsU‖rsD) =
PRF(ms, ′′keyexp′′, nC

a,i + nS
b,j)

11. Compute fC = PRF(ms, ′′C′′,
hash(nC

a,i, 0, n
S
b,j ,SID , IDSb

, no_cert,
0, c1))

12. Compute c2 = ErsU (fC) and send
(send, coID , PSb

, c2) to FNET, and
receive
(receive, coID , PSb

,ErsD(f̃S)) from
FNET

13. Check that f̃S = PRF(ms, ′′S′′,
hash(nC

a,i, 0, n
S
b,j ,SID , IDSb

,
no_cert, 0, c1)). If not, stop.

14. Store (PCa , PSb
,SID ,ms, fC , fS) and

output (ok,SID , PCa , PSb
) to Z

On input (receive, coID , ˆPCa , (nC
a,i, 0))

from FNET:

1. Choose unique SID
2. Send (send, coID , ˆPCa , (nS

b,j ,SID ,
IDSb

, no_cert, 0)) to FNET

3. Receive (receive, coID , ˆPCa , c1)
from FNET

4. Send (dec, c1) to FCPKE

5. Receive (plaintext, pm) from
FCPKE

6. Compute
ms = PRF(pm, ′′ms′′, nC

a,i + nS
b,j)

and (rsU‖rsD) =
PRF(ms, ′′keyexp′′, nC

a,i + nS
b,j)

7. Receive
(receive, coID , ˆPCa ,ErsU (f̃C)) from
FNET

8. Check that
f̃C = PRF(ms, ′′C′′, hash(nC

a,i, 0, n
S
b,j ,

SID , IDSb
, no_cert, 0, c1)). If not,

stop.

9. Compute fS = PRF(ms, ′′S′′,
hash(nC

a,i, 0, n
S
b,j ,SID , IDSb

,
no_cert, 0, c1))

10. Compute c3 = ErsD(fS) and send
(send, coID , ˆPCa , c3) to FNET

11. Store (ˆPCa , PSb
,SID ,ms, fC , fS) and

output (ok,SID , ˆPCa , PSb
) to Z

CHAPTER 6. PROOF OF THE HANDSHAKE PROTOCOL WITH SESSION... 47

Game 1, part 2 (resumption):

On input (resume,SID , PCa , PSb
) from Z:

1. Check that (PCa , PSb
,SID ,ms,

fC , fS) is stored. If not, stop.
2. Send (send, coID , PSb

,
(nC

a,i,r,SID , 0)) to FNET

3. Receive (receive, coID , PSb
,

(nS
b,j,r,SID , 0)) from FNET

4. Compute (rsU,r‖rsD,r) =
PRF(ms, ′′keyexp′′, nC

a,i,r + nS
b,j,r)

5. Compute fC,r = PRF(ms, ′′C′′,
hash(nC

a,i,r,SID , 0, nS
b,j,r,SID , 0))

6. Compute c2,r = ErsU,r(fC,r) and send
(send, coID , PSb

, c2,r) to FNET, and
receive
(receive, coID , PSb

,ErsD,r(˜fS,r))
from FNET

7. Check that ˜fS,r = PRF(ms, ′′S′′,
hash(nC

a,i,r,SID , 0, nS
b,j,r,SID , 0)). If

not, stop.

8. Store (PCa , PSb
,SID ,ms, fC,r, fS,r)

and output
(resume− ok,SID , PCa , PSb

) to Z

On input (receive, coID , ˆPCa ,
(nC

a,i,r,SID , 0)) from FNET:

1. Check that (ˆPCa , PSb
,SID ,ms,

fC , fS) is stored. If not, stop.
2. Send (send, coID , ˆPCa ,

(nS
b,j,r,SID , 0)) to FNET

3. Compute (rsU,r‖rsD,r) =
PRF(ms, ′′keyexp′′, nC

a,i,r + nS
b,j,r)

4. Receive (receive, coID , ˆPCa ,
ErsU,r(˜fC,r)) from FNET

5. Check that ˜fC,r =
PRF(ms, ′′C′′, hash(nC

a,i,r,SID , 0,
nS

b,j,r,SID , 0)). If not, stop.
6. Compute fS,r = PRF(ms, ′′S′′,

hash(nC
a,i,r,SID , 0, nS

b,j,r,SID , 0))
7. Compute c3,r = ErsD,r(fS,r) and

send (send, coID , ˆPCa , c3,r) to FNET

8. Store (ˆPCa , PSb
,SID ,ms, fC,r, fS,r)

and output
(resume− ok,SID , ˆPCa , PSb

) to Z

Games 2-8 are exactly the same as they were in the renegotiation proof, so we will not
do them again. We can just summarize that after Game 8 we know that only one client
instance (PCa,i) and one server instance (PSb,j

) will be paired, and that only these two
instances will share nonces and premaster secret. Hence they are the only two instances
that will know the correct master secret and encryption keys, and that can compute the
correct finished messages. Given that the initial handshake �nishes successfully, the
client will also know that it is talking to the correct server since the client encrypted the
premaster secret using the server's public key.

6.2 Resumption part

We will now look at the resumption part of the protocol. We need to tie both the initial
handshake and the resumption handshake to the same client instance and server instance,
and show that only these two instances can successfully resume the session, similarily to
what we did for the initial handshake.

CHAPTER 6. PROOF OF THE HANDSHAKE PROTOCOL WITH SESSION... 48

Game 9 In Game 9 we will no longer decrypt the finished messages in the resumption
part, we will just check that the correct ciphertext is received. If the message came from
the right sender we know what the contents should be, so it is not necessary to decrypt
the ciphertext.

The server should �rst receive a finished message from the client that is encrypted
using the upstream encryption key rsU,r. This will be the �rst message that is encrypted
with this key, and hence the only valid ciphertext that has been produced this far, so it
can not be a replay. Because of the integrity of ciphertexts (INT-CTXT) you can not
produce a valid ciphertext without the key. We have showed in the previous proof that
only PCa,i and PSb,j

have rsU,r (because only PCa,i and PSb,j
have ms), and since the

server never encrypts with the upstream key, the message must have come from PCa,i .
Then the finished message (the plaintext) will be correct, and hence the ciphertext
must be correct as well.

The reasoning above is true when the client receives the finishedmessage from the server
as well. Then we can conclude that it is enough to check that the correct ciphertext was
received. Hence |Pr[E9]− Pr[E8]| is small, because of INT-CTXT.

Game 10 In Game 10 we will no longer send the actual finished messages. Instead
we will send some (encrypted) random noise of the same length. We still check that the
correct ciphertext is received, from the previous game.

We know from the previous game that we don't have to decrypt the finished messages.
Since it follows from IND-CCA that the attacker can not tell the di�erence between
random noise and an actual message when they are encrypted, we can encrypt whatever
we want as long as it has the right length. Hence, |Pr[E10]− Pr[E9]| is small because of
IND-CCA.

Game 11 In Game 11 we divide the simulator into P (11a) and P (11b), just like we did
in Game 16 in the renegotiation proof. We let P (11a) take care of all communication
downwards (between the simulator and the environment), and let P (11b) be responsible
for all communication upwards (between the simulator and FCPKE, FNET and FSIG).
˜PCa and P̃Sb

are dummy protocol machines for PCa and PSb
that just forward what they

receive.

CHAPTER 6. PROOF OF THE HANDSHAKE PROTOCOL WITH SESSION... 49

Game 11, P (11a):

On input (establish, ˆPCa , PSb
) from

˜PCa/Z
1. Choose unique, random tsid
2. Send (establish, PCa , PSb

, tsid) to
P (11b)

3. On (ok, tsid ,SID , PSb
) from P (11b),

SID is new, send (ok, sid , ˆPCa , PSb
)

to P̃Sb

4. On (ok, tsid ,SID , PCa) from P (11b),
send (ok,SID , PCa , PSb

) to ˜PCa

5. Store (PCa , PSb
,SID , 0)

On input (resume,SID , PCa , PSb
) from

˜PCa/Z:
1. If (PCa , PSb

,SID , 0) not stored, stop.
2. Send (resume,SID , ˆPCa , PSb

) to
P (11b)

3. On (resume− ok,SID , PSb
) from

P (11b), send
(resume− ok,SID , ˆPCa , PSb

) to P̃Sb

4. On (resume− ok,SID , ˆPCa) from
P (11b), send
(resume− ok,SID , ˆPCa , PSb

) to ˜PCa

CHAPTER 6. PROOF OF THE HANDSHAKE PROTOCOL WITH SESSION... 50

Game 11, P (11b), part 1:

On input (establish, PCa , PSb
, tsid) from P (11a):

1. Choose some instance PCa,i with a unique nonce nC
a,i

2. Send (connect, PSb
) to FNET

3. Receive (connect, coID , PCa , PSb
) from FNET

4. Send (send, coID , PSb
, (nC

a,i, 0)) to FNET

5. Choose unique SID
6. Send (send, coID , ˆPCa , (nS

b,j ,SID , IDSb
, no_cert, 0)) to FNET

7. Receive (receive, coID , PSb
, (nS

b,j ,SID , IDSb
, no_cert, 0)) from FNET

8. Choose unique, random pm
9. Send (enc, pm, IDSb

) to FCPKE

10. Receive (ciphertext, c1) from FCPKE

11. Send (send, coID , PSb
, c1) to FNET

12. Receive (receive, coID , ˆPCa , c1) from FNET

13. Send (dec, c1) to FCPKE

14. Receive (plaintext, pm) from FCPKE

15. Choose unique, random ms and compute
(rsU‖rsD) = PRF(ms, ′′keyexp′′, nC

a,i + nS
b,j)

16. Choose unique, random fC

17. Compute c2 = ErsU (fC) and send (send, coID , PSb
, c2) to FNET

18. Receive (receive, coID , ˆPCa , c
′
2) from FNET

19. Check that c′2 = c2. If not, stop.
20. Choose unique, random fS

21. Compute c3 = ErsD(fS) and send (send, coID , ˆPCa , c3) to FNET

22. Output (ok, tsid ,SID , PSb
) to P (11a)

23. Receive (receive, coID , PSb
, c′3) from FNET

24. Check that c′3 = c3. If not, stop.
25. Output (ok, tsid ,SID , PCa) to P (11a)

CHAPTER 6. PROOF OF THE HANDSHAKE PROTOCOL WITH SESSION... 51

Game 11, P (11b), part 2:

On input (resume,SID , ˆPCa , PSb
) from P (11a):

1. Check that (PCa , PSb
,SID ,ms, fC , fS) is stored. If not, stop.

2. Send (send, coID , PSb
, (nC

a,i,r,SID , 0)) to FNET

3. Send (send, coID , ˆPCa , (nS
b,j,r,SID , 0)) to FNET

4. Receive (receive, coID , PSb
, (nS

b,j,r,SID , 0)) from FNET

5. Compute (rsU,r‖rsD,r) = PRF(ms, ′′keyexp′′, nC
a,i,r + nS

b,j,r)
6. Choose unique, random fC,r

7. Compute c2,r = ErsU,r(fC,r) and send (send, coID , PSb
, c2,r) to FNET

8. Receive (receive, coID , ˆPCa , c
′
2,r) from FNET

9. Check that c′2,r = c2,r. If not, stop.
10. Choose unique, random fS,r

11. Compute c3,r = ErsD,r(fS,r) and send (send, coID , ˆPCa , c3,r) to FNET

12. Output (resume− ok,SID , PSb
) to P (11a)

13. Receive (receive, coID , PSb
, c′3,r) from FNET

14. Check that c′3,r = c3,r. If not, stop.

15. Output (resume− ok,SID , ˆPCa) to P (11a)

We can observe that P (11a) is the ideal functionality for the Handshake protocol, FTLS−AUT

(without renegotiation). P (11b) does both sides of the Handshake protocol with one ses-
sion resumption. Since we have only divided the simulator into two parts without adding
or removing anything, the simulator will behave exactly as it did in the previous game,
so Pr[E11] = Pr[E10].

Let us assume that an honest client thinks it is communicating with an honest server,
and that the client outputs (ok,SID , PCa , PSb

) after the initial handshake, where PSb

is the identity of an honest server. Then the client and the server must have the same
premaster secret. The premaster secret has been chosen by the client and encrypted with
PSb

's public key. Since we use an ideal functionality for public key encryption, only PSb

can decrypt the premaster secret. Hence the client is in fact communicating with PSb
,

and not any other party (or the attacker). This is the same as in the renegotiation proof.

Now we assume that the honest client thinks it is communicating with an honest server,
and that the client outputs (resume− ok,SID , PCa , PSb

) after the session resumption,
where PSb

is the identity of an honest server. This implies that the client and the server
must have the same master secret, which was computed in the initial handshake. We
have proved that only PCa,i and PSb,j

know ms after the initial handshake, and since
ms never leaves these two instances, no other party (or the attacker) knows it. Hence
the client must have done the initial handshake with PSb

, not some other party (or the
attacker).

Just like in the renegotiation proof, we can now de�ne the simulating attacker S to be
P (11b), FCPKE, FNET, FSIG and the dummy attacker D. The protocol machines are now

CHAPTER 6. PROOF OF THE HANDSHAKE PROTOCOL WITH SESSION... 52

a part of S.

Game 12 In Game 12 we let the simulator be the ideal functionality, where S is as
de�ned above. We have just renamed P (11a) (it is clearly the same as FTLS−AUT, without
the renegotiation option), and de�ned S to be D, the ideal functionalities and P (11b).
Since we have not changed the simulator's behaviour in any way, we must have that
Pr[E12] = Pr[E11].

If we compute the attacker's advantage, we get the same telescoping sum as in the
renegotiation proof, where 2−176 is an upper bound for the di�erence in probability
between the ideal functionality and the actual protocol. This is negligible, so we can say
that the Handshake protocol with session resumption UC-realizes FTLS−AUT (without
the renegotiation part). Hence it is secure according to the UC theory.

Chapter 7

Proof of the Application data
protocol/Record protocol

We will now present a security proof of the Application data protocol together with
the Record protocol. The situation we are considering is �rst a handshake between an
anonymous client and an authenticated server. We will not use the Record protocol in
the handshake, so this part of the proof will be exactly the same as in Chapter 5.1.
Then we let the client and server use the Application data protocol to send each other
messages. In this part we will use the Record protocol to make sure that the messages are
encrypted with some symmetric algorithm and the key from the handshake. We include
the �x against the renegotiation attack in the Handshake protocol in this proof as well.

7.1 Handshake

Game 1 The �rst game consists of multiple instances of the Handshake protocol and
the Application data protocol/Record protocol running together with the environment Z,
the dummy attacker D and the ideal functionalities for signatures, public key encryption
and the TCP network.

53

CHAPTER 7. PROOF OF THE APPLICATION DATA PROTOCOL/RECORD... 54

Game 1, part 1 (Handshake, P (1)):

On input (establish, PCa , PSb
) from Z:

1. Choose some instance PCa,i with a
unique nonce nC

a,i

2. Send (connect, PSb
) to FNET

3. Receive (connect, coID , PCa , PSb
)

from FNET

4. Send (send, coID , PSb
, (nC

a,i, 0)) to
FNET

5. Receive (receive, coID , PSb
, (nS

b,j ,
SID , IDSb

, no_cert, 0)) from FNET

6. Choose random pm

7. Send (enc, pm, IDSb
) to FCPKE

8. Receive (ciphertext, c1) from
FCPKE

9. Send (send, coID , PSb
, c1) to FNET

10. Compute
ms = PRF(pm, ′′ms′′, nC

a,i + nS
b,j) and

(rsU‖rsD) =
PRF(ms, ′′keyexp′′, nC

a,i + nS
b,j)

11. Compute fC = PRF(ms, ′′C′′,
hash(nC

a,i, 0, n
S
b,j ,SID , IDSb

, no_cert,
0, c1))

12. Compute c2 = ErsU (fC) and send
(send, coID , PSb

, c2) to FNET, and
receive
(receive, coID , PSb

,ErsD(f̃S)) from
FNET

13. Check that f̃S = PRF(ms, ′′S′′,
hash(nC

a,i, 0, n
S
b,j ,SID , IDSb

,
no_cert, 0, c1)). If not, stop.

14. Store
(PCa , PSb

,SID , (rsU‖rsD), fC , fS)
and output (ok,SID , PCa , PSb

) to Z

On input (receive, coID , ˆPCa , (nC
a,i, 0))

from FNET:

1. Choose unique SID
2. Send (send, coID , ˆPCa , (nS

b,j ,SID ,
IDSb

, no_cert, 0)) to FNET

3. Receive (receive, coID , ˆPCa , c1)
from FNET

4. Send (dec, c1) to FCPKE

5. Receive (plaintext, pm) from
FCPKE

6. Compute
ms = PRF(pm, ′′ms′′, nC

a,i + nS
b,j)

and (rsU‖rsD) =
PRF(ms, ′′keyexp′′, nC

a,i + nS
b,j)

7. Receive
(receive, coID , ˆPCa ,ErsU (f̃C)) from
FNET

8. Check that
f̃C = PRF(ms, ′′C′′, hash(nC

a,i, 0, n
S
b,j ,

SID , IDSb
, no_cert, 0, c1)). If not,

stop.

9. Compute fS = PRF(ms, ′′S′′,
hash(nC

a,i, 0, n
S
b,j ,SID , IDSb

,
no_cert, 0, c1))

10. Compute c3 = ErsD(fS) and send
(send, coID , ˆPCa , c3) to FNET

11. Store
(ˆPCa , PSb

,SID , (rsU‖rsD), fC , fS)
and output (ok,SID , ˆPCa , PSb

) to Z

CHAPTER 7. PROOF OF THE APPLICATION DATA PROTOCOL/RECORD... 55

Game 1, part 2 (P (1), Application data protocol/Record protocol):

For (X,Y) ∈ {(Ca, Sb), (Sb, Ca)}:

On input (send,SID , PY ,m) from Z:
1. If (PX , PY ,SID , (rsU‖rsD), seq) or

(PY , PX ,SID , (rsU‖rsD), seq) not
stored, stop.

2. Compute t = MACrsMAC (seq‖m)
3. Compute c = Ers(m‖t)
4. Send (send, coID , PY , c) to FNET

5. Store seq = seq + 1

On input (receive, coID , PX , PY , c
′) from

FNET:

1. If (PX , PY ,SID , (rsU‖rsD), seq)
not stored, stop.

2. Compute (m′‖t′) = Drs(c′)
3. Check if t′ = MACrsMAC (seq‖m′).

If not, send out a fatal alert and
close the connection.

4. Store seq = seq + 1
5. Output m′ to Z

Here PX and PY can be either PCa or PSb
. As we explained in Chapter 4.2, we will use

rs in the send and receive parts of the protocol, and we just remember that if PX is the
client, we use rsU (the upstream key), and rsD (the downstream key) if PX is the server.

Games 2-8 are the same as in Chapter 5.1. From this we know that if we assume that an
honest client thinks it is communicating with an honest server, and that the client outputs
(ok,SID , PCa , PSb

) after the handshake, then the client is in fact communicating with
PSb

, and not some other party (or the attacker). We also know that both parties agree
upon the nonces, master secret, encryption and MAC keys and the finished messages.

7.2 Application data protocol/Record protocol

We must now prove that no other party (or the attacker) will know the contents of the
messages that PCa and PSb

are sending to each other. We must also show that the
messages can not be changed along the way.

Game 9 In Game 9 we will no longer check that the MAC is correct. Instead, we will
check that the message came from the right sender. If we receive a message from some
other instance (not PCa,i or PSb,j

), we will discard it.

Since both the message and the MAC are encrypted using rsU or rsD, which only PCa,i

and PSb,j
share, we know that the message must have come from PCa,i or PSb,j

because
it follows from INT-CTXT that you can not produce a valid ciphertext without the key.
If the message came from PCa,i or PSb,j

, we know which message m and which sequence
number seq should be received. Since both PCa,i and PSb,j

have the correct MAC key,
the MAC must be correct. Then we get that the di�erence |Pr[E9] − Pr[E8]| is small,
because of INT-CTXT.

CHAPTER 7. PROOF OF THE APPLICATION DATA PROTOCOL/RECORD... 56

We know that only PCa,i and PSb,j
have rsU and rsD. Then, if PSb,j

receives a message
from some other instance (not PCa,i), it will be encrypted with some other key that PSb,j

does not have, so PSb,j
would not be able to decrypt the message. The same is true if

PCa,i receives a message from any other instance than PSb,j
. Then we know that the

message will never be received by Z, so it doesn't matter if we discard these messages.

Game 10 The simulator in Game 10 does the same as the simulator from the previous
game, except that we will no longer decrypt the ciphertext we receive, we will just check
that the correct ciphertext was received. Since we know what the contents should be,
it is not necessary to decrypt the ciphertext as long as it is the expected ciphertext (it
came from the right sender, and has not been changed along the way).

Since the encrypted message contains the sequence number, which is only used once, it
can not be a replay because the ciphertext would not be correct if the sequence number
was wrong. Because of INT-CTXT you can not produce a valid ciphertext without the
key. We have proved that only PCa,i and PSb,j

have rsU and rsD. If the message was
encrypted with rsU , we know that since the server never encrypts with the upstream key,
the message must have come from PCa,i . The corresponding is true for rsD and PSb,j

.
Then the plaintext will be what we expect, and hence the ciphertext must be correct as
well.

We get that |Pr[E10]− Pr[E9]| is small, because of INT-CTXT.

Game 11 In Game 11 we will no longer send the actual message, but encrypted random
noise of the same length.

Since the attacker can not tell the di�erence between random noise and an actual message
when they are encrypted because of IND-CCA, it doesn't matter what we encrypt as long
as it has the right length. Then we have that |Pr[E11] − Pr[E10]| is small, because of
IND-CCA.

Game 12 In Game 12 we divide the simulator vertically into P (12a) and P (12b). We
let P (12a) take care of all communication between the simulator and the environment,
and let P (12b) be responsible for all communication between the simulator and the ideal
functionalities, just like we have done in the previous proofs.

CHAPTER 7. PROOF OF THE APPLICATION DATA PROTOCOL/RECORD... 57

Game 12, P (12a):

On input (establish, ˆPCa , PSb
) from

˜PCa/Z
1. Choose unique, random tsid
2. Send (establish, PCa , PSb

, tsid) to
P (12b)

3. On (ok, tsid ,SID , PSb
) from P (12b),

SID is new, send (ok,SID , ˆPCa , PSb
)

to P̃Sb

4. On (ok, tsid ,SID , PCa) from P (12b),
send (ok,SID , PCa , PSb

) to ˜PCa

5. Store (PCa , PSb
,SID , 0)

For (X,Y) ∈ {(Ca, Sb), (Sb, Ca)}:
On input (send,SID , PY ,m) from P̃X/Z:

1. If (PX , PY ,SID) or (PY , PX ,SID)
not recorded, stop.

2. Record (PX , PY ,m) in a queue for
SID

3. Send (send,SID , PX , PY , |m|) to
P (12b)

On input (deliver, PX , PY ,SID) from
P (12b):

1. If (PX , PY ,SID) not recorded, stop.
2. Choose next (PX , PY ,m) in the

queue for SID
3. Send (receive,SID , PX ,m) to P̃Y

CHAPTER 7. PROOF OF THE APPLICATION DATA PROTOCOL/RECORD... 58

Game 12, P (12b):

On input (establish, PCa , PSb
, tsid) from P (12a):

1. Choose some instance PCa,i with a unique nonce nC
a,i

2. Send (connect, PSb
) to FNET

3. Receive (connect, coID , PCa , PSb
) from FNET

4. Send (send, coID , PSb
, (nC

a,i, 0)) to FNET

5. Choose unique SID
6. Send (send, coID , ˆPCa , (nS

b,j ,SID , IDSb
, no_cert, 0)) to FNET

7. Receive (receive, coID , PSb
, (nS

b,j ,SID , IDSb
, no_cert, 0)) from FNET

8. Choose unique, random pm
9. Send (enc, pm, IDSb

) to FCPKE

10. Receive (ciphertext, c1) from FCPKE

11. Send (send, coID , PSb
, c1) to FNET

12. Receive (receive, coID , ˆPCa , c1) from FNET

13. Send (dec, c1) to FCPKE

14. Receive (plaintext, pm) from FCPKE

15. Choose unique, random ms and compute
(rsU‖rsD) = PRF(ms, ′′keyexp′′, nC

a,i + nS
b,j)

16. Choose unique, random fC

17. Compute c2 = ErsU (fC) and send (send, coID , PSb
, c2) to FNET

18. Receive (receive, coID , ˆPCa , c
′
2) from FNET

19. Check that c′2 = c2. If not, stop.
20. Choose unique, random fS

21. Compute c3 = ErsD(fS) and send (send, coID , ˆPCa , c3) to FNET

22. Output (ok, tsid ,SID , PSb
) to P (12a)

23. Receive (receive, coID , PSb
, c′3) from FNET

24. Check that c′3 = c3. If not, stop.
25. Output (ok, tsid ,SID , PCa) to P (12a)

For (X,Y) ∈ {(Ca, Sb), (Sb, Ca)}:

On input (send,SID , PX , PY , |m|) from
P (12a):

1. Choose random noise n of length |m|
2. Compute t = MACrsMAC (seq‖n)
3. Compute c = Ers(n‖t)
4. Send (send, coID , PY , c) to FNET

5. Store seq = seq + 1

On input (receive, coID , PX , c
′) from

FNET:

1. Check that c′ = c, if not, stop.

2. Store seq = seq + 1
3. Output (deliver, PX , PY ,SID) to
P (12a)

We see that P (12a) is the ideal functionality for the Application data protocol/Record
protocol, FTLS−REC. P

(12b) does both sides of the Handshake protocol and the Appli-
cation data protocol/Record protocol. Since we have only split the simulator into two

CHAPTER 7. PROOF OF THE APPLICATION DATA PROTOCOL/RECORD... 59

parts, and not added or removed anything that a�ects its behaviour, there is no change
from the previous game, so Pr[E12] = Pr[E11].

We know from the previous proofs that if the client outputs (ok,SID , PCa , PSb
) after

the handshake, where PSb
is the identity of an honest server, then the client is in fact

communicating with PSb
, and not any other party (or the attacker). Since only PCa,i and

PSb,j
have the necessary encryption keys, it follows from INT-CTXT that a ciphertext

produced with any of these keys must come from one of these two instances (which of
the upstream or downstream key was used decides which party the message came from),
and not any other party, or the attacker.

Since the message m never leaves PCa and PSb
, no other party (or the attacker) will ever

see the content. This also implies that it can not be changed along the way.

We let the simulating attacker, S, be de�ned as P (12b), FCPKE, FNET, FSIG and the
dummy attacker, D, just like in the previous proofs.

Game 13 In Game 13 we let the simulator be the ideal functionality, where S is as we
de�ned above. Since we have only renamed P (12a) (it is exactly the same as FTLS−REC),
and de�ned S to be D, the ideal functionalities and P (12b), and not changed how the
simulator behaves in any way, we have that Pr[E13] = Pr[E12].

We can compute the attacker's advantage like we did in Chapter 5.2. Then we get the
same telescoping sum as in the renegotiation proof, so 2−176 is an upper bound for the
attacker's advantage against the Handshake protocol and the Application data protocol
together with the Record protocol. Since this is negligible, we have that the protocol
UC-realizes the ideal functionality. Hence it is secure according to the UC theory.

Chapter 8

Conclusion

We have now carried out three security proofs of di�erent TLS subprotocols. In the �rst
proof, in Chapter 5, we analysed the Handshake protocol with renegotiation, including
the new �x. This proof was perhaps the most interesting one, since the protocol including
the �x had not been analysed using the UC security framework before when this master
thesis was produced. In this proof we got the result that the attacker's advantage against
the protocol was negligible. This means that the �x does not only stop the renegotiation
attack (like we showed in Chapter 4.4), but also that it does not create any new security
vulnerabilites, so that the protocol can be considered secure.

In Chapter 6 we did a similar proof of the Handshake protocol with one session resump-
tion, and in Chapter 7 we studied the Application data protocol together with the Record
protocol. The result in both of these proofs was that the attacker's advantage against
the protocols is at most 2−176, which is negligible. This means that it is a 2−176 proba-
bility that the attacker can tell the di�erence between the actual protocols and the ideal
functionalities. Hence, we can conclude that both protocols are secure, according to the
UC theory.

However, it is important to be aware of the fact that this kind of proof can not necessarily
guarantee that the protocols are secure against all possible attacks. These proofs are
theoretical exercises, and if we prove that the protocol is �secure�, meaning that it UC-
realizes the ideal functionality we have de�ned for it, the protocol will only be as secure
as the ideal functionality we are comparing it to. In addition, how TLS is implemented
on a particular system can also a�ect the security, which we do not consider at all.

Still, this kind of proof will provide us with valuable knowledge about the security in
the protocol. We can conclude that the protocol is resistant to many types of attacks.
This proof technique can also be quite useful if we, for instance, have designed a new
cryptographic protocol, and want to check if we have made any apparent mistakes.

60

Bibliography

[1] Ran Canetti. Universally Composable Security: A New Paradigm for Cryptographic
Protocols. Cryptology ePrint Archive, Report 2000/067, 2000. Updated version from
2005.

[2] Ran Canetti and Jonathan Herzog. Universally Composable Symbolic Security Anal-
ysis. Cryptology ePrint Archive, Report 2004/334, 2004. Updated version from 2009.

[3] T. Dierks and E. Rescorla. RFC5246: The Transport Layer Security (TLS) Protocol

Version 1.2. IETF, 2008.

[4] O. Goldreich, M. Bellare, and H. Krawczyk. Stateless evaluation of pseudorandom
functions: Security beyond the birthday barrier. www.wisdom.weizmann.ac.il/

~oded/PS/bgk.ps, 1999. Downloaded November 21 2009.

[5] Sha� Goldwasser and Mihir Bellare. Lecture Notes on Cryptography. http://

cseweb.ucsd.edu/~mihir/papers/gb.html, 2008. Downloaded March 24 2010.

[6] Marsh Ray. Authentication Gap in TLS Renegotiation. http://extendedsubset.
com/?p=8, 2009.

[7] E. Rescorla, M. Ray, S. Dispensa, and N. Oskov. Transport Layer Security (TLS)

Renegotiation Indication Extension. IETF, 2010.

[8] Victor Shoup. Sequences of Games: A Tool for Taming Complexity in Security
Proofs. Cryptology ePrint Archive, Report 2004/332, 2004. Updated version from
2006.

[9] William Stallings. Cryptography and network security. Pearson Prentice Hall, 2006.

[10] Douglas Stinson. Cryptography, theory and practice. Chapman and Hall/CRC, 2006.

[11] Frode Sørensen. Innføring i nettverk. IDG Norge Books, 2004.

61

	Title Page
	Problem Description
	masteroppgave.pdf

