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Abstract

This paper investigates the solution of the free rigid body equations of motion,
as well as of the equations governing the torqued rigid body. We will consider
two semi-exact methods for the solution of the free rigid body equations, and we
discuss the use of both rotation matrices and quaternions to describe the motion
of the body; our focus is on the quaternion formulation. The approach to which
we give the most attention is based on the Magnus series expansion, and we derive
numerical methods of order 2, 4, 6, and 8, which are optimal as they require a
minimal number of commutators. The other approach uses Gaussian quadrature to
approximate an elliptic integral of the third kind. Both methods rely on the exact
solution of the Euler equation which involves the exact computation of the elliptic
integral of the �rst kind. For the solution of the torqued rigid body equations,
we divide the equations into two systems where one of them is the free rigid body
equations; the solutions of these two systems are then combined in the Störmer-
Verlet splitting scheme. We use these methods to solve the so-called marine vessel
equations. Our numerical experiments suggest that the methods we present are
robust and accurate numerical integrators of both the free and the torqued rigid
body.
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1 Introduction

The integration of the equations of motion governing the free rigid body is of great
interest in a �eld such as mechanics, but it is also - maybe more surprisingly - of
importance in quantum mechanics, where the rigid body is thought of as a tightly
bound many-particle system [2]. This motivates the aspirations to achieve faster
and more e�cient algorithms for the solutions of the free rigid body equations,
but also for the solutions of torqued rigid body equations.

In this thesis we direct our attention to semi-exact solutions of the free rigid
body equations of motion. The solutions we label semi-exact rely on an exact
solution of the angular momentum, but the solution of the rotational part of the
equation system is here approximated with a Gaussian quadrature or with the
Magnus series expansion. The big advantage with semi-exact methods is that
they are very robust, and that they at the same time reduce the computational
complexity substantially compared to the exact method [7]. By robust we mean
that the performance of the methods is more predictable and less dependent on
the step size of integration compared with other schemes, for instance the discrete
Moser-Veselov method [23] of which we have made an implementation, based on
[22] and [15]. We noticed that this method sometimes demanded low step sizes
in order to converge; the same observation was made in [7]. The Moser-Veselov
method is, however, not discussed any further in this paper. For the solutions of
the torqued rigid body equations we consider splitting methods, which we apply
to a vessel model at the end of the thesis.

There are several ways to describe the rigid body motion, i.e. the rotation of the
body, and the most popular involve Euler angles, rotation matrices, or quaternions.
We use both rotation matrices and quaternions in our implementations, but we
will throughout this paper focus on quaternions. Our experiments suggest that
the formulation in rotation matrices and the one in quaternions produce the same
errors. One advantage of using quaternions over rotation matrices is that while
rotation matrices have nine degrees of freedom and six constraints, quaternions
have only four degrees of freedom and one constraint. Hence the computational
complexity reduces, and the memory requirement becomes smaller if we desire to
store a large number of solutions in a large time interval.

We start by presenting some background theory for quaternions in Section 2,
and we brie�y introduce the concepts of Lie group and Lie algebra. At the end of
this section an expression for the exponential of a quaternion is derived. This will
be of great importance for the semi-exact methods we later present.

The next section is concerned with the solution of quaternion di�erential equa-
tions, and we use this to derive the semi-exact method for quaternions based on
the Magnus series expansion. The main idea behind the Magnus method, as pre-
sented here, comes from the work of Magnus [19] as late as in 1954. In the process
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of establishing optimal numerical methods based on the Magnus series expansion,
the number of commutators involved in the approximated Magnus expansion is
kept as low as possible by using methods from [3] and [5] - that the number of
commutators is kept to a minimum is what we mean by optimal.

In Section 4 we discuss the actual solution of the free rigid body equations
where we present the exact solution of the Euler equation - the angular momen-
tum part - and we include a more compact solution that uses fewer independent
constants to reduce the round-o� error. We then present two solutions of the
Arnold equation - the quaternion or rotation matrix part - where one is the opti-
mal Magnus method derived in the preceding section, and the other is based on
the method presented in [7] using Gaussian quadrature; we label the latter method
the factorization method. All methods are implemented in Matlab, and the most
important programs are listed in the appendix. We compare the computational
cost and the accuracy of the two implementations and see that the Magnus method
has the lowest number of �oating point operations for order 6 and lower - when
the methods in comparison have the same step size - whereas the factorization
method is the most accurate with an exception for the smallest step sizes. Both
methods turn out to be very accurate.

Finally, we discuss splitting methods in Section 5. We here present the Störmer-
Verlet scheme for the solution of torqued rigid bodies, and we end the section by
applying this scheme to a vessel model. The vessel model is derived from the so-
called marine vessel equations, and we �nd the derivation of this model and the
way we solve it the core of this paper. In the experiments we carry out, we �nd
that the approximation of the Störmer-Verlet scheme using the Magnus method
of order 2 is a good numerical integrator of the marine vessel equations.
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2 About quaternions

One way to represent rotations in three dimensions is by the concept of quaternions
introduced by Sir William Rowan Hamilton in [16], which was read for the �rst time
at a meeting of the Royal Irish Academy in 1843. Our discussion on quaternions
is primarily based on [20], [12], and [10], as well as on our own work. Quaternions
can be viewed as an extension of the complex numbers to four dimensions, and a
natural representation is thus

p = α + iβ1 + jβ2 + kβ3,

where i, j, and k are imaginary units satisfying

i2 = j2 = k2 = ijk = −1,

from which all possible products of the three imaginary units can be determined.
We will consider quaternions as members of the set

H = {p = (η, ε) ∈ R× R3}

where p consists of a scalar part η and a vector part ε.
Between the two quaternions p1 = (η1, ε1) and p2 = (η2, ε2), the operations

addition and multiplication are de�ned by

(η1, ε1) + (η2, ε2) = (η1 + η2, ε1 + ε2)

and

(η1, ε1) (η2, ε2) =
(
η1η2 − ε1Tε2, η1ε2 + η2ε1 + ε1 × ε2

)
, (1)

and the conjugate of a quaternion p = (η, ε) is de�ned as

p̄ = (η,−ε) . (2)

When p 6= (0,0) there exists an inverse for p de�ned by

p−1 =
p̄√

η2 + ||ε||2
,

such that pp−1 = p−1p = e = (1,0). We should also note that multiplication of
two quaternions (1) can be written as a matrix-vector product such that for the
two quaternions p1 and p2, p1p2 = L(p1)p2 = R(p2)p1, where

L(p1) =

[
η1 −ε1T
ε1 (η1I3 + ε̂1)

]
, R(p2) =

[
η2 −ε2T
ε2 (η2I3 − ε̂2)

]
,
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and L(p1), R(p2) ∈ R4×4, see e.g. [10]. In the following we will focus on unit
quaternions - since they are the quaternions used to represent rotations - which
are quaternions of norm one that de�ne the Lie group [25, 26]

S3 = {p = (η, ε) ∈ H : η2 + ||ε||22 = 1},

which has identity element e and inverse p−1 = p̄.
The Euler-Rodriguez map Σ : S3 → SO(3) represents a transformation from

quaternions to rotation matrices de�ned by

Σ(p) = I3 + 2ηε̂+ 2ε̂2, (3)

where I3 is the 3× 3 identity matrix and the hat-mapˆ: R3 → so(3) is de�ned as

ε̂ =

 0 −ε3 ε2
ε3 0 −ε1
−ε2 ε1 0


for a vector ε = (ε1, ε2, ε3)T . For the cross product between two vectors ε1, ε2 ∈ R3,
this map has the useful property that ε1 × ε2 = ε̂1ε2. The Euler-Rodriguez map
is not injective since Σ(p) = Σ(−p), but it is two-to-one and surjective. Because
Σ(pq) = Σ(p)Σ(q) ∀p,q ∈ S3, Σ is a group homomorphism.

A question arising when dealing with quaternions as representatives of rotations
in a three-dimensional vector space is how to express the rotation of a vector by
quaternions. If Q = Σ(p), then the rotation Qv can be written in quaternion form
as (0, Qv) = p (0,v) p̄, which is obtained from the computation

(η, ε) (0,v) (η,−ε) =
(
ηεTv − ηεTv − εT ε̂v, η2v + 2ηε̂v + εεTv + ε̂2v

)
=

(
0, (I3 + 2ηε̂+ 2ε̂2)v

)
= (0, Qv) ,

where we have used the relations η2 + ||ε||22 = 1 and ε̂2 = εεT − εTεI3. This is
actually a property of s3, which is the Lie algebra of the Lie group S3, and it is
de�ned by

s3 = {V = (0,v) ∈ {0} × R3}, (4)

which will give us a more formal framework for the consideration of quaternions.
We now wish to derive an expression for the exponential of a quaternion W =

(0,w) in the Lie algebra s3, exp(W ), which we will need in the computation of
the numerical methods based on the Magnus series expansion for quaternions. To
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this end, we consider the solution of two di�erential equations that are equal and
have the same solution, but that are di�erently formulated; these equations are

q̇ = Wq
q(0) = q0

(5)

and

q̇ = L(W )q
q(0) = q0,

(6)

where q ∈ S3, W ∈ s3, and q0 = (1,0). Since the solution of (5) is given by
q(t) = exp(W )q0 = exp(W ), the solution of (6) will also give us an expression for
exp(W ), which is our aim. Hence, we consider

q(t) = exp(L(W ))q0, (7)

which is the solution of (6). For simplicity we de�ne

A := L(W ) =

[
0 −wT

w ŵ

]
,

and we consider the Taylor series expansion of the 4× 4-matrix

exp(A) =
∞∑
k=0

Ak

k!
, (8)

that we divide in one part for even and one for odd powers of A. We now �nd
explicit expressions for the powers of A that we present in a lemma.

Lemma 2.1. If

A =

[
0 −wT

w ŵ

]
,

then the powers of A are

A2k−1 =

[
0 (−1)kα2k−2wT

(−1)k−1α2k−2w ŵ2k−1

]
k ∈ {1, 2, . . . },

A2k =

[
(−1)kα2k 0

0 (−1)kα2k−2wwT + ŵ2k

]
k ∈ {1, 2, . . . },

(9)

where α =
√
wTw = ||w||2 and A0 = I4 is the 4× 4 identity matrix.
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Proof. We will in the following use the two relations

ŵw = w ×w = 0,
wT ŵ = (ŵTw)T = (−ŵw)T = (−w ×w) = 0,

where the skew-symmetry of ŵ is used in the latter. We prove the lemma by
induction. Let us start by showing the validity of the statement for k = 1. We see
that

A =

[
0 −wT

w ŵ

]
and A2 = A · A =

[
−α2 0

0 −wwT + ŵ2

]
both are consistent with (9) when k = 1. Assuming that the statement (9) is true
for k = m, we will now show that it is true for k = m+ 1 to prove the lemma:

A2(m+1)−1 = A2m+1 = A2mA

=

[
(−1)mα2m 0

0 (−1)mα2m−2wwT + ŵ2m

] [
0 −wT

w ŵ

]
=

[
0 (−1)m+1α2mwT

(−1)mα2mw ŵ2m+1

]
A2(m+1) = A2m+1A

=

[
0 (−1)m+1α2mwT

(−1)mα2mw ŵ2m+1

] [
0 −wT

w ŵ

]
=

[
(−1)m+1α2m+2 0

0 (−1)m+1α2mwwT + ŵ2m+2

]
which correspond to (9) for k = m+ 1.

We will now use this lemma to state an explicit expression for the exponential of
a quaternion in the Lie algebra.

Theorem 2.2. Let W = (0,w) be a quaternion in the Lie algebra s3, then the
exponential of W is

exp(W ) =

 cos(α)

sin(α)
α

w

 ,
where α = ||w||2.

Proof. Since q0 = (1,0), we see from (7) that the the �rst column of exp(A) is
the solution of (6) and thus equal to exp(W ). To ease the computation of (8) we
write the powers of A as
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Ak =


a

[k]
01 a

[k]
02 a

[k]
03 a

[k]
04

a
[k]
1 a

[k]
2 a

[k]
3 a

[k]
4

 ,
such that we can write

exp(W ) =


∞∑
k=0

a
[k]
01

k!
∞∑
k=0

a
[k]
1

k!

 , (10)

where we have used (7) and (8).
To prove the theorem we only need to compute the sum of the series from (10).

We use Lemma 2.1 and slightly abuse notation when observing that
[
a

[0]
01, a

[0]
1

]
=

eT1 = [1, 0, 0, 0] to get

∞∑
k=0

a
[k]
01

k!
=

∞∑
k=1

a
[2k−1]
01

(2k − 1)!
+
∞∑
k=0

a
[2k]
01

(2k)!
= a

[0]
01 +

∞∑
k=1

a
[2k]
01

(2k)!

=
∞∑
k=0

(−1)kα2k

(2k)!
= cos(α)

and
∞∑
k=0

a
[k]
1

k!
=

∞∑
k=1

a
[2k−1]
1

(2k − 1)!
+
∞∑
k=0

a
[2k]
1

(2k)!
=
∞∑
k=1

(−1)k−1α2k−2w

(2k − 1)!

=
∞∑
k=0

(−1)kα2kw

(2k + 1)!
=

w

α

∞∑
k=0

(−1)kα2k+1

(2k + 1)!
=

sin(α)

α
w,

which we obtain by recognizing the Taylor series for sine and cosine.
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3 Solution of quaternion di�erential equations

We will in the following consider the solution of the quaternion di�erential equation

q̇ = c ·W (t)q,
q(0) = q0,

(11)

where W = (0,w) ∈ s3, q ∈ S3, c ∈ R, and q̇ is the time derivative of q. To
derive methods based on the Magnus series expansion we need to establish some
background material.

First of all, the variation of constant formula tells us that for the di�erential
equation

u̇ = Au + w, u(0) = u0,

where A ∈ Rn and u,w ∈ Rn, the solution is given by

u(t) = etAu0 +

∫ t

0

e(t−x)Awdx. (12)

By using the Taylor series of the exponential in the expression above before inte-
grating and then rewriting, we get∫ t

0

e(t−x)Awdx =
etz − 1

z

∣∣∣∣
z=A

w,

where we have used that

etz − 1

z
=
∞∑
k=1

zk−1 t
k

k!
.

Now, we will give a lemma needed to make the �nal foundation for the Magnus
method.

Lemma 3.1. Assume Γ(t) ∈ s3 ∀t, we have

d

dt
eΓ(t) = dexpΓ(Γ̇)eΓ(t),

where dexp is de�ned by

dexpΓ(Γ̇) :=
ez − 1

z

∣∣∣∣
z=adΓ

(Γ̇),

where adU := s3 → s3 is the adjoint operator de�ned by adU(V ) = [U, V ] =
UV − V U (the commutator between the two quaternions U, V ∈ s3).
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Proof. The proof of this lemma follows the ideas of [26, Lemma 3.4], see also [6].
We begin with de�ning the following function as a product of quaternions:

B(s, t) := (
d

dt
esΓ(t))e−sΓ(t),

where s, t ∈ R. Taking the partial derivative of B(s, t) with respect to s and noting
that the Leibniz rule of di�erntiation also holds for the quaternion product, we get

∂

∂s
B(s, t) =

d

dt
(Γ(t)esΓ(t))e−sΓ(t) − (

d

dt
esΓ(t))e−sΓ(t)Γ(t)

= Γ̇(t)esΓ(t)e−sΓ(t) + Γ(t)(
d

dt
esΓ(t))e−sΓ(t) − (

d

dt
esΓ(t))e−sΓ(t)Γ(t)

= Γ̇(t) + [Γ(t), B(s, t)]

= adΓ(B(s, t)) + Γ̇(t),

and we note that adΓ can be viewed as a linear operator acting on the quaternion
B. This observation makes us capable of using the variation of constants formula
from which, together with the considerations above, we get

B(s, t) =
esz − 1

z

∣∣∣∣
z=adΓ

(Γ̇(t)).

By setting s = 1, the expression above can be written as

(
d

dt
eΓ(t))e−Γ(t) = dexpΓ(Γ̇),

which ends the proof.

We should now be able to �nd a solution of equation (11), and our approach for
doing so is to search for a function in the Lie algebra, Γ(t) ∈ s3, such that

q(t) = exp(Γ(t))q0 (13)

is the solution of (11). The inverse of the dexp operator will become an important
part of our solution, and it is given by

dexp−1
Γ (H) =

∞∑
k=0

Bk

k!
adkΓ(H), (14)

where Bk are the Bernoulli numbers, adkΓ(H) = adk−1
Γ ([Γ, H]), and ad0

Γ(H) = Γ,
see [14][Sec. III.4].
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Lemma 3.2. Let Γ = (0,γ) , U ∈ s3 with γ = (γ1, γ2, γ3). Then

adΓ(U) = ΓU − UΓ = L(Γ)U −R(Γ)U
= (L(Γ)−R(Γ))U,

so that the 4× 4 matrix associated with adΓ is

adΓ =


0 0 0 0
0 0 −2γ3 2γ2

0 2γ3 0 −2γ1

0 −2γ2 2γ1 0

 =: K.

Proof. Applied to a quaternion U = (0,u) ∈ s3, we write the adjoint operator as

adΓ(U) = [Γ, U ] =

(
0
γ

)(
0
u

)
−
(

0
u

)(
0
γ

)
=

(
0

2γ × u

)

=

(
0

2γ̂u

)
=


0 0 0 0
0 0 −2γ3 2γ2

0 2γ3 0 −2γ1

0 −2γ2 2γ1 0

U = KU,

which proves the lemma.

This result will now be used to obtain an exaxt, explicit expression for the map
dexp−1

Γ . We will, in the following proposition, use the exact expression for dexp−1
û ,

where û ∈ so(3), which we have from [8].

Proposition 3.3. If Γ ∈ s3, then

dexp−1
Γ =


1 0 0 0
0
0 dexp−1

2γ̂
0

 .
where the map dexp−1

û is given by

dexp−1
û = I3 −

1

2
û+

1− α
2

cot(α
2
)

α2
û2,

with I3 being the three-dimensional identity matrix, û the skew-symmetric matrix
in so(3), and α = ||u||2.
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Proof. We use Lemma 3.2 and equation (14) to get

dexp−1
Γ =

∞∑
k=0

Bk

k!
adkΓ =

∞∑
k=0

Bk

k!
Kk

=


1 0 0 0
0

0
∞∑
k=0

Bk

k!
(2γ̂)k

0

 =


1 0 0 0
0
0 dexp−1

2γ̂
0


where the element in the upper left corner is 1 becauseK0 is the identity matrix and
B0 = 1. This together with the exact expression from [8] provide our result.

We can now state the main result of this section, namely, the solution of the quater-
nion di�erential equation (11). Both Lemma 3.1 and Lemma 3.2 are important
ingredients in the proof of the following theorem.

Theorem 3.4. The solution of the quaternion di�erential equation (11) can be
written as q(t) = exp(Γ(t))q0, where Γ(t) = (0,γ(t)) ∈ s3 is de�ned by

Γ̇(t) = dexp−1
Γ (c ·W (t)),

Γ(0) = 0,
(15)

and convergence of dexp−1
Γ is assured as long as ||Γ(t)||2 < π.

Proof. Di�erentiating q in equation (13) with respect to t gives

q̇(t) = dexpΓ(Γ̇)exp(Γ(t))q0 = dexpΓ(Γ̇)q(t),

where we have used Lemma 3.1. Comparing this to equation (11) we obtain
c ·W (t) = dexpΓ(Γ̇). We then apply the inverse operator dexp−1

Γ on both sides of
this expression to get the di�erential equation (15).

To prove the statement of convergence we should consider the series in (14)
written as

∞∑
k=0

Bk

k!
zk =

z

ez − 1
,

which has singular points at all nonzero multiples of 2πi. We should also note that
what appears to be a singularity at z = 0 is a removable singularity. 2π is thus
the radius of convergence for this series, and we have that ρ(adΓ) < 2π ensures
convergence of dexp−1 with ρ(adΓ) being the spectral radius of the operator adΓ.
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From Lemma 3.2 we know that the adjoint operator adΓ is associated with the
matrix

K =


0 0 0 0
0 0 −2γ3 2γ2

0 2γ3 0 −2γ1

0 −2γ2 2γ1 0

 ,
whose eigenvalues are λ1 = λ2 = 0, λ3,4 = ±i2 ||γ||2, and so ρ(adγ) = ρ(K) =
2 ||γ||2, and we see that ||γ||2 < π ensures convergence.

Integrating (15) on both sides between 0 and t and applying Picard's �xed point
iteration, we obtain the so-called Magnus expansion

Γ(t) =
∫ t

0
c ·W (τ)dτ − 1

2

∫ t
0
[
∫ τ

0
c ·W (ω)dω, c ·W (τ)]dτ

+ 1
4

∫ t
0
[
∫ τ

0
[
∫ ω

0
c ·W (µ)dµ, c ·W (ω)]dω, c ·W (τ)]dτ

+ 1
12

∫ t
0
[
∫ τ

0
c ·W (ω)dω, [

∫ τ
0
c ·W (µ)dµ, c ·W (τ)]]dτ + · · · ,

(16)

giving a reminder of size O(t5); for more terms of the iteration and consequently
a more accurate Magnus expansion, see [3].

3.1 Optimal Numerical Methods

Our attention can now be turned to the derivation of optimal numerical methods
based on the Magnus expansion, and we will in the following present second, fourth,
sixth, and eight order methods derived in this fashion. By optimal we mean that
these methods require as few commutators as possible. Our approach consists in
the use of the Gauss-Legendre quadrature rules, and we will present the schemes
that give the di�erent methods using as few commutators as possible.

We will now present the general procedure for making such schemes, and we
follow the approach presented in [3]. The starting point for this procedure is the
Taylor series of W (t) around the midpoint t1/2 = tn + h/2

W (t) =
∞∑
j=0

aj(t− t1/2)j, aj =
1

j!

djW (t)

dtj

∣∣∣∣
t=t1/2

, (17)

and we de�ne αi := hiai−1. It is at this point worth observing that we would get a
numerical scheme only dependent on α-values by substituting (17) into the Picard
iteration (16) and truncating the series to the wanted order. In fact, it turns out
that we can build methods of order p = 2s by considering schemes only dependent
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on α1, . . . , αs. We still need to �nd an expression for these α-values, and to this
end we de�ne

W (i)(h) =
1

hi

∫ tn+1

tn

(t− t1/2)iW (t)dt =
1

hi

∫ h/2

−h/2
tiW (t+ t1/2)dt, (18)

which, by considering Gaussian quadrature nodes and weights of order s, we write
as

W (i) = h
s∑
j=1

bj(cj −
1

2
)iWj = h

s∑
j=1

(
Q(s)

)
ij
Wj, i = 0, . . . , s− 1, (19)

where Wj = W (tn + cjh) and ci are the nodes and bi the weights of the Gauss-
Legendre quadrature; it is important to note that the interval [0, 1] must be consid-
ered when �nding the nodes and weights needed for these methods. By neglecting
higher order terms and substituting (17) into (18), we get

W (i) =
s∑
j=1

(
T (s)

)
ij
αj =

s∑
j=1

1− (−1)i+j

(i+ j)!2i+j
αj, (20)

and we de�ne R(s) :=
(
T (s)

)−1
. We can now combine (19) and (20) to get

αi = h
s∑
j=1

(
R(s)Q(s)

)
ij
Wj, . (21)

The most evident numerical scheme based on these α-values appear by inserting
(17) in (16), the Picard iteration for Γ(t), and then truncating the series to the
wanted order. In terms of computational cost we can however do better by reducing
the number of commutators involved to a minimum, which is done in [5] by making
an sth order approximation of Γ(t), Γ[s], based on W (0),W (1), . . . ,W (s−1). This
process is quite involved, and we will only present the resulting schemes and refer
to [5] for all the details concerning the derivation of them. Abscissas - the zeros
of the Legendre polynomial, also called nodes - and weights for the Gaussian
integration in the integration interval [−1, 1] is found in [1]. Note that these nodes
and weights must be changed into the integration interval [0, 1] by a simple linear
transformation.

Order 2 The order 2 method is easily found to be the midpoint rule with node
c1 = 1/2 and weight b1 = 1 such that

Γ(t) ≈ Γ[2] = hcW (tn + 1/2), (22)
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where c is the constant from equation (11).

Order 4 The roots of the second order Legendre polynomial in the interval [0, 1]

are c1 = 1
2
−
√

3
6

and c1 = 1
2

+
√

3
6
, with weights b1 = b2 = 1

2
. From these nodes and

weights we obtain

α1 =
h

2
(W1 +W2), α2 =

√
3h(W2 −W1),

where Wi = W (tn + cih). We can now put these values into the following fourth
order approximation scheme

Γ(t) ≈ Γ[4] = cα1 −
c2

12
[α1, α2]. (23)

Order 6 For the method of order 6 we use the nodes c1 = 1
2
−
√

15
10

, c2 = 1
2
, and

c3 = 1
2

+
√

15
10

, with weights b1 = b3 = 5/18 and b2 = 4/9, from which we obtain

α1 = hW2, α2 =

√
15h

3
(W3 −W1), α3 =

10h

3
(W3 − 2W2 +W1).

The approximation of order 6 using as few commutators as possible is

Γ(t) ≈ Γ[6] = cα1 +
c

12
α3 +

1

240
[−20cα1 − cα3 + s1, cα2 + r1], (24)

with s1 = [cα1, cα2] and r1 = −1/60 [cα1, 2cα3 + s1].

Order 8 The nodes for the method of order 8 are

c1 = 1
2
−
√

3+2
√

6/5

28
, c2 = 1

2
−
√

3−2
√

6/5

28
,

c3 = 1
2

+

√
3−2
√

6/5

28
, c4 = 1

2
+

√
3+2
√

6/5

28
,

and the weights are b1 = b4 = 18−
√

30
72

and b2 = b3 = 18+
√

30
72

. From (20), we have
that

T (4) =


1 0 1

12
0

0 1
12

0 1
80

1
12

0 1
80

0
0 1

80
0 1

448

 ,
and also the matrix Q(4,4) for which we do not give an explicit expression here. By
inserting these matrices into equation (21), we have the needed αi-values available
for the computation of the following eight order scheme:
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Γ(t) ≈ Γ[8] = cα1 + c
12
α3 − 7

120
s2 + 1

360
s3

s1 = − c2

28

[
α1 + 1

28
α3, α2 + 3

28
α4

]
r1 = 1

3

[
cα1,− c

14
α3 + s1

]
s2 =

[
cα1 + c

28
α3 + s1, cα2 + 3c

28
α4 + r1

]
ŝ2 = [cα2, s1]

r2 =
[
cα1 + 5

4
s1, 2cα3 + s2 + 1

2
ŝ2

]
s3 =

[
cα1 + c

12
α3 − 7

3
s1 − 1

6
s2,−9cα2 − 9c

4
α4 + 63r1 + r2

]
.

(25)
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4 The free rigid body equations

The equations of motion for the free rigid body can be written as

ṁ = m× T−1m (26)

Q̇ = QT̂−1m (27)

where m = (m1,m2,m3)T ∈ R3 is the angular momentum, Q ∈ SO(3) is the
rotation matrix that transforms body representatives into spatial representatives
of vectors, T = diag(T1, T2, T3) is the inertia tensor whose diagonal elements are
called the principal moments of inertia, and ṁ and Q̇ are the time derivative of the
angular momentum and the rotation matrix, respectively. It is also noteworthy
that the angular velocity is given by ω = T−1m.

These equations of motion describe the con�gurations of a free rigid body with
a �xed point. This �xed point is the origin of both the spatial frame and the body
frame of the system. Both frames are orthogonal, and whereas the spatial frame
is �xed in space, the body frame is attached to the body itself. We should make
clear what is meant with the term �the free rigid body�: that the body is free
signi�es that there are no external forces, and that the body is rigid denotes that
the distance between any two points of the body is constant.

We will throughout this paper refer to equation (26) as the Euler equation and
to equation (27) as the Arnold equation. These equations represent a Hamiltonian
system, and the Hamiltonian function of the system is simply the kinetic energy

E =
m2

1

2T1

+
m2

2

2T2

+
m2

3

2T3

,

which together with the angular momentum in the spatial frame, Qm, and the
norm of the angular momentum G = ||m|| are known to be constants of motion
- also called �rst integrals or invariants - of this system (see e.g. [14] and [7]).
Before we discuss the integration of the system, we introduce a simpli�cation by
assuming that ||m(t0)|| = 1. This simpli�cation involves no restriction to what
problems we can consider since we get the same system back by scaling the time
and angular momentum before and after integration - we use the scaling t 7→ Gt
for time and m 7→ m/G for the angular momentum.

Using the homomorphism between S3 and SO(3) and its derivative mapping
one can show - see [7, Prop. 2.4] - that the Arnold equation (27) represented by
quaternions can be written as

q̇ =
1

2
qΩ, (28)
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where q ∈ S3 and Ω = (0, T−1m) = (0,ω) ∈ s3. We will in this paper hold our
main focus on this representation of the free rigid body equations, but we will
also consider the matrix representation to see if this might change the accuracy of
the numerical methods. In terms of memory usage, the quaternion representation
involves an obvious advantage in that it only requires the storage of four double
precision numbers compared to the nine stored at each time step for the matrix
representation.

We will now discuss a general solution of the Euler equation (26) using Jacobi
elliptic functions and also one where we reduce the number of constants to achieve
reduced round-o� errors. Then the solution of the Euler equation will be used
in the two solutions of the Arnold equation (27) that we will present; the �rst of
the two solutions uses the Magnus expansion discussed in Section 3, whereas the
second solution uses a factorization of certain rotations and the approximation of
an integral - to compute the angle of a planar rotation - with Gaussian quadrature.

4.1 Solution of the Euler equation

The exact solution of the Euler equation (26) is derived by using the so-called
Jacobi elliptic functions sn, cn, and dn, see e.g. [29]. This is a classic result that
was presented as soon as in 1849 by Jacobi [17] who in turn refers to work by
Legendre. The periodicity of these functions is easily recognized in the solution of
the angular momentum m. This is shown in Figure 1. In our solution we assume
with no loss of generality that the principal moments of inertia T1, T2, and T3 are
put in ascending order: T1 < T2 < T3. Before we present the periodic solutions for
the angular momentum, we need to de�ne the constants

Tij = |Ti − Tj| , ∆i = |I3 − 2ETi| , Bij =

(
Ti∆j

Tij

)1/2

, i, j ∈ {1, 2, 3}, i 6= j,

where I3 is the 3× 3 identity matrix and Ti is the ith principal moment of inertia.
From the constant

k =

(
∆1T32

∆3T21

)1/2

,

we get the elliptic modulus for the Jacobi elliptic functions in the case when k < 1
(if k > 1, we use 1/k as the elliptic modulus). The numerical value of k is what
we use to decide when to apply which of the two solutions we now will present.

(I) If k < 1, the solution of equation (26) is
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m(t) = (σB13dn(λt− ν, k), B21sn(λt− ν, k), B31cn(λt− ν, k))T ,

where

λ = σ

(
∆3T12

T1T2T3

)1/2

,

σ = sign(m1(t0)), and ν is a constant that must be determined through a quite
involved computation that we will shortly discuss.

(II) If k > 1, the solution of equation (26) is

m(t) =
(
B13cn(λt− ν, k−1), B23sn(λt− ν, k−1), σB31dn(λt− ν, k−1)

)T
,

where

λ = σ

(
∆1T23

T1T2T3

)1/2

and σ = sign(m3(t0)).

There also exists a solution for the third case when k = 1, but as its occurance in
practical computations is rare, we have left this case out and refer the interested
reader to [7].

Based on [9], we will now show how the computation of ν is carried out; the
procedure we here present is made for case (I), but can easily be modi�ed for case
(II), see implementation in appendix. First we de�ne

u(t) := λt− ν,
and from the de�nition of the Jacobi elliptic functions we have

cn(u, k) = cos(φ), sn(u, k) = sin(φ), dn(u, k) =
√

1− k2sin2(φ),

with the amplitude φ being the solution of the equation

u(t) = F (φ, k2) :=

∫ φ

0

dθ√
1− k2sin2(θ)

. (29)

We will �rst determine the amplitude φ(0) ∈ [0, 2π] from the initial conditions

m2(t0) = B21sin(φ(0)), m3(t0) = B31cos(φ(0)),
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for which we in Matlab use the function atan2; it would have been su�cient to
determine the correct quadrant and then applying the inverse of either the sine
or the cosine function. Now that we have established φ(0), we can show how the
arithmetic-geometric mean [28] is used to compute F (φ(0), k2). We �rst de�ne the
sequence {φn}n=0,1,..., φn+1 > φn by

tan (φn+1 − φn) =
bn
an

tan(φn), φ0 = φ(0),

where an and bn are de�ned by

an+1 :=
an + bn

2
, bn+1 :=

√
anbn, a0 = 1, b0 =

√
1− k2,

and the sequence we will use as a stopping criterion is de�ned by

cn+1 :=
an − bn

2
> an+1 − bn+1, c0 = k.

Now, we follow this procedure until cN is less than a speci�ed tolerance for some
n = N ; this is quickly obtained since the arithmetic-geometric sequence converges
quadratically. One can then show that

F (φ(0), k2) = lim
n→∞

φn
2nan

≈ φN
2NaN

,

from which we obtain our �nal result

ν = λt0 − F (φ(0), k2) ≈ λt0 −
φN

2NaN
,

which can be used to obtain the Jacobi elliptic functions at any point in time t
using the Matlab function ellipj with u(t) = λt− ν as its input argument.

4.2 Reducing round-o� error

To reduce round-o� error, we will now present an alternative algorithm (see [27]
and [11]) where we only use two independent constants, namely, c1 and λ de�ned
below. It is in [27] shown that the algorithm we will present makes the round-o�
error behave like a random walk; this is opposed to the algorithm described above
that has been shown to lead to a linear accumulation of round-o� error. We begin
by de�ning the constants

c1 =
T1(T3 − T2)

T2(T3 − T1)
, c2 = 1− c1, d1 =

√
m2

1 + c1m2
2, d3 =

√
c2m2

2 +m2
3,
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Figure 1: The angular moment m for a free rigid body with principal moments of
inertia T1 = 1.0, T2 = 1.648785782711929, and T3 = 1.972012709664193.
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and

k2 =
c1d

2
3

c2d2
1

.

After computing c1 and c2 we should make the computation c1 = 1− c2 to ensure
that the relation c1 + c2 = 1 holds. The two cases (I) and (II) are now:

(I) If k2 < 1, we de�ne

d2 =

√
m2(t0)2 +

m3(t0)2

c2

, l =

√
(T1 − T2)(T1 − T3)

T 2
1 T2T3

, λ = σld1,

where σ = sign(m1(t0)). The solution of (26) is then given by

m(t) =

(
σ
√
d2

1 − c1m2(t)2, d2sn(λt− ν, k), d3cn(λt− ν, k)

)T
.

(II) If k2 > 1, we de�ne

d2 =

√
m1(t0)2

c1

+m2(t0)2, l =

√
(T3 − T2)(T3 − T1)

T1T2T 2
3

, λ = σld3,

where σ = sign(m3(t0)). The solution of (26) is then given by

m(t) =

(
d1cn(λt− ν, k−1), d2sn(λt− ν, k−1), σ

√
d2

1 − c1m2(t)2

)T
.

4.3 Two solutions of the Arnold equation

Two di�erent numerical methods to solve the quaternion version of the Arnold
equation (28) will now be discussed. The �rst of the two is based on the methods
derived in Section 3.1, and the other makes use of a smart factorization in the Lie
group S3. Both methods use Gaussian quadrature in the solution.

4.3.1 The Magnus method

Let us �rst discuss the solution based on the Magnus series expansion; we will
refer to this solution as the Magnus method. To �nd the solution of equation (28)
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we need to manipulate it by conjugating both sides of the equation. We then need
to solve

˙̄q = 1
2
Ω̄q̄,

q̄(0) = q̄0,
(30)

where we use the expression for the conjugate of a quaternion in equation (2). We
solve this di�erential equation with the optimal numerical methods from Section
3 by inserting W = Ω̄ and c = 1/2 into the schemes (22), (23), (24), and (25), and
we get our solution by once more taking the conjugate, this time of the solution
of equation (30). The quaternion exponential is computed with the result derived
in Theorem 2.2.

We can also use the optimal Magnus methods to solve the matrix version
(27) of the Arnold equation. As a matter of fact, the only modi�cations needed
are to use the matrix exponential instead of the quaternion exponential, to set
c = 1 and W = ω̂ in the schemes for the optimal Magnus methods, and to
use the matrix transpose instead of the quaternion conjugate in the manipulation
described above. The exponential of a matrix in the Lie algebra so(3) is computed
using the Rodrigues formula

exp(A) = I +
sin(α)

α
A+

1

2

sin2(α/2)

(α/2)2
A2 for A = v̂,

where v = (v1, v2, v3)T and α = ||v||2. Proof of the Rodrigues formula can be
found in [20].

4.3.2 The factorization method

The second solution is found in the factorized form

q(t) = q(t0)p−1(t0)y(t)p(t) = q0p
−1
0 yp, (31)

in which p,y ∈ S3 are quaternions that must satisfy certain properties. Before
proceeding, we introduce two quaternions in the Lie algebra

M = (0,m) ∈ s3, Ej = (0, ej) ∈ s3

where m is the angular momentum vector and ej is the jth unit vector in R3. Let
us further write y as the planar rotation

y(t) = exp(

(
0,
ψ(t)

2
e3

)
) =

(
cos(

ψ(t)

2
), sin(

ψ(t)

2
)e3

)
.

One can then show (see [7] for proof) that if m is a solution of (26) and p and y
satisfy the conditions
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pMp−1 = E3, yE3y
−1 = E3, (32)

then (31) is the solution of equation (28) if and only if

ψ(t) =

∫ t

t0

(
2E + 2e3 · p(s)ṗ−1(s)

)
ds (mod2π) . (33)

The issue of how to represent p such that it satis�es (32) still remains. In [7]
it is proven that the components p0, p1, p2, and p3 of the quaternion p ∈ S3 are
smooth functions that satisfy (32) if and only if

p1 =
p3m1 + p0m2

1 +m3

, p2 =
p3m2 − p0m1

1 +m3

, (34)

and

p2
0 + p2

3 =
1 +m3

2
, (35)

wherem1, m2, andm3 are the components of the known angular momentum vector
m of unit norm. Hence, any p ∈ S3 that satis�es (34) and (35) will give a solution
of equation (28). However, if we make the choice

p0 = c0

√
1 +m3, p3 = c3

√
1 +m3, c2

0 + c2
3 =

1

2
, (36)

the integral (33) will be easier to compute. From (33) we see that we need the
fourth component of the quaternion pṗ−1 to compute this integral. After some
easy, but slightly tedious computations, we can write the integrand of the discussed
integral as

2E + 2e3 · p(s)ṗ−1(s) = 2E +
m2(s)ṁ1(s)−m1(s)ṁ2(s)

1 +m3(s)
,

where p is chosen according to (36).

In our implementation of this method, we use Gaussian quadrature to compute
the integral (33), where we can and do use the same nodes and weights as in the
computation of the Magnus method; it is thus easy to compare this implementation
with the one of the Magnus method. We will refer to this latter method as the
factorization method.

An exact solution of the Arnold equation (28) can be derived by setting c0 =
1/
√

2 and c3 = 0 and solving two elliptic integrals of the third kind to compute ψ
accurately - see [7] or [11] for details.
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4.4 Comparison of computational cost

The Magnus method and the factorization method have di�erent computational
costs, and the cost varies with the order of the method. Thus, a comparison of
the computational costs of the two methods is made, and we present the results
in two tables. Here, the number of �oating point operations (FLOPs) needed to
compute the solution of the Arnold equation (28) at the ith time step qi is found
for the two methods.

We perform the FLOP count by simply counting each addition, subtraction,
multiplication, and division as one operation. The same goes for elementary func-
tions such as the sine, cosine, and square root function. The quaternion product
involves, for instance, 28 �oating point operations, with this way of counting. This
is obtained by summing one scalar multiplication (1 FLOP), one scalar addition
(1 FLOP), one inner product (3 multiplications and 2 additions - 5 FLOPs), 2
scalar times vector operations (6 FLOPs), 2 vector additions (6 FLOPs), and at
last one cross product (6 multiplications and 3 additions - 9 FLOPs), which totals
to 28 FLOPs, see appendix for implementation. This way of counting might not
give a perfectly correct picture of the code's computational e�ciency, but it should
be more than su�cient to make a fair comparison between the two methods we
consider.

The implementations we here compare can be found in the appendix, and the
comparison is done for the part of the respective implementations that lies inside
the for-loop. In addition to the di�erences between the methods in the following
comparison, we should note that the number of nodes in which we evaluate W (t)
increases with the order of the method. As it is hard to count exactly how many
�oating point operations this involves and since the extra complexity is the same
for both methods, this is omitted in the following comparison.

Given that the angular momentum is computed in the nescessary nodes, the
total number of �oating point operations found in Table 1 must be multiplied by
the number of time steps n to give the total cost of computing an approximation of
q(t) at the last point of the integration domain t. We see that, except for the order 8
methods, the Magnus method is substantially faster than the factorization method
in computing one time step, and this di�erence becomes bigger the lower the
method's order is. The reason for this is that the factorization method demands the
computation of three expensive quaternion products, independent of the method's
order, while the number of commutators and operations performed in the Magnus
method increases signi�cantly with increasing order. This also makes the eight
order Magnus method less attractive - a problem that becomes more evident for
higher order methods.
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Magnus method: Order 2 Order 4 Order 6 Order 8

Commutators in s3: 0 12 36 72
Quaternion product: 28 28 28 28
Quaternion addition and constant
times quaternion ops (in s3): 3 18 54 198
Other operations: 16 19 22 25
Total number of
�oating point operations: 47 77 140 323

Factorization method: Order 2 Order 4 Order 6 Order 8

Cross products: 9 18 27 36
Quaternion products: 84 84 84 84
Other operations: 53 69 84 99
Total number of
�oating point operations: 146 171 195 219

Table 1: A comparison of the computational cost between the factorization method
and the Magnus method.

4.5 Numerical results

In this section some numerical results will be presented. We will compare the
methods we have presented in terms of the errors they produce for di�erent choices
of the step size h, and we will present some plots of the solution to see how the
accuracy of the methods a�ects the solution of the Euler-Arnold free rigid body
equations.

In �gure 2 the error for di�erent step sizes is compared for the factorization
method and the Magnus method in the quaternion implementations described
in Section 4.3 - the accuracy of all the second, fourth, sixth, and eight order
methods are investigated for both implementations. For each step size we make
50 di�erent random vectors for both m0 and q0 that we scale such that they have
norm one. We then compute the average error for these 50 di�erent choices which
we report in Figure 2. In these experiments the principal moments of inertia are
T1 = 1.0, T2 = 1.648785782711929, and T3 = 1.972012709664193 (these values
are taken from [11]), and the time interval is [0, 10]. We compare each solution
to the one obtained by Matlab's ode45 routine with both the absolute and the
relative tolerance set to machine accuracy; the relative tolerance is by Matlab
automatically increased to the value 2.22045e − 14. The angular momentum is
computed exactly for both methods, so we compare the error in the quaternion
solutions. If qex is the solution obtained from ode45, which we consider exact,
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Figure 2: A comparison between the error using the factorization method (F) and
the Magnus method (M). Both implementations use quaternions.
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and q is the solution using a certain method, we compute the error e as

e = ||qex(Tend)− q(Tend)||2 ,

where Tend is the end of the time interval.

We see that the factorization method performs best for most choices of the step
size, but for small step sizes the Magnus method gives a more accurate solution
than the factorization method. The reason for this is most likely an accumulation
of round-o� error, and this seems to be a bigger problem for the factorization
method than for the Magnus method. In fact we see that the errors for the
fourth, sixth, and eight order methods are the same for small step sizes, but the
errors belonging to the Magnus method follow a di�erent line from those of the
factorization method, and those belonging to the Magnus method are smaller. We
have here considered a relatively small time interval, and if larger time intervals
were considered the di�erence in the accumulation of round-o� error would become
more signi�cant, even for larger time steps. The slopes of the lines in this plot
should suggest the order of the di�erent methods. For the methods of order 2 and
4, the plot con�rms the expected order, and we see that the line connecting the
error points becomes steeper for the sixth and eight order methods, although it
is not quite as steep as order 6 and order 8 suggest. The error of these methods
is quickly of the size of the error produced by Matlab's ode45, and before this
happens, the step sizes are too large for the terms involving h6 and h8 to dominate
the error formula to get the order we expect.

In Figure 3 we have plotted the position coordinates for the spatial unit vector
e3 as it is seen from the body frame - or simply QTe3 in mathematical terms - to
see how the body moves in space, i.e. we follow the movement of a certain point
in the body. If we �rst consider the rotation matrices, we know that the rotation
matrix Q is such that it transforms body representatives of vectors into spatial
representatives. Hence, the transpose QT will rotate a vector from the original
con�guration to its real position in the body frame. By plotting u = QTe3 we can
see how the body moves in space since we consider a system with a �xed point
in the origin of both the body frame and the spatial frame. To obtain the vector
u from the quaternion implementation, we must remember from Section 2 that
when the quaternion q and the rotation matrix Q represent the same rotation, we
can get u from the quaternion product U = (0,u) =

(
0, QTe3

)
= q̄E3q.

From these plots we clearly see how the actual solution improves when we use
a higher order method. The plots are intentionally made with large time steps - h
is here set to 1 and the number of time steps is 4000 - so that we can see how the
solution gradually improves from the Magnus method of order 2 to the method of
order 8.

We have also made several experiments to compare the accuracy of the quater-
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Figure 3: The vector u plotted for the Magnus methods of order 2, 4, 6, and 8.
Each dot in the plots represents the coordinate of u at a particular time step.
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nion implementation with that of the implementation using rotation matrices.
These experiments clearly indicate that there is only insubstantial di�erences in
the accuracy of the two implementations. The same observation was made by
changing the constants c0 and c3 from equation (36) in the implementation of the
factorization method.

We give a sample of the results of these experiments in the following table
where we compare the error the eight order factorization method produces for
c0 = 1/2, c3 = 1/2 and c0 = 1/

√
2, c3 = 0, respectively. The di�erences in accuracy

between the two implementations for the di�erent order methods are very similar,
but we choose the eight order method because it requires fewer digits to depict
them. We also present the errors produced by the quaternion and the rotation
matrix implementation, respectively; also here the eight order methods are chosen.
To make what we consider a fair comparison, we apply the Euler Rodrigues map
on the quaternion solution and compare the matrix 2-norm of the error. We run
the program 50 times - with random initial quaternion and angular momentum
vectors - for each method and for each step size and present the average error in
Table 2 below. The inertia tensor is the same as in the experiments depicted in
Figure 2. The results in Table 2 show that the error is the same in the two versions
of the factorization method as well as in the two versions of the Magnus method,
until reaching machine accuracy.

h = 0.25 h = 0.50 h = 1.0
c0 = c3 = 1

2
: 5.87069055× 10−15 7.33070308× 10−13 2.21108904× 10−10

c0 = 0, c3 = 1√
2

: 5.88406887× 10−15 7.33077876× 10−13 2.21108938× 10−10

Quaternion: 7.11045663× 10−13 1.58750231× 10−10 4.54203022× 10−8

Rotation matrix: 7.11056953× 10−13 1.58750216× 10−10 4.54203021× 10−8

Table 2: The error produced by di�erent implementations of the free rigid body
equation: the two �rst are of the factorization method with di�erent constants
c0 and c3, whereas the two last are of the quaternion and the rotation matrix
implementation of the Magnus method, respectively.
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5 Torqued system solved with splitting method

We will in this section consider a torqued system divided in two parts; the �rst
part is the free rigid body motion and the second is the torqued motion. We can
solve this kind of systems with splitting methods, and we will in this section show
how this is done before we consider a vessel model to illustrate how this can be
applied. The beauty of this approach is that we separate the system so that we can
use the solutions of the free rigid body equations discussed in Section 4 without
any modi�cations, and then combine the solutions of the two parts.

5.1 Störmer-Verlet splitting

In the previous section we considered a Hamiltionian system with Hamiltonian
function

H(m,q) = E(m) =
m2

1

2T1

+
m2

2

2T2

+
m2

3

2T3

,

which we remember as the kinetic energy of the free rigid body. We now want to
expand this to also involve an external torque described by the potential energy
V (q). The new Hamiltonian function becomes

H(m,q) =
m2

1

2T1

+
m2

2

2T2

+
m2

3

2T3

+ V (q).

The system of equations arising from this Hamiltonian function is

ṁ = m× T−1m + f(q)
q̇ = 1

2
qΩ,

(37)

where f only depends on the potential energy V (q). This equation system can
now be split into two systems as it is done in [9]. The free rigid body motion
stemming from the kinetic part is the �rst system

S1 =

{
ṁ = m× T−1m
q̇ = 1

2
qΩ

, (38)

and the second part is the torqued motion

S2 =

{
ṁ = f(q)
q̇ = 0

, (39)

corresponding to the potential energy.
It is now time to introduce the Störmer-Verlet scheme which combines the �ows

of the systems S1 and S2 in the following way
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(m,q)(j+1) = φ
[S2]
h/2 ◦ φ

[S1]
h ◦ φ[S2]

h/2((m,q)(j)), (40)

where φ
[S1]
h and φ

[S2]
h represent the exact �ows of S1 and S2, respectively. This

scheme is known to be symplectic and to give a method of order 2. We easily
obtain the exact �ow of S2 as

φ
[S2]
h ((m(j),q(j))) =

{
m(j+1) = m(j) + hf(q(j))
q(j+1) = q(j) , (41)

which is exact because q is constant in this integration. We will solve system S1

with the numerical methods derived in Section 4 and hence substitute the �ows
obtained by these methods for the exact �ow φ

[S1]
h . This is however su�cient to

get a method of order 2 - all the methods in Section 4 are of order 2 or higher.
We will later consider the methods we get by substituting the exact �ow φ

[S1]
h for

the �ows obtained with the Magnus methods of order 2, 4, 6, and 8 to see how the
accuracy is a�ected by the extra terms included in the Magnus series expansion.
Even if the overall method has order 2, the error constants might be a�ected by
using a more accurate method to compute φ[S1], [21].

5.2 A vessel model

We will now discuss how the splitting method can be used to solve a simpli�ed
version of the marine vessel equations of motion [13] here expressed in six degrees
of freedom as

M ν̇ + C(ν̇)ν +D(ν)ν + g(η) = τ , (42)

where M is the system inertia matrix, C(ν) the Coriolis-centripetal matrix, D(ν)
the damping matrix, g(η) the vector of gravitational and buoyancy forces and
moments, and τ the vector of control inputs and environmental disturbances such
as wind, waves and currents. The vector ν = [vTωT ]T ∈ R6 is the velocity vector
in the body frame where v,ω ∈ R3 are the linear velocity and the angular velocity,
respectively, and η = [pTθT ]T ∈ R6 is the coordinate position vector where p is
the position in the spatial frame and the components of θ are the Euler angles
representing the rotation of the vessel.

The matrix M can be split into a rigid body part MRB and a part for added
mass MA; the Coriolis-centripetal matrix is divided in the same way. The idea
behind the experiments we will make and the motivation for this vessel model is
to use the vessel in a pipeline installation like the one described in [18]. Because
pipelaying is a slow-speed application, it should be a reasonable assumption to
neglect the acceleration term of both the added mass and the damping. We thus
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assume MA = CA(ν) = 0, and to begin with we assume no damping - D(ν) = 0
- to simplify the model. To make a further simpli�cation we assume τ = 0 - this
latter simpli�cation can easily be removed to make a more realistic model without
changing the manner in which we compute the solution.

Proposition 3.1 in [13] states that the representation of the rigid body system
inertia matrix MRB is unique and that it can be written as

MRB =

[
mvI3 −mvr̂

b
g

mvr̂
b
g T

]
,

where rbg is the vector from the origin of the system to the center of gravity, mv is
the mass of the vessel, I3 is the 3-dimensional identity matrix, and T is still the
inertia tensor. We then let the origin coincide with the center of gravity in our
model to get

MRB =

[
mvI3 0

0 T

]
,

which makes us able to separate the last three degrees of freedom from the �rst
three. One representation of the rigid body Coriolis-centripetal matrix CRB(ν)
given in [13] is

CRB(ν) =

[
mvω̂ 0

0 −T̂ω

]
,

where ω = T−1m is the angular velocity of the rigid body. In the model derived in
[18], the term g(η) from equation (42), which takes restoring forces and moments
into account, is given as

g(η) =

[
QTgst
QTgsr

]
,

where the superscript s denotes that the vector lies in the spatial frame - the vector
of the restoring forces and moments lies in the body frame - and we have that

gsr = (Qrbr)× (mvge3),

where g is the gravitational acceleration and rbr is the moment arm in the body
frame represented in [18] - after the removal of the Euler angle dependence - as

rbr =

 GML(Qe1)Te3

GMT (Qe2)Te3

0

 ,
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where GML and GMT are the longitudinal and the transverse metacentric heights
of the vessel, respectively.

Let us now only consider the rotational part of equation (42), i.e. the last three
degrees of freedom

T ω̇ − T̂ωω +QTgsr = 0,

which we rewrite to get the following equation:

ṁ = m× T−1m−QTgsr.

If we now combine this equation with the Arnold equation (28) and write every-
thing in the quaternion framework, we end up with the equation system

ṁ = m× T−1m− (Σ(q))Tgsr
q̇ = 1

2
qΩ,

(43)

which we identify as equation system (37) with f(q) = −(Σ(q))Tgsr. This equa-
tion system can thus be solved by the Störmer-Verlet scheme as described in the
preceding section.

Having found a numerical solution to equation (42) by using a number of
assumptions, we will now look for a solution where we include the damping term,
but we assume that the damping is independent of the velocity vector ν, i.e.
D(ν) = D 6= 0. We further assume that we can write the damping matrix as the
block diagonal matrix

D =

[
DT 0
0 DR

]
,

which enables us to isolate the rotational part, also of the damping matrix. The
rotational part of equation (42) together with the Arnold equation can thus be
written as

ṁ = m× T−1m−QTgsr −DRT
−1m,

q̇ = 1
2
qΩ,

(44)

and we de�ne the matrix K := −DRT
−1. We aim at using the Störmer-Verlet

scheme, but this time with a more involved second system which now takes the
form

S∗2 =

{
ṁ = Km− (Σ(q))Tgsr
q̇ = 0

,

where we note that ṁ no longer is independent of the angular momentum. The
�rst system is the same as the one from (38), i.e. S∗1 = S1. Since q is a constant in
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the integration of system S∗2 , we see that we can apply the variation of constants
formula (12) to get

m(t) = etKm0 −
∫ t

0

e(t−x)K(Σ(q))Tgzrdx. (45)

Let us now assume that the damping matrix is diagonal DR = diag(D4, D5, D6)
which also makes the matrix K = diag(K1, K2, K3) diagonal. Because of this
assumption, we can compute the integral in (45) exactly, and we write the solution
as

m(t) = EKm0 +K−1(I3 − EK)(Σ(q))Tgsr

where

EK = diag(etK1 , etK2 , etK3).

This solution requires that D4, D5, D6 6= 0. We hence need to use this solution
when there is damping involved, but if we want to neglect the damping term, we
use the solution where the �ow of system S2 is given by (41).

5.3 Numerical results

We will in this section make some experiments where we consider the solution of
equation (42) both with and without the damping term present. The numerical
values we use in the experiments are loosely based on those extracted from [24] for
a supply ship, and the parameters are:

GMT = 2.14440 m mv = 6.3622× 106 kg

GML = 103.628 m g = 9.81 m/s2

T1 = 3.2164× 108 kg ·m2 ω0 = [1, 1, 1]T

T2 = 5.4782× 109 kg ·m2 m0 = diag(T1, T2, T3)ω0

T3 = 5.7426× 109 kg ·m2 q0 = [1, 0, 0, 0]T

DR = 1.0× 109 · diag(1, 1, 1)

The solution of equation (42) using these parameters is presented in Figure 4.
The �rst plots from the top are simply the solution of the free rigid body equation
system consisting of equation (26) and (28), which is the solution of equation (42)
without restoring forces and moments and with no damping involved; the two next
plots represent the solution of equation (43), which includes restoring forces and
moments, but not the damping term; and the last two plots display the solution of
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Figure 4: The angular momentum m and the quaternion q as the solution of -
from top to bottom - the free rigid body, the torqued rigid body with restoring
forces, but no damping, and at last the torqued rigid body with both restoring
forces and damping.

equation (44), which includes both restoring forces and damping. The solution of
system S1 is for all cases computed with the semi-exact Magnus method of order
8. All solutions lie in the time interval [0, 15] - the period of the oscillations turn
out to be close to 15 seconds.

The plots in Figure 4 clearly show the impact of the various terms included
and excluded in the equations we solve and to whose solutions the respective
plots belong. The rigid body is exposed to an unreasonably strong initial angular
momentum - to better depict the e�ects of the various parameters - and we see
that the last two components of the angular momentum oscillate strongly while
m1 is quite stable for the free rigid body. By introducing the restoring forces and
moments, the amplitude of the oscillations becomes smaller, but the oscillations
do not disappear with time. We then introduce a non-zero damping matrix to our
system - in fact a very strong damping term - and this causes the oscillations to
turn feebler with time until they disappear altogether. The last case also illustrates
an interesting property of the quaternions, namely that they are two-to-one. As
the quaternion q converges, the system converges toward its equilibrium, and this
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equilibrium is reached when q = (−1,0). It is clear from the Euler-Rodrigues map
(3) that the quaternions q = (1,0) and q = (−1,0) represent the same rotation,
which tells us that the system converges toward the original con�guration.

In our implementations of the Störmer-Verlet scheme, the exact �ow φ
[S1]
h has

been replaced by the semi-exact solution of the free rigid body using the Magnus
method of order 2, 4, 6, or 8. The solutions presented above were all based on the
Magnus method of order 8, but we will now see how the accuracy of the method
is a�ected by changing the number of terms we include in the Magnus series
expansion. First we de�ne the relative error for both the angular momentum and
the quaternion

e[m] =
||mex −m||2
||mex||2

, e[q] =
||qex − q||2
||qex||2

= ||qex − q||2 ,

wheremex and qex are the solutions computed with Matlab's ode45 - the tolerance
is set to machine accuracy - which we consider as exact, and m and q are the
solutions of the method whose accuracy we want to investigate. All evaluations
are made at Tend = 15, the end of the time interval. The experiment with which
we test the accuracy of the Störmer-Verlet scheme is exactly the same as the one
presented earlier in this section where both the restoring forces and moments and
the damping are included. We give the obtained results, where the Magnus method
of order 2 and 8 are used, in the following table:

h - step size Order 2 ek
ek+1

Order 8 ek
ek+1

0.1 e
[m]
1 = 1.382× 10−2 3.998 e

[m]
1 = 1.283× 10−2 4.002

0.1 e
[q]
1 = 4.494× 10−4 3.978 e

[q]
1 = 5.056× 10−4 4.002

0.05 e
[m]
2 = 3.459× 10−3 3.999 e

[m]
2 = 3.207× 10−3 4.000

0.05 e
[q]
2 = 1.130× 10−4 3.994 e

[q]
2 = 1.263× 10−4 4.001

0.025 e
[m]
3 = 8.650× 10−4 4.000 e

[m]
3 = 8.017× 10−4 4.000

0.025 e
[q]
3 = 2.828× 10−5 3.999 e

[q]
3 = 3.158× 10−5 4.000

0.0125 e
[m]
4 = 2.162× 10−4 - e

[m]
4 = 2.004× 10−4 -

0.0125 e
[q]
4 = 7.072× 10−6 - e

[q]
4 = 7.893× 10−6 -

Table 3: Error comparison of the Störmer-Verlet scheme, where the �ow repre-
senting the free rigid body motion is computed with the second and eight order
Magnus method, respectively.

The results above clearly indicate that our implementation of the Störmer-
Verlet scheme is of order 2, independent of the order of the Magnus method we
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use. This is what we would expect, but whether or not the error constants change,
due to a more accurate �rst �ow, is of more interest. What we see is that there
is almost no di�erence between the error produced by the implementations using
the Magnus method of order 2 and 8, respectively - in fact, the errors using the
Magnus method of order 4 and 6 are equal to the errors using the Magnus method
of order 8 if we use 3 digits of accuracy. Although the angular momentum error
decreases a little from the implementation with the Magnus method of order 2
to the one of order 8, the quaternion error actually increases slightly. All these
results imply that the Störmer-Verlet scheme with the Magnus method of order
2 is a good integrator of our our problem, especially when the second �ow is as
dominant as here. If the free rigid body part was more in�uential, the error may
have decreased (more) from the second to the eight order Magnus method, but
our results still suggest that the second order Magnus method would lead to the
most e�cient Störmer-Verlet scheme, taking the lower computational complexity
into account. For this kind of problems one should consider to use an accurate
computation of the �ow φ[S1] in combination with the use of splitting techniques
which are especially designed for perturbed integrable systems [4, 21].
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6 Conclusion

In this paper, the equations of motion governing the free rigid body have been
solved with two di�erent semi-exact methods which we have labeled the factoriza-
tion method and the Magnus method. This thesis focuses on the derivation of the
Magnus method in the quaternion formulation, and this may be considered our
main contribution. Both the Magnus method and the factorization method have
proved to be robust and of high accuracy. We have also employed these methods
to solve the equations governing torqued rigid bodies.

The quaternion implementation we have derived is very similar to the one us-
ing rotation matrices; both rotation matrices and the quaternions representing
rotations are Lie groups and the two versions of the Arnold equation, (27) and
(28), both include a member of the respective Lie algebras: the skew-symmetric
matrix and the so-called pure quaternion (4). By comparing the quaternion im-
plementation and the implementation using rotation matrices, we could not detect
any di�erence in the accuracy. The quaternion implementation, however, has the
advantage that it only has 4 degrees of freedom, which is an advantage both to
reduce computational complexity and to better illustrate the solution, as we have
done in Figure 4.

In the comparison between the factorization method and the Magnus method,
we have seen that the Magnus method has lower computational cost when the
step size is the same for both methods, except for the eight order method where
the scheme to approximate the Magnus series expansion with a large number of
quaternion additions, constant times quaternion operations, and 6 commutators
makes the Magnus method rather slow. The factorization method is however the
most accurate for most step sizes, but we see that it accumulates round-o� error
faster than the Magnus method so that the Magnus method becomes the most
accurate for small step-sizes. Without unambiguous evidence, we conclude that
both methods perform well, but we cannot say that one method is better than the
other for all cases.

At the end of the thesis we rewrote the so-called marine vessel equations of
motion from a formulation in Euler angles to one in quaternions. We then showed
how the resulting equations could be divided into two systems: the �rst system
was simply the free rigid body, which we solved with the semi-exact methods
already presented, and the second system was solved with exact methods and this
involved, depending on the assumptions we made, the integration of a constant
or the solution of the variation of constants formula. Finally we combined these
solutions to form the so-called Störmer-Verlet splitting scheme. This turned out to
be a successful approach with overall order 2. Choosing methods of higher order
than 2 for the free rigid body part in these kinds of problems would be unnecessary,
based on our results. To consider higher order splitting schemes and an accurate
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computation of the free rigid body part would, however, be of interest for future
work on this subject. It would also be interesting to further expand the vessel
model to also involve control forces.
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A Matlab implementations

In this appendix we will list the Matlab codes for the most important programs
used in this paper; this is the implementation of the Magnus method and the
factorization method, including the functions needed to run these programs. The
programs are commented in detail.

function [mjn,qn,COM] = Magnus(n,h,m0,q0,II,orderstr)

% This is the implementation of the optimal Magnus method.

% input variables:

% n: number of time steps

% h: step size

% m0: initial angular momentum vector

% q0: initial configuration of the body, i.e. initial quaternion

% II: vector of the principal moments of inertia

% orderstr: the order of the method: 2, 4, 6, or 8

%

% output variables:

% mjn: the angular momentum at each time step

% qn: the body configuration at each time step

% COM: \Sigma(q)^T*[0;0;1]

%

% to avoid strange double precision number behavior:

order = str2num(orderstr)+0.5;

% principal moments of inertia

I1 = II(1);

I2 = II(2);

I3 = II(3);

% definition of constants

c1 = (I1*(I3-I2))/(I2*(I3-I1));

c2 = 1-c1;

% to ensure c1+c2=1:

c1 = 1-c2;

G = sqrt(m0(1)^2+m0(2)^2+m0(3)^2);

% initialization and scaling:

t = 0;

mj = m0/G;

h = G*h;

ii = 1:n;

% ...according to the order of the method

if strcmp('2',orderstr)

% define some constants and initialize some matrices:

c1h = 1/2;

mj1 = zeros(3,n);

mjEX = zeros(3,n);

% T = [t1;t]

T = [t+h*c1h+(ii-1)*h; t+h*ii];

elseif strcmp('4',orderstr)

% define some constants and initialize some matrices:

c1h = 1/2-sqrt(3)/6;

c2h = 1/2+sqrt(3)/6;

mj1 = zeros(3,n);

mj2 = zeros(3,n);

mjEX = zeros(3,n);
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% T = [t1;t2;t]

T = [t+h*(c1h+ii-1);t+h*(c2h+ii-1);t + h*ii];

elseif strcmp('6',orderstr)

% define some constants and initialize some matrices:

c1h = 1/2-sqrt(15)/10;

c2h = 1/2;

c3h = 1/2+sqrt(15)/10;

mj1 = zeros(3,n);

mj2 = zeros(3,n);

mj3 = zeros(3,n);

mjEX = zeros(3,n);

% T = [t1;t2;t3;t]

T = [t+h*(c1h+ii-1);t+h*(c2h+ii-1);t+h*(c3h+ii-1);t + h*ii];

elseif strcmp('8',orderstr)

% define some constants and initialize some matrices:

b1 = (18-sqrt(30))/72;

b2 = (18+sqrt(30))/72;

b3 = b2;

b4 = b1;

c1h = 1/2 - sqrt((3+2*sqrt(6/5))/28);

c2h = 1/2 - sqrt((3-2*sqrt(6/5))/28);

c3h = 1/2 + sqrt((3-2*sqrt(6/5))/28);

c4h = 1/2 + sqrt((3+2*sqrt(6/5))/28);

mj1 = zeros(3,n);

mj2 = zeros(3,n);

mj3 = zeros(3,n);

mj4 = zeros(3,n);

mjEX = zeros(3,n);

% T = [t1;t2;t3;t4;t]

T = [t+h*(c1h+ii-1);t+h*(c2h+ii-1);t+h*(c3h+ii-1);t+h*(c4h+ii-1);t + h*ii];

% define matrices for eight order method

Q44 = [b1 b2 b3 b4; b1*(c1h-1/2) b2*(c2h-1/2) b3*(c3h-1/2) b4*(c4h-1/2);...

b1*(c1h-1/2)^2 b2*(c2h-1/2)^2 b3*(c3h-1/2)^2 b4*(c4h-1/2)^2;...

b1*(c1h-1/2)^3 b2*(c2h-1/2)^3 b3*(c3h-1/2)^3 b4*(c4h-1/2)^3];

T4 = [1 0 1/12 0; 0 1/12 0 1/80; 1/12 0 1/80 0; 0 1/80 0 1/448];

% multiply the alphas by the factor (1/2)

M = h/2*(T4\Q44);

else

display('the order you asked for is not valid')

end

% take the conjugate of the initial quaternion

q = quatConjugate(q0);

% initialize and add the first vector to the solution matrices

mjn = zeros(3,n+1);

qn = zeros(4,n+1);

COM = zeros(3,n+1);

mjn(:,1) = m0;

qn(:,1) = q0;

temp = quatProd(quatProd(q0,[0;0;0;1]),quatConjugate(q0));

COM(:,1) = temp(2:4);

% define more constants:

d1 = sqrt(mj(1)^2+c1*mj(2)^2);

d3 = sqrt(c2*mj(2)^2+mj(3)^2);

kquadinv = c2*d1^2/(c1*d3^2);

kquad = 1/kquadinv;

if kquad>1

% Case (II)

k = 1/sqrt(kquad); % k is in this case actually k inverted
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d2 = sqrt(mj(1)^2/c1+mj(2)^2);

l = sqrt((I3-I2)*(I3-I1)/(I1*I2*I3^2));

if mj(3)<0

sigma = -1;

else

sigma = 1;

end

lambda = sigma*l*d3;

aa = mj(1)/d1; % this is cos(phi)

bb = mj(2)/d2; % this is sin(phi)

else

% CASE (I) (kquad<1)

k = sqrt(kquad);

d2 = sqrt(mj(2)^2+mj(3)^2/c2);

l = sqrt((I1-I2)*(I1-I3)/(I1^2*I2*I3));

if mj(1)<0

sigma = -1;

else

sigma = 1;

end

lambda = sigma*l*d1;

aa = mj(3)/d3; % this is cos(phi)

bb = mj(2)/d2; % this is sin(phi)

end % if kquad>1 (part 1)

% find the initial angle phi_0

phi = atan2(-bb,-aa)+pi;

% initialize the constants to compute the arithmetic geometric mean

a = 1;

b = sqrt(1-k^2);

c = k;

nn = 0;

while c>eps

phi1 = mod(phi,pi);

phi = 2*phi - phi1 + mod(atan(b/a*tan(phi1)),pi);

c = (a-b)/2;

temp = (a+b)/2;

b = sqrt(a*b);

a = temp;

nn = nn+1;

end

F = phi/(2^nn*a);

nu = lambda*t - F;

U = lambda*T-nu;

% find the jacobi elliptic functions for all times T; the higher

% the order, the more evaluations we need:

[Sn Cn] = ellipj(U,k^2);

if kquad > 1

mj1(1,:) = Cn(1,:)*d1;

mj1(2,:) = Sn(1,:)*d2;

mj1(3,:) = sigma*sqrt(d3^2-c2*mj1(2,:).^2);

mjEX(1,:) = Cn(end,:)*d1;

mjEX(2,:) = Sn(end,:)*d2;

mjEX(3,:) = sigma*sqrt(d3^2-c2*mjEX(2,:).^2);

else

mj1(2,:) = Sn(1,:)*d2;

mj1(1,:) = sigma*sqrt(d1^2-c1*mj1(2,:).^2);

mj1(3,:) = Cn(1,:)*d3;

mjEX(2,:) = Sn(end,:)*d2;

mjEX(1,:) = sigma*sqrt(d1^2-c1*mjEX(2,:).^2);

mjEX(3,:) = Cn(end,:)*d3;
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end % if kquad>1 (part2)

if order > 4

if kquad > 1

mj2(1,:) = Cn(2,:)*d1;

mj2(2,:) = Sn(2,:)*d2;

mj2(3,:) = sigma*sqrt(d3^2-c2*mj2(2,:).^2);

else

mj2(2,:) = Sn(2,:)*d2;

mj2(1,:) = sigma*sqrt(d1^2-c1*mj2(2,:).^2);

mj2(3,:) = Cn(2,:)*d3;

end

end

if order > 6

if kquad > 1

mj3(1,:) = Cn(3,:)*d1;

mj3(2,:) = Sn(3,:)*d2;

mj3(3,:) = sigma*sqrt(d3^2-c2*mj3(2,:).^2);

else

mj3(2,:) = Sn(3,:)*d2;

mj3(1,:) = sigma*sqrt(d1^2-c1*mj3(2,:).^2);

mj3(3,:) = Cn(3,:)*d3;

end

end

if order > 8

if kquad > 1

mj4(1,:) = Cn(4,:)*d1;

mj4(2,:) = Sn(4,:)*d2;

mj4(3,:) = sigma*sqrt(d3^2-c2*mj4(2,:).^2);

else

mj4(2,:) = Sn(4,:)*d2;

mj4(1,:) = sigma*sqrt(d1^2-c1*mj4(2,:).^2);

mj4(3,:) = Cn(4,:)*d3;

end

end

mjn(:,2:n+1) = G*mjEX; %rescale the solution

hsq = h^2;

% define some constants:

kn1 = h/2; kn2 = h/4; kn3 = sqrt(3)/12*hsq; kn4 = sqrt(15)*h/6;

kn5 = 10*h/6; kn6 = -1/60; kn7 = 1/12; kn8 = 1/240;

kn9 = 1/28; kn10 = 3/28; kn11 = 1/3; kn12 = -1/14; kn13 = 5/4;

kn14 = 1/12; kn15 = 7/3; kn16 = 1/6; kn17 = 9/4; kn18 = 7/120;

kn19 = 1/360;

% find the quaternion solution:

for j=1:n

if strcmp('2',orderstr)

wj1 = [-mj1(1,j)/I1;-mj1(2,j)/I2;-mj1(3,j)/I3];

Omega2 = kn1*wj1;

q = quatProd(expquat(Omega2),q);

elseif strcmp('4',orderstr)

wj1 = [-mj1(1,j)/I1;-mj1(2,j)/I2;-mj1(3,j)/I3];

wj2 = [-mj2(1,j)/I1;-mj2(2,j)/I2;-mj2(3,j)/I3];

Omega4 = kn2*(wj1+wj2) + kn3*quatCommLA(wj2/2,wj1/2);

q = quatProd(expquat(Omega4),q);

elseif strcmp('6',orderstr)

wj1 = [-mj1(1,j)/I1;-mj1(2,j)/I2;-mj1(3,j)/I3];

wj2 = [-mj2(1,j)/I1;-mj2(2,j)/I2;-mj2(3,j)/I3];

wj3 = [-mj3(1,j)/I1;-mj3(2,j)/I2;-mj3(3,j)/I3];

alpha1 = kn1*wj2;

alpha2 = kn4*(wj3-wj1);

alpha3 = kn5*(wj3-2*wj2+wj1);

C1 = quatCommLA(alpha1,alpha2);

C2 = kn6*quatCommLA(alpha1, 2*alpha3 + C1);
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Omega6 = alpha1 + kn7*alpha3 + kn8*quatCommLA(-20*alpha1 - ...

alpha3 + C1, alpha2 + C2);

q = quatProd(expquat(Omega6),q);

elseif strcmp('8',orderstr)

wj1 = [-mj1(1,j)/I1;-mj1(2,j)/I2;-mj1(3,j)/I3];

wj2 = [-mj2(1,j)/I1;-mj2(2,j)/I2;-mj2(3,j)/I3];

wj3 = [-mj3(1,j)/I1;-mj3(2,j)/I2;-mj3(3,j)/I3];

wj4 = [-mj4(1,j)/I1;-mj4(2,j)/I2;-mj4(3,j)/I3];

alpha1 = M(1,1)*wj1 + M(1,2)*wj2 + M(1,3)*wj3 + M(1,4)*wj4;

alpha2 = M(2,1)*wj1 + M(2,2)*wj2 + M(2,3)*wj3 + M(2,4)*wj4;

alpha3 = M(3,1)*wj1 + M(3,2)*wj2 + M(3,3)*wj3 + M(3,4)*wj4;

alpha4 = M(4,1)*wj1 + M(4,2)*wj2 + M(4,3)*wj3 + M(4,4)*wj4;

s1 = -kn9*quatCommLA(alpha1 + kn9*alpha3, alpha2 + kn10*alpha4);

r1 = kn11*quatCommLA(alpha1, kn12*alpha3 + s1);

s2 = quatCommLA(alpha1 + kn9*alpha3 + s1, alpha2 + kn10*alpha4 + r1);

s2m = quatCommLA(alpha2, s1);

r2 = quatCommLA(alpha1 + kn13*s1, 2*alpha3 + s2 + s2m/2);

s3 = quatCommLA(alpha1 + kn14*alpha3 - kn15*s1 - kn16*s2, -9*alpha2 - ...

kn17*alpha4 + 63*r1 +r2);

Omega8 = alpha1 + kn14*alpha3 - kn18*s2 + kn19*s3;

q = quatProd(expquat(Omega8),q);

else

display('the order you asked for is not valid')

end

% to ensure orthogonality

q = q/norm(q);

% update the solution vector

qn(:,j+1) = quatConjugate(q);

temp = quatProd(quatProd(quatConjugate(q),[0;0;0;1]),q);

COM(:,j+1) = temp(2:4);

end

-----------------------------------------------------------------------------------------------------

function [mjn,qn, CoM] = FactMet(n,h,m0,q0,II,orderstr)

% This is the implementation of the so-called factorization method.

% input variables:

% n: number of time steps

% h: step size

% m0: initial angular momentum vector

% q0: initial configuration of the body, i.e. initial quaternion

% II: vector of the principal moments of inertia

% orderstr: the order of the method: 2, 4, 6, or 8

%

% output variables:

% mjn: the angular momentum at each time step

% qn: the body configuration at each time step

% COM: \Sigma(q)^T*[0;0;1]

%

% to avoid strange double precision number behavior:

order = str2num(orderstr)+0.5;

% principal moments of inertia

I1 = II(1);

I2 = II(2);

I3 = II(3);

% definition of constants

c1 = (I1*(I3-I2))/(I2*(I3-I1));

c2 = 1-c1;

% to ensure c1+c2=1:
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c1 = 1-c2;

G = sqrt(m0(1)^2+m0(2)^2+m0(3)^2);

% initialization and scaling:

t = 0;

mj = m0/G;

h = G*h;

ii = 1:n;

E = mj(1)^2/(2*I1)+mj(2)^2/(I2*2)+mj(3)^2/(I3*2);

% define constants for the Gaussian quadrature

% and initialize some matrices:

if strcmp('2',orderstr)

c1h = 1/2;

mj1 = zeros(3,n);

mjEX = zeros(3,n);

% T = [t1;t]

T = [t+h*c1h+(ii-1)*h; t+h*ii];

elseif strcmp('4',orderstr)

bw1 = 1/2;

bw2 = 1/2;

c1h = 1/2-sqrt(3)/6;

c2h = 1/2+sqrt(3)/6;

mj1 = zeros(3,n);

mj2 = zeros(3,n);

mjEX = zeros(3,n);

% T = [t1;t2;t]

T = [t+h*(c1h+ii-1);t+h*(c2h+ii-1);t + h*ii];

elseif strcmp('6',orderstr)

bw1 = 5/18;

bw2 = 4/9;

bw3 = bw1;

c1h = 1/2-sqrt(15)/10;

c2h = 1/2;

c3h = 1/2+sqrt(15)/10;

mj1 = zeros(3,n);

mj2 = zeros(3,n);

mj3 = zeros(3,n);

mjEX = zeros(3,n);

% T = [t1;t2;t3;t]

T = [t+h*(c1h+ii-1);t+h*(c2h+ii-1);t+h*(c3h+ii-1);t + h*ii];

elseif strcmp('8',orderstr)

bw1 = (18-sqrt(30))/72;

bw2 = (18+sqrt(30))/72;

bw3 = bw2;

bw4 = bw1;

c1h = 1/2 - sqrt((3+2*sqrt(6/5))/28);

c2h = 1/2 - sqrt((3-2*sqrt(6/5))/28);

c3h = 1/2 + sqrt((3-2*sqrt(6/5))/28);

c4h = 1/2 + sqrt((3+2*sqrt(6/5))/28);

mj1 = zeros(3,n);

mj2 = zeros(3,n);

mj3 = zeros(3,n);

mj4 = zeros(3,n);

mjEX = zeros(3,n);

% T = [t1;t2;t3;t4;t]

T = [t+h*(c1h+ii-1);t+h*(c2h+ii-1);t+h*(c3h+ii-1);t+h*(c4h+ii-1);t + h*ii];

else

display('the order you asked for is not valid')

end

% initialize and add the first vector to the solution matrices



51

q = q0;

mjn = zeros(3,n+1);

qn = zeros(4,n+1);

CoM = zeros(3,n+1);

mjn(:,1) = m0;

qn(:,1) = q0;

temp = quatProd(quatProd(q,[0;0;0;1]),quatConjugate(q));

CoM(:,1) = temp(2:4);

% define some more constants

d1 = sqrt(mj(1)^2+c1*mj(2)^2);

d3 = sqrt(c2*mj(2)^2+mj(3)^2);

kquad = c2*d1^2/(c1*d3^2);

kquad = 1/kquad;

if kquad>1

% Case (II)

k = 1/sqrt(kquad); % k is in this case actually k inverted

d2 = sqrt(mj(1)^2/c1+mj(2)^2);

l = sqrt((I3-I2)*(I3-I1)/(I1*I2*I3^2));

if mj(3)<0

sigma = -1;

else

sigma = 1;

end

lambda = sigma*l*d3;

aa = mj(1)/d1; % this is cos(phi)

bb = mj(2)/d2; % this is sin(phi)

else

% CASE (I) (kquad<1)

k = sqrt(kquad);

d2 = sqrt(mj(2)^2+mj(3)^2/c2);

l = sqrt((I1-I2)*(I1-I3)/(I1^2*I2*I3));

if mj(1)<0

sigma = -1;

else

sigma = 1;

end

lambda = sigma*l*d1;

aa = mj(3)/d3; % this is cos(phi)

bb = mj(2)/d2; % this is sin(phi)

end % if kquad>1 (part 1)

% find the initial angle phi_0

phi = atan2(-bb,-aa)+pi;

% initialize the constants to compute the arithmetic geometric mean

a = 1;

b = sqrt(1-k^2);

c = k;

nn = 0;

while c>eps

phi1 = mod(phi,pi);

phi = 2*phi - phi1 + mod(atan(b/a*tan(phi1)),pi);

c = (a-b)/2;

temp = (a+b)/2;

b = sqrt(a*b);

a = temp;

nn = nn+1;

end

F = phi/(2^nn*a);

nu = lambda*t - F;
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U = lambda*T-nu;

% find the jacobi elliptic functions for all times T; the higher

% the order, the more evaluations we need:

[Sn Cn] = ellipj(U,k^2);

if kquad > 1

mj1(1,:) = Cn(1,:)*d1;

mj1(2,:) = Sn(1,:)*d2;

mj1(3,:) = sigma*sqrt(d3^2-c2*mj1(2,:).^2);

mjEX(1,:) = Cn(end,:)*d1;

mjEX(2,:) = Sn(end,:)*d2;

mjEX(3,:) = sigma*sqrt(d3^2-c2*mjEX(2,:).^2);

else

mj1(2,:) = Sn(1,:)*d2;

mj1(1,:) = sigma*sqrt(d1^2-c1*mj1(2,:).^2);

mj1(3,:) = Cn(1,:)*d3;

mjEX(2,:) = Sn(end,:)*d2;

mjEX(1,:) = sigma*sqrt(d1^2-c1*mjEX(2,:).^2);

mjEX(3,:) = Cn(end,:)*d3;

end % if kquad>1 (part2)

if order > 4

if kquad > 1

mj2(1,:) = Cn(2,:)*d1;

mj2(2,:) = Sn(2,:)*d2;

mj2(3,:) = sigma*sqrt(d3^2-c2*mj2(2,:).^2);

else

mj2(2,:) = Sn(2,:)*d2;

mj2(1,:) = sigma*sqrt(d1^2-c1*mj2(2,:).^2);

mj2(3,:) = Cn(2,:)*d3;

end

end

if order > 6

if kquad > 1

mj3(1,:) = Cn(3,:)*d1;

mj3(2,:) = Sn(3,:)*d2;

mj3(3,:) = sigma*sqrt(d3^2-c2*mj3(2,:).^2);

else

mj3(2,:) = Sn(3,:)*d2;

mj3(1,:) = sigma*sqrt(d1^2-c1*mj3(2,:).^2);

mj3(3,:) = Cn(3,:)*d3;

end

end

if order > 8

if kquad > 1

mj4(1,:) = Cn(4,:)*d1;

mj4(2,:) = Sn(4,:)*d2;

mj4(3,:) = sigma*sqrt(d3^2-c2*mj4(2,:).^2);

else

mj4(2,:) = Sn(4,:)*d2;

mj4(1,:) = sigma*sqrt(d1^2-c1*mj4(2,:).^2);

mj4(3,:) = Cn(4,:)*d3;

end

end

mjn(:,2:n+1) = mjEX;

mjn(:,1) = mjn(:,1)/G;

% find the quaternion solution

cc0 = 1/2; cc3 = 1/2;

for j=1:n

p0inv = [cc0*sqrt(1+mjn(3,j));-(cc0*mjn(2,j)+cc3*mjn(1,j))/sqrt(1+mjn(3,j));...

-(cc3*mjn(2,j)-cc0*mjn(1,j))/sqrt(1+mjn(3,j));-cc3*sqrt(1+mjn(3,j))];

p = [cc0*sqrt(1+mjEX(3,j));(cc3*mjEX(1,j)+cc0*mjEX(2,j))/sqrt(1+mjEX(3,j));...

(cc3*mjEX(2,j)-cc0*mjEX(1,j))/sqrt(1+mjEX(3,j));cc3*sqrt(1+mjEX(3,j))];
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if strcmp('2',orderstr)

mder1 = cross(mj1(:,j),[mj1(1,j)/I1;mj1(2,j)/I2;mj1(3,j)/I3]);

% ppderinv is the fourth element of the quaternion p*d/dt(p)^(-1)

kn1 = 0.5/(1+mj1(3,j));

ppderinv1 = kn1*(mj1(2,j)*mder1(1)-mj1(1,j)*mder1(2));

Psi = h*(2*E+2*ppderinv1);

elseif strcmp('4',orderstr)

mder1 = cross(mj1(:,j),[mj1(1,j)/I1;mj1(2,j)/I2;mj1(3,j)/I3]);

mder2 = cross(mj2(:,j),[mj2(1,j)/I1;mj2(2,j)/I2;mj2(3,j)/I3]);

kn1 = 0.5/(1+mj1(3,j));

kn2 = 0.5/(1+mj2(3,j));

ppderinv1 = kn1*(mj1(2,j)*mder1(1)-mj1(1,j)*mder1(2));

ppderinv2 = kn2*(mj2(2,j)*mder2(1)-mj2(1,j)*mder2(2));

Psi = h*bw1*(2*E + 2*ppderinv1) + h*bw2*(2*E + 2*ppderinv2);

elseif strcmp('6',orderstr)

mder1 = cross(mj1(:,j),[mj1(1,j)/I1;mj1(2,j)/I2;mj1(3,j)/I3]);

mder2 = cross(mj2(:,j),[mj2(1,j)/I1;mj2(2,j)/I2;mj2(3,j)/I3]);

mder3 = cross(mj3(:,j),[mj3(1,j)/I1;mj3(2,j)/I2;mj3(3,j)/I3]);

kn1 = 0.5/(1+mj1(3,j));

kn2 = 0.5/(1+mj2(3,j));

kn3 = 0.5/(1+mj3(3,j));

ppderinv1 = kn1*(mj1(2,j)*mder1(1)-mj1(1,j)*mder1(2));

ppderinv2 = kn2*(mj2(2,j)*mder2(1)-mj2(1,j)*mder2(2));

ppderinv3 = kn3*(mj3(2,j)*mder3(1)-mj3(1,j)*mder3(2));

Psi = h*bw1*(2*E + 2*ppderinv1) + h*bw2*(2*E + 2*ppderinv2) + ...

h*bw3*(2*E + 2*ppderinv3);

elseif strcmp('8',orderstr)

mder1 = cross(mj1(:,j),[mj1(1,j)/I1;mj1(2,j)/I2;mj1(3,j)/I3]);

mder2 = cross(mj2(:,j),[mj2(1,j)/I1;mj2(2,j)/I2;mj2(3,j)/I3]);

mder3 = cross(mj3(:,j),[mj3(1,j)/I1;mj3(2,j)/I2;mj3(3,j)/I3]);

mder4 = cross(mj4(:,j),[mj4(1,j)/I1;mj4(2,j)/I2;mj4(3,j)/I3]);

kn1 = 0.5/(1+mj1(3,j));

kn2 = 0.5/(1+mj2(3,j));

kn3 = 0.5/(1+mj3(3,j));

kn4 = 0.5/(1+mj4(3,j));

ppderinv1 = kn1*(mj1(2,j)*mder1(1)-mj1(1,j)*mder1(2));

ppderinv2 = kn2*(mj2(2,j)*mder2(1)-mj2(1,j)*mder2(2));

ppderinv3 = kn3*(mj3(2,j)*mder3(1)-mj3(1,j)*mder3(2));

ppderinv4 = kn4*(mj4(2,j)*mder4(1)-mj4(1,j)*mder4(2));

Psi = h*bw1*(2*E + 2*ppderinv1) + h*bw2*(2*E + 2*ppderinv2) + ...

h*bw3*(2*E + 2*ppderinv3) + h*bw4*(2*E + 2*ppderinv4);

else

display('the order you asked for is not valid')

end

y = [cos(Psi/2);0;0;sin(Psi/2)];

q = quatProd(q,quatProd(p0inv,quatProd(y,p)));

q = q/norm(q);

qn(:,j+1) = q;

temp = quatProd(quatProd(q,[0;0;0;1]),quatConjugate(q));

CoM(:,j+1) = temp(2:4);

end

% rescale

mjn = G*mjn;

-----------------------------------------------------------------------------------------------------

function pt = quatConjugate(p)

% pt is the conjugate of the quaternion p

pt(1,1) = p(1,1);

pt(2:4,1) = -p(2:4,1);

-----------------------------------------------------------------------------------------------------
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function r = quatProd(p,q)

% r is the quaternion product of the quaternions p and q

r = zeros(4,1);

r(1) = p(1)*q(1) - p(2:4)'*q(2:4);

r(2:4) = p(1)*q(2:4) + q(1)*p(2:4) + cross(p(2:4),q(2:4));

-----------------------------------------------------------------------------------------------------

function q = expquat(p)

% q is the exponential of the quaternion (0,p) in the Lie algebra

alpha = norm(p);

q = [cos(alpha);p*((1/alpha)*sin(alpha))];

-----------------------------------------------------------------------------------------------------

function a = quatCommLA(b,c)

% a is the quaternion we get by taking the commutator of the two

% Lie algebra quaternions b and c

a = 2*cross(b,c);

-----------------------------------------------------------------------------------------------------

function Q = quat2matrix(q)

% Q is the rotation matrix that represents the same rotation

% as the quaternion q by the Euler-Rodrigues map

Q = eye(3) + 2*q(1)*hatmap(q(2:4)) + 2*hatmap(q(2:4))^2;
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