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Summary

The design of security protocols is given an increasing level of academic interest,
as an increasing number of important tasks are done over the Internet. Among
the fields being researched is formal methods for modeling and verification of
security protocols. One such method is developed by Cremers and Mauw[7].
This is the method we have chosen to focus on in this paper.

The model by Cremers and Mauw specifies a mathematical way to represent
security protocols and their execution. It then defines conditions the protocols
can fulfill, which is called security requirements. These typically states that in
all possible executions, given a session in which all parties are honest, certain
mathematical statements hold.

Our aim is to extend the security requirements already defined in the model to
allow some parties in the session to be under control of an attacker, and to add
a new definition of identity protection. This we have done by slightly modifying
the model, and stating a new set of security requirements.
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1 Introduction

The goal of this thesis is to expand current formal methods for security protocols
to model and reason about secrecy, authentication and identity protection with
compromised agents in the session in which we want the property to hold. We
will formalize security requirements for this intruder model in the trace model
developed by Cremers and Mauw[7]. By doing this, we take the model a first
step towards inclusion of privacy.

We perform a case study to analyze the usefulness of our generic definitions. This
consists of proposing and verifying a protocol for contract signing. Our scenario
is that a user wants to sign a contract a store offers. The digital signature of
the user is stored at a notary, and the user wants to sign the contract without
the intruder or the notary learning neither the contract nor the identity of the
store.

1.1 Related work

Our work aims to build on the formal methods presented by Cremers et al.[7,
8, 9], by allowing compromised agents in the protocol sessions, and introduce a
notion of anonymity called identity protection.

The terminology for privacy and anonymity has been changing over the years,
but now it seems most authors agree on the definitions proposed by Pfitzmann
and Köhntopp in 2001[21], which we also use. Identity protection, however, is
not a part of this proposal.

Anonymity is identified as one of the current challenges in protocol verification[20],
and in the last decades, privacy has been a topic for work among computer sci-
entists. For instance, metrics to measure anonymity has been developed, such
as the anonymity set by Chaum in 1988[4]. More recent works on the degree
of anonymity are found in [12, 22, 11]. We will, however, consider the set of all
users as the anonymity group.

In a symbolic model similar to the one we use, Mauw et al. have formalized a
notion of anonymity using the mentioned anonymity set[18]. The main difference
is that they work in a model in which the intruder can only eavesdrop messages,
a so-called passive attacker. We have chosen to allow an active attacker, and
also let him compromise some of the participants in the session in which we
want identity protection to hold.

Recent work on intruder models with compromised agents has, in the model we
use, been done by Basin and Cremers[2]. They introduce a hierarchy of how and
to what degree protocol participants are compromised. We will only consider
honest and fully compromised participants.
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Our case study contains contract signing in which the involved parties sign the
contract after each other. This is called asymmetric contract signing, and is a
simpler variant as opposed to the symmetric one as studied by e.g. Ralf Küsters
et al. in [15].

1.2 Thesis outline

We begin in Section 2 with an informal discussion of the case study. In particular,
we discuss the functional requirements of the protocol, the threat model, and
security requirements it should fulfill.

In Section 3, we present the model for our formal reasoning. This consists of
most parts of the existing model, and changes and extensions necessitated by
our new intruder model, and our notion of identity protection.

A proposed protocol for our case study is presented in Section 4.

The case study is carried out in Section 5. Here we formalize the threat model
and the security requirements for our scenario, using the semantics of our frame-
work. Then we validate some of our definitions by testing them on our proposed
protocol.

The paper is concluded with a summary of achievements and suggestions for
future work in Section 6.

1.3 Contributions

The model presented in Section 3 builds upon the one presented by Cremers et
al.[1, 5, 7, 8, 9]. We have extended the model to enable our definition of identity
protection, and we have added new versions of already existing security require-
ments. While the existing definitions required all parties in the protocol session
in which the claim is tested to be honest, we have relaxed this requirement to
require only a subset of the parties to be honest.

The following security requirements make up our contribution to the model:

• Group secrecy.

• Partial injective and partial non-injective agreement.

• Term agreement and partial term agreement.

• Partial injective and partial non-injective synchronization.

• Identity protection and group identity protection.
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2 Requirements

We perform a case study to analyze the usefulness of our generic definitions.
The scenario we consider is a user and a store signing a contract, using a notary
as a trusted third party.

This section first discusses what a protocol designed for this scenario should do.
Then we discuss the threat model, and set up some informal security require-
ments for the protocol. These we require to hold even when certain combinations
of the store, the user or the notary are played by dishonest agents.

2.1 Functional requirements

A typical example for our scenario could be a person (the user) searching the
Internet for short-time work. He finds an offer (from the store), and downloads
the contract. Instead of signing it by hand, he wants to do it online. For this
purpose he has a government-approved company (the notary), which can sign
documents electronically on his behalf. He fills out his personal details and sends
the contract to the store, which signs and returns it. Then he authenticates with
his notary, and sends the contract there. The notary then signs it with the user’s
signature, and sends it back. The user now has a contract signed by both him
and the store, a copy of which he sends to the store.

We generalize this scenario, and divide it into three phases:

Information phase Here the user acquires the contract, and tells the store he
wants to sign it.

Signing phase The store signs the contract, and then the notary signs it on
behalf of the user.

Distribution phase Here the signed contract is sent to the user and the store,
leaving them both with a proof of the agreement.

The functional requirement is to enable the above described transaction. In
Figure 1 we see an informal depiction of the scenario protocol.

2.2 Threat model

We here specify the threat model. We do this in three steps, in which the threat
level increases. We also give examples of different threat scenarios.
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Store User Notary

Contract to sign

Partly signed contract

Authenticate and send

Fully signed contract

Forward signed contract

msc Scenario protocol

Figure 1: Informal message sequence chart of the scenario protocol.

2.2.1 Model 1: Dolev-Yao attack model

Considering that a natural environment for the protocol is the Internet, we allow
a full Dolev-Yao attack model, as presented in [13]:

• The attacker has complete control over the network. This means he can
see all messages, and block them if he chooses. He can also inject messages.

• The attacker is a legitimate user of the network, and honest users might
choose to initiate protocol sessions with him.

In this level, we require no security if the attacker plays a role of in protocol ses-
sion we inspect. However, he might do so someplace else, and use the knowledge
he gains there. How this works will become clear as the paper progresses.

Attack scenarios in this model could be another store trying to get the content
of the contract. The motivation could be to adjust the price he is offering for
something similar.

2.2.2 Model 2: Compromised user and store

The next level in addition allows the attacker to play a role in the protocol
session in which we want security requirements to hold. Which role he his
allowed to play will depend on the security requirement we look at.

A dishonest store could try to trick the user into signing a contract different
from what the user intend to sign. The same way, a dishonest user could also
have interests in changing the contract.
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2.2.3 Model 3: Partly compromised notary

In addition to the above two models, we add the possibility that the notary
is partly compromised. We will not allow him to be fully compromised, as he
controls the signature of the user. Instead, we require that the notary will always
act according to the protocol, but allow some information he gains during the
protocol execution to be leaked to the intruder.

An insider at the notary might conspire with the attacker, and try to gather
information about the store or the content of the contract. For instance, he
might want to know if someone is signing the contract of a competitor.

2.3 Security requirements

Security requirements are claims of what should not be possible. We here discuss
informal requirements from the view of the three actors. This corresponds to
how our model defines security requirements as part of a role specification.

Note that the time dimension is not considered, as it is not a part of the current
model, and not in our additions. Typically, we would otherwise have required
that only a certain time can pass between the store signs the contract, and it is
signed by the notary.

2.3.1 The store

To be sure only the store can sign contracts with his signature, his signing key
must be secret in all attack models.

The store wants to be sure that given an honest user, the contract is secret, also
from a partly compromised notary.

Further, the store and the user should agree on the content of the contract. In
no cases should it be possible for one of them to end up with a contract signed
by both parties, different from a contract the other party has previously signed.

Another issue is that the store might want to know if a valid contract was
produced in an unfinished session, since it might bind him to some actions. The
store would want a copy of the signed contract, to present in case of a dispute.
This relates to the concept of fairness in contract signing. We will not analyze
this using our model, but we will briefly discuss it here.

Fairness means that among the two parties signing a contract, no one should be
able to exclusively end up with a binding contract. To see how this might be
a problem, consider a price being agreed upon, which in the future might rise
or fall. Then it might be of interest to be the only one having the contract, to
force through a transaction if desirable.



Page 6 3 SECURITY PROTOCOL MODEL

After the notary has signed the contract for the user, it might be binding even
if the communication is stopped. That way, the user might keep the contract
without giving it to the store. He could then choose to only use it when it gains
him. A solution could be that the store, after the protocol has timed out, asks
the notary if it did sign the contract, and eventually asks for a copy directly
from him. We will, however, not discuss this problem further, and instead refer
the reader to [3] and [15].

2.3.2 The user

The user wants to control how much information is available to the other parties.
He might want to keep the content of the contract and the identity of the store
secret, even to a partly compromised notary.

Further, the user wants to be in control of what is signed on behalf of him. That
means that only the document he picked in the same session as he authenticated
with the notary, should be signed in that session. To be sure only he can authen-
ticate with the notary, the password should be secret. Both these requirements
should hold with a compromised store.

After execution of the protocol, the user should agree with the store about the
content of the contract. The user also wants it to be impossible for the notary to
guess the contract used. For instance, the notary might want to take actions if
the user signs the standard contract of a competitor notary. With this in mind,
the notary could check some standard contracts against what he is asked to sign,
as pointed out in a similar scenario in [14]. These two requirements should hold
with a partly compromised notary.

2.3.3 The notary

The key used for signing must remain secret for all attack models.

The notary signs contracts on behalf of the user, and wants to be sure that
the real user authenticated and indented to sign the contract that was actually
signed. As a requirement for this, the notary wants the password they share to
remain secret. This should hold with a compromised store.

3 Security protocol model

In this section we present the semantics in which we model security protocols.
We begin with a presentation of the model and notation used, as presented by
Cremers et al. in [7], [8] and [9], incorporating some of the changes done in [2].
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Last in this section, we try to provide intuition for the model by discussing how
it relates to actual protocols running over the Internet.

3.1 Formal semantics for security protocols

Protocols can be viewed as a specification of how agents playing roles interact
over a communication network. The interaction is done by sending and receiving
certain messages. Security protocols have in addition some claims about what
should not be possible. These are called security requirements, and are the topic
of Section 3.2.

We begin with notation for how to specify a protocol role. We then explain how
the specification is realized into an actual run of the protocol. This takes us to
different states of the system, and how the agents or the intruder change the
state. One possible path of state transitions is called a trace, which gives us the
semantics needed.

3.1.1 Role specifications

A protocol consists of a finite set of roles from the set Role . Each role is specified
by a list of events from the set RoleEvent .

Roles interact in events by sending and receiving messages from the set RoleMess .
The sending and receiving of the message m we denote by send l(m) and recv l(m).
All events are tagged with a unique label l from the set Label , except for corre-
sponding send and receive events, which is given the same label. The sender and
recipient of the message is not required to be included as part of the message.

To facilitate discussion of security properties local to each role, we also include
security claims in the event list. These we denote as claim l(c), where c is from
the set Claim, which we will populate in Section 3.2.

Role messages are built up by combining terms from different sets. We define
a set of assignable variables Var , a set of constants Const , a set of roles Role ,
and a set of functions Func. We denote the encryption of the term x by the key
y as {|x|}y, and can then define RoleMess recursively as:

RoleMess ≡ Var | Role | Const | Func(RoleMess) |

(RoleMess ,RoleMess) | {|RoleMess |}RoleMess .

In this context we also introduce the subterm operator ⊏, defined in the obvious
way based on the composition of terms. With this notation, a term is not a
subterm of itself. If that is needed, we will use ⊑.

The functions we will use are pk(R) and sk(R) for the public and private (secret)
key of the role R, respectively, k(R, I) for the symmetric key known to roles R
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and I, and h(m) for the hash of m. The public keys of all agents are considered
known to all parties of the protocol and the intruder.

For all terms we assume the existence of an inverse, where t−1 denotes the inverse
key of t. In particular, we have that pk(R)−1 = sk(R) and sk(R)−1 = pk (R).
For all other terms, t−1 = t unless otherwise stated.

We then define a security protocols as a map SecProt from roles to lists of events:

SecProt : Role → RoleEvent∗

RoleEvent ⊇ {send l(m), recv l(m), claim l(c) |

l ∈ Label ,m ∈ RoleMess , c ∈ Claim}

For a security protocol p, we will for readability denote the domain of SecProt
as rolesof (p).

We introduce three utility functions taking us from an event label in a protocol
p, to the role having that event in the event list, denoted by p(R) for role R:

sendrole(l) = R if send l(·) ∈ p(R)

recvrole(l) = R if recv l(·) ∈ p(R)

claimrole(l) = R if claim l(·) ∈ p(R)

Here, and in the rest of the document, we use · to express that the arguments
placed here does not matter in the current context. Above, it means that the
actual message of the events does not matter for the utility functions defined.

We also define a partial ordering of events in a protocol. First we introduce a
send-before-receive order, ≺sr, expressing that a send event happens before the
corresponding receive event, send l ≺

sr recv l. We denote the ordering of events
in the event list of the role R for ≺R, and call it role order. We now define a
partial ordering of events in a protocol as the transitive closure of the union of
all role orders and the send-before-receive order, that is

≺p=
(

⋃

R∈Role

≺R ∪ ≺sr
)+

.

We denote a list of events for a protocol p which follows this ordering for elist(p).

Example 1 (NSL protocol). As an example we use the Needham-Schroeder-
Lowe protocol, denoted by NSL, as depicted with its partial ordering in Figure 2.
In a role specification where I,R ∈ Role, nI , nR ∈ Const, vI , vR ∈ Var, this
results in the following list of events for the initiator role:

NSL(I) = send1(I,R, {|I, nI |}pk(R)) · recv2(R, I, {|R,nI , vI |}pk(I))·

send3(I,R, {|vI |}pk(R)) · claim4(ni–synch).
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Initiator

I

Responder

R

generate nI

{|I, nI |}pk(R)

generate nR

{|R, nI , nR|}pk(I)

{|nR|}pk(R)

ni–synchni–synch

msc Needham-Schroeder-Lowe protocol

(a) Message sequence chart.

send1

recv2

send3

claim4

recv1

send2

recv3

claim5

(b) Partial ordering.

Figure 2: The Needham-Schroeder-Lowe protocol.

For the responder, we get the following:

NSL(R) = recv1(I,R, {|I, vR|}pk(R)) · send2(R, I, {|R, vR, nR|}pk(I))·

recv3(I,R, {|nR|}pk(R)) · claim5(ni–synch).

In this example, we follow an often used practice of including the sender and the
recipient as the first two parts of the messages.

3.1.2 Protocol instantiations

We have in the last section defined how to specify a protocol. When parties
use this specification to run the protocol, we call it an execution of the protocol.
The parties executing the protocol are called agents, and taken from the set
Agent . When an agent follows a role specification, it is called a run.

A run of a role is in our model also called an instantiation of a role specifica-
tion. Each run is identified by a run identifier from the set RunId . During an
instantiation, roles are given to concrete agents, constants are made unique, and
variables assigned values. This we denote by inst = (rid , ρ, σ) for rid ∈ RunId ,
ρ : Role ⇒ Agent and σ : Var ⇒ RunMess. Here ρ keeps track of the role
assignments, and σ stores variable assignments. These functions are local to
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each run. We will differ between different role assignment functions by tagging
them with a run identifier rid and a trace α, that is, as ρα,rid . The same way
we will tag the function σ. Traces are explained in Section 3.1.3.

We now introduce two utility functions, taking us from a run identifier to the
agent that created the run, and to the role that agent plays in the run. These
we denote agentof : RunId → Agent and roleof : RunId → Role . When needed,
we tag thee functions with a trace, and write, say agentof α.

A run is an instantiation together with a list of role events, following role order.

After an agent has taken a role, that agent starts to execute that role, following
the list of events. This takes us from RoleEvent to RunEvent , which we define
as follows:

RunEvent ⊇{create(run), send l(m)♯rid , recv l(m)♯rid , claim l(c)♯rid |

rid ∈ RunId , l ∈ Label ,m ∈ RunMess, c ∈ Claim}

We define members of the set Claim in Section 3.2.

Any agent can at any time choose to start a run of a role that starts with a
send event. That happens with a create event, in which the agent assigns that
role to himself, and is given a run identifier. Then the role message in the send
event is instantiated, and given to the intruder. Instantiation of role messages
is done as follows:

All constants are made unique by appending the run identifier to their name.
Role names not previously assigned an agent are given one, by the choice of
the agent doing the instantiation. Variables must first be present in a receive
event, and are replaced by the values they were assigned then. We formalize
this, including the composition of terms. Here is how instantiation works on a
role term t:

(rid , ρ, σ)(t) =































ρ(r) if t ≡ r ∈ Role
c#rid if t ≡ c ∈ Const
f((rid , ρ, σ)(t1), . . . , (rid , ρ, σ)(tn)) if t ≡ f(t1, . . . , tn)
σ(v) if t ≡ v ∈ Var
((rid , ρ, σ)(t1), (rid , ρ, σ)(t2)) if t ≡ (t1, t2)
{|(rid , ρ, σ)(t1)|}(rid ,ρ,σ)(t2) if t ≡ {|t1|}t2

From some terms, others can be inferred. For instance, the cipher text together
with the decryption key gives knowledge of the encrypted message. This is
expressed by the knowledge inference operator, ⊢, defined as the smallest relation
satisfying the following, where the set of terms M denotes the knowledge of an
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agent or the intruder:

t ∈ M ⇔M ⊢ t

M ⊢ t1 ∧ M ⊢ t2 ⇔M ⊢ (t1, t2)

M ⊢ t1 ∧ M ⊢ t2 ⇒M ⊢ {|t1|}t2

M ⊢ {|t1|}t2 ∧ M ⊢ t−1
2 ⇒M ⊢ t1

M ⊢ f ∧ f /∈ {sk , k} ∧
∧

0≤i<n

M ⊢ ti ⇒M ⊢ f(t0, . . . , tn).

Here we see that knowledge of an agent name gives knowledge of his public key.
Since all agent names are known, all parties in the protocol knows all public
keys. This will change in Section 3.2.5, in which we introduce a set of secret
agents.

The needed initial knowledge of an agent can be inferred from the event list, as
the set of all atomic terms used in the role specification, except for variables.
By atomic terms, we will mean terms with no subterms.

After instantiation, the message in a send event is put directly into the knowledge
of the intruder, denoted by IK .

Each time an agent encounters a receive event in the role specification, it has
to wait for the intruder knowledge to contain a message matching the receive
pattern. For details on this matching, we refer to [7]. For our use, it suffices
to say that the agent waits for a message for which instantiated values in the
patterns equal the ones in the message, and other variables can be assigned the
right type, unless otherwise stated. We will for a instantiation of a receive event,
(inst)(recv (pattern)), denote this as a predicate Match(inst , pattern ,m, inst ′).
Here inst ′ denotes the resulting instantiation, and m is the message fed the
agent from the intruder.

If the receive pattern includes role names not previously present in the role
specification, any agent name is accepted, and the role assignment function of
the receiving run is updated.

The list of events in a non-empty role specification can be separated into the
first event and the rest, and we write this as RoleEvent∗ = event l · s, where
event l is the first event. As events are instantiated, they are removed from this
list, and a new event will be the first, until the list is empty.

Note that that while an agent is executing a role, it is still ready to start any
other role starting with a receive event if it sees a matching message. The same
agent can also choose to start playing any role that starts with a send event.

When a protocol role is instantiated, the run is added to the set F , which
contains the remaining steps of created runs. To get from the set of runs F , to
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the set of run identifiers that identifies these runs, we introduce the function
runids(F ).

We now introduce notation to remove an event directly from the set of remaining
runs. When we remove event l from run = (inst , event l · s) in the set, we replace
run in F with the run run ′ = (inst , s). This we denote F [run ′/run], as a
short-hand for redefining F to be (F \ {run}) ∪ {run ′}.

We will partition the agents in two sets, trusted agents in AgentT and compro-
mised in AgentU . Compromised agents only differ from honest agents in that
the intruder shares their knowledge. In Section 3.2.5 we will introduce a third
set, but since that set only affects the definition of identity protection, we have
omitted it here.

The knowledge of the intruder is denoted by IK , and is given by a set of run
terms. The initial intruder knowledge is defined to be IK 0. This is terms the
intruder is given before the protocol starts executing.

Definition 1 (Default initial intruder knowledge). Unless otherwise stated, the
initial intruder knowledge is given by:

IK 0 =
⋃

a∈AgentU ,b∈Agent

{pk (a), sk (a), k(a, b), k(b, a)} ∪ h.

Here, h represents the hash function as mentioned in Section 3.1.1.

Now we define the state of the protocol as the instantiation progresses as the
tuple:

State = (tr , IK , F ).

The list in tr , the trace so far, represents the previous states of the protocol,
and is explained in Section 3.1.3.

The initial state is given by s0 = (〈〉, IK 0, ∅).

This state can be modified only by certain transition rules. In the formal nota-
tion, which equals the one used in [7], we use the following pattern:

[event name ]
requirements for the event

old state → new state

There are four ways in which an agent can change the state of the system for a
protocol p.

[create ]
run = (inst = (rid , ρ, ∅), elist (p)) ∧ rid /∈ runids(F )

(tr , IK , F ) → (〈tr · create(run)〉, IK , F ∪ {run})

[send ]
run = (inst , send l(m) · s) ∈ F

(tr , IK , F ) → (〈tr · (inst)send l(m)〉, IK ∪ {inst(m)}, F [(inst , s)/run ])
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[recv ]
run = (inst , recv l(pattern) · s) ∈ F ∧ IK ⊢ m ∧ Match(inst , pattern ,m, inst ′)

(tr , IK , F ) → (〈tr · (inst)recv l(pattern)〉, IK , F [(inst ′, s)/run ])

[claim]
run = (inst , claim l · s) ∈ F

(tr , IK , F ) → (〈tr · (inst)claim l〉, IK , F [(inst , s)/run ])

3.1.3 Traces

We have now defined the transition rules in which the state is modified. A
valid sequence of these transitions is called a trace, denoted by α = α0 · · ·αn−1.
The trace α from s0 to sn, s0

α
−→ sn, is the result of the transitions s0

α0−→

s1 · · · sn−1
αn−1

−−−→ sn. The length of the trace is denoted |α|. The set of all
possible traces for a protocol p is denoted Tr(p).

In a trace α, M(αi) denotes the intruder knowledge right before the execution
of transition αi.

Example 2 (The Lowe-attack on Needham-Schroeder). To illustrate the nota-
tion for a trace, we here show the attack Lowe discovered on the short version of
the Needham-Schroeder Protocol[16]. This is the same trace as found in [9], but
updated to use our notation. Here, the agent e is compromised, and the intruder
therefore knows sk(e). The same attack is viewed using a message sequence
chart in Figure 3. Note that σ is not written down, but can be constructed from
the trace given. The role assignments function ρ is only written down in the
create rule, to make it clear who is doing the run under what runtime identifier.
The rest can be constructed from the trace.

α1 =create(run = (1, {I → a}, ∅))

α2 =send1(a, e, {|a, nI ♯1|}pk(e))♯1

α3 =create(run = (2, {R → b}, ∅))♯2

α4 =recv1(a, b, {|a, nI ♯1|}pk(b))♯2

α5 =send2(b, a, {|nI♯1, nR♯2|}pk (a))♯2

α6 =recv2(e, a, {|nI♯1, nR♯2|}pk (a))♯1

α7 =send3(a, e, {|nR♯2|}pk (e))♯1

α8 =claim4(ni–synch)♯1

α9 =recv3(a, b, {|nR♯2|}pk (b))♯2

α10 =claim5(ni–synch)♯2

Here the last claim fails, since b thinks he is talking to a, while he was actually
talking to e. This will become clear after the content of the claim ni–synch is
explained in Definition 14.
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run = (1, {I → a}, ∅)

a ∈ AT

Intruder

e ∈ AU

run = (2, {R → b}, ∅)

b ∈ AT

generate nI♯1

{|a, nI♯1|}pk(e)

{|a, nI♯1|}pk(b)

generate nR♯2

{|nI♯1, nR♯2|}pk(a){|nI♯1, nR♯2|}pk(a)

{|nR♯2|}pk(e)

{|nR♯2|}pk(b)

ni–synch

msc Attack on the Needham-Schroeder Protocol

Figure 3: The Lowe-attack on the Needham-Schroeder Protocol, displayed with
instantiated terms.

3.2 Security requirements

Protocols have something they want to achieve, and security protocols also have
some requirements about what should not be possible. For example, a password
login protocol should make it possible for users to log in, while also making it
impossible for intruders to get hold of the password used.

In this chapter we develop and define new security requirements. Existing re-
quirements for secrecy and two types of authentication, agreement and synchro-
nization, are defined and modified to allow some of the roles to be given to
dishonest agents. Last, a definition of identity protection is proposed in Sec-
tion 3.2.5.

This section is intended to be a general extension of the model, and not specific
to our scenario.

3.2.1 Secrecy

Secrecy is informally the property that the intruder does not know a certain
term. We require that all roles in the run in question have been assigned to
honest agents. In previous versions of the model, as found in [7, 9], all role
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assignments are made as soon as a run is created. That might include roles
that does not communicate with the role the creating agent is playing. We
have slightly changed how the role assignment function works. In our version,
roles are assigned when needed, or learned from received messages. Therefore,
ρ might not be defined for all roles of the protocol, and we have updated that
part in the definition to account for this.

For ρ, we require that it, prior to each instantiation of a role name, contains
that role in its domain. The domain might be expanded right before a send
event, or by receiving agent names in a receive event.

To require ρα,rid to map all assigned roles to honest agents, we will write ρα,rid :
Role → AgentT .

Definition 2 (Secrecy). For a role in a protocol p, the predicate SECRET in
a claim labeled l is given by:

SECRET (p, l) ⇐⇒

∀α∈Tr(p),k∈N,a∈Agent ,rid∈RunId ,m∈RunMess

αk = claim l(secret ,m)♯rid ∧

ρrid ,α : Role → AgentT ⇒

m /∈ M(αk).

We now allow some of the roles to be given to compromised agents in the run,
yet we still want the term to be secret.

The group of roles, R1, R2, . . ., restricted to honest agents, we denote by a tuple
TrustedRoles = (R1, R2, . . .), and we call the new security requirement for group
secrecy, referring to the knowledge of the term remaining inside a group. We will
always require that the claiming role is a part of the group TrustedRoles , and,
trivially, that TrustedRoles only includes roles of the protocol in question. When
the roles are instantiated, we call the instantiated tuple of agents TrustedAgents .
While a tuple of terms have order, this does not matter in this context, and we
will treat the tuple as a set in our mathematical notation. By abuse of notation
we will write TrustedAgents ⊆ AgentT to denote that all the agents in the tuple
are honest.

Definition 3 (Group secrecy). For a role in a protocol p, the predicate GROUP–SECRET
in a claim labeled l is given by:

GROUP–SECRET (p, l) ⇐⇒

∀α∈Tr(p),k∈N,rid∈RunId ,m∈RunMess

αk = claim l(group–secret ,m,TrustedAgents)♯rid ∧

TrustedAgents ⊆ AgentT ⇒

m /∈ M(αk).
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We then state a theorem for the relation between these two secrecy claims.

Theorem 1 (Group secrecy implies secrecy). The group secrecy requirement is
at least as strong as secrecy. If a protocol p contains claim l(group–secret ,m,TrustedRoles ),
then we have the following predicate implication, in which the protocol p′ equals
p, except we have replaced claim l by claim l′(secret ,m):

∀p∈SecProt : GROUP–SECRET (p, l) ⇒ SECRET (p′, l′)

Proof. Secrecy considers a subset of the traces considered by group secrecy.
Therefore, if a term stays secret in the set of traces considered by group se-
crecy, it will hold in the subset of the traces considered by secrecy.

3.2.2 Agreement

Agreement denotes that an agent agrees with the others regarding the content
of messages sent and received. This is called non-injective agreement, which we
develop in three steps.

The first step is agreement concerning one single pair of read and send events,
identified by a label.

Definition 4 (One-label agreement). For a given trace α, an upper bound
k ∈ N on the position in the trace to search, a label l, and two runs identified
by rid1 and rid2, the single-label agreement predicate 1L–AGREE is given by:

1L–AGREE (α, k, l, rid 1, rid2) ⇐⇒

∃i,j,m∈RunMess ∧ i < k, j < k ∧

αi = send l(m)♯rid1 ∧ αj = recv l(m)♯rid2.

This predicate states that for a label l, the two given runs agree on the content
of send l and recv l.

We now introduce the notion of a cast, a terminology taken from a theater play
with multiple performances with different actors playing different roles:

cast : RunId ×Role → RunId

We will not need to know how this function works, as we will only need its
existence. Typically, this map will take us from a run making a claim, and a
role the agent playing that run communicated with, to the run identifier where
an agent played that role.

We then define the next predicate, extending 1L–AGREE to act upon a set of
labels:
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Definition 5 (Multi-label agreement). For a given trace α, an upper bound
k ∈ N in the trace, a set of labels L, a run given by rid and a cast function cast ,
multi-label agreement is defined with the predicate:

ML–AGREE(α, k, L, rid , cast) ⇐⇒

∀l∈L

1L–AGREE (α, k, l, cast (rid , sendrole(l)), cast (rid , recvrole(l))).

The claim ML–AGREE is then extended to take into account the whole protocol.
To do that, we need a way to get hold of relevant events to check. For an event
eventm in a protocol p, we denote the set of preceding receive event labels as

precp(m) = {l ∈ L | recv l ≺p el}.

That is, all the receive events that could precede and therefore affect the event
with the label given. With this we are ready for the last step.

Definition 6 (Non-injective agreement). For a role in a protocol p, the predicate
NI –AGREE in a claim labeled l is given by:

NI –AGREE(p, l) ⇐⇒

∀α∈Tr(p),k∈N,rid∈RunId

αk = claim l(ni–agree)♯rid ∧

ρrid ,α : Role → AgentT ⇒

∃cast : cast(rid , claimrole(l)) = rid ∧

ML–AGREE(α, k, precp(l), rid , cast).

Informally, this states that for all send and receive events of a role up until the
claim, we have in all traces a (not necessarily unique) run were other agents are
sending and receiving the same messages.

The notion of agreement requires all roles to be played by honest agents in
the run of the claim. We here define partial agreement, allowing some roles to
be assigned to compromised agents. Informally, we require agreement only for
messages that is shared inside the trusted group. This will imply agreement of
the terms sent between those agents.

We define a function that, given a label, returns the labels for the previous and
relevant send and receive events that are between members of the group encoded
in the tuple TrustedRoles . For the protocol p, we denote this precTrustedRoles ,p,
and we define it formally for l ∈ Label as:

precTrustedRoles,p(l) = {l′ ∈ Label | revcl′ ≺p event l ∧

ρ(sendrole(l′)) ∈ TrustedRoles ∧

ρ(recvrole(l′)) ∈ TrustedRoles}.
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We now use this instead of precp in Definition 6, modify the part about which
roles are trusted, and get:

Definition 7 (Partial agreement). For a role in a protocol p, the predicate
PART–AGREE in a claim labeled l is given by:

PART–AGREE(p, l) ⇐⇒

∀α∈Tr(p),k∈N,rid∈RunId

αk = claim l(part–agree ,TrustedAgents)♯rid ∧

TrustedAgents ⊆ AgentT ⇒

∃cast : cast(rid , claimrole(l)) = rid ∧

ML–AGREE(α, k, precTrustedRoles,p(l), rid , cast).

Non-injective agreement guarantees the existence of runs by all communication
partners in which the messages agree. The runs do not have to be unique. This
enables replay attacks, in which an attacker can reuse old sessions. To disable
this, we require the casting function to be injective, and get:

Definition 8 (Injective agreement). For a role in a protocol p, the predicate
I –AGREE in a claim labeled l is given by:

I –AGREE (p, l) ⇐⇒

∀α∈Tr(p),k∈N,rid∈RunId

αk = claim l(i–agree)♯rid ∧

ρrid ,α : Role → AgentT ⇒

∃cast injective : cast(rid , claimrole(l)) = rid ∧

ML–AGREE(α, k, precp(l), rid , cast).

Similarly, we define partial injective agreement:

Definition 9 (Partial injective agreement). For a role in a protocol p, the
predicate PART–I –AGREE in a claim labeled l is given by:

PART–I –AGREE(p, l) ⇐⇒

∀α∈Tr(p),k∈N,rid∈RunId

αk = claim l(part–i–agree ,TrustedAgents)♯rid ∧

TrustedAgents ⊆ AgentT ⇒

∃cast injective : cast(rid , claimrole(l)) = rid ∧

ML–AGREE(α, k, precTrustedRoles,p(l), rid , cast).

Agreement as defined here concerns the messages, and not the individual terms.
When everyone agrees on all messages, they automatically also agree on the
terms the messages contain, as stated in [8, Section 4.1].
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This can be more complicated when we allow compromised agents in the claiming
run. Some terms may pass through the compromised part, but we still want
the honest agents to agree on them in the end. An example could be a signed
term that is passed around. It might never be sent between two agents inside
the trusted group, yet the intruder might not be able to change it, due to later
receive events.

We therefore introduce agreement for individual terms. This is closer to the
way Lowe defined agreement in [17, Section 2.3]. This has also been done in [1],
under the name data-agree, with the requirement that all roles were given to
honest agents.

To decide which terms should agree, we must specify a function along with the
claim:

γ : Role → RoleTerm.

Given a role, γ gives us the term that should agree with the one in the claim.
This function is not instantiated. We allow the domain of γ, denoted by dom(γ),
to be smaller than the set of roles in the protocol.

Definition 10 (Term agreement). For a role in a protocol p, the predicate
PART–TERM –AGREE in a claim labeled l is given by:

TERM –AGREE(p, l) ⇐⇒

∀α∈Tr(p),k∈N,m∈RunMess,rid∈RunId

αk = claimS6
(part–term–agree ,m, γ)♯rid ∧

ρrid ,α : Role → AgentT ⇒

∀r∈dom(γ) : ∃rid ′∈RunId σα,rid(γ(r)) = m.

We then define partial term agreement.

Definition 11 (Partial term agreement). For a role in a protocol p, a trusted
group of roles TrustedRoles , the predicate PART–TERM –AGREE in a claim
labeled l is given by:

PART–TERM –AGREE(p, l) ⇐⇒

∀α∈Tr(p),k∈N,m∈RunMess,rid∈RunId

αk = claim l(part–term–agree ,m,TrustedAgents , γ)♯rid ∧

TrustedAgents ⊆ AgentT ⇒

∀r∈dom(γ) : ∃rid ′∈RunId σα,rid ′(γ(r)) = m.

We require that valid partial term agreement claims only consider a term that is
instantiated by the claiming role at the point of the claim, and that all roles in
the trusted group are intended to have the value of this term in the role message
given by γ.
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3.2.3 Synchronization

Synchronization denotes that what an honest agent thinks has happened, actu-
ally did happen. That means that everything that agent sent and received, was
received and sent by the honest agents the agent thought he communicated with,
in the intended order. The requirement of an ordering is the only change from
agreement. We call this claim non-injective synchronization, and we develop it
in three steps.

The first step is synchronization concerning one single pair of send and receive
events, identified by a label.

Definition 12 (One-label synchronization). For a given trace α, an upper
bound k ∈ N on the trace length to search, a label l, and two runs identi-
fied by rid1 and rid2, the single-label synchronization predicate 1L–SYNCH is
given by:

1L–SYNCH (α, k, l, rid 1, rid2) ⇐⇒

∃i,j∈N,m∈RunMess i < j < k ∧

αi = send l(m)♯rid1 ∧ αj = recv l(m)♯rid2.

When we in Definition 4 only required the events to exist, we here also require
an ordering, given by i < j < k.

Next we proceed the same way as with agreement, using this new predicate.
Corresponding to Definition 5, we get:

Definition 13 (Multi-label synchronization). For a given trace α, an upper
bound k ∈ N in the trace, a set of labels L, a run given by rid and a cast
function cast , multi-label synchronization is defined with the predicate:

ML–SYNCH (α, k, L, rid , cast) ⇐⇒

∀l∈L

1L–SYNCH (α, k, l, cast (rid , sendrole(l)), cast (rid , recvrole(l))).

Corresponding to Definition 6, we arrive at the definition:

Definition 14 (Non-injective synchronization). For a role in a protocol p, the
predicate NI –SYNCH in a claim labeled l is given by:

NI –SYNCH (p, l) ⇐⇒

∀α∈Tr(p),k∈N,rid∈RunId

αk = claim l(ni–synch)♯rid ∧

ρα,rid : Role → AgentT ⇒

∃cast : cast(rid , claimrole(r)) = rid ∧

ML–SYNCH (α, k, precp(l), rid , cast).
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Informally, this states that for all send and receive events of a role preceding the
claim, we have a (not necessarily unique) run were other agents are receiving
and sending the same messages, and that all receive events are preceded by their
corresponding send events.

The notion of non-injective synchronization requires all roles to be played by
honest agents in the claiming run. We here define partial synchronization, al-
lowing some roles to be compromised by the intruder. Informally, we require
synchronization only for messages passed inside the trusted group. If a message
is sent to or from an agent outside the group, we will ignore it.

Corresponding to Definition 7, this gives us:

Definition 15 (Partial non-injective synchronization). For a role in a protocol
p, the predicate PART–NI –SYNCH in a claim labeled l is given by:

PART–NI –SYNCH (p, l) ⇐⇒

∀α∈Tr(p),k∈N,rid∈RunId

αk = claim l(part–ni–synch ,TrustedAgents)♯rid ∧

TrustedAgents ⊆ AgentT ⇒

∃cast : cast(rid , claimrole(l)) = rid ∧

ML–SYNCH (α, k, precTrustedRoles,p(l), rid , cast).

To visualize the difference between this and normal synchronization, imagine
that we cut away the parts of the protocol that involves untrusted agents. In
some protocols, there might be no messages left. In that case, partial synchro-
nization is trivially fulfilled.

Non-injective synchronization guarantees the existence of runs by all commu-
nication partners in which the messages agree. The runs do not have to be
unique, however. This enables replay attacks, in which an attacker can reuse
old sessions. To disable this, we require the casting function to be injective, and
get:

Definition 16 (Injective synchronization). For a role in a protocol p, the pred-
icate I –SYNCH in a claim labeled l is given by:

I –SYNCH (p, l) ⇐⇒

∀α∈Tr(p),k∈N,rid∈RunId

αk = claim l(i–synch)♯rid ∧

ρrid ,α : Role → AgentT ⇒

∃cast injective : cast(rid , claimrole(l)) = rid ∧

ML–SYNCH (α, k, precp(l), rid , cast).

Similar to Definition 15, we also get:
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Definition 17 (Partial injective synchronization). For a role in a protocol p,
the predicate PART–I –SYNCH in a claim labeled l is given by:

PART–I –SYNCH (p, l) ⇐⇒

∀α∈Tr(p),k∈N,rid∈RunId

αk = claim l(part–i–synch ,TrustedAgents)♯rid ∧

TrustedAgents ⊆ AgentT ⇒

∃cast injective : cast(rid , claimrole(l)) = rid ∧

ML–SYNCH (α, k, precTrustedRoles ,p(l), rid , cast).

3.2.4 Hierarchy of the authentication requirements

In [9], Cremers et al. states a theorem giving a hierarchy between the differ-
ent definitions of agreement and synchronization. We present a corresponding
hierarchy between our new definitions for these two types of authentication.

Similarly to the implication between secrecy and group secrecy in Theorem 1,
we have the implications shown in Figure 4 for our new definitions. An arrow
c → c′ denotes that if a protocol p contains a claim c that is correct, then the
protocol p′, defined as p but where c is replaced by c′, is also correct.

PART–I –SYNCH

PART–NI –SYNCH

PART–NI –AGREE

PART–I –AGREE

Figure 4: Hierarchy of the new authentication properties.

Theorem 2 (Hierarchy of partial authentication requirements). The security
properties PART–I –SYNCH , PART–NI –SYNCH , PART–I –AGREE, and
PART–NI –AGREE satisfy the inclusion relation as depicted in Figure 4.

Proof. Straightforward from the definitions: Following the arrows, we are only
removing requirements about injectivity or order.

Implications like those above between the old definitions and their partial coun-
terparts do not exist for general protocols. This we show by stating an example
in Figure 5 showing that injective synchronization can not always imply par-
tial non-injective agreement, and one in Figure 6 that shows partial injective
synchronization can not always imply non-injective agreement.
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I R S

Generate n

{|n, I, S|}pk(S)

{|n|}pk(I)

{|I, n|}pk(R)

{|n, R|}pk(I)

ni–synch

i–synch

msc Injective synchronization vs. non-injective partial agreement

Figure 5: Example showing that injective synchronization does not imply partial
non-injective agreement.

The protocol in Figure 5 is translated to a spdl-file in Appendix C, and we have
proven in Scyther that the non-injective synchronization claim holds. Using the
loop-property from [9, Section 4.3], which the claim in question trivially fulfills,
we know that injective synchronization holds. Further details can be found in
[9].

Partial non-injective agreement is trivially not fulfilled when only I and R make
up the trusted group. With a compromised agent assigned the role S in the run
with the claim, the intruder learns n and can generate the message sent from R
to I,

In Figure 6, the initiator and the responder are, when we neglect the dummy
role, executing the Needham-Schroeder protocol, which does give injective syn-
chronization for the initiator [9, End of section 2]. When only they are in the
trusted group, the messages to and from the dummy role are disregarded from
the partial synchronization claim. Since the intruder gains no new knowledge
from these messages, no new attacks emerge against the session between the
initiator and the responder. Therefore, partial injective synchronization holds
at the end of the initiator role, with the initiator and responder in the trusted
group.

Non-injective agreement is trivially not fulfilled at the point where the injective
partial synchronization claim is in the figure, as the agent playing the dummy
does not have to be involved at all for the initiator to reach this point.
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Initiator

I

Responder

R

Dummy

D

Generate nI

{|I, nI |}pk(R)

{|R|}pk(D)

{|D|}pk(R)

Generate nR

{|nI , nR|}pk(I)

{|nR|}pk(R)

part–i–synch

msc Injective partial synchronization vs. non-injective agreement

Figure 6: Example showing that partial injective synchronization (here for the
initiator with him and the responder in the trusted group) does not imply non-
injective agreement at the same point in the specification.

By stating these examples, we have shown that there exist no inclusion relations
between the group of partial authentication requirements, and the old ones.

3.2.5 Identity protection

Common Criteria[10], an international standard for computer security certifica-
tion, divides privacy into four different notions of requirements providing user
protection against discovery and misuse of identity by other users. Anonymity
is the first of these, and is defined to be the ability for a user to use a system
without disclosing its user identity.

The current model does not include any notion of privacy. We will here focus
on a notion of anonymity called identity protection.

We start with the definition of anonymity proposed by Pfitzmann and Köhntopp
in [21]:

Anonymity is the state of being not identifiable within a set of sub-
jects, the anonymity set.
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Since the agents in our model are only identified with their names, the anonymity
set is the set of all honest agents.

D́ıaz et al.[12] distinguish between data anonymity and connection anonymity.
Informally, data anonymity is about filtering any identifying information out
of the data that is exchanged, while connection anonymity is about hiding the
identities of the source and destination during the actual data transfer.

We will only look at data anonymity, and assume connection anonymity is
present in our model. This means the intruder can not see who puts messages
in his knowledge, or who is receiving messages from him.

The only way the intruder can find out that an agent is involved in a protocol, is
to read that agent name as part of a message. That way, we are actually talking
about identity protection.

We want to test if the intruder can learn the identity of an honest agent playing
a certain role, yet all agents in AgentT are known to the intruder before the
protocol starts to execute. Therefore we introduce a new set of agents, call them
secret agents and denote the set by AgentS . These agents work exactly like those
in AgentT , except they are not known to the intruder or any compromised agent.
Although the secret agents are trusted in the way that they do not share their
knowledge with the intruder, they are not members of the trusted set AgentT .

We now require secret agents to remain secret, but we add two restrictions on
the traces we consider:

• If an agent from the secret set is assigned a role, it has to be the role for
which we claim identity protection.

• All role assignments made by secret agents must, where defined, map all
other roles to honest agents.

With these requirements, we claim identity protection by requiring all agent
names from AgentS to be secret. We formalize this in a claim:

Definition 18 (Identity protection). For a role r in a protocol p, the predicate
IDPROT is given by:

IDPROT (p, r) ⇐⇒

∀α∈Tr(p)
(

(

∀rid∈RunId ,r′∈Role : ρα,rid(r′) ∈ AgentS ⇒ r′ = r
)

∧
(

∀rid∈RunId : agentof (rid) ∈ Agents ⇒

∀r′∈dom(ρα,rid )\r ρα,rid(r′) ∈ AgentT

)

)

⇒

AgentS ∩ M(α) = ∅.
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This claim is represented by claim l(idprot ) in a role specification. Note that
because agent names are not unique to a run, where this claim is positioned in
a role specification does not matter.

We then only require a subset of the roles to be assigned to honest agents in
each run a secret agent is active:

Definition 19 (Group identity protection). For a role r in a protocol p and a
trusted group of roles TrustedRoles , the predicate GROUP–IDPROT is given
by:

GROUP–IDPROT (p, r) ⇐⇒

∀α∈Tr(p)
(

(

∀rid∈RunId ,r′∈Role : ρα,rid(r′) ∈ AgentS ⇒ r′ = r
)

∧
(

∀rid∈RunId : agentof (rid) ∈ Agents ⇒

∀r′∈{dom(ρα,rid )∩TrustedRoles}\r ρα,rid(r′) ∈ AgentT

)

)

⇒

AgentS ∩ M(α) = ∅.

This claim is represented by claim l(group–idprot ,TrustedRoles ) in a role speci-
fication.

We then present a theorem analogous to Theorem 1. Note that because the
position of the claim does not change the outcome of the predicate, we don’t
have to reference claim labels in this theorem.

Theorem 3 (Group identity protection implies identity protection). The re-
quirement group identity protection is at least as strong as identity protection.
That is, we have the following predicate implication:

∀p∈SecProt ,TrustedRoles⊆rolesof (p) : GROUP–IDPROT (p, r) ⇒ IDPROT (p, r)

Proof. Identity protection requires secrecy of the secret agents in a subset of the
traces for which group identity protection requires the same secrecy. Therefore,
the implication holds.

For examples of how to prove and disprove identity protection, we refer to
Appendix A.

3.3 Model motivation

We here discuss how our abstract model maps to actual protocols run by com-
puters over the Internet, and make clear some assumptions needed for applying
it. The model is in no way restricted to this setting, but another network would
require new justifications and a clarification of the assumptions needed.
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We begin with the run terms. Agent names model IP-addresses. We have in the
model assumed an infinite number of agents. The actual number of IP-addresses
will limit the number of sessions with different agents the intruder can mix, and
thus reduce the trace set. For claims of privacy, such as the identity protection
requirement we have proposed, this might pose a problem. It could be possible
for the intruder to guess an agent, and then try if an encryption with that agent
matches one he sees, for instance {|a|}pk (a) for an agent a. We must either require
encryptions to be non-deterministic, or the set of available IP-addresses large
enough to make guessing infeasible.

Constants and keys correspond to random bit strings. We assume they are
sufficiently long to be infeasible for the attacker to guess.

We further assume perfect cryptography, that is:

• It is not possible to learn anything of the encrypted text or the key by
looking at the cipher text.

• It is not possible to forge an encryption. That is, only a valid cipher text
will be accepted and decrypted by an agent.

• Hash functions are preimage and collision resistant.

The set of honest agents corresponds to users exactly following the protocol.
Honest users not following the protocol, say, by mistake, must in our framework
be modeled as compromised agents.

Untrusted agents are in our model fully compromised. That is, they could as
well be the intruder himself.

The motivation for the set of secret agents is more technical. We want to test
if the intruder can learn certain agent names during execution of the protocol,
and therefore have to make it secret to him a priori. This could correspond to
the fact that although an intruder knows all possible IP-addresses, we still want
to measure if it is possible for him to see it in certain sequences of messages he
intercepts.

When agents are executing a protocol specification, it corresponds to a thread on
a computer executing a program. Putting a message in the intruder knowledge
models sending it to the Internet, and receiving it from the intruder corresponds
to receiving the message while listening on a port on the computer.

Although it is not necessary in the model, we have in this paper made the
assumption that type flaw attacks are impossible. That is, we require a way to
encode the terms in bits so that no confusion is possible when decoding them.
For how to include type flaws in the model, we refer to the Match function
discussed in [7].

We assume the intruder can not see who sends messages to, or receives mes-
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sages from his knowledge. To achieve connection anonymity like this, we could
require an onion router network. In this we must require that not all nodes
are compromised, otherwise the anonymity would be impossible [23]. Onion
routing could be used only between some of the agents in the protocol when
needed. Note that if we require all the protocol messages to be on the form
(sender , receiver ,message), as in [7] and [9], this assumption is not necessary.

4 Proposed protocol

In this section we propose a protocol for the case study scenario described in
Section 2, using the protocol specification presented. For completeness we also
include claim events, although they are first discussed in Section 5.2.

In the protocol specification that follows, we have some gaps in the numbering of
messages. The meaning of this will become clear as they are filled in Section 5.1.3.
To enable identity protection for the store, messages to and from him does not
include the sender or the recipient.

Following naming conventions, we have that U,S,N ∈ Role , k1, k2, c, r ∈ Const ,
Vi ∈ Var , and h is a hash function. The term k(U,N) denotes the shared key,
the password, between the user and the notary.

U = send1({|k1, U |}pk (S))

send2({|U, c,N |}k1
)

recv 3({|V1, {|h(c, U, S, V1)|}sk(S)|}k1
)

send4(U,N, {|k2, U |}pk(N))

send5(U,N, {|k(U,N)|}k2
)

send6(U,N, {|{|h(c, U, S, V1)|}sk(S), U |}k2
)

recv 9(N,U, {|{|{|h(c, U, S, V1)|}sk(S), U |}sk(N)|}k2
)

send10({|{|{|h(c, U, S, V1)|}sk(S), U |}sk(N)|}k2
)

claimU1
(group–secret , k1, (U,S))

claimU2
(group–secret , k2, (U,N))

claimU3
(group–secret , k(U,N), (U,N))

claimU4
(group–secret , c, (U,S,N))

claimU5
(part–term–agree , c, (U,S,N), γ)

claimU6
(group–secret , V1, (U,S,N))

claimU7
(part–ni–synch , (U,N))
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S = recv1({|V2, U |}pk(S))

recv2({|U, V3, N |}V2
)

send3({|r, {|h(V3, U, S, r)|}sk (S)|}V2
)

recv10({|{|{|h(V3, U, S, r)|}sk(S), U |}sk(N)|}V2
)

claimS1
(group–secret , sk(S), S)

claimS2
(group–secret , V2, (U,S,N))

claimS3
(group–secret , V3, (U,S,N))

claimS4
(part–term–agree , V3, (U,S,N), γ)

claimS5
(group–secret , r, (U,S,N))

claimS6
(group–idprot , (U,S,N))

N = recv4(U,N, {|V4, U |}pk (N))

recv5(U,N, {|k(U,N)|}V4
)

recv6(U,N, {|V5, U |}V4
)

send9(N,U, {|{|V5, U |}sk(N)|}V4
)

claimN1
(group–secret , sk(N), N)

claimN2
(group–secret , V4, (U,N))

claimN3
(group–secret , k(U,N), (U,N))

The protocol is displayed in Figure 7 using a message sequence chart. We have
in the specification used an encryption resembling a simplification of TLS, but
have omitted it in the figure to make the messages easier to read.

We now explain the protocol, referring to messages in Figure 7. In addition the
what we explain comes encryption, and the messages needed to establish the
symmetric keys used for that. For this, we refer to the already given specifica-
tion.

In the first message, the user tells the store the contract he wishes to sign, his
name, and which notary he wants to use. This way it is possible for the store to
know which notary to contact in case he did not receive a contract at the end
of the session.

The store then hashes the received information, together with his name and a
salt, and signs it. The salt r is added to the hash to make it impossible for the
notary to test different combinations of known documents and stores.

The user receives the signed hash and the salt, and can verify it . He then
authenticates with his notary, and sends the signed bundle to him.

The notary can not verify the signature, because he does not know which store
signed it. Also the content of the hash is secret to him. All he can do, is to
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Store

S

User

U

Notary

N

generate c

c, U, N

generate r

r, {|h(c, U, S, N, r)|}sk(S)

k(U, N)

{|h(c, U, S, N, r)|}sk(S)

{|{|(h(c, U, S, N, r))|}sk(S), U |}sk(N)Forward

msc Proposed protocol (displayed without encryption)

Figure 7: Message sequence chart of the proposed protocol, displayed without
encryption. Note that although this way of depicting the protocol does not make
it clear, the notary can not read the content of the hash he receives.

sign the bundle together with the name of the user. He includes the user name
because he uses his own private key. Instead, he could have one special key for
each user, and not have included the user name.

The user receives the bundle, and forwards it to the store. Both keep it for later
reference.

The omission of the sender and receiver information in messages between the user
and the store models an onion router network, in which at least the connection
between the user and the network, and between the store and the network, is
not compromised. This could be nodes controlled by an honest ISP.

The security protocol definition language file for this protocol can be found in
Appendix D. Note that due to limitations in Scyther, we have there included
the sender and recipient in each message. Since Scyther does not support our
new security requirements, the file includes no claims.

5 Analysis

Here we apply the model and our new definitions to our scenario. First we
formalize the threat model, and then the security requirements. Last, we verify
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the proposed protocol by proving the claims in the requirements.

5.1 Formal threat model

We here formalize the threat model from Section 2.2 in the model put forth.

5.1.1 Model 1: Dolev-Yao attack model

The Dolev-Yao attack model is modeled by requiring all roles in the claiming
run to be played by honest agents. In this model we can use the old security
requirements.

5.1.2 Model 2: Compromised store and user

In this model we drop the requirement that the user and the store should be
played by honest agents in the run with the claim. Depending on the requirement
we test, we will allow one of them, or both, to be played by the intruder. The
agent claiming a security requirement has to be honest.

Note that the status of an agent as honest or compromised does not change
during the execution of the protocol. An attack model in which an agent is
compromised from the beginning is always stronger than one in which the agent
is compromised at some later point. Therefore, security in the first will imply
security in the latter.

5.1.3 Model 3: Partly compromised notary

Our framework only allows an agent to be honest or under full control by the
intruder. While this is changed in [2], we can in our setup use an alternative
way to model a partly compromised notary.

Our solution is to add a fully compromised agent to the protocol, which receives
leaked information from the notary. This way we can control what is leaked,
and when, and look at what the intruder is able to do with this additional
information.

In the formal notation we have presented, this results in the following role being
added to the protocol listed in Section 4:

D = recv 7(N,D, (V6, U))

recv 8(N,D, {|V6, U |}sk(N)).
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The corresponding events are added to role of the notary, filling in the gap in
the message numbering:

send7(N,D, (V5, U))

send8(N,D, {|V5, U |}sk(N)).

5.2 Formal protocol requirements

We now try to identify the requirements our proposed signing protocol must
fulfill, based on the informal discussion in Section 2.3.

All the listed claims can be found in the protocol specification in Section 4.

5.2.1 Secrecy of keys

The private keys used for signing must remain secret, even with compromised
agents playing the other parts of the protocol.

Requirement 1 (Secrecy of the private keys). We include the following claims
in the modified protocol specification described in Section 5.1.3, in the roles of
the store and the notary, respectively:

claimS1
(group–secret , sk(S), S)

claimN1
(group–secret , sk (N), N)

Further, the session keys the user generates should be secret, given an honest
agent as the intended recipient.

Requirement 2 (Secrecy of session keys). We include the following claims in
the protocol specification, in the role of the user:

claimU1
(group–secret , k1, (U,S))

claimU2
(group–secret , k2, (U,N))

This requirement ensures that the messages the user sends using these keys, can
not be read by any other than the intended recipient.

In the same way, the store and the notary want to be sure that the keys they
receive are secret. This guarantees that the messages received are not generated
by the intruder, and results in the following requirement.

Requirement 3 (Secrecy of received session keys). We include the following
claims in the modified protocol specification described in Section 5.1.3, in the
roles of the store and the notary, respectively:

claimS2
(group–secret , V2, (U,S,N))

claimN2
(group–secret , V4, (U,N))
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5.2.2 Secrecy of the password

The password is in our protocol modeled as a key shared between the user and
the notary. We want them both to be sure that the password remains secret,
even given a compromised store, and add the following requirement:

Requirement 4 (Secrecy of the password). For the user and the notary, we
include the following in their respective protocol specifications:

claimU3
(group–secret , k(U,N), (U,N))

claimN3
(group–secret , k(U,N), (U,N))

5.2.3 Requirements for the contract

As discussed, we want the contract to be secret against a partly compromised
notary. For both the user and the store to be sure of this, we make the following
requirement.

Requirement 5 (Secrecy of the contract). We include the following claims in
the modified protocol specification described in Section 5.1.3, in the specification
of the store and the user, respectively:

claimS3
(group–secret , V3, (U,S,N))

claimU4
(group–secret , c, (U,S,N))

In addition to being secret, the user and the store should agree on the content
of the contract. That is, when one of them finishes his run, there should exist
a run by the agent he thinks he communicated with, having the same value for
the contract. This is partial term agreement.

Requirement 6 (Agreement on the contract). We include the following claims
in the modified protocol specification described in Section 5.1.3, in the specifica-
tion of the store and the user, respectively:

claimS4
(part–term–agree , V3, (U,S,N), γ = (U → c))

claimU5
(part–term–agree , c, (U,S,N), γ = (S → V3))

In addition to being secret, the store and the user wants it to be impossible for
the notary to test guesses of which contract is being signed. In the model, the
contract is a nonce, and by definition impossible to guess. In the real world, we
might imagine some contracts being often used, and we have therefore used salt
in the hash to disable guessing. This requires the salt to be secret.
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Requirement 7 (Secrecy of the salt). We include the following claims in the
modified protocol specification described in Section 5.1.3, in the specification of
the store and the user, respectively:

claimS5
(group–secret , r, (U,S,N))

claimU6
(group–secret , V1, (U,S,N))

5.2.4 Identity protection

The user and the store want the identity of the store to remain secret, even with
a partly compromised notary.

Requirement 8 (Identity protection for the store). We include the following
claim in the modified protocol specification described in Section 5.1.3, in the role
of the store:

claimS6
(group–idprot , (U,S,N))

5.2.5 Authentication

The authentication of the user and the signing of the contract must happen in
the same session, with the same understanding of the variables involved. This
is ensured by partial non-injective synchronization between the user and the
notary.

Requirement 9 (Partial synchronization between the user and the notary).
We include the following claim in the specification of the user:

claimU7
(part–ni–synch , (U,N))

5.3 Results

We here verify the requirements put forth. The proof technique is in general to
assume the requirement is broken, and arrive at a contradiction when investi-
gating how this must have happened.

5.3.1 Secrecy of private keys

We first look at the private long term keys for the store and the notary, sk(S)
and sk(N). None of them are inferable from any message in the protocol, and
they remain therefore secret for all honest agents. This proves Requirement 1.
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From this we know that all terms signed with one of these keys, must originate
from the owner of the key, and that all terms encrypted with one of the corre-
sponding public keys, pk(S) and pk(N), are only readable by their respective
owners.

5.3.2 Secrecy of the session keys

We look at the session keys k1 and k2 generated by the user, starting with k1.

The key k1 is used between the user and the store. The only message from which
this key is inferable, is send1 ({|k1, U |}pk(S)). This message is encrypted with the
public key of the store. For an honest agent playing the role S, as required by
the claim, the inverse is already shown to be group secret. Therefore the session
key is also group secret.

The same argument as above holds for the session key k2. This proves Requirement 2.

For later use, we make the following observation:

Lemma 1. The session keys are group secret right after they are sent.

In other words, the user does not need to reach the claim to be sure these keys
are secret.

Proof. This follows since the role assignment of the recipient is done in the send
event with the keys. Therefore we know at that point if the recipient is honest,
and since the decryption key is group secret, we know only the recipient can
read the key.

5.3.3 Secrecy of the password

We assume there exists a run breaking the user’s group secrecy claim for the
password. That is:

∃α∈Tr(p),k∈N,rid∈RunId ,u,n∈Agent

ρα,rid={U→u,N→n} ∧

αk = claimU3
(group–secret , k(u, n), (u, n))♯rid ∧

u, n ∈ AgentT ∧ k(u, n) ∈ M(αk).

The password is only inferable from instantiations of the message send5, sent
from the user to the store. Therefore, there must exist a run with agent u
playing the user, in which he sends this message to agent n assigned the notary
role. That is, the following must hold for the trace:

∃i<k : αi = send5(u, n, {|k(u, n)|}k2♯rid ′)♯rid ′
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Note that because the password is not unique to a run, this could be a different
run than the one with the claim.

For the intruder to be able to read the password from this message, he must
know the encryption key k2♯rid

′. This key is unique in each run, and the intruder
must have learned it from the previous message sent by the user in that run.
That is, for h < i:

αh = send4(u, n, {|k2♯rid
′, u|}pk(n))♯rid

′.

To infer the key from this message, the intruder must know the private key of
the honest agent n. This we have in Section 5.3.1 shown is not possible, and
hence is the password group secret.

We then look at the group secrecy of the password in the claim N3 of the notary.
For the term k(U,N) to be known by the intruder, he must either have generated
it himself, or learned it from an honest agent playing the user. The first is not
possible as the notary already knows the password, and verifies it in recv5. The
second option is also not possible, because the encryption key the user used
when sending the password is shown to be group secret in Section 5.3.2.

This proves Requirement 4.

5.3.4 Secrecy of received session keys

We first look at the session key received by the notary. We want to prove that,
given an honest user, the value assigned to variable V4 is secret when the notary
is reaching the secrecy claim N2. Here we allow the store to be compromised in
the same run.

We assume the claim does not hold. That is:

∃α∈Tr(p),k∈N,rid∈RunId ∧

ρα,rid = {U → u,N → n} ∧

αk = claimN2
(group–secret , σα,rid (V4), (u, n))♯rid ∧

u, n ∈ AgentT ∧ σα,rid(V4) ∈ M(αk).

The key in V4 is only inferable from recv4. For the intruder to learn the key
from this message, we must require the following for the trace, for h < k:

αh = recv4(u, n, {|σα,rid (V4), u|}pk (n))♯rid .

Since this message is encrypted with the public key of an honest agent, the
intruder can not decrypt and learn it. He could, however, have constructed it
himself.
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If the received key was constructed by the intruder, there exists no run in which
the user is using that key. This is because nonces are by construction unique,
and the session keys sent by the user are group secret right after sending, as
stated in Lemma 1. Therefore, the intruder must have forged all messages the
notary has received in this run. That is, for h < i < j < k:

αh = recv4(u, n, {|σα,rid (V4), u|}pk (n))♯rid

αi = recv5(u, n, {|k(u, n)|}σα,rid (V4))♯rid

αj = recv6(u, n, {|σα,rid (V5), u|}σα,rid (V4))♯rid

We here see that to forge the message received in αi, the intruder must know
the password k(u, n). This is not possible, since for two honest agents we have
already shown that the password is secret in Section 5.3.3. Therefore, upon re-
ceiving the password, the notary knows that the key stored in V4 is group secret,
even with a compromised store in the same session. In other words, the pass-
word authenticates the user to the notary, which is our intuitive understanding
of what a password should do.

We then look at the session key received by the store. We want to prove that,
given an honest user, the nonce assigned to variable V2 is secret when the store
is reaching the secrecy claim S2. Here we allow a partly compromised notary,
and use the modified protocol p′, as specified in Section 5.1.3.

We assume the claim does not hold:

∃α∈Tr(p′),k∈N,rid∈RunId ∧

ρα,rid = {U → u, S → s,N → n} ∧

αk = claimS2
(group–secret , σα,rid (V2), (u, s, n))♯rid ∧

u, s, n ∈ AgentT ∧ σα,rid(V2) ∈ M(αk).

The key in V2 is only inferable from recv1. For the intruder to learn the key
from this message, we must require the following for the trace, for h < k:

αh = recv1({|σα,rid(V2), u|}pk (s))♯rid .

Since this message is encrypted with the public key of an honest agent, the
intruder can not decrypt it. He could, however, have constructed it himself.

If the received key was constructed by the intruder, there exists no run in which
the user is using that key. By the same argument as above, the intruder must
then have forged all messages the store has received in this run. That is, for
h < i < j < k:

αh = recv1({|σα,rid (V2), u|}pk (b))♯rid

αi = recv2({|u, σα,rid (V3), n|}σα,rid (V2))♯rid

αj = recv10({|{|{|h(σα,rid (V3), u, s, r♯rid)|}sk(s), u|}sk(n)|}σα,rid (V2))♯rid .
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To construct the message in αj , the intruder has to know the signed term he
encrypted. Since the signing key of the notary is secret, we know that there
must exist a run rid ′ of the agent n playing the notary in which he signs
and sends the following message to a dummy agent d, in which σα,rid ′(V5) =
{|h(σα,rid (V3), u, s, r♯rid)|}sk(s). That is, for j′ < j:

αj′ = send8(n, d, {|σα,rid ′(V5), u|}sk(n))♯rid
′.

For the notary to arrive at this event, the following must have happened in the
trace, for f ′ < g′ < h′ < i′ < j′:

αf ′ = recv 4(u, n, {|σα,rid ′(V4), u|}pk (n))♯rid
′

αg′ = recv 5(u, n, {|k(u, n)|}σα,rid ′ (V4))♯rid
′

αh′ = recv 6(u, n, {|σα,rid ′(V5), u|}σα,rid ′ (V4))♯rid
′

αi′ = send7(n, d, (σα,rid ′(V5), u))♯rid ′

Since the password k(u, n) is shared between two honest users, we have shown
it to be group secret in Section 5.3.3. Therefore, the intruder could not have
made the encryption in αg′ , and there must exist a run rid ′′ of the agent u in
which σα,rid ′(V4) = k2♯rid

′′. The key k2 we have already shown to be secret in
Section 5.3.2. Therefore all messages encrypted with this key must stem from
the run rid ′′. That is, for c′′ < d′′ < e′′ < f ′′ < g′′ < h′′ < h′.

αc′′ = send1({|k1♯rid
′′, u|}pk (s))♯rid

′′

αd′′ = send2({|u, σα,rid (V3), n|}k1♯rid ′′)♯rid ′′

αe′′ = recv3({|V1, {|h(σα,rid (V3), u, s, r♯rid)|}sk(s)|}k1
)♯rid ′′

αf ′′ = send4(u, n, {|σα,rid ′(V4), u|}pk (n))♯rid
′′

αg′′ = send5(u, n, {|k(u, n)|}σα,rid ′(V4))♯rid
′′

αh′′ = send6(u, n, {|{|h(σα,rid (V3), u, s, r♯rid)|}sk(s), u|}σα,rid ′ (V4))♯rid
′′

We here see that αd′′ and αi contains the same value for the contract. That
means, for the intruder to forge the message in αi, he must know the value
of the contract in this run by the user. This value is only inferable from the
message sent in αd′′ , which is encrypted by k1♯rid

′′. Since this key is shown to
be group secret for an honest store, we have a contradiction.

We have now proved Requirement 3.

5.3.5 Secrecy of the contract and the salt

The contract is in our protocol the nonce c generated by the user, and stored
in the variable V3 by the store. It is only from send2 that c can be inferred.
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This message is, however, encrypted with the key k1, already shown to be group
secret in the modified protocol, in Section 5.3.2. We then know that the user,
when assigning the store role to an honest agent, can be sure the contract stays
group secret.

When it comes to the store, the same argument applies. He will upon finish-
ing his protocol be sure that the key by which the messages he received was
encrypted, is group secret. Therefore the agent could not have generated nor
learned the contract. By this we have proven Requirement 5.

The salt is sent from the store as the nonce r, and received by the user in the
variable V1. The same argument as above holds: Because both the key used for
encryption when sending and the one used for decryption when receiving are
group secret, so is the salt inside the messages. This proves Requirement 7.

5.3.6 Partial term agreement for the contract

We here want to show that if the agent playing the user reaches the partial term
agreement claim U5, there exists a run in which the agent he assigned as the
store, has the value of the instantiated nonce c, the contract, in his variable V3.

This is trivially fulfilled in the modified protocol, since the agent playing the
user at the point of the claim has received and verified the hash containing the
contract, which is signed by the store agent, using the secret key sk(S). As we
noted in Section 5.3.1, this signature must stem from a run by the store.

We then want to show that when the store reaches claim S4, there exists a run
of the agent he assigned the user role, for which the instantiated nonce c equals
the value in his variable V3. We assume this is not the case for the modified
protocol p′:

∃α∈Tr(p′),k∈N,rid∈RunId

ρα,rid = {U → u, S → s,N → n} ∧

αk = claimS4
(part–term–agree , σα,rid(V3), (u, s, n), γ)♯rid ∧

u, s, n ∈ AgentT ∧

∄rid ′∈RunId :
(

c♯rid ′ = σα,rid(V3) ∧ agentof (rid ′) = u
)

.

For agent s to reach this claim, we must have the following event in the trace,
j < k:

αj = recv10({|{|{|h(σα,rid (V3), u, s, r♯rid)|}sk(s), u|}sk(n)|}σα,rid (V2))♯rid

Since we have already shown that the key σα,rid(V2) is secret when u, s ∈ AgentT ,
this message must have been sent from agent u. That requires the following event
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in the trace, i < j:

αi = send10({|{|{|h(σα,rid (V3), u, s, r♯rid)|}sk(s), u|}sk(n)|}σα,rid (V2))♯rid
′

From this message we see that c♯rid ′ = σα,rid(V3) ∧ agentof (rid ′) = u, and we
have a contradiction to out assumption.

This proves Requirement 6.

5.3.7 Synchronization

The user requires partial non-injective synchronization between him and the
notary. We assume the claim fails, that is:

∃α∈Tr(p),k∈N,rid∈RunId

ρα,rid = {U → u, S → s,N → n} ∧

αk = claimU7
(part–ni–synch , (u, n))♯rid ∧ u, n ∈ AgentT ∧

∄cast :
(

cast(rid , u) = rid ∧ ML–SYNCH (α, k, prec(u,n),p(U7), rid , cast)
)

.

At the point of the claim, the user must have sent and received the following
messages relevant to the claim. Here g < h < i < j < k:

αg = send4(u, n, {|k2♯rid , u|}pk (n))♯rid

αh = send5(u, n, {|k(u, n)|}k2♯rid)♯rid

αi = send6(u, n, {|{|h(c♯rid , u, s, σα,rid (V1))sk(c), a|}k2♯rid |})♯rid

αj = recv 9(n, u, {|{|{|h(c♯rid , a, s, σα,rid (V1))|}sk(s), u|}sk(n)|}k2♯rid)♯rid

We then look at αj. This message is encrypted with a key we have already
shown is group secret. That is, only known to the user agent who made it, and
the intended recipient. Therefore it must exist a run by the agent n, in which
the following event happens, for j′ < j:

αj′ = send9(n, u, {|{|σα,rid ′(V5), u|}sk(n)|}k2♯rid )♯rid ′

In this send event of the notary, all variables and role assignments are present,
giving only one possible path that agent could have taken to this point. That
path is, for g′ < h′ < i′ < j′ < j:

αg′ = recv4(u, n, {|k2♯rid , u|}pk(n))♯rid
′

αh′ = recv5(u, n, {|k(u, n)|}k2♯rid)♯rid ′

αi′ = recv7(u, n, {|σα,rid ′(V5), u|}k2♯rid)♯rid ′

αj′ = send9(n, u, {|{|σα,rid ′(V5), u|}sk (n)|}k2♯rid )♯rid ′
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We here manually inspect the messages, and finds that they all agree with those
sent and received by agent u playing the user.

We have now proved that partial non-injective agreement is satisfied. To prove
synchronization, we must also show that all the send events in rid happened
before the corresponding receive events in rid ′. We have already shown that
j′ < j.

Since constants are by definition unique, rid is the only run by the user with
k2♯rid as the key. Therefore the intruder can not get the messages encrypted
with this key from different runs, and he has to wait for agent u to send the
cipher texts before he can give them to agent n. Therefore we have that g < g′,
h < h′ and i < i′.

This proves Requirement 9.

5.3.8 Identity protection for the store

Proving this is trivial: From none of the messages sent in the modified protocol
can the agent name of the store be inferred. Therefore, it can not be learned by
the intruder. This proves Requirement 8.

For a non-trivial example of how to prove and disprove identity protection, we
refer to Appendix A.

6 Conclusion

We have in this paper expanded the model by Cremers et al. in two directions.
In the direction of allowing a more powerful intruder, we have added new security
requirements that allow the intruder to play a part in the protocol session in
which we want the property to hold. Secondly, towards handling privacy, we have
added a definition of identity protection. This requires some new assumptions:

For our notion of identity protection, we have assumed connection anonymity.
We have further assumed the existence of a set of agents not known to the
intruder. This gives us a way to test if the protocol leaks the identities in
question.

As future work, we suggest looking into how other types of privacy could be
modeled. Further, we also suggest testing the definition of identity protection
against existing protocols promising different kinds of privacy.
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A Identity protection - example proofs

Here we prove and disprove identity protection in two example protocols.

A.1 Example of proving identity protection

In Figure 8 we show a simple protocol in which two parties use a server to agree
on a key. In this setup, only the server has a public key, and the initiator and the
responder use a password shared with the server to authenticate. The protocol
aims to achieve identity protection for the initiator.

Initiator

I

Server

S

Responder

R

generate nI generate nR

{|R, I, nI , k(I, S)|}pk(S)

{|k(R, S), nR, R|}pk(S)

{|I, key|}nR

{|key |}nI

idprot

msc Identity protection - example protocol

Figure 8: Example protocol in which we prove identity protection for the initia-
tor.

We here list the protocol specification:

I = send1({|R, I, nI , k(I, S)|}pk (S))

recv4({|V1|}nI
)

claimI1(idprot )

S = recv1({|R, I, V2, k(I, S)|}pk (S))

recv2({|k(R,S), V3, R|}pk(S))

send3({|I, key |}V3
)

send4({|key |}V2
)
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R = send2({|k(R,S), nR, R|}pk(S))

recv3({|I, V4|}nR
)

In the first message, the initiator logs in to the server, gives a key nI for the
encryption of the response, and asks to communicate with the agent playing
role R. The server then waits for this agent to log in.

When the responder logs in, he also sends a response encryption key. Back he
gets the initiator’s identity and a key. This key is also sent to the initiator, and
I and R can use it for further communication.

Using Scyther with the input found in Appendix B, we have proved that this
protocol satisfies non-injective synchronization at the end of all the roles, and
that secrecy holds for all keys and nonces. We will now prove that the group
identity protection claim holds.

We will do this by assuming that the claim does not hold, and then arrive at a
contradiction. That is, denoting the protocol by p, we assume the following:

∃α∈Tr(p)
(

(

∀rid∈RunId ,r∈Role : ρα,rid(r) ∈ AgentS ⇒ r = I
)

∧
(

∀rid∈RunId : agentof α(rid) ∈ Agents ⇒

∀r∈dom(ρα,rid )\I ρα,rid(r) ∈ AgentT

)

)

∧

AgentS ∩ M(α) 6= ∅.

(1)

This means that the intruder must have read the name of at least one secret
agent from a message in the trace. Since secret agents are, due to the require-
ments on the traces, only assigned to the role I, this must have been from
a message containing an instantiation of the role name I. We have two pos-
sibilities, instantiations of send1({|R, I, nI , k(I, S)|}pk (S)) or send3({|I, key |}V3

).
Since messages are instantiated in a sequence, this means the intruder must
have learned a secret agent name from one of them first.

We first assume the intruder first learned a secret agent name from send1. That
requires a run rid by a secret agent a playing the initiator, in which this message
is instantiated. That is:

∃i∈N,rid∈RunId

ρα,rid = {I → a,R → r, S → s} ∧

αi = send1({|r, a, nI ♯rid , k(a, s)|}pk (s))

For the agent name a to be inferable from this message, the intruder must know
the inverse of the encryption key, which is sk(s). Since this key is never sent in
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the protocol, this requires the agent s to be compromised. That means we have
the following:

agentof α(rid) ∈ AgentS ∧ ρα,rid(S) ∈ AgentU .

This is a contradiction to the requirement we put on the trace α in (1), and we
conclude that the intruder could not first have learned a secret agent name from
send1.

The second possibility is for the intruder to first learn a secret agent name from
an instantiation of send3({|I, key |}V3

), done in a run of the server role. This
requires the following for the trace α breaking the claim:

∃i∈N,rid∈RunId

ρα,rid = {I → a,R → r, S → s} ∧

αi = send3({|a, key♯rid)|}σα,rid (V3))♯rid

For the agent name to be inferable from this message, the intruder must know the
encryption key, assigned to the variable V3 by σα,rid . This assignment happens
for the server in recv 2, and the following must hold for the trace α:, for j < i:

αj = recv2({|k(r, s), σα,rid (V3), r|}pk (s))♯rid

For the key in V3 to be known by the intruder, we have two possibilities:

First, the key is inferable if the intruder knows the key sk(s). Since this key is
never sent, it must be a part of the initial knowledge of the intruder, requiring
the agent s to be compromised.

We note that to reach this event, the agent playing the server, although com-
promised, must have instantiated recv1. That is, for k < j:

αk = recv 1({|r, a, σα,rid (V2), k(a, s)|}pk (s))♯rid

Since the agent s is compromised, this means the intruder already knew a, as the
agent s received it in recv1. This contradicts our assumption that the intruder
first learned the secret agent name in send3.

Secondly, the message could have been constructed by the intruder. This also
requires that the intruder already knew the secret agent name, and again con-
tradicts with our assumption.

We have now proved that the identity protection claim holds for the example
protocol.
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Initiator

I

Server

S

Responder

R

generate nI generate nR

{|I, nI , k(I, S)|}pk(S)

{|nR, k(R, S), R|}pk(S)

{|I, key |}nR

{|R, key |}nI

idprot

msc Identity protection - modified example protocol

Figure 9: Example protocol in which we prove that identity protection does not
hold.

A.2 Example of disproving identity protection

We now slightly modify the protocol in the previous proof, by moving the inclu-
sion of the responder agent from the first to the last pair of send and receive
events in the protocol. We show this modification in Figure 9.

As with the previous example protocol, Scyther proves that this protocol satisfies
non-injective synchronization at the end of all the roles, and that secrecy holds
for all keys and nonces. The change does only affect the identity protection
claim.

We show that identity protection does not hold by giving the following trace,
in which the secret agent a starts as the initiator. In this trace, a ∈ AgentS ,
s ∈ AgentT and r ∈ AgentU .
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α1 =create(run = (1, {I → a}, ∅))

α2 =send1({|a, nI♯1, k(a, s)|}pk (s))♯1

α3 =create(run = (2, {S → s}, ∅))

α4 =recv1({|a, nI♯1, k(a, s)|}pk (s))♯2

α5 =create(run = (3, {R → r}, ∅))

α6 =send2({|k(r, s), nR♯3, r|}pk (s))♯3

α7 =recv2({|k(r, s), nR♯3, r|}pk(s))♯2

α8 =send3({|a, key♯2|}nR♯3)♯2

If we nest up the role assignment function for the run of the secret agent a,
we find that he has never assigned an agent to the role R, as he has not yet
encountered the role name in the specification he is instantiating. We have:

agentof α(1) ∈ AgentS ∧ ρα,1 : Role → AgentT

In the trace, no secret agent is assigned any other role than I, and therefore this
trace should be considered by the claim. Yet, because agent r is compromised,
the intruder can read the secret agent name a in α8. Therefore the trace breaks
the implication required by the claim, and the protocol does not satisfy identity
protection for role I.

Using Theorem 3, we also know that the protocol does not satisfy group identity
protection for the initiator role, for any group of trusted roles.

B Identity protection - spdl

We here include the spdl code for the protocol example of identity protection
used in Figure 8. This is the file needed for analysis in the automatic verification
tool Scyther. All claims have been proved, without bounds on the number of
runs.

Note that we have included the sender and receiver in all messages, as this is
required by Scyther. This does, however, not affect the claims proven here.

const pk: Function;
secret sk,k: Function;
inversekeys (pk,sk);

protocol idprot(I,S,R)
{

role I
{
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const nI: Nonce;
var V1: Nonce;

send 1( I , S, { R, I , nI, k(I , S) }pk(S) );
read 4( S, I , { V1 }nI );

claim i1( I , Nisynch );
claim i2( I , Secret, V1 );
claim i3( I , Secret, k(I,S) );

}
role S
{

const key: Nonce;
var V2,V3: Nonce;

read 1( I , S, { R, I , V2, k(I, S) }pk(S) );
read 2( R, S, { k(R, S), V3, R }pk(S) );
send 3( S, R, { key }V3 );
send 4( S, I , { key }V2 );

}
role R
{

const nR: Nonce;
var V4: Nonce;

send 2( R, S, {k(R, S), nR, R }pk(S) );
read 3( S, R, { V4 }nR );

claim r1( R, Nisynch );
claim r2( R, Secret, V4 );
claim r3( R, Secret, k(R,S) );

}
}

const Alice,Bob,Eve: Agent;
// An untrusted agent, with leaked information
untrusted Eve;
compromised sk(Eve);

C Hierarchy of authentication requirements - spdl

We here include the spdl code for the protocol example used in Section 3.2.4.
This is the file needed for analysis in the automatic verification tool Scyther,
in which the non-injective synchronization claim holds, without bounds on the
number of runs.

const pk: Function;
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secret sk: Function;
inversekeys (pk,sk);

protocol p(I, R, S)
{

role I
{

const n: Nonce;

send 1(I , S, { n, I , S }pk(S) );
read 2(S, I , { n }pk(I) );
send 3(I , R, { I , n }pk(R) );
read 4(R, I , { n, R }pk(I) );

claim I1(I , Nisynch);
}
role R
{

var V1: Nonce;

read 3(I , R, { I , V1 }pk(R) );
send 4(R, I , { V1, R }pk(I) );

}
role S
{

var V2: Nonce;

read 1(I , S, { V2, I, S}pk(S) );
send 2(S, I , { V2 }pk(I) );

}
}

const Eve, Alice, Bob, Charlie: Agent;
untrusted Eve;
compromised sk(Eve);

D Proposed protocol - spdl

We here include the spdl code for the protocol proposed in this thesis, as pre-
sented in Section 4. Using this file, the reader can run tests on the protocol in
Scyther himself.

Note that we have included the sender and receiver in all messages, as this
is required by Scyther, and that Scyther does not support our new security
requirements.

The modified protocol presented in Section 5.1 is realized by uncommenting the
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parts involving the dummy agent D.

We refer to the Scyther Manual[6] for information on the definition language.

const pk,h: Function;
secret sk,k: Function;
inversekeys(pk,sk);

// User types, to avoid type flaw attacks
usertype Contract;
usertype SessionID;
usertype Key;

protocol proto(U, S, N) // proto(U, S, N, D)
{

role U // User
{

const k1 : Key;
const k2 : Key;
const c : Contract;
var V1 : Nonce;

send 1(U, S, { k1, U }pk(S) );
send 2(U, S, { U, c, N }k1 );
read 3(S, U, { V1, { h(c, U, S, V1) }sk(S) }k1 );
send 4(U, N, { k2, U }pk(N) );
send 5(U, N, { k(U, N) }k2 );
send 6(U, N, { { h(c, U, S, V1) }sk(S), U }k2 );
read 9(N, U, { { { h(c, U, S, V1) }sk(S), U}sk(N) }k2 );
send 10(U, S, { { { h(c, U, S, V1) }sk(S), U}sk(N) }k1 );

}
role S // Store
{

const r : Nonce;
var V2 : Key;
var V3 : Contract;

read 1(U, S, { V2, U }pk(S) );
read 2(U, S, { U, V3, N }V2 );
send 3(S, U, { r , { h(V3, U, S, r) }sk(S) }V2 );
read 10(U, S, { { { h(V3, U, S, r) }sk(S),U}sk(N) }V2 );

}
role N // Notary
{

var V4 : Key;
var V5 : Ticket;

read 4(U, N, { V4, U }pk(N) );
read 5(U, N, { k(U, N) }V4 );
read 6(U, N, { V5, U }V4 );
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// send 7(N, D, ( V 5, U) );
// send 8(N, D, { V 5, U }sk(N) );

send 9(N, U, { { V5, U}sk(N) }V4 );
}
// role D // Dummy
// {
// var V 6 : Ticket;
//
// recv 7(N, D, ( V 6, U) );
// recv 8(N, D, { V 6, U }sk(N) );
// }

}

const Mallory, Alice, Bob, Charlie: Agent;
// An untrusted agent, with leaked secret key:
untrusted Mallory;
compromised sk(Mallory);
compromised k(Mallory, Alice);
compromised k(Alice, Mallory);
compromised k(Mallory, Bob);
compromised k(Bob, Mallory);
compromised k(Mallory, Charlie);
compromised k(Charlie, Mallory);


