
This draft was prepared using the LaTeX style file belonging to the Journal of Fluid Mechanics 1

Thermocapillary instability as a mechanism
for film boiling collapse

Eskil Aursand1,2†, Stephen H. Davis2 and Tor Ytrehus1

1Department of Energy and Process Engineering, Norwegian University of Science and
Technology (NTNU), Kolbjørn Hejes v. 1B, Trondheim N-7491, Norway

2Department of Engineering Sciences and Applied Mathematics, McCormick School of
Engineering and Applied Science, Northwestern University, 2145 Sheridan Road, Evanston, IL

60208, United States

(Received xx; revised xx; accepted xx)

We construct a model to investigate the interfacial stability of film boiling, and discover
that instability of very thin vapor films and subsequent large interface superheating is
only possible if thermocapillary instabilities are present. The model concerns horizontal
saturated film boiling, and includes novel features such as non-equilibrium evaporation
based on kinetic theory, thermocapillary and vapor thrust stresses, and van der Waals
interactions. From linear stability analysis applied to this model, we are led to suggest
that vapor film collapse depends on a balance between thermocapillary instabilities and
vapor thrust stabilization. This yields a purely theoretical prediction of the Leidenfrost
temperature. Given that the evaporation coefficient is in the range 0.7–1.0, this model is
consistent with the average Leidenfrost temperature of every fluid for which data could
be found. With an evaporation coefficient of 0.85, the model can predict the Leidenfrost
point within 10% error for every fluid, including cryogens and liquid metals where existing
models and correlations fail.
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1. Introduction

When a liquid is poured on top of a solid surface whose temperature is significantly
above the liquid’s saturation temperature, the liquid will start to boil. If we plot the
resulting heat flux as a function of surface temperature, we obtain the well-known boiling
curve (Dhir 1998), which is illustrated in figure 1. At very high surface temperatures, we
get the phenomenon of film boiling, where direct liquid–solid contact is prevented by a
continuous sub-millimetre vapor film. This drastically reduces heat transfer compared to
the conventional nucleate boiling regime.

Of particular importance here is the Leidenfrost point (∆TL), also called the minimum
film boiling temperature, which is the limiting ∆T below which film boiling turns unstable.
When passing this point from the right, it is called film boiling collapse. Predicting the
location of the Leidenfrost point is important for a variety of industrial concerns such
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Figure 1: An illustration of the boiling curve: a plot of boiling heat flux (q̇) against
the difference between surface temperature and liquid saturation temperature (∆T ). At
moderate surface temperatures, conventional nucleate boiling occurs, and heat flux is an
increasing function of ∆T . However, at large enough ∆T , heat flux drops as a transition
into the film boiling regime occurs. The lowest ∆T in the film boiling regime is called
the Leidenfrost point, ∆TL.

as high heat flux cooling applications (e.g. nuclear reactors (Theofanous et al. 1997))
and high performance electronics (Agostini et al. 2007), where it is crucial to avoid the
film boiling regime in order to keep the heat flux large. Also, film boiling collapse is
often believed to be the triggering cause of vapor explosions (rapid phase transition) in
nuclear fuel–coolant interactions (Fletcher 1995; Berthoud 2000) and liquefied natural gas
(LNG) spill incidents (Luketa-Hanlin 2006; Cleaver et al. 2007). The supposed mechanism
behind such vapor explosions is liquid superheating, i.e. the heating of a liquid above its
saturation temperature. As we will show, significant superheating at the liquid–vapor
interface is only possible if the vapor film becomes very thin, and this is only possible if
the uniformly growing solution becomes unstable. Certainly, knowing the value of ∆TL
can be very useful in a variety of applications.

What is known about the Leidenfrost temperature for a given fluid? A lower bound
is obviously the saturation temperature. For an upper bound, an empirically supported
and physically reasonable value is the liquid spinodal, the temperature beyond which it
is thermodynamically impossible for a liquid to be superheated. However, this is quite
a large range. For example, water at standard pressure has a saturation temperature of
373 K, while the spinodal can be calculated to be 550 K to 600 K. Measurements of the
Leidenfrost point for pools and large droplets of water commonly fall around 460 K (see
table 1), but the relative position along the saturation–spinodal interval varies from fluid
to fluid.

There have been a large variety of efforts to pinpoint the Leidenfrost point for any given
fluid. Some are based on simplified fluid mechanical considerations, such as the efforts
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of Zuber (1959) and Berenson (1961). Others estimate it by the supposed upper bounds
of the spinodal (Spiegler et al. (1963)) or the superheat limit from nucleation theory
(Yao & Henry (1978)). However, as concluded by Bernardin & Mudawar (1999) and in
the present work, none of the older models appear to predict in a satisfactory manner
the Leidenfrost point for a wide variety of fluids. Also, the ones that are reasonably
accurate for conventional fluids are semi-empirical, which provides less physical insight
and is dubious for extrapolation to unconventional fluids. Overall, it appears that the
underlying mechanism behind film boiling collapse has eluded discovery.

In the present work, we attempt to arrive at a prediction of the Leidenfrost point
from the hypothesis that the mechanism behind vapor film collapse is a fluid dynamical
instability. The approach is to describe vapor film dynamics through the well-studied
long-wave (lubrication) approximation of thin film flow. This approach generally leads
to a single scalar highly nonlinear equation for the film-thickness function, and has been
thoroughly reviewed by Oron et al. (1997), Myers (1998) and Craster & Matar (2009) for
the case of liquid films. However, the present model considers a thin vapor film beneath
a liquid bulk and will differ from these well-established models in several ways.

The present work is heavily inspired by two previous works, which both consider thin
film flow with phase transition: the model for evaporating liquid films by Burelbach et al.
(1988), and the model for film boiling by Panzarella et al. (2000). However, while the
former includes the thermocapillary effect (Davis 1987), liquid films give qualitatively
different dynamics than vapor films. On the other hand, while the latter does consider a
vapor film, it does not include the thermocapillary effect. The present model is the first
to include van der Waals, thermocapillary, vapor thrust and non-equilibrium evaporation
effects in the context of film boiling. As will be shown later, the thermocapillary effect
will turn out to be crucial, and including it in film boiling is dependent on two model
novelties being present:
• Non-equilibrium evaporation: In the quasi-equilibrium limit, the interface tem-

perature is locked at the saturation temperature, and no thermocapillary effect is possible.
Therefore, it is essential to use a non-equilibrium model, which includes an evaporation-
rate-dependent departure from saturation temperature at the interface.
• Non-trivial liquid dynamics: While the liquid velocity far away from the vapor

film is assumed to be zero, when there is a non-zero velocity in the vapor the liquid close
by will be pulled along to a small degree. However, as we shall show, approximating this by
assuming a completely stationary liquid will decouple the model from the thermocapillary
effect. It is crucial then to account for the small but non-zero liquid velocity.

The procedure to arrive at the present Leidenfrost model is as follows: In section 2 we
set up a flow model for the vapor film, including a van der Waals disjoining pressure,
a (linearized) non-equilibrium evaporation model, and interface stress conditions that
include both vapor thrust (normal stress) and thermocapillary effects (tangential stress).
We then apply the long-wave approximation while modelling the effect of liquid pressure
and drag to arrive at a single scalar highly nonlinear PDE for the dimensionless film
thickness.

In section 3 we apply linear stability analysis to the PDE, and arrive at a stability
condition for uniform base states. This condition depends on the scale of initial film thick-
ness. We pose the hypothesis that film boiling collapse occurs when the film is unstable
for any choice of film-thickness scale, and follow that to its logical conclusion, which turns
out to be a theoretical prediction for the Leidenfrost point. This expression suggests that
the mechanism for film boiling collapse is that the thermocapillary instability becomes
stronger than vapor thrust stabilization. This is a claim that to our knowledge has not
been stated previously.
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Figure 2: Illustration of the physical situation to be modelled: on one side is a liquid whose
bulk is held at its saturation temperature. On the other side is a solid slab whose bulk is
held at a considerably higher temperature. Tw0 and Ts are the only given temperatures
in this case, and the remaining temperature profile comes from a solution to the problem.
The overall temperature difference is ∆T , and if it is large enough, it will lead to film
boiling, i.e., a continuous thin vapor film between the two bulk phases. The general
purpose of this model is to predict the dynamics of the liquid–vapor interface, located at
z = h(x, t).

In section 4 we compare with experimental Leidenfrost measurements for 11 different
fluids and find decent predictive capabilities for all of them. As we then show in section 5,
the most common existing models/correlations are unable to perform as well, especially
for the more unusual fluids such as cryogens and liquid metals.

We go on in section 6 to discuss the benefits of this new model, as well as the problem
of the unknown evaporation coefficient from kinetic theory. We summarize in section 7,
and suggest how the validity of the hypothesis could proven (or disproven) by further
experiments.

2. Model

We consider the case of two-dimensional saturated film boiling on a horizontal solid
plane, as illustrated in figure 2. The spatial coordinates x and z run parallel and
perpendicular to the plane, respectively. The purpose of the analysis is to predict the
dynamics of the film-thickness function, z = h(x, t), where t is the time.

2.1. Governing equations of vapor flow

The vapor has velocity components u and w, in the x and z directions, respectively.
Viscosity (µv), density (ρv), thermal conductivity (kv), and heat capacity (cp,v) are all
assumed constant. The governing equations for the vapor flow are the standard continuity,
momentum, and energy equations for incompressible flow (Kundu et al. 2007),

ux + wz = 0, (2.1)

ρv (ut + uux + wuz) = −px + µv (uxx + uzz)− φx, (2.2)

ρv (wt + uwx + wwz) = −pz + µv (wxx + wzz)− φz, (2.3)

ρvcp,v (Tt + uTx + wTz) = kv (Txx + Tzz) , (2.4)

where variable subscripts imply differentiation. Here p is the pressure and φ is the body-
force potential. The only difference from standard flow equations so far is that φ includes
not only the gravity contribution, but also a film-thickness-dependent addition that
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Figure 3: Illustration of the local temperature profile in film boiling, on x-scales much
shorter than the wavelength seen in figure 2, so that the interface appears flat.

represents van der Waals interactions between the liquid surface and the solid surface.
This is called a disjoining pressure (Oron et al. 1997), and gives a total potential on the
form

φ = φ0 + ρvgbz +
Ã

6πh3
, (2.5)

Here g is the gravitational acceleration, and Ã is the effective Hamaker constant from
van der Waals interaction theory. The constant b = ±1 is +1 for the liquid-above-solid
configuration and −1 for the solid-above-liquid configuration. The constant φ0 is an
arbitrary reference potential. The van der Waals interaction will only become significant
on the sub-micrometer scale of film thickness. A derivation of the last term in (2.5) for
the case of thin liquid films can be found in the work of Ruckenstein & Jain (1974), and
here we assume that a term of the same form is valid for thin vapor films. Generally, the
interaction may be either attractive (Ã > 0) or repulsive (Ã < 0).

2.2. Evaporation model

Due to the high temperature of the solid, evaporation occurs at the liquid–vapor
interface, giving an evaporation heat flux j. The only given temperatures are the con-
trolled temperature in the solid bulk, Tw0, and the saturation temperature known from
thermodynamics, Ts. The wall surface temperature, Tw, will generally be a bit lower than
Tw0 due to the finite thermal conductivity of the solid. Still, the temperature will be
continuous at the wall. The situation at the liquid–vapor interface is more complicated.
Classically, in the quasi-equilibrium limit, the interface temperature is assumed to be
continuous and equal to Ts. However, generally there is a temperature discontinuity at
the interface, and neither side is necessarily equal to Ts. However, they will both approach
Ts in the limit of weak evaporation. This situation is illustrated in figure 3.

We label the vapor-side and liquid-side interface temperatures as Tiv and Til, respec-
tively. When evaporating, we always have that Til > Ts and Til > Tiv. The interface vapor
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temperature Tiv may either be below Ts (supersaturated) or above Ts (superheated),
depending on conditions (Ytrehus 1997). For moderate evaporation rates, we may neglect
the effect of the discontinuity and consider a single interface temperature, Ti = Til ≈ Tiv,
which is superheated (Ti > Ts). In these cases we may linearize the relationship between
evaporation mass flux and Ti on the form

Ti − Ts = K̃j, (2.6)

as used by Burelbach et al. (1988). The interfacial thermal resistance can be estimated
from kinetic gas theory and typically has the form

K̃ =

√
2πRsT

3/2
s

f(αe)ρv,sL
, (2.7)

where Rs is the specific gas constant, L is the latent heat of evaporation, ρv,s is the vapor
density at the saturation temperature and αe is the evaporation coefficient. The function
f(αe) depends on the specific model. In the moderate-evaporation limit of the classical
Hertz–Knudsen model, (Hertz 1882; Knudsen 1915), we get

f(αe) = αe, (2.8)

which is what was used by Burelbach et al. (1988). A more recent refinement of this
model is the Schrage formula, whose moderate-evaporation limit yields (Mills 1995)

f(αe) =
αe

1− 1
2αe

. (2.9)

Some more advanced evaporation models do exist (Ytrehus 1997), but quantitatively they
reduce to something very similar to the Schrage-formula for low-to-moderate evaporation
rates.

Usually these models are stated in terms of density differences, not temperature
differences like in the constitutive equation used here. Matching the form (2.6) may be
achieved by applying the ideal gas law, linearizing the saturation line by the Clausius–
Clapeyron relation, and assuming that the differences between Til, Tiv and Ts are small.

The evaporation coefficient αe is the subject of much uncertainty, debate and active
research to this date. It is typically assumed equal to the related condensation coeffi-
cient (Ytrehus 1997; Cheng et al. 2011). This unknown coefficient is introduced through
a boundary condition in kinetic theory, and cannot be determined from within kinetic
theory itself. It represents the probability of an incoming vapor molecule sticking to the
liquid, as opposed to reflecting back, and is thus by definition in the range of zero to
one. The exact nature of this coefficient appears to be far from settled. Water is the only
somewhat well studied fluid, and even there the experiments show a large scatter from
0.1 to 1.0, as seen in e.g. (Tsuruta & Nagayama 2004, Tab. 1). Besides experiments,
a common way of estimating the coefficient is molecular dynamics simulations (MD).
These methods show somewhat more consistent results, and generally give values quite
close to unity. Overall, MD simulations from the last decade seem to generally agree on
the following trends (Tsuruta & Nagayama 2004; Cheng et al. 2011; Cao et al. 2011; Xie
et al. 2011; Ishiyama et al. 2013; Iskrenova & Patnaik 2017; Liang et al. 2017):
• For a given fluid, the evaporation/condensation coefficient decreases as liquid tem-

perature is increased.
• As long as the liquid temperature is less than 0.7 times Tc (critical temperature),

we can expect αe ∈ (0.7, 1.0) for a considerable variety of fluids.
In the cases considered here the liquid surface temperatures are very close to the
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saturation temperatures, and every liquid considered here has Ts < 0.7Tc. Thus we may
expect that αe ∈ (0.7, 1.0).

2.3. Surface tension model

In order to capture the thermocapillary effect, it is essential to include the temperature
dependence of surface tension (σ). We follow Davis (1987) and model the variation as a
linearization around its value at the saturation temperature, σ0,

σ(T ) = σ0 − γ (T − Ts) . (2.10)

Thus, the factor γ is

γ = − ∂σ
∂T

. (2.11)

For most liquids, γ is positive and often around 0.0002 N m−1 K−1. As we shall demon-
strate, γ will play a crucial role in the prediction of vapor film collapse.

2.4. Boundary conditions

2.4.1. Solid wall

The solid wall at z = 0 is an impermeable no-slip surface. Also, as with any interface,
there must be a continuity of energy flux. We represent the heat transfer inside the solid
with a heat transfer coefficient αw. Since this is a solid, αw could of course be found from
the thermal conductivity and a thermal boundary layer thickness, but for simplicity we
keep the factor αw. Given the above, the wall surface boundary conditions are

u|z=0 = w|z=0 = 0, (2.12)

αw (Tw0 − Tw) = −kvTz|z=0. (2.13)

2.4.2. Liquid–vapor interface

The liquid–vapor interface is also no-slip, in the sense that the tangential velocity
is continuous. In contrast to the solid surface, fluid may pass into this interface at a
rate governed by the evaporation mass flux. The relation between the flow velocity at
the interface, the velocity of the interface itself, and the evaporation rate is given by
the kinematic boundary condition. Additionally, we must have continuity of stress and
energy flux across the interface. Given the above, the interface boundary conditions are

(~v − ~vl) · t̂
∣∣
z=h

= 0, (2.14)

ρv
(ht + uhx − w)|z=h√

1 + h2x
= j, (2.15)

[j (~vl,e − ~ve) · n̂− ([T − T l] · n̂) · n̂]z=h = −κσ (2.16)

([T − T l]z=h · n̂) · t̂ = ∇σ|z=h · t̂, (2.17)

−kv ∇T · n̂|z=h − αl (Ti − Ts) = jL. (2.18)

Here the vectors ~v = [u,w], n̂ and t̂ are the velocity, interface unit normal, and interface
unit tangent, respectively. The latter two are defined as shown in figure 2. The symbol
κ is the interface curvature. The symbol T is the incompressible Newtonian flow stress
tensor, j is the evaporation mass flux, and L is the fluid’s latent heat of evaporation.
The efficiency of heat transfer from the interface to the liquid bulk is represented by a
heat transfer coefficient αl. Overall, the subscript l indicates the corresponding property
on the liquid side.
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2.5. Comparison with some previous models

The inclusion of a disjoining-pressure term in section 2.1 is identical to the treatment
in Burelbach et al. (1988), though here presumably with a different value for the
Hamaker constant due to the nature of the thin film. Similarly, the constitutive equation
for evaporation in section 2.2 is similar, though here with a generalization allowing
for different factors f(αe). The model of Burelbach et al. (1988) only uses the older
Hertz–Knudsen model (2.8). The linearized surface tension model in section 2.3 is quite
standard.

The differences to previous works become more nuanced when it comes to the boundary
conditions in section 2.4. At the solid surface, the flow boundary conditions (2.12) are
standard. However, an energy flux balance like (2.13) is not included in Burelbach
et al. (1988), which simply assumes a constant given wall surface temperature. The
interface boundary conditions (2.14) to (2.18) are essentially the same as the ones
initially presented in Burelbach et al. (1988, Eq. 2.6–2.12), besides some subtle sign
changes due to the liquid–vapor role reversal. However, in Burelbach et al. (1988), the full
boundary conditions are considerably simplified due to the negligible density, viscosity,
and conductivity of the bulk vapor phase outside the film. This cannot be done here
as the outside bulk is liquid, and thus, the boundary conditions must remain in their
complex form.

Some of the commonalities missing from Burelbach et al. (1988) are present in Pan-
zarella et al. (2000). The latter considers a vapor film and does allow the solid surface
temperature to vary. However, they include neither vapor thrust, thermocapillary nor
van der Waals effects. In fact, they take the infinite liquid viscosity limit, which leads to
setting the vapor interface velocity to zero. As we shall show this limit has an important
qualitative consequence, as it causes the model to decouple from the thermocapillary
effect.

2.6. Scales and dimensionless numbers

We introduce a length scale h0 for z and h in order to define the dimensionless
equivalents Z and H. Similarly, we introduce a length scale x0 for x in order to define the
dimensionless distance X. The scales h0 and x0 are not arbitrary, and must be set similar
to the typical film-thickness and interface disturbance wavelength, in order to ensure
∂/∂X ∼ ∂/∂Z ∼ O (1) in the dimensionless equations. Here we choose x0 = λ/(2π),
where λ is the wavelength of the disturbance. The ratio between the two scales is defined
as

ε =
h0
x0

= 2π
h0
λ
. (2.19)

We shall later take the long-wave approximation, which formally is the limit of small ε,
i.e. λ � h0. We use a velocity scale u0 to define the dimensionless tangential velocity,
U = u/u0. Similarly we define the dimensionless perpendicular velocity W = w/w0,
where continuity implies that w0 = εu0. The dimensionless time τ is defined by the time
scale x0/u0. We scale the temperature according to its position on the scale between Tw0

and Ts,

θ =
T − Ts
∆T

, (2.20)

where ∆T = Tw0 − Ts. We scale the remaining variables as

p =
µvu0
εh0

P, φ =
µvu0
εh0

Φ, j =
kv∆T

h0L
J, σ = σ0Σ, (2.21)
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where P , Φ, J , and Σ are the dimensionless pressure, body-force potential, evapora-
tion mass flux and surface tension, respectively. We define the following dimensionless
numbers,

Re =
ρvu0h0
µv

, Pr =
µvcp,v
kv

, Ψ =
µv

µl
, D =

ρv
ρl
, E =

kv∆T

ρvu0h0L
,

K =
K̃kv
h0L

, Ca =
µvu0
σ0

, M =
∆Tγ

µvu0
, A =

Ã

6πµvu0h20
,

Gv =
ρvgh

2
0

µvu0
, Gl =

ρlgh
2
0

µvu0
, G =

∆ρgh20
µvu0

, Biw =
αwh0
kv

, Bil =
αlh0
kv

. (2.22)

2.7. Long-wave approximation

2.7.1. Approximate equations

We introduce the scales and dimensionless numbers of section 2.6 and make the
assumptions of long waves and small Reynolds number, while retaining surface tension
effects to leading order,

ε� 1, εRe� 1, D � 1, Pr ∼ O (1) , ε3Ca−1 ∼ O (1) , εM ∼ O (1) (2.23)

We also want to retain the vapor thrust, van der Waals, and gravitational effects to
leading order, so we keep the terms εReE2J2, εA/H3 and εGv. Given this, the governing
equations of the vapor flow, (2.1), (2.2), (2.3) and (2.5) become

UX +WZ = 0, (2.24)

(P + Φ)X = UZZ , (2.25)

(P + Φ)Z = 0, (2.26)

Φ = Φ0 + εbGvZ +
εA

H3
, (2.27)

respectively. The boundary conditions of the vapor flow (2.12), (2.14), (2.15), (2.16), and
(2.17) become

[U ]Z=0 = [W ]Z=0 = 0, (2.28)

[U − Ul]Z=H = 0, (2.29)

E

ε
J = [Hτ + UHX −W ]Z=H , (2.30)

[P − Pl]Z=H + εReE2J2 = −HXXε
3Ca−1, (2.31)[

UZ − Ψ−1Ul,Z

]
Z=H

= −εM (θi)X , (2.32)

respectively. Similarly, the energy equation (2.4) becomes

θZZ = 0, (2.33)

and the temperature boundary conditions (2.6), (2.13) and (2.18) become

KJ = θi, (2.34)

−θZ |Z=0 = Biw (1− θw) , (2.35)

J = − θZ |Z=H − Bilθi, (2.36)

respectively. The van der Waals effect is included in (2.27) (∼ A), the vapor thrust effect
is included in (2.31) (∼ ReE2), and the thermocapillary effect is included in (2.32) (∼M).
These long-wave approximation equations have many similarities to the ones presented in
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Burelbach et al. (1988, Eq. 5.5–5.10). However, there are significant differences. Besides
some sign changes, these differences all relate to the fact that the bulk phase outside
the thin film is different. In Burelbach et al. (1988), the normal-stress condition (here
(2.31)) does not include a term for the outside pressure as it could be conveniently set
constant and equal to zero. In the tangential-stress condition (here (2.32)), the bulk phase
shear rate was set to zero, as the interface could be treated as a free surface. Neither
simplification is possible in the present work, as the liquid and vapor have switched
places. The equations for the temperature profile are also somewhat more complicated
in the present work, since the wall surface temperature is allowed to vary (giving (2.35))
and since the the bulk phase conductivity cannot be neglected (giving the final term of
(2.36)). Overall, the main difference is that with this problem we cannot make a purely
“one-sided” model like in Burelbach et al. (1988).

2.7.2. Solution to temperature equations

We note how (2.33) to (2.36) for the temperature profile have no explicit time depen-
dence, only implicitly through the variables J(X, τ) and H(X, τ). Since J is determined
directly from the temperature profile through (2.34), the instantaneous value of H
determines the current temperature profile θ as well as the evaporation mass flux J .
The solution is

J(H) =
1

K +
(
Bi−1w +H

)
C
, (2.37)

θi(H) =
K

K +
(
Bi−1w +H

)
C
, (2.38)

θw(H) =
K +HC

K +
(
Bi−1w +H

)
C
, (2.39)

where we have defined the new constant

C = 1 + C ′. (2.40)

Here C ′ = BilK = αlK̃/L and represents the effect of heat lost into the liquid bulk.
Interestingly, C ′ is independent of h0, even though the interface temperature θi is not.
It is instructive to look at a few special cases of this solution. In the quasi-equilibrium
limit (K → 0), we get

J(K → 0) =
1

Bi−1w +H
, (2.41)

θi(K → 0) = 0, (2.42)

θw(K → 0) =
H

Bi−1w +H
. (2.43)

As expected, the interface temperature is locked to Ts. The evaporation rate is somewhat
limited by the finite conductivity of the solid. If H → 0, J does not diverge, due to the
finite solid heat transfer efficiency. In the limit of a perfectly conducting solid (Biw →∞)
we get

J(Biw →∞) =
1

K +HC
, (2.44)

θi(Biw →∞) =
K

K +HC
, (2.45)

θw(Biw →∞) = 1. (2.46)



Thermocapillary instability as a mechanism for film boiling collapse 11

As expected, the wall surface temperature is locked to the bulk temperature, Tw0. The
evaporation rate is somewhat limited by the non-equilibrium effect (K 6= 0) and liquid
conduction (C > 1). If H → 0, J does not diverge, due to the interface thermal resistance
(K 6= 0). Generally, if H → 0, we get

J(H → 0) =
1

K + Bi−1w C
, (2.47)

θi(H → 0) = θw(H = 0) =
K

K + Bi−1w C
, (2.48)

i.e. the evaporation rate stays finite and the interface/surface temperature approaches an
intermediate value between Ts and Tw0. However, note that in the H → 0 limit, it is likely
that the linearized relation in (2.6) for moderate evaporation rates becomes inaccurate.

We proceed by using the general solution in (2.37) to (2.39) in order to include both the
non-equilibrium effect and the potential effects of heat transfer on both sides of the vapor
film. Note that the non-equilibrium (K 6= 0) effect is absolutely necessary for capturing
the thermocapillary effect. If K = 0, θi becomes a constant, and the thermocapillary
term in the tangential-stress condition (2.32) disappears.

2.7.3. Velocity profile

We define the reduced dimensionless pressure as P̄ = P + Φ. From (2.26) we know
that P̄ is constant across the film, and thus, we may choose to evaluate it at Z = H in
(2.25), so that it reduces to

UZZ = P̄ (X,H)X . (2.49)

If we combine (2.31) and (2.27), we find that the gradient of reduced pressure is

P̄ (X,H)X = Pl(X,H)X + εbGvHX − 2εReE2JJX − ε3Ca−1HXXX − 3εA
HX

H4
. (2.50)

The right-hand side of (2.49) is independent of Z, and thus we may integrate the equation
twice and use the no-slip wall boundary condition (2.28) to get the velocity profile

U =
1

2
P̄X
(
Z2 − 2HZ

)
+ UZ |Z=HZ, (2.51)

=
1

2
P̄X
(
Z2 −HZ

)
+ U |Z=H

Z

H
, (2.52)

expressed in two different ways depending on whether one wants to use the interface
shear rate or the interface velocity to define the Z = H boundary. From this, we find the
total flow rate to be ∫ H

0

UdZ = −1

3
H3P̄X +

1

2
H2UZ |Z=H , (2.53)

= − 1

12
H3P̄X +

1

2
HU |Z=H . (2.54)

The two extremes of behavior can be found by either setting the liquid velocity to zero
at the boundary (corresponding to infinite liquid viscosity) or setting the liquid shear
rate to zero at the boundary (treating the interface like a free surface). Thus, regardless
of the specific liquid properties, we know that the flow rate must be within the range∫ H

0

UdZ =

{
− 1

12H
3P̄X , U |Z=H = 0,

− 1
3H

3P̄X − 1
2H

2εMθi,X , Ul,Z |Z=H = 0,
(2.55)
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where we in the latter case have used the tangential-stress condition (2.32) to find the
vapor shear rate. Generally, the interface velocity Ui = U |Z=H = Ul|Z=H is

Ui = −1

2
H2P̄X + Ψ−1HUl,Z |Z=H − εMHθi,X , (2.56)

and if we evaluate (2.51) at Z = H, we get the following constraint on the boundary:

[U −HUZ ]Z=H = −1

2
H2P̄X . (2.57)

Note that if we take the zero interface-velocity limit, the flow rate is fully determined by
the first case of (2.55). Then there is no way to involve the tangential-stress condition
(2.32), and therefore, any coupling to the thermocapillary effect is lost. Thus, the choice
of velocity boundary condition made by Panzarella et al. (2000) is not an option here.

2.7.4. Liquid dynamics

So far we have made no assumptions regarding the liquid flow outside the vapor film.
However, in order to find the final vapor velocity profile we require a liquid pressure (as
seen in (2.50)) and information regarding the liquid–vapor boundary (as seen in (2.51)
and (2.52)).

First, we assume that the liquid pressure is purely hydrostatic,

Pl = −εbGlZ, (2.58)

similar to Panzarella et al. (2000). Note that the liquid layer is much thicker than the
vapor layer, so the former does not have any disjoining-pressure contribution.

Second, we need to make an assumption regarding the liquid flow in order to find the
interface velocity. The liquid is assumed to be stationary far away in the bulk, but close
to the interface it will be pulled along with the vapor. From the perspective of the vapor
film, the liquid slows down the vapor flow due to viscous drag. Generally, we expect the
liquid velocity profile to monotonically decay from Ui at Z = H to zero at Z = ∞.
Regardless of the details of the liquid flow, we know that the interface velocity Ui must
be between the following two hypothetical extreme cases:
• Minimum interface velocity: Umin

i = 0 (interface acts like a wall).
• Maximum interface velocity: Ui = Umax

i (interface acts like a free surface).
The second case corresponds to the case of zero liquid shear, i.e. when the liquid does
not resist the vapor flow at all. If we set Ul,Z |Z=H = 0 in (2.56) we find that

Umax
i = −1

2
H2P̄X − εMHθi,X . (2.59)

We then interpolate between the two known extreme cases by introducing the interpola-
tion parameter η ∈ [0, 1],

Ui = ηUmax
i + (1− η)Umin

i

= η

(
−1

2
H2P̄X − εMHθi,X

)
, (2.60)

which satisfies the constraint (2.57) for any value of η. While the value of η is unknown for
now, we make the crucial assumption that it is independent of position X, and thus only
depends on constant fluid properties. Specifically, we expect η to increase monotonically
with the viscosity ratio Ψ , with the limits

lim
Ψ→0

[η(Ψ)] = 0, lim
Ψ→∞

[η(Ψ)] = 1 (2.61)
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since the two extreme cases correspond to the theoretical limits Ψ → 0 and Ψ → ∞,
respectively. Since the driving force for flow is the vapor film pressure gradient and the
almost stationary liquid just passively applies drag to this flow, we expect the average
vapor velocity to be significantly larger than the interface velocity. This means that we
can expect η to be much closer to zero than one.

More detailed information on the value of η requires more bold assumptions regarding
the liquid velocity profile. One such assumption is shown in appendix A, which leads to
the convenient approximation

η =
1

1 + Ψ−1
= Ψ + O

(
Ψ2
)
. (2.62)

For common values of Ψ this means that η is in the range of 0.025–0.050. Note that while
this is quite close to zero, taking the actual η → 0 approximation is not an option as it
would eliminate the thermocapillary effect.

No matter the specific model used to find a value for η, we may insert (2.60) into (2.54)
and find the mass flow rate to be∫ H

0

UdZ = − 1

12
(1 + 3η)H3P̄X −

1

2
ηεMH2θi,X , (2.63)

which as intended matches (2.55) in the limiting cases of η = 0 and η = 1. The following
derivation of a film thickness PDE, and the stability analysis thereof, is performed with
a general unknown η.

The problems addressed in this section represent a central modelling complication
compared to the related works of Burelbach et al. (1988) and Panzarella et al. (2000).
The former was able to ignore all bulk phase dynamics because it considered a liquid film
with a free surface (η = 1). The latter made stationary liquid (η = 0) approximation,
which eliminates the thermocapillary effect. Here it is necessary to have an actual
intermediate value for the interface velocity in order to arrive at a one-sided model.
The assumptions made for the effect of liquid shear in this section are admittedly
somewhat bold. Ultimately their validity rests on the success of the resulting model
for the Leidenfrost point.

2.7.5. Film-thickness PDE

If we integrate the continuity equation (2.24) across the film from Z = 0 to Z = H(τ),
and apply the Leibniz integral rule, the kinematic boundary condition (2.30), and the
wall boundary condition (2.28), we get the basic mass-conservation PDE

Hτ +

(∫ H

0

UdZ

)
X

=
E

ε
J, (2.64)

with a flux term and a source term. We find the reduced pressure gradient by inserting
(2.37) and (2.58) into (2.50),

P̄ (X,H)X = −εbGHX +
2εReE2C[

K + (Bi−1w +H)C
]3HX − ε3Ca−1HXXX − 3εA

HX

H4
. (2.65)

We can then insert P̄X into (2.63) while using (2.38) for θi, in order to yield the flow
rate. When we insert this flow rate into (2.64) and use (2.37) for J in the source term,



14 E. Aursand, S. H. Davis and T. Ytrehus

we get the final PDE for the film thickness H:

Hτ̃ +
bξG

12E
ε2
[
H3HX

]
X︸ ︷︷ ︸

gravity

− ξReEC

6
ε2
[
F 3(H)HX

]
X︸ ︷︷ ︸

vapor thrust

+
ξ

12CaE
ε4
[
H3HXXX

]
X︸ ︷︷ ︸

capillary

+
ξA

4E
ε2
[
HX

H

]
X︸ ︷︷ ︸

vdW

+
M̃KC

2E
ε2
[
F 2(H)HX

]
X︸ ︷︷ ︸

thermocapillary

=
F (H)

H︸ ︷︷ ︸
evaporation

. (2.66)

Here we have changed to the evaporative time scale,

t̃0 =
h0

(j0/ρv)
=
ρvh

2
0L

kv∆T
, (2.67)

with the corresponding dimensionless time τ̃ , and we have defined the shorthands

ξ = 1 + 3η, (2.68)

M̃ = ηM, (2.69)

F (H) =
H

C
(
H + Bi−1w

)
+K

. (2.70)

The function F (H) will in most cases stay close to unity, since K � 1, Bi−1w � 1 and
C ≈ 1. The constants C, G/E, ReE, CaE, A/E and M̃K/E, as well as the function F ,
are all independent of the unknown scale u0, and thus (2.66) is also independent of it.

3. Linear stability analysis

We now seek to examine the linear stability of a uniform film according to (2.66). This
means finding under which conditions small perturbations of uniform solutions will grow,
and under which conditions the uniform solutions will remain stable. In section 3.1 we
find the form of the uniform basic solution and we examine its stability in section 3.2.
Finally, in section 3.4, we propose how these results may be used to predict vapor film
collapse.

3.1. Basic solution

We consider a spatially uniform time-dependent base solution to (2.66), H̄(τ̃). We
define the scale h0 as the initial film thickness so that H̄(0) = 1. The analytical solution
is

H̄(τ̃) =

√
2Cτ̃ +

(
Bi−1w C +K + C

)2 − (Bi−1w C +K)

C
. (3.1)

The initial growth rate of this basic solution is reduced by every non-ideal effect, K > 0,
Bi−1w > 0, and C > 1. If all these effects are negligible, we get the upper-bound ideal
solution H̄ =

√
1 + 2τ̃ . In any case, we see that the basic solution will grow monotonically,

and thus, any vapor film collapse must be initiated by instabilities of this uniform
solution.
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3.2. Linear stability of basic solution

We now propose a solution which is a sum of the base solution and a spatially periodic
perturbation with a small time-dependent amplitude,

H(X, τ̃) = H̄(τ̃) + Ĥ(τ̃) exp

(
i
k

ε
X

)
. (3.2)

Here k/ε is the dimensionless wavenumber on the scale x0, and thus k is the dimensionless
wavenumber on the scale h0. If we insert (3.2) into (2.66) and reduce to first order in the
perturbation, we get the following ODE for the perturbation amplitude,

∂
∂τ̃ Ĥ

Ĥ
=
ξGbH̄3k2

12E
+
ξAk2

4EH̄
+
CF̄ 2KM̃k2

2E
− ξCF̄ 3ERek2

6
− ξH̄3k4

12ECa
− CF̄ 2

H̄2
. (3.3)

The recurring factor F̄ , which appears in every term directly related to the temperature
profile, is simply F (H) from (2.70) with H̄ substituted for H. The last k-independent
term in (3.3) will only have an algebraic contribution to the exponential instability for the
same reasons as the ones stated by Burelbach et al. (1988), and may thus be disregarded
in the following analysis. All the remaining terms are O

(
k2
)

except the capillary term,

which is O
(
k4
)
. The latter will simply provide a cutoff in k and stabilize the shorter

wavelengths. We may then consider the stability of long waves by only comparing the
O
(
k2
)

terms.
If we have initial stability, the film will grow according to (3.1). If it later turns unstable

after growing some, we might re-scale h0 and reset the time parameter, and consider it
a new stability problem from H̄ = 1. Thus we simply consider initial stability at τ̃ = 0,
and investigate the terms’ dependence on film thickness h0. Stability of long waves may
then be analyzed by considering the sign of

S =
ξGb

12E︸︷︷︸
gravity

+
CF 2

0KM̃

2E︸ ︷︷ ︸
thermocap.

− ξCF 3
0ERe

6︸ ︷︷ ︸
vapor thrust

+
ξA

4E
,︸︷︷︸

vdW

(3.4)

where F0 is F̄ evaluated at H̄ = 1. Here S > 0 indicates a growing perturbation
(instability). We can make the following observations about the terms in (3.4):
• Gravity: this term is destabilizing (if b > 0).
• Thermocapillary: this term is destabilizing, which is also the case for evaporating

liquid films (Burelbach et al. 1988).
• Vapor thrust: this term is stabilizing, in contrast to its destabilizing influence in

evaporating liquid films (Burelbach et al. 1988).
• van der Waals: this term is destabilizing (if A > 0).

The main qualitative difference compared to the stability analysis of evaporating liquid
films lies in the vapor thrust term, which here is found to be stabilizing. In the analysis of
Burelbach et al. (1988), every O

(
k2
)

term is found to have a destabilizing influence, which
means that an evaporating liquid film is always unstable if sufficiently large wavelengths
are allowed. Film boiling appears to be different in that it has a stabilizing O

(
k2
)

term,
which means that the stability of long waves depend on specific conditions. This is the
key to the vapor film collapse prediction in the following section.

3.3. Influence of non-ideal effects

We now briefly investigate the influence on stability by the following non-ideal effects:
• Non-equilibrium evaporation: K 6= 0.
• Heat transfer to liquid bulk: C 6= 1.
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Figure 4: Sample values for the terms in (3.4) in the case of water film boiling with
∆T = 225 K (above the Leidenfrost point), as a function of film thickness scale h0.
The different shaded parts have labels indicating the dominant influence(s) in the given
region.

• Imperfect wall temperature control: Bi−1w 6= 0.
Among the terms in (3.4), only the thermocapillary and vapor thrust terms are influenced
by these effects. Besides the thermocapillary factor KM̃ , all dependencies on these non-
idealities are collected into the factor

F0 =
1

(1 + C ′)
(
1 + Bi−1w

)
+K

. (3.5)

Out of the three factors, K and Bi−1w are dependent on film thickness scale. They both
decrease towards zero as h0 increases (∼ h−10 ). Generally we will have K ≪ 1 and
Bi−1w � 1 when h0 > 1 µm. The third factor C ′ is actually independent of h0, but as
explained in appendix B it can be expected to be very close to zero. In other words,
the energy transferred into the liquid bulk is negligible compared to the energy spent on
evaporation, no matter the film thickness.

Overall, this means that for moderate to large film thicknesses (h0 > 1µm) the
influence of these non-ideal effects are negligible, and we have F0 ≈ 1. For very thin
films, F0 < 1. For such films, the reduction in F0 reduces the vapor thrust term (∼ F 3

0 )
more than it reduces the thermocapillary term (∼ F 2

0 ), which means that the non-ideal
effects have a destabilizing influence, if any.

3.4. Predicting vapor film collapse

In (3.4) we have three destabilizing terms (assuming b > 0 and A > 0) working against
the sole stabilizing vapor thrust term. Their typical dependencies on film-thickness scale
are illustrated in figure 4. We note the following features:



Thermocapillary instability as a mechanism for film boiling collapse 17

• For large h0, the destabilizing influence of gravity will dominate.
• For h0 < 100 nm, the destabilizing influence of van der Waals forces will dominate
• For intermediate h0, there is a remarkably even struggle between the destabilizing

influence of the thermocapillary effect and the stabilizing influence of the vapor thrust
effect.

We see that the vapor film is always predicted to be unstable at very small or very large
thickness scales due to the van der Waals and gravity terms, respectively. However, at the
intermediate thickness scales the vapor thrust and thermocapillary terms are of similar
magnitude but approximately two orders of magnitude larger than the other two. This
means that the thermocapillary effect is the only destabilizing effect that is capable of
cancelling out the stabilizing vapor thrust in the intermediate thickness range. While
the gravity and vdW terms also work against vapor thrust, their effect is negligible in
comparison. In summary, the model suggests that

• The very small and very large thickness scales are always unstable.
• The intermediate thickness scale can only be unstable if the thermocapillary term

overpowers the vapor thrust term.

We may combine these two observations with the following hypothesis:

• Hypothesis: observed vapor film collapse (Leidenfrost transition) occurs when there
is instability on every thickness scale.

The hypothesis implies that a necessary condition for film boiling collapse is that all
three regions indicated in figure 4 are unstable. As stated above, the very small and very
large scales are always unstable. This leaves the intermediate scales, which are dominated
by the thermocapillary and vapor thrust terms. To be even more specific, film boiling
collapse would require instability in the h0 > 1 µm part of the intermediate region. On
these scales F0 approaches unity, as discussed in section 3.3.

In summary, the above hypothesis together with the behavior of the terms in (3.4)
implies that a theoretical predictor for the Leidenfrost point may be found from the
balance between the thermocapillary and vapor thrust terms in the F0 → 1 limit. Based
on this we find the following h0-independent criterion for vapor film collapse,

KM̃

2E
>
ξERe

6
. (3.6)

The above condition depends on fluid properties as well as the superheat ∆T . We
interpret the ∆T that satisfies (3.6) as an equality as the Leidenfrost point, ∆TL. This
is the superheat below which film boiling collapse is observed.

Note that the vapor density and conductivity contained in K, E, and Re are supposed
to be evaluated at the average film temperature, Tf = Ts + ∆T/2, which is initially
unknown. We seek an explicit expression for ∆TL that depends on known saturation
properties only. When we insert expressions for the dimensionless constants in (3.6), we
get

∆TL
Ts

=

(
3η

1 + 3η

) √
2πRsTs

f(αe)kv,s
γ

[
ρv
ρv,s

kv,s
kv

]
. (3.7)

The left-hand side is a convenient dimensionless quantity which we call the “relative
Leidenfrost temperature.” We see that (3.7) is an implicit equation for the relative
Leidenfrost temperature, since the square bracket also depends on it. For ideal gases
at constant pressure we know that ρv ∼ 1/T and kv ∼

√
T , and thus, we may collect all
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∆TL dependence on the left-hand side, giving(
1 +

1

2

∆TL
Ts

)3/2
∆TL
Ts

=

(
3η

1 + 3η

)( √
2π

f(αe)

)(√
RsTs
kv,s

)
γ ≡ Θ. (3.8)

Here the right hand side, labelled Θ for short, may be evaluated solely from known
saturation properties. Its value is usually considerably less than unity. For small ∆TL/Ts,
we may make (3.8) explicit, as

∆TL
Ts
≈ 2

3

[√
1 + 3Θ − 1

]
. (3.9)

It turns out that the third parenthesis in Θ is essentially fluid independent because we
generally have that kv ∼

√
RsT , as known from ideal kinetic theory. When we define the

(almost constant) variable

ck =

√
RT

kv
(3.10)

the expression for Θ becomes

Θ ≈
(

3η

1 + 3η

)(
ck
√

2π

f(αe)

)
γ. (3.11)

If we apply the expression (2.62) for η(Ψ), we find that 3η/(1+3η) = 3/(4+Ψ−1), which
gives

Θ ≈
(

3

4 + Ψ−1

)(
ck
√

2π

f(αe)

)
γ. (3.12)

Equation (3.9) with (3.12) constitute the final and relatively simple practical result which
may be used to predict the relative Leidenfrost temperature. Given that fluids generally
have the same values for Ψ , ck and αe, this model predicts that the relative Leidenfrost
temperature depends almost solely on γ and that this relationship is approximately linear.

4. Experimental validation

We now seek to evaluate the predictive power of the present model by comparing it to
experimental observations of ∆TL. From now on, when we refer to the “present model”,
we mean (3.9) with (3.12) while using the constant values

ck = 14 000 K m N−1, (4.1)

Ψ = 1/30, (4.2)

which are simply rounded-off averages from the fluids studies here. Constant values for
these parameters are used since ck and Ψ are very similar for most fluids, compared to the
variations in γ. Making this choice significantly simplifies the application of the model,
and serves to illustrate the point that the model mostly depends on two parameters only:
γ and αe ∈ [0, 1]. We look up γ directly from surface tension data, and use the Schrage
form of the kinetic theory evaporation models, equation (2.9).

For each fluid, we look for a single experimentally measured property: the Leidenfrost
temperature (TL) found at atmospheric pressure. This number is then made dimensionless
by considering its relative distance from the saturation temperature Ts, thus matching
the left-hand side of (3.9). The data are shown in table 1.
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Fluid Ts (K) γ ( N m−1 K−1) Avg. TL (K) Std. TL (K) NL

Water 373.15 0.000192 462.78 19.39 12
Nitrogen 77.36 0.000229 100.00 4.31 7
Freon113 320.74 0.000110 378.03 10.40 5
Freon11 296.92 0.000128 346.50 8.38 4
Acetone 329.30 0.000112 409.40 4.15 4
Methane 111.70 0.000250 163.33 12.47 3
Mercury 629.80 0.000220 862.67 62.10 3
Ethanol 351.50 0.000089 429.10 9.97 3
Pentane 309.21 0.000108 367.00 N/A 1
Cyclohexane 353.89 0.000114 438.15 N/A 1
Benzene 353.30 0.000124 448.15 N/A 1

Table 1: Fluids for which experimental data on the Leidenfrost temperature could be
found. Also shown are the saturation temperature Ts and the surface tension temperature
sensitivity γ, found from the NIST database (Linstrom & Mallard 2017) and Dean (1998).
The fourth and fifth columns show the average and standard deviation of the Leidenfrost
temperature at atmospheric pressure, based on NL data points from the literature. The
Leidenfrost temperature data points were found in Sakurai et al. (1990); Yao & Henry
(1978); Gottfried & Bell (1966); Qiao & Chandra (1997); Bernardin & Mudawar (1999);
Baumeister & Simon (1973); Nagai & Nishio (1996); Valencia-Chavez (1978); Vesovic
(2007); Berenson (1961).

We compare the model with the experimental data in figure 5, where model predictions
are shown for the various possible ranges of the evaporation coefficient αe. The figure
shows that all data points are at least consistent with the model, in the sense that none
of them would imply the impossible value αe > 1. The data points all fall within the
predictions corresponding to αe ∈ (0.7, 1.0), but the unknown nature of the evaporation
coefficient prevents any accurate confirmation of the dependence on γ. The implications
of figure 5 are further discussed in section 6.1.

5. Comparison with previous Leidenfrost point models

We now seek to evaluate the predictive capabilities of the present model compared to
some existing models and correlations for the Leidenfrost point. The models considered
here are either based on semi-empirical fluid mechanical considerations or based on the
hypothesis that the Leidenfrost point corresponds to the superheat limit. The latter
comes in two different versions, depending on how the superheat limit is represented.

5.1. Simplified fluid mechanical models

A semi-empirical model for the Leidenfrost point was developed by Berenson (1961,
Eq. 40), who developed a model for the film boiling heat transfer coefficient based on
classical Rayleigh–Taylor stability analysis and conservation equations in a simplified
geometry. When he combined this with the minimum heat flux model by Zuber (1959),
which also employs simplified fluid mechanical considerations, this resulted in an expres-
sion for ∆TL,

∆TL
Ts

= 0.127
ρvL

kvTs

(
g∆ρ

ρl + ρv

)2/3(
σ0
g∆ρ

)1/2(
µv

g∆ρ

)1/3

. (5.1)
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Figure 5: Comparison of the present model with the experimental data shown in table 1.
The shaded regions indicate model predictions for different ranges of αe. Error bars
indicate the standard deviation of the different data points found in the literature. The
lack of an error bar indicates that only a single data point could be found.

Note that (5.1) is semi-empirical. The exponents are theoretically derived, but the pre-
factor 0.127 stems from an experimental fit to film boiling data.

5.2. Leidenfrost point from superheat limit

A different class of models is based on the simple hypothesis that the Leidenfrost
point corresponds to the liquid superheat limit, also called the homogeneous nucleation
temperature. The superheat limit is commonly estimated in two different ways: The
first method is by calculating the spinodal temperature from an equation of state. The
spinodal is the theoretical absolute maximum superheat temperature, where the vapor
nucleation barrier goes to zero. However, homogeneous nucleation will usually proceed
spontaneously before the barrier reaches zero, and the temperature where this happens
may be approximated by classical nucleation theory (CNT). This is the second method.
Both methods are purely theoretical and do not have any fitted empirical parameters.
See Aursand et al. (2017) for further discussion on nucleation theory and the spinodal.

Superheat limit from spinodal:
Using the spinodal to estimate the Leidenfrost point was first suggested by Spiegler
et al. (1963). They used the van der Waals equation of state to analytically relate the
spinodal (Tsp) to the critical temperature, Tsp = (27/32)Tc. This implies that the relative
Leidenfrost temperature is simply

∆TL
Ts

=
27

32

Tc
Ts
− 1. (5.2)

Superheat limit from nucleation theory: Alternatively, one may use classical
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nucleation theory to predict the vapor nucleation rate at a given degree of liquid
superheating. In combination with high accuracy equations of state, using this to predict
the experimental superheat limit has been found to be quite accurate (Aursand et al.
2017). Going one step further and using this to represent the Leidenfrost point is less
established but has been suggested by authors such as Yao & Henry (1978) and Sakurai
et al. (1990). In classical nucleation theory (Aursand et al. 2017) the nucleation rate Λ
(s−1m−3) is expressed as an Arrhenius rate law,

Λ = Λ0 exp

(
−∆G
kBT

)
, (5.3)

with the activation energy being

∆G =
16πσ3(T )

3 (ps(T )− p)2
, (5.4)

and the rate at zero activation barrier being

Λ0 =
ρl

m3/2

√
2σ

π
. (5.5)

Here, m is the mass of a single molecule and ps is the thermodynamic saturation pressure.
The specific expression for Λ0 may vary a little between authors, but this has a negligible
effect on the final result for the superheat limit.

The expression in (5.3) simply gives the nucleation rate as a function of fluid properties
and temperature. In order to find the superheat limit, one must define a critical nucleation
rate Λc < Λ0, which corresponds to sudden macroscopic phase change. It turns out that
due to the rapid growth of the exponential in (5.3), the result is quite insensitive to the
specific choice of Λc. Here, we use the value of Λc = 1× 1012 s−1m−3, as seen in previous
works (Bernardin & Mudawar 1999; Aursand et al. 2017). Thus, in order to predict the
superheat limit, we simply have to solve the implicit equation

Λ(T ) = Λc (5.6)

for T . Note that it is absolutely essential to include the temperature dependence of σ in
(5.4), as it is one of the major sources of temperature dependence in ∆G. In order obtain
a model of comparable simplicity and avoid having to iteratively solve for the saturation
line using an equation of state, we use the Clausius–Clapeyron relation to estimate the
saturation pressure as

ps(T ) = p exp

[
L

Rs

(
1

Ts(p)
− 1

T

)]
. (5.7)

5.3. Performance comparison

We now seek to compare the predictive performance of the present model with the three
alternative models presented in section 5.1 (Berenson-model) and section 5.2 (Spiegler-
model and CNT-model). Since αe can generally be anywhere in the range of (0, 1), well-
defined prediction by the present model requires the choice of a specific value. Here, we
choose αe = 0.85, which is the center point of the expected range identified in section 2.2.
The fluid properties necessary to evaluate the other models were mainly found from the
NIST database (Linstrom & Mallard 2017) and Dean (1998). Missing mercury properties
were found in Skapski (1948); Epstein & Powers (1953); Vinogradov (1981); Huber et al.
(2006).

The evaluation of predictive performance is shown in figure 6, where we see that only
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Figure 6: Comparison of model predictions with experimental data for the relative
Leidenfrost point for (a) the present model (with αe = 0.85), (b) the Berenson model
(5.1), (c) the Spiegler model (5.2), and (d) the CNT model (5.6). See figure 5 for data
point legend. Gray bands show the range of a ±10% error in prediction of TL, relative to
Ts. Data points that fall outside this band are marked with red circles.

the present model can accurately predict the relative Leidenfrost point within an error
of 10% for every fluid. This is further discussed in section 6.2.

6. Discussion

6.1. Model validity and predictive power

The present model for the Leidenfrost point depends on the somewhat unknown
evaporation coefficient αe, which is generally unknown but always lies within the range
(0, 1). The model predicts that ∆TL → ∞ when αe → 0, and thus, generally the model
merely provides a lower bound on ∆TL given by the αe = 1 result. In terms of figure 5, this
means that any data point above the bottom line (αe = 1) is consistent with the model.
As discussed in section 2.2, molecular dynamics simulations indicate that αe should be
within the range 0.7–1.0. This is consistent with every data point seen in figure 5. Note
that data points falling above the bottom line in figure 5 may also be explained by
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imperfect wall temperature control (Bi−1w > 0). On the other hand, if any data points
were to fall significantly below the bottom line, that would count as evidence against the
model. In this sense, the model is still falsifiable.

Qualitatively, the present model predicts that to a good approximation ∆TL/Ts only
depends on γ and αe. Whereas all the data found are quantitatively consistent with the
model, the γ dependence is not satisfactorily tested since all the fluids with available
Leidenfrost data have γ-values within the same order of magnitude. Given this limited
range of γ, we see in figure 5 that any good confirmation of the γ dependence is muddled
by uncertainty in αe. However, just as important as the prediction of γ-dependence, is
the predicted independence on very variable fluid properties such as Ts, σ0, or L. While
the fluids studied here have very variable values of these three parameters (even different
orders of magnitude), they have values of ∆TL/Ts within the same order of magnitude.
This is correctly predicted by the present model.

Despite the fact that every data point is consistent with the model, the relatively
uncertain nature of the evaporation coefficient may pose a problem for the predictive
power of the model. Without any additional information on αe for a specific fluid, we
have little choice but to assume a value. Thankfully, as we saw in section 5.3, choosing
the center of the expected interval (αe = 0.85) yields a correct prediction for every data
point within 10% error. Additionally, the prediction of a lower bound on ∆TL appears
to be without flaw, as seen in figure 5.

Finally, an interesting observation can be made by looking at the effect of uncertainty
in αe on the predicted Leidenfrost temperature. The review in section 2.2 implies that the
uncertainty in αe is in the order of 10%. Around the presumed average point αe = 0.85, a
change of±10% in αe implies a change of approximately∓20% in the quantity∆TL/Ts, as
we may also see from the width of the shaded bands in figure 5. As an approximate general
rule, this means that the uncertainty in absolute TL(K) due to αe is about 5% of the
fluid’s saturation temperature. For the fluids where we have a sufficient number of data
points to know the underlying variance with decent confidence, this 5% rule corresponds
remarkably well with the experimental standard deviation numbers in table 1: For water
the model predicts an uncertainty of 18.7 K while the data has a standard deviation of
19.4 K. For nitrogen the model predicts an uncertainty of 3.87 K while the data has a
standard deviation of 4.31 K. This may suggest that the reason for the relatively large
variability in TL measurements is that αe varies between experiments, not because of any
flaws in the Leidenfrost measurements. The fact that the present model can seemingly
predict this variation gives it some addition credibility.

Overall, there are compelling pieces of evidence for the hypothesis that the thermo-
capillary instability is the governing effect behind film boiling collapse. However, there
is insufficient available data to be certain.

6.2. Benefits over existing models/correlations

As shown in section 5 and especially in figure 6, the quantitative predictive power
for the Leidenfrost point seems to be stronger in the present model compared to the
three alternative models considered here. While the alternative models work reasonably
well for conventional fluids, they are vastly erroneous for some of the more unusual
fluids. Specifically, the Berenson model underpredicts the value for mercury and vastly
overpredicts the value for the cryogens nitrogen and methane. The superheat limit based
models moderately overpredict the conventional fluids and vastly overpredicts the value
for mercury. These problems are likely due to these fluids having unconventional values
for saturation temperature and/or surface tension. Among the previous models, the semi-
empirical Berenson model appears to quantitatively perform the best for conventional
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fluids, as seen in section 5.3. However, the data do not appear to correlate in the suggested
way. The model simply cuts through the group of data points from conventional fluids,
while completely missing the fluids such as mercury and the cryogens, which were likely
not part of the original parameter fitting.

Overall, we may claim that the present model for the Leidenfrost point has the following
benefits:
• Simplicity: there is no need to know a large variety of fluid properties in order

to make a prediction. Only a measured value for γ and an assumption regarding αe is
needed.
• Accuracy: given only the value of γ, the present model is able to predict ∆TL

within an error of 10% for every fluid considered here, including the cryogen and the
liquid metal.
• Insight: the model is purely theoretical, i.e. it involves no empirical parameters

fitted to film boiling experiments. Such models are not only expected to have greater
predictive capabilities, but are also more likely to provide insight into the physical
mechanisms behind film boiling collapse. Specifically, the present model suggests that
the mechanism of collapse is that the thermocapillary instability overpowers vapor thrust
stabilization. To our knowledge, this has not been suggested before.

6.3. Prediction in the absence of thermocapillary effect

Note that this model’s prediction of the Leidenfrost point is completely dependent on
two complicating effects: Non-equilibrium evaporation model and non-trivial liquid shear
rate. Making either the approximation of quasi-equilibrium or zero liquid velocity would
eliminate the thermocapillary effect from the model.

We may ask what the model would predict for the relative Leidenfrost temperature
if the thermocapillary effect is absent, such as in the quasi-equilibrium limit (K → 0).
First of all, as discussed and made explicit in (3.4), this will completely remove the
thermocapillary effect. If we go back to figure 4 and make the same kind of arguments
as before, we see that film boiling collapse would necessitate that the gravity term is
stronger than the vapor thrust in the intermediate region. This requirement leads to the
criterion

G

12E
>

ERe

6
(
1 + Bi−1w

)3 , (6.1)

which leads to the following prediction for the relative Leidenfrost point,

∆TL
Ts

=

√
ρv∆ρg

2

L

kvTs

[(
1 + Bi−1w

)
h0
]3/2

. (6.2)

Qualitatively, equation (6.2) predicts that the relative Leidenfrost temperature is depen-
dent on both Ts and L. As mentioned previously, this is not supported by the data. Note
that (6.2) is dependent on the film-thickness scale h0. If we make the assumption that we
only need gravity to overpower vapor thrust down to the 1µm scale before van der Waals
forces take over, we still find that ∆TL/Ts ≈ 0.02 for H2O and ∆TL/Ts ≈ 0.05 for N2,
both of which are approximately an order of magnitude below the experimental values
in figure 5. Thus, the quasi-equilibrium limit of this model appears useless for predicting
vapor film collapse.

6.4. Modifying the Leidenfrost point

It has been reported by authors such as Qiao & Chandra (1997) that adding surfactant
(reducing σ0) reduces the Leidenfrost temperature, i.e. it makes film boiling more stable.
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Without considering the thermocapillary instability, this seems counter-intuitive, since
reducing surface tension would be expected to have a destabilizing effect, if any.

The present model can explain this qualitative effect. Since surface tension must
reach zero at the fluid’s critical point, if we can assume that γ is close to temperature
independent it must be given by

γ ≈ σ0
Tc − Ts

, (6.3)

where Tc is the critical temperature of the fluid and σ0 is the surface tension at the
saturation temperature. Note that (6.3) does not imply that fluids with large surface
tension necessarily will have a large γ. Water and especially mercury have large surface
tensions but still quite ordinary γ values. Given this the present model provides a new
explanation for this observation: Reducing σ0 for a given fluid will reduce γ through (6.3)
and thus weaken the thermocapillary instability relative to the vapor thrust.

A commonly suggested method of modifying the Leidenfrost point is through the solid
surface topography, such as addition of micro- or nanostructures (Auliano et al. 2017).
This cannot be predicted by this model in its present form, as a flat and smooth solid
surface has been assumed from the beginning.

7. Conclusions

In summary:

• We presented governing equations for vapor flow in film boiling. Of particular
importance and novelty was the use of a non-equilibrium evaporation model based
on kinetic theory, which allowed for the inclusion of thermocapillary effects along the
evaporating liquid–vapor interface.
• We used the long-wave approximation and simplified liquid dynamics to derive a

single highly nonlinear scalar PDE for the film-thickness function: (2.66).
• We applied linear stability analysis to the above mentioned PDE and identified four

terms which govern the long-wave stability of a uniform vapor film: (3.4). Analysis of their
dependence on film-thickness scale revealed that the question of stability at the inter-
mediate (micrometer) scale is primarily a struggle between destabilizing thermocapillary
effects and stabilizing vapor thrust. The scales above and below are always unstable.
• We posed the hypothesis that film boiling collapse occurs when the film is unstable

for any film-thickness scale. According to the present stability analysis, this would
necessitate that thermocapillary instabilities overpower vapor thrust.
• Based on the above hypothesis we derived a relatively simple model for the Lei-

denfrost temperature, equations (3.9) with (3.12), which mainly depends on γ, the
temperature dependence of surface tension.
• We gathered experimental data for 11 different fluids and showed how the model is

consistent with the average Leidenfrost temperature for every one of them given that the
evaporation coefficient is in the range 0.7–1.0. As mentioned in section 2.2, this range for
αe is consistent with recent evaporation/condensation studies using molecular dynamics
simulations.
• We showed how the assumption of evaporation coefficient equal to 0.85 can success-

fully predict the Leidenfrost point for each of the fluids within 10% error, a feat that
commonly cited models/correlations could not perform.

The present model is a completely theoretical prediction and involves no empirical
parameters fitted to film boiling experiments. This allows us to draw conclusions regard-
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ing the underlying phenomena. We have found compelling but preliminary evidence to
support the following statements:

• The governing mechanism behind film boiling collapse (Leidenfrost tran-
sition) may be the thermocapillary instability at the liquid–vapor interface.
The thermocapillary instability at an evaporating interface is closely connected to non-
equilibrium evaporation effects.
• The relative Leidenfrost point, ∆TL/Ts, depends almost linearly on γ, the temper-

ature dependence of surface tension.
• The relative Leidenfrost point also depends on the evaporation coefficient αe from

kinetic theory. Its value is generally unknown but the range 0.7–1.0 gives consistency with
all the data. The maximum value of 1.0 gives a reliable lower bound, and the central value
0.85 gives overall good prediction.

Additional research is needed to further validate or disprove these conclusions. Efforts
should be made to identify fluids with uncommon (high or low) values of γ and then
measure their Leidenfrost point. While any data points in the shaded regions of figure 5
is consistent with the model, any new points below would count as evidence against
it. Finally, it would be very helpful to resolve some of the uncertainty regarding the
evaporation coefficient, as it would sharpen the prediction of the model and put it to a
stronger test. This could be resolved with a combination of theory and experiments.
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Appendix A. Liquid velocity profile and the value of η

In section 2.7.4 the issue of the unknown liquid velocity profile was handled by
interpolating the interface velocity between the two calculable theoretical extremes: The
case of zero interface velocity, and the case of zero liquid shear. The specific point on the
interpolation was set by the unknown parameter η ∈ [0, 1].

In this section we explore what a specific assumption regarding the liquid velocity
profile implies for the value of η. We follow the method proposed in Aursand (2018), and
assume a liquid velocity profile of the form

Ul ∼
1

Z
. (A 1)

While (A 1) is arguably quite ad hoc, it has the desirable property of monotonically and
smoothly decreasing to zero value (and zero derivatives) as Z →∞. If we now combine
the velocity profiles (2.52) and (A 1) with the boundary conditions (2.29) and (2.32), we
may solve explicitly for the vapor velocity profile,

U =
1

2
P̄X

(
Z2 − 2 + Ψ−1

1 + Ψ−1
HZ

)
− 1

1 + Ψ−1
εM (θi)X Z, (A 2)

and the interface velocity,

Ui =
1

1 + Ψ−1

(
−1

2
H2P̄X − εMH (θi)X

)
. (A 3)

If we compare (A 3) with its generic version (2.60), we see that

η =
1

1 + Ψ−1
= Ψ + O

(
Ψ2
)
. (A 4)
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Appendix B. Liquid heat transfer

In section 2.7.2, the shorthand C = 1 + C ′ was introduced to express the solution to
the energy equation, with the small deviation from unity being

C ′ ≡ BilK =
K̃αl

L
. (B 1)

Note that while Bil and K individually are dependent on h0, C is not. Since Bil does not
appear outside of C in the model, all influence of liquid heat transfer in the dimensionless
equations turns out to be independent of film-thickness scale.

The present model assumes that the liquid bulk is held at the saturation temperature.
To be more precise, one could state that the temperature is regulated to Ts a constant
distance z = ∆zl � h0 from the solid wall. The heat transfer coefficient in the liquid,
αl, may then be expressed as a conductive contribution multiplied by a Nusselt number
(Nu) to account for possible convective enhancement,

αl = Nu
kl
∆z

. (B 2)

If we use water as an example,

K̃ ≈ 0.14 K m2 s kg−1 (B 3)

L ≈ 2× 106 J kg−1 (B 4)

kl ≈ 0.7 W m−1 K−1 (B 5)

and assume that the liquid temperature control happens on the scale of ∆z ∼ 1 cm, the
small parameter becomes

C ′ = Nu
K̃kl
L∆z

≈ Nu× 10−6. (B 6)

Due to the small velocities and temperature differences in the liquid, we may likely
assume that the convective enhancement is laminar and weak, i.e. Nu ∼ O (1). Thus, we
get C ′ ≪ 1, and we may assume

C ≈ 1 (B 7)

for the remaining analysis.
This means that the energy transferred from the interface to the liquid bulk is negligible

compared to the energy spent on evaporation, no matter the film thickness h0. This can
be explained by the fact that the interface temperature is only slightly different from the
saturation temperature (θi ∼ K). While the interface temperature increases if the film
becomes thinner, so does the evaporation rate, so the former remains negligible.

Note that if one considers subcooled film boiling instead, i.e. a bulk liquid temperature
considerably below saturation, the liquid heat transfer is no longer negligible.
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