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Preface
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of Science and Technology(NTNU), Trondheim, Norway. The experimental work

was mainly conducted by Engineer Tore Andre Kristensen at the Materials testing

Lab in SINTEF, Trondheim.

The thesis was funded by the Chinese Scholarship Council and the research council

of Norway through the Petromaks 2 Programme, contract no.228513/E30.
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Abstract

The fracture behavior of metallic materials at low temperatures arise great atten-

tion among the petroleum industries, due to the potential considerable amount of

petroleum and gas resources to be found there. Deep understanding of the mechan-

ical behavior of steels at low temperatures will facilitate and provide solutions for

safe and cost-effective application of materials for hydrocarbon exploration and

production in arctic regions. In this thesis the low temperature effect on mechani-

cal behavior of steels in several aspects has been studied and the results from five

papers are presented.

The equivalent stress-strain curve is crucial for the structural integrity assess-

ment with finite element method. Conventional methods for measuring equivalent

stress-strain curves documented in testing codes are only suitable for homogeneous

materials. Furthermore, the stress-strain curve derived with those methods need to

be corrected after diffuse necking. In this thesis two methods have been developed

to determine equivalent stress-strain curves of metallic materials. By introduc-

ing an axisymmetric notch on the smooth round bar specimen, the deformation

is constrained in the notch region during the loading process. By performing the

numerical study of true stress-strain curve from notched specimens, a correspond-

ing procedure has been proposed to convert the true stress-strain curve from any

notched specimens to material’s equivalent stress-strain. Meanwhile, we identified

a ’magic’ notch geometry, with a single correction factor true stress-strain curve

from this ’magic’ notched specimen can be corrected back to material’s equivalent

stress-strain curve. These two methods can be applied to inhomogeneous materials

by locating the notch in the target material zone, once the geometry requirements

are fulfilled.

It is well understood that the fracture ductility of metallic materials depends on the

stress state which constructs the ductility diagram (ductility vs. stress triaxiality).

Most of the reported studies investigate the ductility diagram at room temperature.

The low temperature effect on the evolution of ductility diagram is still missing. In

this thesis we performed a series of tensile tests (45 tests in total) with axisymmet-

ric notched and smooth round bar specimens with testing temperatures down to

−60 ◦C. The specimens were machined from a 420 MPa structural steel. A newly

developed edge tracing method was used to monitor the specimen deformation and

to evaluate the fracture ductility. It has been found that for this 420 MPa structural
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steel, the strength and strain hardening characterized by the strain at the maximum

load increase with the decrease of testing temperature down to −60 ◦C . While,

the low temperature effect on the ductility diagram is insignificant.

For metallic materials presenting Lüders plateau in tensile test, the plateau length

increases with the decrease of testing temperature. In the state of the art design

codes, knowledge about the effect of Lüders plateau on the fracture behavior of

metallic material is very limited. In this thesis, the effect of Lüders plateau on

ductile crack growth has been investigated with Gurson damage model and sin-

gle edge notched tensile (SENT) specimens. It has been found that the existence

of Lüders plateau does not influence the initiation toughness but alters material’s

ductile fracture resistance. The Lüders plateau effect on ductile crack resistance

curve depends on the crack depth. It has been found that the Lüders plateau effect

is controlled by the stress triaxiality ahead of the crack tip. For materials with

smaller initial void volume fraction, the Lüders plateau effect was also observed

and was more pronounced. In addition, for materials exhibiting Lüders plateau,

both the effects of crack depth and strain hardening on crack resistance curve were

reduced. The longer the Lüders plateau, the larger reduction.
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Chapter 1

Introduction

In this chapter, the motivation of the project and the aims of the PhD study will be

introduced. In the following the structure of the thesis will be presented.

1.1 Motivation
The Arctic becomes a hot region to petroleum companies, considering its abun-

dant undiscovered oil and gas resource. The assessment conducted by the United

States Geological Survey indicates that about 30% of the world’s undiscovered gas

and 13% of the world’s undiscovered oil may be found there [1]. However, many

factors may affect the exploitation activities, including harsh environment, heavy

drilling and shipping cost, as well as climate considerations [2] [3]. The explo-

ration of hydrocarbon in these remote areas sets more strict requirements for the

structural materials due to the harsh climate conditions. The overall objective of

the project ARCTIC MATERIAL is to establish criteria and solutions for safe and

cost-effective application of materials for hydrocarbon exploration and production

in the Arctic regions. The aim of this PhD study is to characterize the tensile

properties of Arctic materials and to model their effects on fracture.

From the viewpoint of fracture mechanics, low temperature is a strong challenges

for the application of structural steels and pipeline steels in the Arctic region. The

material’s equivalent stress-strain curve may be influenced, for temperature de-

pendent metallic materials. Measurement of equivalent stress-strain curves with

smooth round bar or smooth specimens with rectangular cross-section is the gen-

eral practice in engineering application. The limitation is that only the data before

diffuse necking can be used directly. After diffuse necking, true stress-strain curve

from tensile tests should be corrected. Performing the well-known Bridgman cor-
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rection is difficult, since the minimum cross-section radius and the necking profile

radius should be measured in the test. The Bridgman correction is not that accurate

for some materials, due to its assumption that the equivalent stress is constant at

the specimen minimum cross-secion after necking [4]. For weldments, determin-

ing the tensile properties becomes more difficult due to its inhomogeneity in na-

ture. Requirements for measuring tensile properties at low temperatures are more

strict, especially for the extensometer. Hence, a convenient and accurate method

for determining tensile properties at low temperatures is necessary to conquer these

problems mentioned above.

Figure 1.1: Distributions of undiscovered oil in arctic region predicted by the United

States Geological Survey [1].

Fracture ductility depends signigicantly on the stress state which is usually char-

acterized by stress triaxiality. For most experimental studies on ductility diagram,

they were performed at room temperature. More work should be conducted to ob-

tain a better understanding on low temperatures effect on fracture ductility. For

temperature sensitive materials, low temperatures will influence the yield strength,
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strain hardening, ductility, as well as the Lüders plateau. It has been reported that

increasing the yield stress or the Lüders plateau length will intensify the crack driv-

ing force [5]. However, research work on the effect of low temperature induced

Lüders plateau on crack growth resistance is vary rare. Since the competition be-

tween the crack driving force and crack growth resistance determines the crack

initiation and growth, more research work on the effect of the Lüders plateau on

crack growth resistance is necessary to reduce the failure accidents which may

result in unpredictable economic cost and environment pollution for petroleum in-

dustries.

1.2 Aim & Scope
The thesis is dedicated to develop novel and accurate methods for determining

tensile properties of the Arctic materials and to study their effects on fracture re-

sponse, towards a better understanding on the fracture behavior of metallic mate-

rials, as a result of the Arctic temperatures. Specifically, the dependence of low

temperature on ductility diagram and the effect of Lüders plateau on crack growth

are investigated. The research work are mainly focused on the following aspects:

• Methods for determining Equivalent stress-strain curves of materials and

weldments at low temperatures.

• The effect of low temperatures on fracture ductility of materials at different

stress states.

• The effect of low temperature induced Lüders plateau on ductile crack growth

resistance.

1.3 Thesis outline
This thesis consists of an introductory section of five chapters and a collection of

five separate research papers as appendix. A brief description of each chapter is

introduced as follows:

Chapter 1

This chapter includes motivation, aim and scope and outline of the thesis.

Chapter 2

In this chapter, the state-of-art of methods on determining equivalent stress-strain

curve of metallic materials, fracture locus are reviewed. Research work on Lüders

Plateau is also introduced briefly.
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Chapter 3

In this chapter the numerical models and experimental layout on axisymmetric

tensile tests are introduced firstly. Numerical models with SENT specimens and

the Gurson damage model are presented in the following.

Chapter 4

In this chapter a summary of the main results in this PhD study is presented.

Chapter 5

In this chapter some recommendations for future studies are briefly introduced.
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Chapter 2

Literature Review

2.1 Equivalent stress-strain curve
For elastoplastic materials, the equivalent stress-strain curve, which governs ma-

terials’ mechanical behavior, is vital to scientists and engineers for understanding

and utilizing materials. Normally, the equivalent stress-strain curves are measured

with smooth round bar specimens or rectangular cross-section specimens, accord-

ing to testing standards, such as ASTM E8/E8M-13, ISO 6892-1, ISO 6892-2 and

JIS Z2241. Usually, the engineering strain measured directly from the specimen

is obtained by extensometer. The limitation for measuring strain with extensome-

ter is that only data before diffuse necking is valid. However, it is necessary to

derive the equivalent-strain curve in full range for numerical analyses in some sit-

uations, such as plastic forming or stress (or strain) filed under complex gradient.

For this consideration, smooth round bar specimen is used and the true strain is

calculated by the specimen minimum cross-section contraction. The radius in the

specimen minimum cross-section can be measured by a linear variable displace-

ment transducer or video-based Radial Extensometry [6]. With the development

of high-speed camera and computer science, optical non-contact method has been

proposed for two or three dimensional strain measurement [6, 7, 8, 9]. The so-

called digital image correlation (DIC) method becomes very popular and is widely

used for large strain measurement. However, it should be noticed that the true

stress calculated by dividing the load by the specimen minimum cross-section area

can not represent the equivalent stress after diffuse necking and should be cor-

rected, see Fig. 2.1.
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Figure 2.1: (a) Geometry of a necked tension sample; (b) Stress-strain curves from tensile

tests.

2.1.1 Correction methods with smooth specimens

For tensile tests with smooth specimens, after diffuse necking, the deformation will

be localized and stress state in the necking region will be triaxial. In the following,

several methods in literature will be introduced for converting true stress to the

equivalent stress.

Smooth round bar specimen

The correction methods with smooth round bar specimens have a very long his-

tory. The most popular correction formula was proposed by Brdigman [10]. Fig.

2.2 shows a necking geometry of a tension sample schematically. There are two

assumptions for the derivation of the Brdigman correction function.

• In a certain surrounding of the neck the value of the equivalent stress, σeq,

is constant (this region is shown in the Fig. 2.2a):

• In the surrounding of the minimal section, the shape of the transverse trajec-

tories of the principal stress are arcs which are orthogonal to the longitudinal

trajectories, see in Fig. 2.2b.

Due to the axial symmetry of the specimen, the equilibrium equation in the mini-

mum cross section can be written as:

∂σrr
∂r

+
∂τrz
∂z

+
σrr − σθθ

r
= 0 (2.1)

where σrr and σθθ are stresses in r and θ direction. τrz is the shear stress. Ac-

6



Figure 2.2: (a) Neck geometry in a tension sample; (b) principal stress trajectories in the

meridian surface [11].

cording to the condition of volume conservation in plastic regime, in the minimal

section the circumferential strain is equal to the radial strain. Then the third term

in Eq. (2.1) vanish. According to the von Mises criteria, we have:

σeq = σzz − σrr (2.2)

Taking into consideration of the relation Eq. (2.2) and the first assumption, Eq.

(2.1) takes the following form:

∂σzz
∂r

+
∂τrz
∂z

= 0 when z = 0, 0 < r < a (2.3)

σzz is the stress in tensile direction. In Fig. 2.2 (a), ψ is very small, τrz can be

expressed as:

σrr ≈ σ1 σzz ≈ σ3, τrz = (σ3 − σ1)ψ = σeqψ (2.4)

where σ1 and σ3 are the principle stresses. The second term in Eq. (2.3) can be

written as:

(
∂τrz
∂z

)
z=0

=

(
∂(σeqψ)

∂z

)
z=0

= σeq

(
∂ψ

∂z

)
z=0

+ ψ

(
∂σeq
∂z

)
z=0

0

= σeq

(
∂ψ

∂z

)
z=0

(2.5)
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Since the angle ψ is very small, we obtain:

ψ(r, z) ≈ tanψ(r, z) = f
′
C(z) (2.6)

where fC(z) is the appropriate longitudinal trajectory passing through point C on

the OB axis (Fig. 2.2b). Calculating the derivative from Eq. (2.6):(
∂ψ

∂z

)
= f

′′
(z) (2.7)

The curvature of the principal stress trajectory σ3 can be calculated as:

1

ρ
=

∣∣∣f ′′
(z)

∣∣∣
(1 + f ′(z)2)(3/2)

(2.8)

Inserting Eq. (2.6)-(2.8) into Eq. (2.5), in the plane z = 0, ψ = 0, we obtain:

σeq

(
∂ψ

∂z

)
z=0

= σeq

[
(1 + ψ2(r, z))3/2

ρ

]
=

σeq
ρ

(2.9)

In Fig. 2.2(b) from the geometric relationship we have:

ρ2 = BG2 = AB2 −AE2 = OB2 −OE2 = (r + ρ)2 −OE2 (2.10)

Eq. (2.10) is valid for any point G on the circle FGH, including the point H. Then

we have:

r2 + 2rρ = a2 + 2aR = OE2 (2.11)

ρ =
a2 + 2aR− r2

2r
(2.12)

Inserting Eq. (2.9) and (2.12) to Eq. (2.3) and solve the equation we obtain:

σzz = σeq

[
1 + ln(1 +

a2 − r2

2aR
)

]

σrr = σθθ = σeq · ln(1 + a2 − r2

2aR
)

(2.13)
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where R and a are the necking curvature radius and the minimum cross-section

radius, respectively, as can be seen in Fig. 2.1 (a). The true stress σtr from tensile

test with smooth round bar specimen is expressed as:

σtr =

∫ a

0
2πrσzzdr/πr

2 = σeq[(1 + 2R/a) · ln(1 + a/2R)] (2.14)

Now, the Bridgman correction factor ζBridgman can be written as:

ζBridgman =
1

(1 + 2R/a) · ln(1 + a/2R)
(2.15)

Davidenkov and Spiridonova [12] assumed that ρ is inverse proportional to r and

can be expressed by the following formula:

ρ =
Ra

r
(2.16)

The correction factor ζD−S obtained by Davidenkov and Spiridonova has the form:

ζD−S =
1

1 + a/4R
(2.17)

Indeed, the first correction was proposed by Siebel shortly after the Second World

War [13]. Siebel’s correction formula is not widely known, since it was published

in German. By assuming that:

ρ = R
(a
r

)n
(2.18)

At the free surface the necking curvature radius is linearly linked with the longi-

tudinal trajectory radius and Siebel assumed n = 0. The correction factor can be

written as:

ζSiebel =
1

1 + a/3R
(2.19)

As can be seen, the main difference for the three correction formulas is due to the

different definitions of the longitudinal trajectory radius. For these three meth-

ods, it is not easy to measure the necking curvature radius, R. Le Roy [14] has

presented an empirical relation with a/R and the true strain ε :

a/R = 1.1 · (ε− εpmax) (2.20)

where εpmax is the strain corresponding to the maximum tensile load. Gromada

et al. [11] performed numerical analyses with the perfectly plastic material, linear
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hardening material and nonlinear hardening material. Their results shows that the

mostly used Bridgman correction yields the worst results, compared with the other

two methods. In addition, these three methods are not accurate with the perfectly

plastic material. Bao [15] performed numerical simulation with notched bar speci-

men and found that the stress distribution at the notch region differed significantly

with the Bridgman solution. La Rosa and Risitano [4] applied the Bridgman cor-

rection to different steels, C40, FE36, AISI304, D98, etc., and found that with the

increase of strain the error between the material equivalent stress and the Bridg-

man method corrected stress for steel D98 would be as large as 10.6% at the strain

ε = 1.35.

Figure 2.3: Ratio σeq/σtr vs.(ε− εpmax) for different materials [16].

Based on experimental and numerical observations, see Fig. 2.3, Mirone [16, 17]
proposed an empirical correction function:

σeq = σtr ·[1−0.6058(ε− εpmax
)
2
+0.6317(ε− εpmax

)
3−0.2107(ε− εpmax

)
4
] (2.21)

This method is very easy to practice, since the information needed are the true

stress, true strain and the strain corresponding to diffuse necking. This method is

based on fitting and special attention should be paid for its application.

There are also several methods to obtain equivalent stress-strain curves with hybrid

experimental-numerical modeling method [18, 19, 20]. These methods work in

this way: by comparing the engineering stress-strain curve or load-displacement

curve from experiments and numerical analyses and adjusting the true stress-strain

curves iteratively, until the convergence criteria is satisfied. These methods can

provide accurate results. However, the limitation is that they are time consuming

for iteration.
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Rectangular cross-section specimen

For very thin plates, it is difficult to machine round bar specimens and smooth

specimens with rectangular cross-section specimen become more practical. Due

to the two types of flow instability (diffuse necking and localized necking), deter-

mination of the instantaneous minimum cross-section becomes considerably dif-

ficult. Most of the alternative methods for determining equivalent stress-strain

curve or the equivalent stress-strain curve with rectangular cross-section specimen

are based on inverse numerical analysis [21, 22, 23, 24, 25, 26] .

Ling [21] proposed a so-called weighted average method to measure the true

stress-strain curve from rectangular cross-section specimen, by setting the power

law hardening as lower bound and the linear hardening as the upper bound for the

equivalent stress. The correction proposed by Ling is a kind of hybrid experimental-

numerical modeling method and the determination of the weight constant is time

consuming. Zhang [22] proposed a relation between the area reduction of the min-

imum cross-section and the measured thickness reduction of rectangular cross-

section specimen. The area reduction can be normalized by the uniaxial strain at

maximum load and the section aspect ratio. This method was furthur developed

for anisotropic materials [23, 24]. It should be noted that Zhang’s methods yield

the true stress-strain curve as from a smooth round bar specimen and should be

corrected to derive the equivalent stress-strain curve. Scheider [27] ran a serial

of numerical simulations with different hardening exponents. A correction for-

mula was proposed which depended on width reduction and strain. The aspect

ratio effect on the true stress-strain curve was not considerd in the derivaton of

the correction fucntion in [27]. Choung [25, 26] proposed a method to derive the

equivalent stress for specimens with rectangular cross-section. The correction fac-

tor was a function of the equivalent plastic strain. However, the area reduction in

the specimen minimum cross-section should be measured from specimens or pic-

tures taken from the tests. The limitation of this method was that the shape of the

minimum cross-section was simplified as rectangular.

2.1.2 Axisymmetrical notched specimens

As introduced above, the equivalent stress-strain curves of homogeneous materi-

als can be measured from smooth round bar specimens or rectangular cross-section

specimens (should be corrected after diffuse necking). However, it is a strong chal-

lenge to measure the equivalent stress-strain curve of inhomogenous materials, like

weldments. The mechanical properties of base material, weld metal and heat af-

fect zone are different to each other. The load versus elongation curve derived from

cross weld tension specimen can not be used in the assessment of failure behavior
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of weldments. Since the curve is strongly dependent on the strength match, sample

machining, locations of necking and fracture. For this consideration, Zhang [28]

proposed to measure the true stress-strain curve of inhomogenous materials with

axisymmetrical notched specimen. The geometry of a notched specimen is pre-

sented in Fig. 2.4 schematically. By introducing a notch in the specimen center,

the deformation is restrained in the notch region. A G factor which depends on the

notch curvature radius R0, the minimum cross-section diameter D0 and the strain

at the maximum tensile load εpmax was proposed:

Figure 2.4: Axisymmetrical notched cross weld tensile specimen

G =
[
1.077 + 0.18777

(D0

R0

)
− 0.01313

(D0

R0

)2] · (1.053− εpmax) (2.22)

With this G factor, the true stress calculated by dividing the load with respect

to the minimum cross-section area from this notched specimen, σtr,notch, can be

converted to the true stress from a smooth round bar specimen, σtr,smooth:

σtr,smooth = σtr,notch/G (2.23)

Zhang [28] also presented that the notched can be located in a target material zone

for inhomogeneous material when the geometry condition D0 ≤ H is satisfied.

H is the height of the target material zone. It should be noted that the true stress-

strain curves derived with this method need to be corrected. Methods introduced

in section 2.1.1 can be used.
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2.2 Fracture dependence on stress state
For damage model considering void nucleation, growth and coalescence, it has

been reported that fracture of ductile metals is strongly depends on hydrostatic

stress [29, 30, 31, 32, 33, 34, 35]. Recent studies indicate that fracture ductility

also depends on the loading history. In this section, the dependence of fracture

strain on stress state will be briefly reviewed.

2.2.1 Ductility Diagram

Bridgman [10] reported that the fracture surface area of tensile specimen decreased

significantly with the increase of hydrostatic pressure. Kao [36] performed tensile

tests of 1045 spheroidized steel under hydrostatic pressure and found the same

result as Bridgman. Pictures of fractured tensile bars under applied pressure can

be seen in Fig. 2.5. By quantitative metallography and fractography study, Kao

demonstrated that the influence of superimposed hydrostatic pressure on tensile

fracture of 1045 spheroidized steel was such that void nucleation is suppressed,

leading to larger post-uniform strains under pressure and a transition of the fracture

surface from the cup-cone mode under atmospheric pressure to a slant structure

under high pressure, see Fig. 2.5.

Figure 2.5: The appearance of the fractured tensile bars under applied pressure [36].

Stress triaxiality T , which is defined by the ratio of the mean stress, σm (σm =
(σ11 + σ22 + σ33)/3), and the von Mises equivalent stress, σeq, (T = σm/σeq), is

widely used to characterize the hydrostatic pressure effect [37, 38, 39, 40] and the

crack tip constraint [41, 42, 43]. According to Bridgman’s analytical solution, the

stress triaxiality in necked tensile specimen minimum cross-section center can be

written as:

T = 1/3 + ln(1 +
a

2R
) (2.24)

where R is the neck curvature radius and a is the radius from the minimum cross-

section center to the free surface. Inspired by Eq. (2.24), stress triaxiality at differ-
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Figure 2.6: Dependence of the equivalent strain to fracture on the stress triaxiality [48].

ent levels can be obtained by varying the ratio of a and R of axisymmetric notched

specimens [37, 44, 45, 46, 47].

Bao et al. [48] performed a series of tests including upsetting tests, shear tests and

tensile tests on 2024-T351 aluminum alloy, including a wide range of the stress

triaxiality. Meanwhile, parallel numerical analyses were performed to capture the

stress and strain evolution. A strain-weighted stress triaxiality was used to charac-

terize the stress state at fracture initiation point:

Tav =

∫ εf

0
Tdεf (2.25)

where εf is the equivalent strain at fracture.

εf was then plotted with respect to the strain-weighted stress triaxiality, see Fig.

2.6. The curve consists of three branches:

• For −1
3 ≤ Tav < 0, εf decreases with the increase of Tav.

• For 0 ≤ Tav < 0.4, εf increases with the increase of Tav.

• For 0.4 ≤ Tav < 0.95, εf decreases with the increase of Tav.
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When the stress triaxiality is relatively high (Tav ≥ 0.4 in Fig. 2.6), the fracture

mechanism is widely acknowledged due to the void nucleation, growth and coa-

lescence. The Gurson damage model can be used to simulate the fracture process

[49, 50]. When the stress triaxiality is relatively low (Tav ≤ 0.4 in Fig. 2.6), shear

stress plays an important role on the fracture ductility. Wierzbicki [51] compared

results from the constant equivalent strain criterion, the Xue–Wierzbicki (X–W)

fracture criterion [52, 53], the Wilkins (W) [54], the Johnson–Cook (J–C) [37, 55],

the CrachFEM fracture models, the maximum shear (MS) stress model [56], and

the fracture forming limit diagram (FFLD) [57, 58] with experimental data and

found out that the maximum shear stress model can well predict the experimental

results, except those for axisymmetric round bar specimens. The partial success

of the maximum shear stress should not be surprising because the maximum shear

stress criteria carries information on the second and third stress invariants [53].

Recent studies show that the the fracture ductility also depends on the relationship

between the principle stresses, which is characterized by the Lode parameter L
[59, 60, 61, 62, 63] or the Lode angle parameter θ [64, 65]:

L =
2σ22 − σ11 − σ33

σ11 − σ33
(2.26)

θ = 1− 6θ

π
(2.27)

θ is the Lode angle and has the range of 0 ≤ θ ≤ π/3. Apparently, the value of

the Lode parameter and the Lode angle parameter have the same range of {−1, 1}.
Typically, for generalized axisymmetric tension, L = −1, θ = 1; for generalized

shear, L = θ = 0. Wierzbicki and Xue [53] presented that the condition σ33 = 0
uniquely related the parameters T and θ or L

cos[
π

2
(1− θ)] = −27

2
T (T 2 − 1

3
) (2.28)

A plot of Eq. (2.28) is shown in Fig. 2.7. Typical stress state from test specimens

in Fig. 2.6 are also marked. By taking the Lode parameter into consideration, a

general 3D fracture locus was postulated by Bai and Wierzbicki [65], Fig. 2.8. It

can be seen that both the stress triaxiality and the Lode angle parameter will affect

the fracture ductility.
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Figure 2.7: Conceptual representation of the initial stress states on the plane of T and θ
[64].

Figure 2.8: A general 3D fracture locus postulated by Bai and Wierzbicki [65].
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2.2.2 Loading path, Loading rate and temperature

The fracture ductility may also be influenced by the loading path [66, 67, 68, 69]

[70], loading rate [37, 71, 45, 46] and the temperature [71]. For most studies about

the loading path effect on the fracture locus, the axisymmetric tensile bars were

widely used experimentally and the unit cell model were used numerically. Due to

the geometry symmetry of notched specimens, the Lode angle parameter and the

Lode parameter for a given material point on the specimen minimum cross-section

is constant and the fracture locus was usually constructed with respect to stress

triaxiality.

Benzerga et al. [67] investigated the effect of loading path on the fracture locus

with symmetric round bars. By prestraining the large plate specimen up to in-

cipient necking first and then cutting round bar specimens out to perform tensile

test till rupture, a step-jump in stress triaxiality was fulfilled. Comparison of the

fracture locus with and without path change showed that the loading path also af-

fected the fracture ductility. Numerical results from unit cell model also showed

the importance of non-proportional loading paths on the predicted fracture ductil-

ity [67, 68, 70].

The influence of loading rate on fracture ductility were investigated via torsion

tests [37, 72] or Hopkinson bar tests [71, 45, 46]. Johnson and Cook [37, 72, 73]

performed torsion tests of OFHC copper, Armco iron and 4340 steel over a range

of strain rates. They reported that the fracture ductility dependence on the loading

rate was insignificant. Børvik and Hopperstad [71, 45] [46] conducted Hopkinson

tensile bar tests at various loading rates with symmetric tensile bars machined from

Weldox 460E steel. They found out that the fracture ductility was less sensitive to

the loading rate.

For most of the experimental tests for deriving the fracture locus, they were per-

formed at room temperatures. To study the temperature effect on fracture locus,

Børvik et al. [71] performed Hopkinson tensile bar tests with temperatures ranges

from 100◦C to 500◦C. Their test results indicated that for the temperatures in the

range of {100◦C , 500◦C}, the temperature effect on fracture ductility of the Wel-

dox 460 E steel was not obvious. Michael and Richard [74] performed quasi-static

tensile test with Al-Cu-Mg-Ag alloy from 25◦C to 150◦C. They found that the

temperature effect on fracture ductility for axisymmetric notched specimens can

be neglected.

It should be noted that the studies on effects of loading path, loading rate and

temperature were in relatively high stress triaxiality regime (unit cell model or

axisymmetric notched bar specimens). The investigation for small or negative
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stress triaxiality is very limited in literature. Meanwhile, the temperature effect

were investigated at temperatures higher than room temperatures. The studies at

low temperatures are almost blank.

2.3 Lüders Plateau effect on ductile fracture

2.3.1 Lüders Plateau

For some metallic materials, common to low-carbon steels and certain Al-Mg al-

loys, the so-called Lüders plateau which is influenced by loading rate, ferrite grain

size, yield stress, et al. [75, 76, 77, 78, 79, 80, 5, 81] may occur in uniaxial tension

test. The mechanism that stimulates the appearance of the Lüders plateau is known

as dynamic strain aging or the inhibition of dislocation motion by interstitial atoms

(in steels, typically carbon and nitrogen), around which atmospheres or zones nat-

urally congregate. Tsuchida et al. [81] reported that the Lüders plateau elongation

(length) decreased with the increases of temperature and the ferrite grain size.

Meanwhile, it increased with the increase of the lower yield stress. In the Arctic

region, the temperature is considerably low. For materials with Lüders plateau, the

plateau length is expected to increase. The influence of Lüders plateau on fracture

behavior should be taken into consideration.

Figure 2.9: The effects of temperature, ferrite grain size and lower yield stress on the

Lüders plateau length [81].

2.3.2 The effect of the Lüders plateau on crack driving force
and crack initiation

In fracture mechanics, the competition between the crack driving force and ma-

terials’ resistance curve (R-curve) determines crack initiation and growth. The

crack driving force can be defined as the force that opens the crack, while R-curve
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is utilized to characterize materials’ ability to resist crack initiation and growth.

Studies on the the effect of Lüders plateau on crack driving force and crack initia-

tion are very limited. In the guidelines for fracture assessment of pipelines, such as

DNV-F101 (2013) and Electric Power Research Institute (EPRI) method (1981),

the Lüders plateau is not considered.

Dahl et al. [5] has investigated the effect of the Lüders plateau on crack driving

force with single edge notched tensile (SENT) specimen. In Dahl’s work, the

Lüders plateau was simplified by keeping the stress as a constant and equaling to

the yield stress. The crack tip opening displacement was used to characterize the

crack driving force. By varying the plateau length from 0 to infinite, they found

out that the crack driving force was intensified with the increase of Lüders plateau

length, see Fig. 2.10.

Figure 2.10: The effects of the Lüders plateau on crack driving force [5].

Nourpanah and Taheri [82] investigated the effect of the Lüders plateau on fracture

response of pipeline under bending. Same simplication of the Lüders plateau in

Dahl’s work [5] wad applied. They concluded that the constraint ahead of the tip

was reduced due to the existance of the Lüders plateau and longer plateau yielded

larger reduction. They further investigated the effect of Lüders plateau on the

equiavlent plastic strain distribution ahead of the crack tip with modified boundary

layer model and found out that the equivalent plastic strain was noticeably higher

for mateirals with Lüders plateau. Main resutls from ref. [82] can be seen in Fig.

2.11.

Studies on the effect of the Lüders plateau on crack growth resistance is almost
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Figure 2.11: The effects of the Lüders plateau on crack tip opening stress and equivalent

plastic strain distribution [82].

empty at present. For materials exhibiting the Lüders plateau, as presented in

above, the plateau length will increase with the low temperature in the Arctic. Re-

garding to the safe service of metallic facilities, deep understanding of the fracture

response is very important. More research work on the effect of the Lüders plateau

on fracture of metallic materials is necessary.
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Chapter 3

Methods and models utilized in
the PhD study

In this chapter, the experimental layout and numerical analyses utilized in this

dissertation will be introduced briefly.

3.1 Determining equivalent stress-strain curve with
notched specimens

As reviewed in section 2.1, Zhang proposed to utilize axisymmetric notched ten-

sile specimens to measure true stress-strain curves of weldment [28]. Drawbacks

of Zhang’s method are that when the strain is large, the error between the true

stress-strain curves from notched specimens and from smooth round bar speci-

men occurs; on the other hand, the obtained true stress-strain curves should be

converted to the equivalent stress-strain curve. Considering these issues, we did

some further research to solve these two problems. The detailed information can

be referred to Paper-I-III .

3.1.1 Axisymmetric specimen with ’magic’ notch

Consider the results in ref. [28], we tried to identify a ’magic’ notch geometry,

with which true stress-strain curves from notched specimens can be converted to

the equivalent stress-strain curves directly. We ran numerical modelling to search

the special notch geometry. The geometry of notched specimens we used can be

referred to Fig. 2.4. The flow stress-strain curves input for numerical analyses

obeying the following power-law:
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σf = σ0(1 +
εp
ε0

)n (3.1)

where σf , σ0 are the flow stress and yield stress. εp and ε0 are the equivalent

plastic strain and yield strain. n is the hardening exponent. In this work, we

varied n from 0.05 to 0.2, representing most engineering steels. Notch geometry is

characterized by the ratio of initial specimen minimum cross-section radius a0 and

notch curvature radius R0, a0/R0. In this work, a0/R0 varied from 1 to 3 were

considered. Typical mesh can be seen in Fig. 3.1.

Figure 3.1: Typical mesh of the notched tensile specimen.

True stress-strain curves from notched specimens were converted by a Gm fac-

tor, which was defined by the ratio of true stress from notched specimen and the

equivalent stress at the strain equal to n:

Gm =
σtr,notch

σeq
|ε=n (3.2)

After the identification of the ’magic’ notch with a0/R0 = 2, we tried to establish

the relationship between Gm and n, see Fig. 3.2. We further applied this ’magic’

notch for materials with Lüders plateau. The geometry requirements for its ap-

plication to determine equivalent stress-strain curves of weldment were studied.

Information about this ’magic’ notch method can be referred to paper-I.
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Figure 3.2: Gm vs. n for the magic notch.

3.1.2 Axisymmetric specimens with ’any’ notch

From the section 2.2, we know that symmetric tensile bars with sharper notch fails

at smaller fracture strain. For the ’magic’ notch, the fracture strain obtained maybe

much smaller than that from a smooth round bar specimen. Considering this, we

tried to find a way to convert the true stress-strain curves from symmetric tensile

bar specimens with ’any’ notch geometries to equivalent stress-strain curves. The

layout of this work is shown in Fig. 3.3.

This work was performed numerically. The flow stress-strain curves for this study

is defined as Eq. (3.1). Due to the symmetry of the specimen, only one quarter of

the specimen was modeled and symmetric boundary conditions were applied. The

notch geometry was characterized by a0/R0. In this study, a0/R0 varied from 0.25

to 3 were considered. True stress-strain curves from the notched specimens for the

perfectly plastic material is shown in Fig. 3.4. The trend of the true stress-strain

curves from different notched specimens were utilized. Similar to the method in

section 3.1, the ratio between the true stress and the equivalent stress at several

strain levels were calculated:

ξ =
σtr,notch

σeq
|ε (3.3)

The idea in this work was to link the ratio ξ as a function the notch geometry

and material’s strain hardening. ξ vs. ε for the symmetric notched specimens

with a0/R0 = 3 is presented in Fig. 3.5 (a). Curves from different hardening
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Figure 3.3: Layout of the present study: (a) Assumed material’s equivalent stress-strain

curve; (b) Numerical tensile tests with axisymmetric notched tensile specimens, material

in red can be undermatched, overmatched or evenmatched with the base material in yellow;

(c) True stress-strain curve for the notched specimen obtained from (b). With the proposed

correction function, true stress-strain curve in Fig. 3.3 (c) can be corrected back to Fig.

3.3 (a).

show similar trend and are the normalized, by taking the value of ξ at ε = 0.8 as

reference. After the normalization, curves in Fig. 3.5 (a) collapse into one, which

can be linearly fitted. This applies for all the notched specimens with different

a0/R0.

ξ/ξε=0.8 = [b1 · ε+ b2]a0/R0
(3.4)

All the reference values of ξε=0.8 are plotted with respect to the hardening expo-

nent n. Curves for different a0/R0 in Fig. 3.6 (a) looks similar to each other and

are then normalized by ξε=0.8,n=0. After the normalization, all the curves in Fig.

3.6 (a) overlap to each other and can be fitted as a function of n.

f(n) = −0.22942 · n2 − 0.36902 · n+ 1 (3.5)

By combining Eq. (3.4) and Eq. (3.5), the ratio ξ can be expressed as Eq. (3.6).

ξ = f(n) · ξε=0.8,n=0 · [b1 · ε+ b2]a0/R0
(3.6)
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Figure 3.4: Normalized true stress-strain curves for the perfectly-plastic materials from

different specimens with different notch geometries. The material’s equivalent stress-strain

curve is denoted as black.

Recall that in Fig. 3.5, the product of the second and the third term in Eq. (3.7) is

the linear fitting curve for the curve corresponding to n = 0. Then, Eq. (3.7) can

be rewritten as:

ξ = f(n) · [b1,n=0 · ε+ b2,n=0]a0/R0
(3.7)

Now, we need to calculate the slope b1,n=0 and interception b2,n=0 for different

a0/R0 with n = 0. The values of b1,n=0 and b2,n=0 are plotted against a0/R0.

The curves in Eq. (3.7) are then fitted by second order polynomial functions:

b1,n=0 = 0.03232 · (a0/R0)
2 − 0.27 · (a0/R0) + 0.3866 (3.8)

b2,n=0 = −0.04084 · (a0/R0)
2 + 0.3557 · (a0/R0) + 1.0577 (3.9)

With Eq. (3.7)-(3.9), ξ is expressed as a function of n (representing material prop-

erty) and a0/R0 (representing notch geometry effect). Now, we can utilize Eq.

(3.7) to convert true stress-strain curves from any notched specimens to materials’

equivalent stress-strain curves. We verified this method numerically and experi-

mentally and very good results were obtained. More detailed information about

this method can be referred to paper-II and paper-III.
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Figure 3.5: (a). ξ vs. ε for the symmetric notched specimens with a0/R0 = 3; (b)

Normalized curves of Fig. 3.5 by ξε=0.8.

Figure 3.6: (a). ξε=0.8 vs. n for the symmetric notched specimens with different a0/R0;

(b) Normalized curves of Fig. 3.6 by ξε=0.8,n=0.

Figure 3.7: (a). b1,n=0 plotted as a function of a0/R0; (b) b2,n=0 plotted as a function of

a0/R0.
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3.2 Experimental study on low temperature effect
on fracture locus

As reviewed in section 2.2, studies on the low temperature effect on ductility dia-

gram is very limited, if available. For this consideration, we did a series of tensile

tests (45 tests in total) with axiasymmetric notched tensile specimens and smooth

round bar specimens, see Fig. 3.8. Details about this study are presented in Paper-

IV.

3.2.1 Experimental layout

The tests were performed at room temperature, -30◦C and -60◦C with an universal

test machine Instron 5985, with the loading cell of 250 KN. a0/R0 varied from

0.5 to 3, covering a wide range of initial stress triaxiality. A liquid nitrogen-cooled

temperature chamber was used to create low temperature environment. The air

inside of the temperature chamber was replaced with nitrogen gas first, in order

to avoid ice formation on the specimen surface. On one side of the temperature

chamber, there is a window, through which the inside of the temperature chamber

can be observed clearly. A digital high-speed CCD camera with the resolution

of 2448 × 2050 pixels was located besides the window to take pictures of the

specimen during the test, with the framing rate of 1 frame per second. All the

tests were performed in displacement control manner with the cross-head speed of

0.3 mm/minute. During the tests, the force was recorded with the same camera

framing frequency. The test system is shown in Fig. 3.9.

Figure 3.8: Sketches of tensile specimens: (a) Axisymmetric notched specimens; (b)

Smooth round bar specimens.

Inside the temperature chamber, there were two LED lights and a two-plane mir-

rors system, see Fig. 3.10 (a). The two-plane mirrors system consisted of 2 plane
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Figure 3.9: Test system in this study.

mirrors with the angle of 135◦, as illustrated in Fig. 3.10 (b). The specimen and

the camera were located on the angle bisector of the two-plane mirrors system.

Therefore, the deformation of the specimen can be observed in two perpendicular

directions during the test, according to the plane image formation principle. The

consideration of using the two-plane mirrors system is that, due to the localized

deformation on necked smooth and axisymmetric notched specimens, it is more

accurate to use the average value of minimum cross-section diameter in two or-

thogonal directions to calculate the current minimum cross-section area, instead of

only one direction. By adjusting the position of the LED lights, the specimen im-

ages can be located in the LED light images center. The camera was set in mono

mode in the test. A very strong grey-value gradient can be formed between the

specimen images and the picture background, for the purpose to use the edge trac-

ing method to measure the specimen deformation. Fig. 3.10 (c) shows a picture of

a smooth specimen taken with the camera in the beginning of the test.

3.2.2 Edge tracing method

Digital pictures consist of numbers of pixels which depends on the resolution of

the digital camera. Each pixel in the picture represents a grey-value. From black to

white, the grey-value ranges from 0 to 255. Digital pictures can be read by Matlab

and grey-value of each pixel can be output and stored in a matrix for analysis.

For one arbitrary row in the digital pictures, peak values of the derivative (absolute

value) of grey-value can be found, due to the strong contrast between the specimen

images and the background, as shown in Fig. 3.11 (a). There were several peak

values in Fig. 3.11 (a), however, only the two maximum peak values were regarded
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Figure 3.10: (a) Layout of the inside of the temperature chamber; (b) Illustration of the

two-plane mirrors system; (c) Picture of smooth round bar specimen taken at the beginning

of the test.

as the boundaries between the specimen image and the background. The small

peak values were caused by the white color on the specimen image, formed due

to light reflection. The pixel numbers between the two boundaries represent the

corresponding cross-section diameter. By scanning each row of the picture, the

edges of the specimen image can be captured, together with the minimum cross-

section diameter, shown as red curves in Fig. 3.11 (b). Due to the existence of

necking or notch, the deformation was localized in the necking /notch region. The

edge tracing method was therefore mainly focused on the necking/notch region to

save calculation cost.

With the edging tracing method, we ran numerical analysis in parallel to capture

the stress triaxiality evolution during the test. The numerical simulation was sim-

ilar to those in section 3.1. The fracture initiation point was defined by the strain

corresponding to the sudden drop of load on the load-strain curve. Results show

that both the strength and strain hardening characterized by the strain at the max-

imum load increase with temperature decrease down to -60◦C. Somewhat unex-

pected, the fracture strains (ductility) of both smooth and notched specimens at

temperatures down to -60◦C do not deteriorate, compared with those at room tem-
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Figure 3.11: Illustration of the edge tracing method: (a) Absolute value of derivative of

the grey-value; (b) Minimum cross-section measurement with the application of the edge

tracing method.

perature. Combined with numerical analyses, it shows that the effect of low tem-

peratures (down to -60◦C) on fracture locus is insignificant. The tests results were

summarized in Paper-IV.

3.3 Damage models used to study the Lüders Plateau
effect on ductile crack growth resistance

As mentioned in section 2.3, for materials exhibiting Lüders Plateau, low temper-

ature in the Arctic will amplify the plateau length. Studies on the low temperature

induced Lüders Plateau effect on fracture response is very limited. In this section,

we utilized the Gurson damage model to investigate the effect of Lüders Plateau

on ductile crack growth resistance (CTOD − Δa curve) with SENT specimens.

Main findings in this study are presented in Paper V.

3.3.1 Gurson damage model

The mechanism of ductile fracture failure in metallic materials is widely acknowl-

edged as the micro void nucleation, growth and coalescence. Gurson [83] proposed

a constitutive model for ductile materials incorporating voids, considering the hy-

drostatic stress effect on plastic yielding and void growth. The original Gurson

damage model was further modified by Tvergaard and Needleman [84, 85, 86].
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Finally the yield surface has the following form and known as Gurson-Tvergaard-

Needleman model:

φ(q, σf , f, σm) =
q2

σ2
f

+ 2q1f cosh

(
3q2σm
2σf

)2

− 1− (q1f)
2 = 0 (3.10)

where q is von Mises stress, σf is the flow stress of the matrix material and is

a function of equivalent plastic strain. σm is the mean stress; q1 and q2 are the

parameters introduced by Tvergaard [84]; f is the void volume fraction. In this

study, q1 = 1.5 and q2 = 1 are used for all the numerical analyses.

In this study, the increase of the void volume fraction is solely contributed by

the void growth and no void nucleation is considered during loading. Due to the

incompressible nature of the matrix material, the void volume increment can be

expressed as:

dfgrowth = (1− f)dεp : I (3.11)

where εp is the plastic strain tensor and I is the second-order unit tensor. When the

void volume fraction reaches to the critical value fc, void coalescence occurs. In

this study, an arbitrary value, fc = 0.02 , is used for all the analyses. Tvergaard

and Needleman introduced a function to simulate void coalescence:

f∗ =

{
f for f ≤ fc

fc +
f∗
u−fc

fF−fc
(f − fc) for f > fc

(3.12)

where f∗ = 1/q1. When the condition f > fc is satisfied, f∗ replaces f in Eq.

(3.12). As the void volume fraction increases to fF , the element is assumed to

lose load carrying capacity and cracks are expected to propagate. An empirical

equation, fF = 0.2 + 2f0 [42], is considered in this study.

3.3.2 Simplification of the Lüders Plateau

In this study, a simplified version of Lüders Plateau in [5, 82] is utilized, by keeping

the flow stress as a constant and equaling to the yield stress, see Fig. 3.12. Flow

stress-strain curve of the matrix material is described by the following rule:

σf =

{
σ0 for εp ≤ εL

σ0(1 +
εp−εL

ε0
)n for εp > εL

(3.13)
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Figure 3.12: Illustration of the simplification of the Lüders Plateau.

where εL is the Lüders strain. When εL = 0, the matrix material returns to follow

the power-law hardening rule. In this study, εL varied from 0 to infinite, consid-

ering two limiting cases: (1) materials without Lüders Plateau (εL = 0); (2) the

perfectly plastic material εL = infinite.

3.3.3 Finite element model with SENT specimen

SENT specimens were chosen to study the effect of the Lüders plateau on duc-

tile crack growth with ABAQUS 6.12. The geometry of the SENT specimen is

schematically shown in Fig. 3.13. A fixed specimen width, W = 50mm, was

used for all the analyses. Xu [87] and Østby [88, 88] found that the crack resis-

tance curve depends significantly on the specimen width (Østby et al., 2007a, b;

Xu et al., 2009). However, the specimen size effect was out of the scope of this

study and will not be focused. The specimen length L is 10 times of the speci-

men width. a is the initial crack length. The crack depth effect is investigated by

varying the ratio of the initial crack length to the specimen width, a/W .

Considering the symmetry of the problem, only one half of the specimen was

modeled. 4-node reduced integration plane strain elements (CPE4R) were applied.

Large deformation was accounted for all the analyses. A remote homogeneous

displacement boundary condition was applied to induce crack propagation. The

region with uniform mesh size, see Fig. 3.13 (b) and (c), was extended to 3.0 mm

above the symmetric plane with mesh size of 0.1 × 0.1 mm, except two rows of

elements with mesh size of 0.1× 0.05 mm at the symmetric plane where the crack

was supposed to propagate. The remaining part of the specimen was meshed with
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Figure 3.13: (a) SENT specimen; (b) Global mesh; (c) Local mesh; (d) Definition of

CTOD node.

relative coarse elements, see Fig. 3.13 (b). When the void volume fraction reached

fF , the element failed and the crack extension was measured by multiplying the

original element length (0.1 mm ) with the failed element numbers. Corresponding

CTOD was measured as 2 times of the displacement of the node neighbor to the

initial crack tip, see Fig. 3.13 (d).

In this study, the effects of crack depth, strain hardening, initial void volume frac-

tion coupled with the effect of Lüders plateau on the ductile crack growth resis-

tance with SENT specimens were also discussed. The results were summarized

and presented in Paper-V.
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Chapter 4

Main findings of the PhD study

The main results about determining equivalent stress-strain curves with notched

specimens, experimental investigation of low temperature effect on the ductility

diagram, numerical study on the Lüders Plateau effect on ductile crack growth

resistance derived from Chapter 3 are summarized briefly in this chapter.

4.1 Determining equivalent stress-strain curves with
notched specimens

In this study, we identified a ’magic’ notched tensile specimen. With a single cor-

rection factor, true stress-strain curves from this ’magic’ notched specimen can be

converted to material’s equivalent stress-strain curve accurately. The correction

factor was expressed as a function the strain corresponding to the maximum ten-

sile load. However, this method is less accurate for the perfectly plastic material.

Numerical analysis shows that the outer diameter should be 3.5 times larger than

initial radius of the minimum cross section in order to use the special notched ten-

sile specimen. For weldments, the initial radius of the minimum cross section is

recommended to be smaller than material zone length in notch region. Meanwhile,

we also proposed a correction function by performing a series of numerical anal-

yses with axisymmetric notched tensile specimens. With the proposed correction

function, the true stress-strain curve from ’any’ axisymmetric notched tensile spec-

imen can be converted to the material’s equivalent stress-strain curve and no Bridg-

man correction is needed. Accordingly, a recommended procedure to determine

the material’s equivalent stress-strain curve with the axisymmetric notched tensile

specimens was proposed. The proposed procedure can be applied to hardening ma-

terials, as well as the perfectly plastic material. It is worth noting that, the ’magic’

notch and the proposed procedure can be used to both homogeneous material and
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inhomogeneous materials (such as the weldment), by locating the notch in the tar-

get material zone, under the geometric requirements (d0 ≥ 3.5a0, a0 < H).The

proposed procedure is inexpensive and accurate, since the only information needed

during the tensile test is the true stress-strain curve from the axisymmetric notched

tensile specimen and the material’s hardening exponent.

4.2 Low temperature effect on the ductility dia-
gram

In this study, quasi-static tensile tests with smooth round bar and axisymmetric

notched tensile specimens were performed to study the low temperature effect on

the fracture locus of a 420 MPa structural steel (45 tests in total). Combined with a

digital high-speed camera and a two-plane mirrors system, specimen deformation

was recorded in two orthogonal planes. Pictures taken were then analyzed with

the edge tracing method to calculate the minimum cross-section diameter reduc-

tion of the necked/notched specimen. Obvious temperature effect was observed

on the load-strain curves for smooth and notched specimens. Both the strength

and strain hardening characterized by the strain at maximum load increase with

temperature decrease down to -60◦C. Somewhat unexpected, the fracture strains

(ductility) of both smooth and notched specimens at temperatures down to -60◦C

do not deteriorate, compared with those at room temperature. Combined with nu-

merical analyses, it shows that the effect of low temperatures (down to -60◦C) on

fracture locus is insignificant.

4.3 Lüders Plateau effect on ductile crack growth
resistance

In this study, we investigated the Lüders plateau effect on ductile crack growth

with two-dimensional SENT specimens in plane strain condition. The Gurson

damage model was used to simulate the crack growth. A family of Lüders plateau

length has been studied. It has been observed that the existence of Lüders plateau

does not influence the initiation toughness but alters material’s ductile fracture

resistance. The Lüders plateau effect on ductile crack resistance curve depends on

the crack depth. It has also been found that the Lüders plateau effect is controlled

by the stress triaxiality ahead of the crack tip. The Lüders plateau effect was also

observed for material with smaller initial void volume fraction and the effect was

more pronounced. For materials with Lüders plateau, both the effects of crack

depth and strain hardening on crack resistance curve were reduced. The larger the

Lüders plateau, the larger reduction.

Investigation on the Lüders plateau effect on crack driving force by Dahl have
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demonstrated that the existence of Lüders plateau intensified the crack driving

force. Larger Lüders plateau corresponds to higher crack driving force [5]. Ductile

crack growth lies in the competition of crack driving force and crack resistance.

When the crack driving force is larger than material’s crack resistance, ductile frac-

ture proceeds; otherwise, fracture will be suppressed. Combining the results in [5]

and in this study, the Lüders plateau on one side increases the crack driving force;

on the other side it may reduce material’s ductile crack resistance, depending on

the plateau length, crack depth, material’s toughness and strain hardening. Atten-

tion should be paid for the application of materials with Lüders plateau, especially

in the Arctic region.
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Chapter 5

Recommendations for Future
Studies

5.1 Low temperature effect on the ductility dia-
gram

For most studies on the temperature effect on the ductility diagram, axisymmet-

rical notched tensile bars were utilized. Correspondingly, the stress triaxility was

relatively high. In the range of medium and negative stress triaxialities, the studies

were rare. If any, they were performed at room temperature. In section 3.2, we

studied the low temperature effect on ductility diagram with temperatures down to

-60◦C. However, much work can be done in this research topic:

1. Investigation of low temperature effect on ductility diagram with tempera-

tures down to ductile-brittle transition temperatures.

2. Studies on the low temperature effect on the ductility diagram in the range

of medium and negative stress triaxialities.

3. Investigation on the fracture mechanism in medium and negative stress tri-

axialities.

5.2 Lüders Plateau effect on fracture response
Low temperature induced Lüders Plateau may play an important role on crack driv-

ing force and crack growth resistance. In section 3.3, the Gurson damage model
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and the SENT specimen were used to investigate the effect of Lüders Plateau on

ductile crack growth resistance. Here are some suggestions for the future studies:

1. Investigation on the effect of Lüders Plateau on fracture response for metal-

lic materials with a more physically based model for the description of the

plateau.

2. Investigation on the effect of Lüders Plateau on ductile and cleavage fracture

with cohesive zone model.

3. Investigation on the effect of Lüders Plateau on crack driving force and crack

growth resistance with pipelines subject to different stress states, such as

tension, bending, with or without inner pressure.

4. Investigation on the effect of Lüders Plateau on ductile crack growth resis-

tance with specimens under different constraint levels.
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a b s t r a c t

Structural integrity assessment of weldments requires the input of flow stress-strain curve
of each individual material zone. To cope with these challenges, a cylindrical cross weld
tensile specimen with a notch located either in the weld metal, base metal or possibly heat
affected zone has been previously developed by the authors to determine the true stress-
strain curve for the material zone of interest. The disadvantage of this notched tensile test-
ing method as well as the standard tensile testing method using a smooth specimen, is that
the well-known Bridgman correction still has to be applied in order to obtain material’s
equivalent or flow stress-strain curves. In this study, tensile specimens with various notch
geometries have been scrutinized and a ‘magic’ specimen with a special notch geometry
has been identified. By using this special notched tensile specimen, material’s flow
stress-strain curve can be directly calculated from the recorded load versus diameter
reduction curve and no Bridgman correction is needed. The method is very accurate for
power-law hardening materials and becomes less accurate for materials with significant
Lüders plateau in the initial yield region.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Material’s flow stress-strain curve governs the plastic behaviour, and structural integrity assessment of weldments using
finite element method requires the input of flow stress-strain curve of each individual material zone. Smooth specimens
with circular or rectangular cross section are widely used for determining the true stress-strain curves of base material, weld
metal or heat affected zone, and materials’ flow stress-strain curves can be derived from the true stress-strain curves. For
standard smooth tensile specimens, necking happens along with localized deformation on the specimen, accompanied by
the occurrence of tri-axial stress state in the localized region. The true stress calculated from the load divided by current area
of the minimum cross section would be inaccurate to represent the material’s equivalent stress due to the existence of tri-
axial stress state in the localized region. Based on a stress state analysis in the localized region, Bridgman [1] proposed a cor-
rection method that links to the ratio of a=R, a is the current radius of the minimum cross section and R is the current notch
radius. Simple finite element analysis of smooth tensile specimens [2] shows that with the Bridgman correction, the
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Bridgman corrected stress-strain curve differs to material’s equivalent stress-strain curve input for the numerical analysis
when strain is large. La Rosa and Risitano [2] applied the Bridgman correction to different steels, C40, FE36, AISI304, D98,
etc., and found that with the increase of strain the error Dr between the material equivalent stress and the Bridgman cor-
rected stress for steel D98 would be as large as 10.6% at the strain e ¼ 1:35 (Fig. 1). The assumption used in the Bridgman
correction method is that the distribution of equivalent strain and equivalent stress is uniform over the minimum cross sec-
tion [1]. However, previous finite element analyses [3–7] indicate that this may not be true. In practice, the application of the
Bridgman correction is also not trivial because one has to measure the current radius of the minimum cross section and the
current notch radius simultaneously. Le Roy [8] proposed a function for estimating the a=R without paying attention to the
material properties. Correction methods have also been proposed for rectangular cross section specimens [9–12]. Ling [13]
proposed a method based on extrapolation of the true stress-strain curve before necking. However, this approximation is not
suitable for the case when the strain is large.
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Fig. 1. Comparison between input material equivalent stress and Bridgman corrected true stress [2]. FEM true stress is calculated by dividing load by
current minimum cross section area.

Nomenclature

a current minimum cross section radius
a0 initial minimum cross section radius
D = 2a0 initial minimum cross section diameter
d0 initial outer diameter of notched tensile specimen
E Young’s modulus
G notch geometry correction factor
Gm magic notch correction factor
H weld zone length in the notched region
L specimen length
n material hardening exponent
P global load
R0 initial notch radius
R current notch radius
m Poisson’s ratio
e0 yield strain
e average true strain
eL Lüders plateau strain
ep equivalent plastic strain
Dr absolute stress error
r0 yield stress
r material’s flow stress
re;notch engineering stress of a notched tensile specimen
req Mises equivalent stress
rT true stress of a smooth tensile specimen
rT;notch true stress of a notched tensile specimen
rG
T G corrected true stress for notched tensile specimen
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For weldments, it is an even more challenging task to characterize the material mechanical properties since the outcome
of a conventional cross weld tensile test strongly depends on the unpredictable location of fracture. Zhang et al. [14] pro-
posed a notched tensile specimen for determining the true stress-strain curve of each individual material zone in a weld-
ment. By introducing a notch on a smooth round bar, the deformation of the notched tensile specimen is constrained into
a small region under tensile loading. Based on the load separation principle, a so-called notch geometry factor G is introduced
to convert the true stress from a notched specimen to the corresponding true stress of a smooth specimen. The G factor
depends on the material hardening exponent and ratio of the initial diameter of the minimum cross section to the initial
notch radius. Numerical analysis shows that the method proposed in [14] provides good result when the strain is relatively
small. As the strain increases, large difference between the true stress-strain curve obtained from a notched specimen by
using the G factor and the material’s equivalent stress-strain curve emerges.

In this study, numerical analyses have been conducted with different initial notch geometries and material hardening
exponents to explore the existence of a special notch configuration such that the resulting stress-strain curve corrected
by a single factor agrees with the material equivalent stress-strain curve even for the case when the strain is large. A special
notched tensile specimen has indeed been identified which can output material’s flow stress-strain curve directly and the
Bridgman correction is not needed. The special notched tensile specimen can be applied to both homogeneous materials
and weldments.

The paper consists of following sections. The definition of various stresses used in the notched tensile specimens and
numerical procedure used in the study are briefly introduced in Section 2. Section 3 identifies the ‘magic’ notch geometry
and explains why this special notch geometry can determine the material’s equivalent/flow stress strain curve directly.
The application of the ‘magic’ notched tensile testing method to weldments is presented in Section 4. Various parameters
relevant to a weldment are discussed and limitation of the method to materials with significant Lüders plateau is also men-
tioned. A recommended procedure to determine material’s flow stress-strain curve for each material zone of a weldment is
presented in Section 5. The paper is concluded by a summary of the main results in Section 6.

2. Definition of notch stresses and numerical procedure

Notched tensile specimen with round cross section is widely used for fatigue analysis [15–17], stress concentration anal-
ysis [18] and fracture locus measurement at relatively high stress triaxiality [19–21]. The geometry of notched specimen
used in this study is described in Fig. 2. For a notched tensile specimen, the average true strain can be calculated by the area
reduction of the minimum cross section:

e ¼ 2 � ln a0
a

� �
ð1Þ

where e is the average true strain; a0 and a are the initial and current radius of the minimum cross section, respectively. The
engineering stress of a notched tensile specimen re;notch is calculated by dividing the load by the initial area of the minimum
cross section, and the true stress rT;notch for a notched tensile specimen can be calculated by dividing the load by the current
area of the minimum cross section:

re;notch ¼ P
pa20

ð2Þ

rT;notch ¼ P
pa2

ð3Þ

where P is the load. For a power-law hardening material, the strain at the maximum load of both smooth and notched tensile
specimens is equal to the hardening exponent [14]. The true stress-strain curve corresponding to a smooth specimen, rT , can
be obtained from a notched tensile specimen by dividing rT;notch by the G factor, which is dependent on a0=R0, the hardening
exponent and is independent of strain. For a given notched tensile specimen, the value of the G factor [14] is defined as the
ratio of the true stress of a notched specimen to the true stress of a smooth specimen at the strain equal to material’s hard-
ening exponent, Eq. (4).

G ¼ rT;notch

rT

����
e¼n

ð4Þ

In this study, a series of notched tensile specimens with different material properties and notch geometries have been
analysed with ABAQUS 6.14 to identify the special notch geometry. Unless otherwise specified, the flow stress-strain curves
of the materials analysed assume to follow a power-law hardening rule:

�r ¼ r0 1þ ep
e0

� �n

ð5Þ

where �r, ep, r0, e0 ¼ r0=E, n are the flow stress, equivalent plastic strain, yield stress, yield strain and hardening exponent,
respectively. In this study, r0 ¼ 400 MPa, n ¼ 0:1;0:15;0:2, Young’s modulus E ¼ 200 GPa, and Poisson’s ratio m ¼ 0:3 have
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been used. For all the notched tensile specimens in numerical procedure, a0 ¼ 6 and d0 ¼ 24 mm are used. Axisymmetric
models with a0=R0 ¼ 1, 1.5, 2, 3 have been analysed. Element type CAX4R is used considering larger deformation. In order
to well capture the deformed notch shape, 60 elements in total are used in the notch profile and 20 elements with average
size of 0.3 � 0.05 mm are used in the region close to the minimum cross section. The mesh of the notched tensile specimen
with a0=R0 ¼ 3 is shown in Fig. 3. The specimen is loaded under displacement control.

3. The ‘magic’ notched tensile testing specimen

3.1. Identification of the special notch geometry

The engineering stress-strain (re;notch � e) curves for the notched specimens are presented in Fig. 4. As expected, the
re;notch � e curves drop down after the peak load. For the samematerial, smaller notch (larger a0=R0) will result in higher engi-
neering stress at the same strain level. Naturally, for a given notch configuration, material with higher hardening will yield
higher maximum engineering stress at e ¼ n. It should be noted that the strain corresponding to the maximum load is equal
to the hardening exponent for each material shown in Fig. 4 and is independent of the initial notch geometry [14]. The true

Fig. 2. Geometry of a notched tensile specimen.

(a)

(b)

Fig. 3. Mesh of the notched tensile specimen with a0=R0 ¼ 3: (a) global mesh, (b) local mesh.
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stress-strain curves (rT;notch � e) for the notched tensile specimens are shown in Fig. 5. These curves are then individually
corrected by the G factor defined in Eq. (4) and converted to flow stress-strain curves by subtracting the elastic strain, Eq.
(6). Results of the G corrected flow stress-strain curves are compared in Fig. 6. The parameters involved in the G correction
for different materials and notch geometries are listed in Table 1.

ep ¼ e� rG
T

E
ð6Þ
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In the following, the G corrected flow stress-strain curve will be understood as the corrected flow stress-strain curve,
unless otherwise stated. In Fig. 6, it can be observed that the corrected flow stress-strain curve agrees well with the material
flow stress-strain curve when ep 6 n for all materials analysed. Difference between the corrected flow stress-strain curve and
material’s flow stress-strain curve input for the analysis appears and increases with the increase of equivalent plastic strain.
For the specimen with a0=R0 ¼ 2, the corrected flow stress-strain curves show good agreement with material’s flow stress-
strain curves with absolute errors at equivalent plastic strain ep ¼ 0:8 approaching to 1.4%, 0.8%, 0.7% for n ¼ 0:1;0:15;0:2,
respectively. Compared with other notch configurations, the specimens with a0=R0 ¼ 2 yield smallest errors in Table 1.
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Fig. 5. rT;notch � e curves for the materials: (a) n = 0.1, (b) n = 0.15, (c) n = 0.2. The equivalent stress-strain curves of each material input for the analyses are
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article.)
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Further studies with the same notch geometry a0=R0 ¼ 2 but different hardening exponent n ¼ 0:05, 0.075, 0.125 and
0.175 have been carried out to explore the feasibility of the special notch geometry. The results of corrected flow stress-
strain curves are compared in Fig. 7. It can be seen that the corrected flow stress-strain curve overlaps with the material flow
stress-strain curve in a large range of equivalent plastic strain for all the materials considered.

Hardening exponents varying from 0.05 to 0.2 in Figs. 6 and 7 cover a wide range of engineering materials obeying the
power-law hardening rule. Error analysis in Table 1 shows that the notched tensile specimens with a0=R0 ¼ 2 yield very
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Fig. 6. G corrected flow stress-strain curves for the materials: (a) n = 0.1, (b) n = 0.15, (c) n = 0.2. Material’s flow stress-strain curves input for the analyses
are denoted as green colour.
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accurate flow stress-strain curves with absolute errors less than 1.5%. Based on these analyses, the notched tensile specimen
with a0=R0 ¼ 2 can be applied for direct derivation of flow stress-strain curve for homogeneous power-law hardening mate-
rials with a single value of correction factor defined by Eq. (4). Notched tensile specimen with a0=R0 ¼ 2 is therefore iden-
tified as the special notched tensile specimen and notch geometry with a0=R0 ¼ 2 is the so-called ‘magic’ notch. It should be
noted that with the ‘magic’ notched specimen, no Bridgman correction is needed.

Table 1
Parameters for correcting flow stress-strain curves with the G factor.

a0
R0

rT je¼n rT;notch

��
e¼n

G jDrj
�r

���
ep¼0:8

MPa MPa %

n ¼ 0:1 3 590 991.11 1.6798 6.0
2 909.72 1.5419 1.4
1.5 857.86 1.454 1.9
1 793 1.344 6.2

n ¼ 0:15 3 764.46 1233 1.6129 4.7
2 1135.17 1.4849 0.8
1.5 1081.39 1.4146 2.1
1 1005.5 1.3153 5.8

n ¼ 0:2 3 1006.24 1560.86 1.5512 3.9
2 1460.5 1.4514 0.7
1.5 1389.19 1.3806 1.9
1 1299.4 1.2913 5.1
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Fig. 7. G corrected flow stress-strain curves from the specimen with a0=R0 ¼ 2: (a) n = 0.05, (b) n = 0.075, (c) n = 0.125, (d) n = 0.175. Material’s flow stress-
strain curves input for the analyses are denoted as green colour. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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3.2. Origin of the ‘magic’ notch

It has been shown that the notched tensile specimen with a0=R0 ¼ 2 can be used for directly deriving the flow stress-
strain curve of any material that obeys the power-law hardening rule. In this section, the reason why the special notched
tensile specimen functions well with only a single correction factor is discussed.

According to Bridgman’s analysis, the stress state in the minimum cross section is governed by the value of a=R. In order
to illustrate the evolution of the notch geometry, the coordinates of the nodes at the root of the minimum cross section with
an arc length close to 1 mm are fitted with the least square method. Fig. 8 shows the notch profile evolution for specimen
with a0=R0 ¼ 2 and hardening exponent n ¼ 0:15 with the equivalent plastic strain varying from 0 to 0.8.

It can be seen from Fig. 8, as the equivalent plastic strain increases, the radius of the minimum cross section decreases and
notch profile becomes more ‘curved’. The deformation highly concentrates at the minimum cross section resulting also in the
decrease of the notch radius. Specially, when the equivalent plastic strain increases from 0 to 0.8, the radius of the minimum
cross section varies from 6 to 4.02 mm with corresponding notch radius varying from 3 to 2.24 mm in Fig. 8.

The values of a=R for all the notched tensile specimens during loading are presented in Fig. 9. Considering low hardening
exponent of recent high strength pipeline steels, such as X80, X100, material with n ¼ 0:05 is studied and the evolution of
a=R is also presented in Fig. 9. The trend of the evolution of a=R is different for each specimen. For the specimen with
a0=R0 ¼ 3, a=R decreases with the increase of the equivalent plastic strain, and larger hardening exponent yields a larger
decrease of a=R at the same equivalent plastic strain. For the specimen with a0=R0 ¼ 2, a=R decreases slightly firstly and then
keeps constant when the equivalent plastic strain is larger than the value of hardening exponent. For the specimen with
a0=R0 ¼ 1, the value of a=R increases with the increase of the equivalent plastic strain. For the same initial notch geometry,
hardening exponent has an influence on the evolution of a=R, which means that the evolution of a=R is not completely mate-
rial independent.

Similar to the smooth round bar tensile specimen after necking, the true stress for a notched tensile specimen rT;notch can
be expressed as:

rT;notch ¼ f
a
R

� �
� req ð7Þ

where f is the scaling factor which solely depends on the value of a=R and req is the Mises equivalent stress. As shown in
Fig. 9, the value of a=R changes with the increase of equivalent plastic strain, except for the special notched tensile specimen
when ep P n. For the special notched tensile specimen, the scaling factor is therefore a constant when ep P n resulting in
that the corrected flow stress-strain curves overlap with material flow stress-strain curves in a wide range of equivalent
plastic strain.

4. Application to weldment and effect of geometry

The analysis above shows that notched tensile specimen with a0=R0 ¼ 2 can be applied for direct measurement of mate-
rial flow stress-strain curve. As mentioned in the introduction, application of the special notched tensile specimen to retrieve
the material properties of each individual material zone in a weldment is of great interest. For this purpose, the effects of
specimen geometry such as specimen outer diameter, the weld zone length in the notch region have been studied. The
dimensions of notched tensile specimen with weld zone can be referred to Fig. 2.
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4.1. Effect of weld zone length

Strength mismatch and strain hardening mismatch are common characteristics of weldments due to different mechanical
properties between the base material and weld metal. In the numerical analysis, r0 ¼ 400 MPa, n ¼ 0:1 have been taken as
the yield stress and hardening exponent of the base material. The yield stress of the weld metal in the notched region varied
from 300 MPa to 500 MPa to consider both strength undermatch and overmatch conditions. Strain hardening mismatch is
considered with n ¼ 0:1, 0.15 and 0.2 for weld metal. The length of weld zone H shown in Fig. 2 is normalized by initial diam-
eter of the minimum cross section, and the values of H=D vary from 0.33 to 1.5.

rT;notch � e curves for specimens with weld zone are presented in Fig. 10. With the increase of H=D, the rT;notch � e curves
calculated by Eq. (3) are collapsed into one curve quickly. For the case of strength overmatch in Fig. 10(b) and (d), the effect
of weld zone length on the rT;notch � e curves is more obvious than the case with strength undermatch shown in
Fig. 10(a), (c) and (e). For the case with overmatch shown in Fig. 10(b) and (d), rT;notch � e curves are collapsed into one curve
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when H=D > 0:5. For the case with undermatch (strength undermatch or strain hardening undermatch), the deformation is
always localized in the notched region and the weld zone length effect is not obvious. Based on these results, for a given weld
zone length, it is recommended to machine notched tensile specimen with the initial radius of the minimum cross section no
great than weld zone length, namely a0 6 H.
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4.2. Effect of outer diameter

It should be noted that in all the analyses reported so far, the outer diameter of the special notched tensile specimen is
constant, namely d0=a0 ¼ 4. For the special notched tensile specimen, the outer diameter may influence the result of material
flow stress-strain curve and its effect should be studied. In this section, numerical analyses have been conducted with d0=a0
varying from 2.5 to 4.5 and hardening exponent varying from 0.05 to 0.2. Results of corrected flow stress-strain curves are
shown in Fig. 11 for hardening exponent n ¼ 0:05 and 0.1 only.

It can be seen in Fig. 11 that the outer diameter has a strong effect on the results of corrected flow stress-stain curves. As it
can be expected, the corrected flow stress-strain curves agree well with material flow stress-strain curves when ep < n. With
the increase of the equivalent plastic strain, the corrected flow stress-strain curves deviate with material flow stress-strain
curve for d0=a0 ¼ 2:5 and d0=a0 ¼ 3. For d0=a0 P 3:5, the corrected flow stress-strain curves overlap with the material flow
stress-strain curves. This is also seen for materials with n ¼ 0:075, 0.125, 0.15, 0.175 and 0.2. Therefore, for the special
notched tensile specimen, the value of outer diameter is recommended to be larger than 3:5a0. As discussed previously,
the requirement of a0 should be smaller than the weld zone length. Therefore, for the application of the special notched ten-
sile specimen with weld zone, the specimen geometry is recommended to fulfil the condition: a0 6 H; d0 P 3:5a0.

4.3. Limitation of the ‘magic’ notch to materials with Lüders plateau

It should be noted that only the materials with the power-law hardening rule are considered so far. Materials with yield
plateau or Lüders plateau are very common in practice, especially for materials used in the Arctic regions [22]. In order to
explore the applicability of the special notched tensile specimen for materials with Lüders plateau, numerical analyses have
been conducted with the special notched tensile specimen. The material flow stress-strain curves of the materials with
Lüders plateau are described:

r ¼
r0 ep 6 eL
r0 1þ ep�eL

e0

� �n
ep > eL

8<
: ð8Þ

eL is the length of Lüders plateau. In this study, an unrealistically large value eL ¼ 3% has been used. The remaining param-
eters are the same as in Eq. (5). Results of corrected flow stress-strain curves with the ‘magic’ notched tensile specimen are
plotted in Fig. 12. It can be seen that the corrected flow stresses increase smoothly without a clear plateau as the equivalent
plastic strain increases. The errors between the corrected flow stress and material flow stress for n ¼ 0:1, 0.15, 0.2 approach
to 11.3%, 17.8%, 23.5%, respectively at the equivalent plastic strain ep ¼ 3%. When the equivalent plastic strain ep > eL, the
corrected flow stress-strain curve overlaps with the material flow stress-strain curve for each material.

For materials with Lüders plateau, ideally, one could make two specimens to measure material true stress-strain curve.
One is a standard smooth round bar specimen and the other one is the special notched tensile specimen. The whole stress-
strain curve finally derived for a given material consists of two parts, one part is from the smooth round bar specimen when
e 6 n, the other part is from G corrected true stress-strain curve from the special notched tensile specimen when e > n. In
both cases, Bridgman correction is not necessary.
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5. Recommended procedure for flow stress-strain curve measurement with the special notched tensile specimen

The correction factor defined by Eq. (4) is unknown for a given material and also differs from material to material. The
correction factors and the hardening exponents for the special notched tensile specimen obtained from numerical analyses
are plotted in Fig. 13. The hardening exponent considered varies from 0.05 to 0.2, which covers a wide range of engineering
materials following a power-law hardening rule.
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Fig. 13 can be linear fitted by:

Gm ¼ �0:824 � nþ 1:6189 ð9Þ
Once one knows the hardening exponent, the correction factor can be calculated from Eq. (9). The hardening exponent

can be conveniently taken as the strain at the maximum stress on an engineering stress-strain curve of either a smooth
or a notched tensile specimen. Therefore, for material that follows a power-law hardening rule, the flow stress-strain curve
can be measured with the special notched tensile specimen with the following steps:

(1) Prepare the specimens with the geometric requirements: a0=R0 ¼ 2 and a0 6 H; d0 P 3:5a0.
(2) Perform notched tensile tests.
(3) Calculate the re;notch � e curve and rT;notch � e curve, determine the hardening exponent from re;notch � e curve (the

value of strain at the maximum stress).
(4) Calculate the correction factor with Eq. (9) and correct the rT;notch � e curve with correction factor to obtain the G cor-

rected true stress-strain curve, and then convert to flow stress-strain curve with Eq. (6).

6. Conclusions

In this study, a special notched tensile specimen has been identified and a procedure is proposed to determine the mate-
rial flow stress-strain curve without Bridgman correction. The special notched tensile specimen can be applied to both
homogeneous material and weldments. Numerical analysis shows that outer diameter should be 3.5 times larger than initial
radius of the minimum cross section in order to use the special notched tensile specimen. For weldments, the initial radius of
the minimum cross section is recommended to be smaller than material zone length in notch region. It should be noted that
the corrected flow stress derived with the special notched tensile specimen is less accurate for material with significant
Lüders plateau in the initial yield stage.
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a b s t r a c t 

Large deformation analyses of problems such as plastic forming, ductile fracture with finite element method need 

a full range of material’s equivalent stress-strain curve or flow stress-strain curve. The equivalent stress-strain 

curve determined from the smooth round bar specimen should be corrected after diffuse necking, since tri-axial 

stress state occurs in the neck. The well-known Bridgman correction method is a candidate, however, it is not 

accurate as the strain increases. Furthermore, it is impossible to measure the equivalent stress-strain curve of each 

individual material zone in a weldment with cross weld tensile tests. To cope with these challenges, a correction 

function and an associated test procedure are proposed in this study. With the proposed procedure, the true 

stress-strain curve from any axisymmetric notched tensile specimen can be converted to the material’s equivalent 

stress-strain curve accurately and no Bridgman correction is needed. The proposed procedure can be applied 

to both perfectly plastic and strain hardening materials. The equivalent stress-strain curve of each individual 

material zone in a weldment can also be measured with the proposed procedure. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Large deformation analyses of problems such as plastic forming 

[1,2] , ductile fracture [3-7] with finite element method need a full range 

of material’s equivalent stress-strain curve or flow stress-strain curve. 

For homogeneous materials, the true stress-strain curve can be measured 

by performing uniaxial tensile test with smooth round bar specimen or 

rectangular cross-section specimen [8-12] . However, the determination 

of the true stress-strain curve of each individual material zone in a weld- 

ment is difficult, due to the inhomogeneity of the weldment and the un- 

predictable fracture location on the cross weld tensile specimen. Zhang, 

Hauge, Thaulow and Ødegård [13] proposed a method to determine the 

true stress-strain curve of a weldment with axisymmetric notched tensile 

specimen. The true stress-strain curve from an axisymmetric notched 

tensile specimen can be converted to the true stress-strain curve of a 

smooth round bar specimen by a so-called G factor. The notch can be 

located either in the base metal, weld metal or possibly the heat affect 

zone (HAZ). 

It is worth noting that whether from a smooth round bar specimen 

[8-10] or by conversion from an axisymmetric notched tensile specimen 

[13] , the true stress-strain curve deviates from the material’s equivalent 

stress-stress curve, since the tri-axial stress state occurs in the localized 

region after the onset of diffuse necking [8,14] . In general, the true 

∗ Corresponding author. 

E-mail address: zhiliang.zhang@ntnu.no (Z. Zhang). 

stress-strain curve should be corrected. Several approaches have been 

proposed for the correction of the initially smooth round bar tensile 

specimen [15-17] . The well-known Bridgman correction method [18] is 

widely referred in the literature. By assuming a uniform distribution of 

the equivalent strain in the minimum cross section, Bridgman proposed 

an analytical solution of stress distribution in the minimum cross section 

of a necked specimen. Application of the Bridgman correction method 

is expensive since the current notch radius ratio (the minimum cross 

section radius a over the notch radius R ) a / R should be measured simul- 

taneously during the test [14,19] . Even with the value of notch radius 

measured, the equivalent stress-strain curve corrected by the Bridgman 

correction method is not accurate when the strain is large [19] . Bao 

[20] performed numerical analysis with a smooth round bar specimen 

and showed that the stress distribution in the minimum cross-section 

differed significantly to the Bridgman’s analytical solution at the strain 

𝜀 = 0.29. The inaccuracy of the Bridgman correction method attributes 

to the assumption that the equivalent strain is uniformly distributed in 

the minimum cross section. 

An alternative method with more accurate results and lower test 

cost has been proposed recently to measure material’s flow stress-strain 

curve [21] . The authors further studied the axisymmetric notched ten- 

sile specimen with numerical analyses and a special notch geometry 

with a 0 / R 0 = 2 has been identified. a 0 and R 0 are the initial minimum 

cross-section radius and the initial notch radius, respectively. With this 
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Nomenclature 

a instantaneous minimum cross-section radius 

a 0 initial minimum cross-section radius 

d 0 outer diameter of the notched tensile specimen 

E Young’s modulus 

H material zone length in the notch region 

n material’s hardening exponent 

P tensile load 

R instantaneous notch radius 

R 0 initial notch radius 

a 0 / R 0 initial notch radius ratio 

𝜈 Poisson’s ratio 

𝜀 0 yield strain 

𝜀 average true strain 

𝜀 𝑝 equivalent plastic strain 

𝜀 N true strain at necking for smooth round bar specimen 

𝜀 P max true strain at the maximum tensile load 

𝜎0 yield stress 

𝜎0.2 0.2% offset yield stress 

𝜎T true stress from smooth round bar specimen 

𝜎0.5 yield stress corresponding to 0.5% total strain 

𝜎 flow stress 

𝜎e,notch engineering stress from an axisymmetric notched tensile 

specimen 

𝜎eq von Mises equivalent stress 

𝜎T,notch average true stress from an axisymmetric notched ten- 

sile specimen 

𝜉 ratio between the average true stress from an axisym- 

metric notched tensile specimen and the material’s 

equivalent stress at the same strain 

‘magic ’ notched tensile specimen and a smooth round bar specimen, the 

equivalent stress-strain curve of the hardening material can be directly 

derived with a single G factor and no Bridgman correction is needed. 

Good agreements between the equivalent stress-strain curves input for 

numerical analyses and the G-corrected equivalent stress-strain curves 

with the ‘magic ’ notched tensile specimen have been observed. Simi- 

lar with the Bridgman correction method, the proposed ‘magic ’ notch 

method is not accurate for the perfectly plastic or weak hardening ma- 

terial [15] . 

In the present study, a new correction function is proposed to deter- 

mine the material’s equivalent stress-strain curve with any axisymmetric 

notched tensile specimens rather than the only ‘magic ’ notch. The pro- 

posed correction function depends on the deformation level (the aver- 

age true strain 𝜀 ), the true strain corresponding to the maximum tensile 

load 𝜀 P max and the initial notch geometry a 0 / R 0 of the specimen. Differ- 

ent notch configurations can be used. The proposed correction function 

herein can also be applied to perfectly plastic materials. 

The paper consists of the following sections. In Section 2 , the axisym- 

metric notched tensile specimen is introduced, along with the definitions 

of the specimen geometry used in this study. Details of the numerical 

procedure and materials used are presented in Section 3 . Results from 

the numerical analyses, the influence of notch radius ratio, as well as the 

derivation of the correction function are presented in Section 4 . Verifi- 

cation and application of the proposed correction function are discussed 

in Section 5 . The main conclusions are summarized in Section 6 . 

2. Axisymmetric notched tensile specimen 

The axisymmetric notched tensile specimen has a wide range of ap- 

plications in characterizing material’s mechanical properties [22-25] , 

especially for the metallic material fracture locus measurement in the 

range of stress triaxiality larger than 1/3 [26-28] . In order to conquer 

Fig. 1. Geometry of an axisymmetric notched tensile specimen. 

the limitations of the conventional cross weld tensile test, Zhang, Hauge, 

Thaulow and Ødegård [13] proposed a method to determine the true 

stress-strain curve of each individual material zone of weldments with 

the axisymmetric notched tensile specimen. The sketch of an axisymmet- 

ric notched tensile specimen is shown in Fig. 1 . Due to the existence of a 

notch on the specimen, the deformation localizes mainly in the notched 

region under uniaxial tension. During the tensile testing, the average 

true strain 𝜀 is defined by the minimum cross-section area reduction: 

𝜀 = 2 ⋅ ln ( 𝑎 0 ∕ 𝑎 ) (1) 

where a is the instantaneous minimum cross-section radius, which can 

be measured by a linear variable displacement transducer. The true 

stress 𝜎T,notch and the engineering stress 𝜎e,notch from an axisymmet- 

ric notched tensile specimen are calculated by dividing the load P by 

the current minimum cross-section area and the initial minimum cross- 

section area, respectively. 

𝜎𝑇 ,𝑛𝑜𝑡𝑐ℎ = 𝑃 ∕ 𝜋𝑎 2 (2) 

𝜎𝑒,𝑛𝑜𝑡𝑐ℎ = 𝑃 ∕ 𝜋𝑎 2 0 (3) 

Recent study by the authors [21] showed that the true stress calculated 

by Eq. (2) with the axisymmetric notched tensile specimen is indepen- 

dent of the specimen outer diameter d 0 when the geometry condition 

d 0 ≥ 3.5 a 0 is fulfilled. In order to measure the equivalent stress-strain 

curve of each individual material zone of a weldment, the authors car- 

ried out a series of numerical analyses and found that the true stress 

from an axisymmetric notched tensile specimen is unique and indepen- 

dent of the material zone length when a 0 ≤ H . When these geometry 

requirements are fulfilled, the axisymmetric notched tensile specimen 

can be characterized by the initial notch radius ratio, a 0 / R 0 . 

The strategy of the present study is illustrated in Fig. 2 . The assumed 

materials ’ equivalent stress-strain curves are used for numerical analy- 

ses first. Then, the true stress-strain curves output from the numerical 

analyses are studied to derive the proposed correction function. With 

the proposed correction function, the true stress-strain curve from an 

axisymmetric notched tensile specimen can be converted to the mate- 

rial’s equivalent stress-strain curve. 

3. Numerical procedure 

3.1. Finite element model 

A series of numerical analyses of axisymmetric notched tensile spec- 

imens with a 0 / R 0 varying from 0.25 to 3 have been performed with 

Abaqus/standard 6.14. a 0 = 6 mm is used for all the notched tensile 

specimens, with R 0 varying from 2 to 24 mm. The outer diameter is 
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Fig. 2. Layout of the present study: (a) Assumed material’s equivalent stress-strain curve; (b) Numerical tensile tests with axisymmetric notched tensile specimens, material in red can 

be undermatched, overmatched or evenmatched with the base material in yellow; (c) True stress-strain curve for the notched specimen obtained from (b). With the proposed correction 

function, true stress-strain curve in Fig. 2 (c) can be corrected back to Fig. 2 (a). 

Fig. 3. Mesh of the axisymmetric notched tensile specimen with a 0 / R 0 = 0.5. 

24 mm, which meets the geometry requirement: d 0 ≥ 3.5 a 0 . Axisym- 

metric model has been used with the element type CAX4R. Large defor- 

mation is accounted. A typical finite element meshes is shown in Fig. 3 

for the axisymmetric notched tensile specimen with a 0 / R 0 = 0.5. Aver- 

age mesh size in the notch center is 0.5 ×0.5 mm and relative coarse 

meshes are used in the remaining part. Symmetric boundary condition 

is applied in the minimum cross-section. The specimen is loaded under 

displacement control. 

3.2. Materials 

The flow stress-strain curves of the materials used in this study are 

assumed to follow a power law hardening rule [29] : 

𝜎= 𝜎0 

( 

1 + 

𝜀 𝑝 

𝜀 0 

) 𝑛 

(4) 

where 𝜎, 𝜀 𝑝 are the flow stress and the equivalent plastic strain, respec- 

tively. 𝜎0 = E 𝜀 0 describes the elastic behavior of the material. The yield 

stress 𝜎0 = 400 MPa, the Young’s modulus E = 200 GPa, and correspond- 

ing yield strain 𝜀 0 = 0.002 have been used together with the Poisson’s 

ratio 𝜈 = 0.3, for all the numerical analyses. Hardening of the material 

is characterized by a single hardening exponent n . In this study, numer- 

ical analyses with hardening exponents ranging from 0 to 0.2 have been 

investigated, representing most engineering materials. For a given hard- 

ening exponent n , the flow stress-strain curve can be converted to the 

equivalent stress-strain curve by Eq. (5) : { 

𝜎𝑒𝑞 = 𝜎, 𝜀 = 𝜎∕ 𝐸 𝜀 p = 0 
𝜎𝑒𝑞 = 𝜎, 𝜀 = 

𝜎

𝐸 
+ 𝜀 𝑝 𝜀 p > 0 

(5) 

In the following sections, material’s equivalent stress-strain curve is 

calculated by converting the corresponding flow stress-strain curve by 

Eq. (5) . By combining different hardening exponents and initial notch 

radius ratios ( a 0 / R 0 ), in total 30 analyses have been performed to derive 

the correction function in Section 4 . 

4. Derivation of the correction function 

4.1. Normalized 𝜎T,notch − 𝜀 and 𝜎e,notch − 𝜀 curves from numerical 

analyses 

The true stress-strain curves ( 𝜎T,notch − 𝜀 ) calculated by Eq. (2) for 

the axisymmetric notched tensile specimens are normalized by the yield 
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Fig. 4. Normalized 𝜎T,notch − 𝜀 curves of the axisymmetric notched tensile specimens for 
the perfectly plastic material ( n = 0). The material’s equivalent stress-strain curve is de- 
noted as black. 

stress and are presented in Fig. 4 for the perfectly plastic material and 

Fig. 5 for hardening materials. The corresponding materials ’ equivalent 

stress-strain curves are also presented. 

As expected, for axisymmetric notched tensile specimens with the 

same hardening exponent in Fig. 4 and Fig. 5 , the true stress calculated 

by Eq. (2) is larger than the material’s equivalent stress at the same 

strain, and the sharper notch (larger value of a 0 / R 0 ) yields a larger 

true stress. It is interesting to note that for the perfectly plastic ma- 

terial shown in Fig. 4 , the true stress increases with the increase of 

the strain for the specimen with a 0 / R 0 < 1.5. For the specimen with 

a 0 / R 0 = 3, the true stress increases when the strain is small, and then de- 

creases as the strain increases. For the specimens with a 0 / R 0 = 1.5 and 

a 0 / R 0 = 2, the true stress increases firstly, and then varies slightly as the 

strain increases. It indicates that, with a single correction parameter, the 

true stress output from an axisymmetric notched tensile specimen with 

a 0 / R 0 = 1.5 or a 0 / R 0 = 2 can be converted to the material’s equivalent 

stress. This has been investigated by the authors for hardening materi- 

als [21] , and the axisymmetric notched tensile specimen with a 0 / R 0 = 2 

has been proved to present a good agreement between the material’s 

equivalent stress-strain curve and the corrected stress-strain curve with 

a single G factor. 

Indeed, the effect of the initial notch radius ratio ( a 0 / R 0 ) on the 

resulting true stress-strain curve also occurs for hardening materials 

shown in Fig. 5 . However, it is difficult to observe this phenomenon 

due to the materials ’ strain hardening. The reason for the initial notch 

radius ratio effect is mainly due to the stress distribution on the mini- 

mum cross-section and will not be discussed in this paper. 

The normalized engineering stress-true strain curves (normalized 

𝜎e,notch − 𝜀 ) of the axisymmetric notched tensile specimens with hard- 

ening exponents n = 0.1 and n = 0.2 are presented in Fig. 6 . As expected, 

the engineering stress decreases after reaching the maximum value, for 

all the notched tensile specimens. It has been demonstrated that the 

strain corresponding to the maximum value of the engineering stress is 

approximately equal to the material’s hardening exponent ( 𝜀 P max ≈ n ), 

independent of the initial notch radius ratio [13,21] . This is further in- 

vestigated and a function describes the notch effect on diffuse necking 

is established in this paper. 

4.2. The derivation of the correction function 

4.2.1. Normalizing the ratio between the true stress and the material’s 

equivalent stress 

The purpose for this study is to provide a simple correction function 

to convert the true stress-strain curve from an axisymmetric notched ten- 

sile specimen to the material’s equivalent stress-strain curve. The ratio 

𝜉 between the true stress from an axisymmetric notched tensile speci- 

men and the material’s equivalent stress in Fig. (4) –( 5 ) are calculated 

by Eq. (6) , with the strain varying from 0.01 to 0.8. 

𝜉 = 

𝜎𝑇 ,𝑛𝑜𝑡𝑐ℎ 

𝜎𝑒𝑞 

||𝜀 (6) 

The 𝜉 versus the strain for the axisymmetric notched tensile specimens 

with a 0 / R 0 = 3 and hardening exponents from 0 to 0.2 are presented in 

Fig. 7 . It can be seen in Fig. 7 (a) that the curves for different hardening 

exponents show similar trend. The values of 𝜉 increases with the increase 

of the strain initially, and then decreases, for all the materials shown in 

Fig. 7 (a). By taking the ratio 𝜉 at strain 𝜀 = 0.8 as a reference, the curves 

in Fig. 7 (a) are normalized and the results are presented in Fig. 7 (b). 

Interestingly, the normalized curves in Fig. 7 (b) collapse into one, except 

small deviations when the strain is very small. Same behavior of the 𝜉 − 𝜀 

curves is also observed in Fig. 8 - 12 for the notched tensile specimens 

with a 0 / R 0 ranging from 0.25 to 2. 

The influence of notch radius ratio on the true stress-strain curve of 

axisymmetric notched tensile specimens has been analyzed previously 

for the perfectly plastic material. Interestingly, the influence of notch ra- 

dius ratio ( a 0 / R 0 ) can also be observed from the normalized 𝜉 − 𝜀 curves, 

as seen in Fig. 7 (b) − 12 (b). The value of normalized 𝜉 for notched ten- 

sile specimens with a 0 / R 0 > 1.5 decreases as the strain increases, and 

larger a 0 / R 0 corresponds a faster decrease of the normalized 𝜉. On the 

contrary, the value of normalized 𝜉 for notched tensile specimens with 

a 0 / R 0 > 1.5 increases with the increase of the strain, and smaller a 0 / R 0 
yields a faster increase of the normalized 𝜉. Therefore, we may conclude 

that the notch radius ratio effect is determined by the notch geometry 

( a 0 / R 0 ), independent of the material’s hardening exponent. 

4.2.2. Normalizing 𝜉𝜀 = 0.8 
The ratio between the true stress and the material’s equivalent stress 

at 𝜀 = 0.8 (namely the reference points 𝜉𝜀 = 0.8 used in Fig. 7 - 12 ) ver- 

sus the materials ’ hardening exponents for axisymmetric notched ten- 

sile specimens with different notch geometries are shown in Fig. 13 , 

with hardening exponents up to 0.35. For a given axisymmetric notched 

tensile specimen ( a 0 / R 0 ), the value of 𝜉𝜀 = 0.8 decreases with increasing 

hardening exponent. Very interestingly, for axisymmetric notched ten- 

sile specimens with different notch geometries, the curves in Fig. 13 (a) 

behave similar to each other and can be normalized. By taking the value 

of 𝜉𝜀 = 0.8 for material with the hardening exponent n = 0 ( 𝜉𝜀 = 0.8, n = 0 ) as 

a reference, the curves for axisymmetric notched tensile specimens with 

different notch geometries in Fig. 13 (a) can be normalized. The corre- 

sponding normalized curves are presented in Fig. 13 (b). As it can be 

seen, the normalized curves in Fig. 13 (b) collapse into one, which can 

be fitted by Eq. (7) : 

𝑓 ( 𝑛 ) = −0 . 22942 ⋅ 𝑛 2 − 0 . 36902 ⋅ 𝑛 + 1 (7) 

where n is the material’s hardening exponent. Eq. (7) describes the ma- 

terial’s hardening effect on the true stress-strain curves from notched 

specimen. As mentioned previously, for materials obeying the power 

law hardening (see Eq. (4) ), the hardening exponent n approximately 

equals to the true strain at the maximum tensile load, 𝜀 P max . We further 

investigate 𝜀 P max for each numerical analysis for hardening materials 

in Section 4.1 . The 𝜀 P max for each case is normalized by the hardening 

exponent n and is plotted against the initial notch radius ratio in Fig. 14 . 

As can be seen, the normalized 𝜀 P max presents a small scatter at the given 

a 0 / R 0 and decreases with the increase of a 0 / R 0 , for all the hardening 

exponents discussed here. Fig. 14 indicates that sharper notch acceler- 

ates the diffuse necking, while the shallow notch postpones the diffuse 

necking. Fig. 14 is then fitted by Eq. (8) . 

𝜀 𝑃 max ∕ 𝑛 = 0 . 0466 ⋅
(
𝑎 0 ∕ 𝑅 0 

)2 − 0 . 2515 ⋅
(
𝑎 0 ∕ 𝑅 0 

)
+ 1 . 2462 (8) 

Eq. (8) describes the notch effect on diffuse necking. The strain hard- 

ening exponent n can be determined with Eq. (8) when 𝜀 P max from a 

notched specimen is measured. For a given notched tensile specimen, 
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Fig. 5. Normalized 𝜎T,notch − 𝜀 curves of axisymmetric notched tensile specimens with different notch configurations: (a) n = 0.05; (b) n = 0.1; (c) n = 0.15; (d) n = 0.2 . The corresponding 
materials ’ equivalent stress-strain curves are shown in black. 

Fig. 6. Normalized 𝜎e,notch − 𝜀 curves of axisymmetric notched tensile specimens: (a) n = 0.1; (b) n = 0.2 . The strains corresponding to the maximum engineering stresses are shown with 

red lines. 

the ratio 𝜉 at the strain 𝜀 = 0.8 can be calculated, once 𝜀 P max and the 

reference value 𝜉𝜀 = 0.8, n = 0 is known: 

𝜉𝜀 =0 . 8 = 𝑓 ( 𝑛 ) ⋅ 𝜉𝜀 =0 , 8 ,𝑛 =0 (9) 

4.2.3. The proposed correction function 

As mentioned previously, for a given axisymmetric notched tensile 

specimen with different material properties (namely, different harden- 

ing exponents), the normalized 𝜉 − 𝜀 curves collapse into one and can 

be linearly fitted by Eq. (10) , as seen in Fig. 7 (b) − 12 (b). 

𝑔 𝑎 0 ∕ 𝑅 0 ( 𝜀 ) = ( 𝑏 1 ∗ 𝜀 + 𝑏 2 ) 𝑎 0 ∕ 𝑅 0 (10) 

where b 1 and b 2 are the slope and the intersection of Eq. (10) , respec- 

tively. The subscript in Eq. (10) denotes the initial notch radius ratio for 

a given axisymmetric notched tensile specimen. Combining Eq. (9) and 

(10) , the ratio 𝜉 can be written as: 

𝜉 = 𝑓 ( 𝑛 ) ⋅ 𝜉𝜀 =0 . 8 ,𝑛 =0 ⋅ 𝑔 𝑎 0 ∕ 𝑅 0 ( 𝜀 ) (11) 

Considering that the 𝜉 − 𝜀 curves in Fig. 7 (a) − 12 (a) are normalized by 

𝜉𝜀 = 0.8 , the product of the second and third term in Eq. (11) returns 

back to the linear fitted curves for the perfectly plastic materials ( n = 0) 

in Fig. 7 (a) − 12 (a). In this case, 𝜉𝜀 = 0.8, n = 0 cancels out and Eq. (11) can 

be written: 

𝜉 = 𝑓 ( 𝑛 ) ⋅ 𝑔 𝑎 0 ∕ 𝑅 0 ,𝑛 =0 ( 𝜀 ) 
𝑔 𝑎 0 ∕ 𝑅 0 ,𝑛 =0 ( 𝜀 ) = 

(
𝑏 1 ,𝑛 =0 ⋅ 𝜀 + 𝑏 2 ,𝑛 =0 

)
𝑎 0 ∕ 𝑅 0 

(12) 

where b 1, n = 0 and b 2, n = 0 are the slope and intersection from the linear 

fitting of the curves for n = 0 in Fig. 7 (a) − 12 (a), respectively. Corre- 

sponding values of b 1, n = 0 and b 2, n = 0 of Eq. (12) are listed in Table 1 and 

are presented in Fig. 15 as functions of the initial notch radius ratio. The 

660 



S. Tu et al. International Journal of Mechanical Sciences 135 (2018) 656–667 

Fig. 7. (a) 𝜉 versus 𝜀 for the axisymmetric notched tensile specimen with a 0 / R 0 = 3 and n ranging from 0 to 0.2; (b) Normalized curves of Fig. 7 (a) by 𝜉𝜀 = 0.8 . 

Fig. 8. (a) 𝜉 versus 𝜀 for the axisymmetric notched tensile specimen with a 0 / R 0 = 2 and n ranging from 0 to 0.2; (b) Normalized curves of Fig. 8 (a) by 𝜉𝜀 = 0.8 . 

Fig. 9. (a) 𝜉 versus 𝜀 for the axisymmetric notched tensile specimen with a 0 / R 0 = 1.5 and n ranging from 0 to 0.2; (b) Normalized curves of Fig. 9 (a) by 𝜉𝜀 = 0.8 . 

value of slope of Eq. (12) decreases with the increase of the initial notch 

radius ratio; inversely, the value of the intersection increases. The slope 

represents the notch radius ratio effect, while the intersection infers the 

stress concentration due to the existence of notch. The data in Fig. 15 (a) 

and (b) are fitted by Eq. (13) and Eq. (14) : 

𝑏 1 ,𝑛 =0 = 0 . 03232 
( 

𝑎 0 
𝑅 0 

) 2 
− 0 . 27 

( 

𝑎 0 
𝑅 0 

) 

+ 0 . 3866 (13) 

𝑏 2 ,𝑛 =0 = −0 . 04084 
( 

𝑎 0 
𝑅 0 

) 2 
+ 0 . 3557 

( 

𝑎 0 
𝑅 0 

) 

+ 1 . 0577 (14) 

Inserting Eq. (13) - (14) into Eq. (12) , the ratio 𝜉 between the true 

stress from an axisymmetric notched tensile specimen and the material’s 

equivalent stress can be written in a general format: 

𝜉 = ( 𝑏 1 ,𝑛 =0 ⋅ 𝜀 + 𝑏 2 ,𝑛 =0 ) ⋅ 𝑓 ( 𝑛 ) (15) 

Eq. (15) consists of two terms: the first term is related to the initial notch 

geometry and is a function of the average true strain 𝜀 ; the second term 

is a function of the hardening exponent n , considering the material’s 
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Fig. 10. (a) 𝜉 versus 𝜀 for the axisymmetric notched tensile specimen with a 0 / R 0 = 1 and n ranging from 0 to 0.2; (b) Normalized curves of Fig. 10 (a) by 𝜉𝜀 = 0.8 . 

Fig. 11. (a) 𝜉 versus 𝜀 for the axisymmetric notched tensile specimen with a 0 / R 0 = 0.5 and n ranging from 0 to 0.2; (b) Normalized curves of Fig. 11 (a) by 𝜉𝜀 = 0.8 . 

Fig. 12. (a) 𝜉 versus 𝜀 for the axisymmetric notched tensile specimen with a 0 / R 0 = 0.25 and n ranging from 0 to 0.2; (b) Normalized curves of Fig. 12 (a) by 𝜉𝜀 = 0.8 . 

Table 1 

Parameters from linear fitting of 

Fig. 7 (b) − 12 (b) by Eq. (10) . 

a 0 / R 0 Slope Intersection 

b 1, n = 0 b 2, n = 0 

3 − 0.135 1.7597 

2 − 0.0194 1.5985 

1.5 0.0529 1.4987 

1 0.137 1.3799 

0.5 0.2743 1.2299 

0.25 0.3143 1.1376 

strain hardening effect. With Eq. (15) , the 𝜎T,notch − 𝜀 curve from an ax- 

isymmetric notched tensile specimen can be converted to the material’s 

equivalent stress-strain curve by Eq. (16) . Therefore, Eq. (15) is the pro- 

posed correction function. 

𝜎
𝑒𝑞 

= 

𝜎𝑇 ,𝑛𝑜𝑡𝑐ℎ 

𝜉
||𝜀 (16) 

It should be noted that the correction function Eq. (16) are derived 

based on notched specimens and are not accurate for a 0 / R 0 = 0, namely 

the smooth round bar specimen. The extrapolated value (0.3866 for 

a 0 / R 0 = 0) of Eq. (13) (see in Fig. 15 (a)) is very close to the slope 
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Fig. 13. (a) 𝜉𝜀 = 0.8 versus n for axisymmetric notched tensile specimens with different notch geometries; (b) Normalized curves of Fig. 13 (a) by 𝜉𝜀 = 0.8, n = 0 and are fitted by Eq. (7) . 

Fig. 14. Strain corresponding to the maximum load is normalized by hardening exponent 

and is plotted against the initial notch radius ratio. 

(0.3718) by linearly fitting the ratio between the true stress-strain curve 

from smooth round bar specimen and the input stress-strain curve for 

the perfectly plastic material; while the extrapolated value (1.0577 for 

a 0 / R 0 = 0) of Eq. (14) is very close to 1, giving reasonable indication 

that there is no stress concentration for smooth round bar specimen. 

However, the proposed correction function applies to the whole range 

of the 𝜎T,notch − 𝜀 curve. For the smooth round bar specimen before dif- 

fuse necking, the true stress-strain curve is exactly the same as material’s 

equivalent stress-strain curve and no correction is needed. Application 

of Eq. (15) to smooth round bar specimen may results in considerable 

error, especially when the strain is large. 

5. Verification and discussion 

To verify the proposed correction function, the axisymmetric 

notched tensile specimen with a 0 / R 0 = 1.25 has been analyzed numer- 

ically. The equivalent stress-strain curves calculated by converting the 

true stress-strain curves from the axisymmetric notched tensile speci- 

men with Eq. (16) are compared in Fig. 16 with the materials ’ equiv- 

alent stress-strain curves. Very satisfactory agreement can be seen in 

Fig. 16 for materials with n = 0 and n = 0.125. Compared with the well- 

known Bridgman correction method, the proposed correction function 

does not need to measure the current notch radius. Gromada et al. 

(2011) performed the Bridgman correction method with the perfectly 

plastic material numerically, and found that errors between the Bridg- 

man corrected stress and the material’s equivalent stress occurred quite 

early and increased to 10% at the strain 𝜀 = 1.25. Compared with the 

Bridgman correction method, the proposed correction function yields 

accurate results for the perfectly plastic material, as can be seen in 

Fig. 16 (a). 

It should be noted that the conversion of the true stress-train curve 

from the axisymmetric notched tensile specimens to the material’s 

equivalent stress-strain curve with the proposed correction function is 

Fig. 15. (a) Slopes of linearly fitted equations of the 𝜉 − 𝜀 curves with n = 0 in Fig. 7 (a) − 12 (a) versus the initial notch radius ratio a 0 / R 0 ; (b) Intersections of linearly fitted equations of 
the 𝜉 − 𝜀 curves for n = 0 in Fig. 7 (a) − 12 (a) versus the initial notch radius ratio a 0 / R 0 . 
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Fig. 16. Comparison of the equivalent stress-strain curve calculated by correcting the trues stress-strain curve from the axisymmetric notched tensile specimen with the proposed 

correction function and the material’s equivalent stress-strain curve: (a) n = 0; (b) n = 0.125 . 

Fig. 17. Converted equivalent stress-strain curve by the proposed correction function at the strain less than 1% for materials with: (a) n = 0; (b) n = 0.125. 

not perfect when the strain is very small. Fig. 16 is replotted by ranging 

strain from 0 to 0.01 in Fig. 17 . Difference between the equivalent stress- 

strain curves converted by the proposed correction function and the ma- 

terial’s equivalent stress-strain curves is shown in Fig. 17 . One reason 

for the errors is that the normalized 𝜉 − 𝜀 curves in Fig. 7 (b) − 12 (b) are 

linearly fitted, however, the normalized 𝜉 deviates slightly to the lin- 

early fitted equation in the initial stage. The second reason is that the 

transition of yielding for the notched tensile specimen is different to the 

smooth specimen. Yielding develops on the whole cross-section simul- 

taneously for the smooth specimen, while the yielding for the axisym- 

metric notched tensile specimen develops firstly at part of the minimum 

cross-section. Gradual yielding of the axisymmetric notched tensile spec- 

imens also results in a smooth transition on the converted equivalent 

stress-strain curve, instead of a sharp transition in a smooth round bar 

specimen. 

In practice, for tensile tests with smooth round bar specimen or rect- 

angular cross-section specimen, the yield stress is determined by the in- 

tersection of the 0.2% offset line ( 𝜎0.2 ) or the vertical line at the strain 

0.5% ( 𝜎0.5 ) on the equivalent stress-strain curve, for materials without 

obvious yield plateau [30] . In this study, both 𝜎0.2 and 𝜎0.5 are derived 

from both the corrected equivalent stress-strain curve and the mate- 

rial’s equivalent stress-strain curve for all the analyses in Section 4 , see 

in Fig. 17 as an example. The relative errors (absolute value) are pre- 

sented in Table 2 for 𝜎0.2 and Table 3 for 𝜎0.5 , respectively. 

It can be seen that the values of the relative errors in Table 2 and 

Table 3 are within 5%, except the data marked in red which are mainly 

from the axisymmetric notched tensile specimen with a 0 / R 0 = 2 and 

a 0 / R 0 = 3 Therefore, it is not recommended to use very sharp axisym- 

Table 2 

Absolute value of relative error of the 0.2% offset yield stress ( 𝜎0.2 ). 

Table 3 

Absolute value of relative error of the yield stress at 𝜀 = 0.5% ( 𝜎0.5 ). 

metric notched tensile specimen to measure material’s yield stress on 

the converted equivalent stress-strain curve with the proposed correc- 

tion function. 

Since not all the materials follow power law hardening rule, the 

true stress-strain curves from smooth round bar specimen for steel 
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Table 4 

Error analysis for the application of the proposed correction function. 

Material Failure strain a 0 / R 0 𝜀 P max Error 

20MnMoNi55 1.1 3 0.091 1.02% 

2 0.095 0.98% 

1.5 0.097 1.81% 

1 0.102 3.11% 

0.5 0.115 1.58% 

0.25 0.12 4.75% 

AISI 304 1.33 3 0.212 7.16% 

2 0.225 3.98% 

1.5 0.236 2.34% 

1 0.253 1.36% 

0.5 0.273 3.17% 

0.25 0.275 2.32% 

FE 430 1.1 3 0.16 4.04% 

2 0.169 2.59% 

1.5 0.176 1.57% 

1 0.188 1.31% 

0.5 0.199 0.04% 

0.25 0.2 2.6% 

20MnMoNi 55 [16] , AISI 304 and FE 430 [17] have been used to verify 

the correction function. The true stress-strain curves are expressed as 

Eq. (17) - (19) and are converted to equivalent stress-strain curves with 

the so-called MLR method introduced in [16] . The correction factor for 

the MLR method can be expressed as Eq. (20) : 

For steel 20MnMoNi 55: 

𝜎𝑇 = 

{ 

828 ⋅ 𝜀 0 . 1 for (0 < 𝜀 ≤ 0 . 1 ) 
614 + 460 ⋅ 𝜀 for ( 𝜀 > 0 . 1 ) (17) 

For steel AISI 304: 

𝜎𝑇 = 

{ 

1183 ⋅ 𝜀 0 . 25 for (0 < 𝜀 ≤ 0 . 25 ) 
693 + 592 ⋅ 𝜀 for( 𝜀 > 0 . 25 ) (18) 

For steel FE 430: 

𝜎𝑇 = 

{ 

818 ⋅ 𝜀 0 . 19 for (0 < 𝜀 ≤ 0 . 19 ) 
527 + 365 ⋅ 𝜀 for ( 𝜀 > 0 . 19 ) (19) 

𝑀𝐿𝑅𝜎
(
𝜀, 𝜀 𝑁 

)
= 1 − 0 . 6058 ( 𝜀 − 𝜀 𝑁 

) 2 + 0 . 6317 ( 𝜀 − 𝜀 𝑁 

) 3 − 0 . 2107 ( 𝜀 − 𝜀 𝑁 

) 4 

(20) 

where 𝜀 N is the true strain at diffuse necking, which can be found in 

ref. [16] and [17] . By multiplying the true stress with the MLR cor- 

rection factor, the equivalent stress-strain curve can be derived after 

diffuse necking. It should be noted that the error induced by the MLR 

is not considered here. The equivalent stress-strain curves converted by 

the MLR method are then converted to flow stress-strain curves and are 

input for numerical analyses with different axisymmetric notched ten- 

sile specimens. True stress-strain curves from the numerical analyses are 

then corrected with the proposed correction function, Eq. (15) , up to the 

same failure strain as in ref. [16] and [17] . Results of the correspond- 

ing equivalent stress-strain curves converted by the proposed correction 

function from numerical analyses as well as the MLR converted equiva- 

lent stress-strain curves are presented in Fig. 18 . For the application of 

Eq. (15) , the true strain at the maximum tensile load is obtained from 

the force-true strain curve for each material and each specimen geome- 

try and is presented in Table 4 . 

As can be seen in Fig. 18 , the equivalent stress-strain curves de- 

rived from the axisymmetric notched tensile specimens with the pro- 

posed correction function agree well with the MLR corrected equivalent 

stress-strain curves, except small deviations. It can also be noted that 

difference occurs when the strain is large in Fig. 18 . Errors between the 

equivalent stress-strain curves from notched specimens and from the 

MLR corrected equivalent stress-strain curves are listed in Table 4 . It 

can be seen that most of the errors are within 5%, except the one for 

steel AISI 304 with a 0 / R 0 = 3. It can also be observed that the strain at 

Fig. 18. Comparison of the equivalent stress-strain curves calculated by correcting the 

trues stress-strain curves from the axisymmetric notched tensile specimens with the pro- 

posed correction function and the MLR corrected equivalent stress-strain curve: (a) 20Mn- 

MoNi 55; (b) AISI 304; (c) FE 430. 

the maximum tensile load deviates slightly from the strain at necking 

from smooth round bar specimen. 

Fig. 19 presents the results of the equivalent stress-strain curves by 

correcting the true stress-strain curves from notched specimens with 

Eq. (15) , together with the reference equivalent stress-strain curve for 

material D98 in ref. [19] . The true stress-strain curves are calculated nu- 

merically. The reference equivalent stress-strain curve in ref. [19] was 

derived by correcting true stress-strain curve from smooth round bar 
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Fig. 19. Comparison of the equivalent stress-strain curves calculated from the axisymmet- 

ric notched tensile specimens with the proposed correction function and the equivalent 

stress-strain curve from Ref. [19] . 

specimen with Bridgman correction method and expressed as: 

𝜎𝑒𝑞 = 

{ 

1260 ⋅ 𝜀 0 . 35 for (0 < 𝜀 ≤ 0 . 55 ) 
933 + 197 ⋅ 𝜀 for ( 𝜀 > 0 . 65 ) (21) 

Tensile test with smooth round bar specimen in ref. [19] shows that dif- 

fuse necking occur at strain 𝜀 = 0.35 for this D98 material. The authors 

in [19] performed numerical analysis with smooth round bar specimen, 

using Eq. (21) as the input equivalent stress-strain curve. True stress- 

strain curve from numerical analysis was then corrected with Bridgman 

correction. They found that the equivalent stress-strain curve corrected 

by the Bridgman correction from numerical analysis differed with the 

input equivalent stress-strain curve at large strain. The error reaches up 

to 10.6% at the strain 𝜀 = 1.35. As can be seen in Fig. 19 , the equivalent 

stress-strain curves corrected by Eq. (16) are higher than the reference 

curve when the strain is larger than 0.7. The errors at the strain 𝜀 = 1.35 

range from 3.68% to 13.52%. It can also be noticed that notched speci- 

men with larger a 0 / R 0 shows larger deviation with the reference curve. 

It should be noted that notched specimen fails at smaller strain than 

smooth round bar specimen. The sharper (larger a 0 / R 0 ) the notch is, the 

smaller the failure strain will be. This is due to the reason that the failure 

strain depends significantly on the stress triaxiality, which is the ratio of 

mean stress and Mises equivalent stress. Sharper notch corresponds to 

a higher stress triaxiality, resulting in a smaller failure strain. In order 

to obtain equivalent stress-strain curve in larger strain and considering 

the error analysis, we recommend to use notched specimen with smaller 

a 0 / R 0 for the application of the proposed correction function. 

The proposed correction function can also be applied to determine 

the equivalent stress-strain curve of each individual material zone in a 

weldment. By locating the notch either in the base material, weld metal, 

or possibly in the heat affected zone, the material’s equivalent stress- 

strain curve in the notched region as shown in Fig. 1 can be determined 

with the proposed correction function, once the geometry conditions 

( d 0 ≥ 3.5 a 0 ; a 0 ≤ H ) are fulfilled. 

By summarizing the results above, a recommended procedure is pro- 

posed to determine material’s equivalent stress-strain curve with an ax- 

isymmetric notched tensile specimen: 

1. Prepare the axisymmetric notched tensile specimen under the geom- 

etry requirements: d 0 ≥ 3.5 a 0 , a 0 ≤ H ; 

2. Perform tensile test with the axisymmetric notched tensile specimen, 

record the load and the minimum cross section diameter; 

3. Calculate the 𝜎T,notch − 𝜀 curve and the 𝜎e,notch − 𝜀 curve, determine 

𝜀 P max on the 𝜎e,notch − 𝜀 curve; 

4. With the data of the initial notch radius ratio a 0 / R 0 and 𝜀 P max , con- 

vert the 𝜎T,notch − 𝜀 curve by Eq. (16) to derive the material’s equiv- 

alent stress-strain curve. 

6. Conclusions 

Recently, we identified a so-called ‘magic ’ special axisymmetric 

notched tensile specimen to derive material’s flow stress-strain curve 

for hardening material [21] . In this study, we proposed a correction 

function by performing a series of numerical analyses with axisymmet- 

ric notched tensile specimens. With the proposed correction function, 

the true stress-strain curve from any axisymmetric notched tensile spec- 

imen can be converted to the material’s equivalent stress-strain curve 

and no Bridgman correction is needed. Accordingly, a recommended 

procedure to determine the material’s equivalent stress-strain curve with 

the axisymmetric notched tensile specimens is proposed. The proposed 

procedure can be used to hardening materials, as well as perfectly plas- 

tic material. Furthermore, the proposed procedure can be applied to 

both homogeneous material and inhomogeneous materials (such as the 

weldment), by locating the notch in the target material zone under the 

geometry requirements ( d 0 ≥ 3.5 a 0 , a 0 ≤ H ). The proposed procedure is 

cheap and accurate, since the only information needed to record during 

the tensile test is load and minimum cross section area (radius). 
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Abstract 

Quasi-static tensile tests with smooth round bar and axisymmetric notched tensile specimens have been 

performed to study the low temperature effect on the fracture locus of a 420 MPa structural steel. 

Combined with a digital high-speed camera and a two-plane mirrors system, specimen deformation was 

recorded in two orthogonal planes. Pictures taken were then analyzed with the edge tracing method to 

calculate the minimum cross-section diameter reduction of the necked/notched specimen. Obvious 

temperature effect was observed on the load-strain curves for smooth and notched specimens. Both the 

strength and strain hardening characterized by the strain at maximum load increase with temperature 

decrease down to -60 . Somewhat unexpected, the fracture strains (ductility) of both smooth and 

notched specimens at temperatures down to -60  do not deteriorate, compared with those at room 

temperature. Combined with numerical analyses, it shows that the effect of low temperatures (down to 

-60 ) on fracture locus is insignificant. These findings shed new light on material selection for Arctic 

operation. 

 Keywords: fracture locus; low temperature; notched tensile specimen; edge tracing method; stress 

triaxiality. 

1. Introduction

The increasing demands of energy motivate the petroleum sector to move their exploitation activities to 

harsher environments, resulting in new challenges for structural design, maintenance, and failure 

assessment. It has been demonstrated that there are considerable oil and gas resources in the Arctic 

region 1, the low temperature effect should be considered in the selection of structural steels. Previous 

research has shown that decreasing temperature increases the yield strength of most steels. Ren 2 carried 

out tensile tests of a 420 MPa steel with temperature ranging from 0  down to -90 , and found that 

the Lüders strain 3-5 increased as the temperature decreased. For most structural steels, as the temperature 

decreases continuously, the fracture behavior will transform from ductile to brittle (DBT) 6-12, reducing 

the steels  ductility and fracture toughness. The DBT occurs when the temperature decreases down to 

DBT temperature.  
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Hybrid experimental-numerical analyses 13-18 or numerical analyses with unit cell model 19, 20 alone have 

demonstrated that the fracture strain f  (the equivalent strain corresponding to crack initiation) strongly 

depends on the stress triaxiality and the Lode angle parameter. The stress triaxiality T  which is defined 

by the ratio of the mean stress 
m

 and the von Mises equivalent stress eq  ( m eqT ) is widely used

to characterize the hydrostatic pressure effect 21-25 and crack tip constraint level 26-28. Bao 13 carried out 

a series of tests on 2024-T351 aluminum alloy with initial stress triaxiality ranging from -0.33 to 1 at 

room temperature. Combined with numerical analyses, a fracture strain versus strain-weighted average 

stress triaxiality *T  diagram was established. The curve, namely the fracture locus consists of three 

branches: the fracture strain decreases with the increase of *T when *0.33 0T  and * 0.33T ; 

while the fracture strain increases in the range *0 0.33T . Recent study shows that the Lode angle 

parameter L ( 2 1 3 1 3(2 ) ( )L ; 1 , 2 , 3 are the principle stresses) also plays an 

important role on the evolution of fracture locus 16, 19, 29-32. For smooth round bar and axisymmetric 

notched specimens under quasi-static tensile loading, which are the focus of this study, the Lode angle 

parameter at a given material point on the minimum cross-section is constant 32, 33, and therefore will not 

be discussed here. The influence of loading rate 18, 22, loading path 19, 20, 31, 34 on the evolution of the 

fracture locus have been studied extensively in the range of the stress triaxiality 0.33T . Johnson and 

Cook 22 performed torsion tests over a range of strain rates, Hopkinson bar tests over a range of 

temperatures and quasi-static tensile tests with various notch geometries to investigate fracture 

characteristics of OFHC copper, Armco iron and 4340 steel. Their test results indicate that fracture strain 

is very dependent on stress triaxiality and less dependent on strain rate and temperature. Hopperstad and 

Børvik 18, 35, 36 performed Split Hopkinson tension tests on the structural steel Weldox 460E at high strain 

rates and elevated temperatures (100 to 500 ) with smooth and axisymmetric notched specimens, 

neither obvious strain rate effect nor temperature dependence on the fracture locus was observed.  

Fracture locus of metallic materials has attracted wide attention over the past decades, however, the 

study on the effect of low temperature on fracture locus is very limited. In order to facilitate the selection 

of structural steels for the application in the Arctic region, it is very important to characterize the low 

temperature effect on fracture locus of structural steels. 

In the current study, we carried out quasi-static tensile tests with smooth and axisymmetric notched 

specimens made of a 420 MPa structural steel, with temperature varied from room temperature down to 

-60 . A digital high-speed camera was used to record the specimen deformation during the test in

conjunction with a two-plane mirrors system. Pictures taken were then analyzed with the edge tracing 

method to calculate the global average strain, up to crack initiation. Detailed information about the test 
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materials, test set-up and the edge tracing method are introduced in section 2. Experimental results are 

presented in section 3. Numerical analyses are performed to simulate the experiments to capture the 

stress triaxiality evolution at the location where crack initiation is supposed to occur. The numerical 

procedure and results are presented in section 4. The results indicate that both the strength and hardening 

characterized by the strain at maximum load increase with the decrease of temperature, while the 

temperature down to -60  does not significantly alter the dependence of fracture strain on stress 

triaxiality.  

2. Experimental program 

2.1 Material and specimens 

The specimens were machined from 50 mm thick plates of a 420 MPa steel, along the rolling direction. 

Sketches of the smooth round bar specimens and axisymmetric notched tensile specimens are shown in 

Fig. 1. Bridgman 21 proposed an analytic solution to characterize the stress distribution of a necked 

tensile specimen, the stress triaxiality in the center of the minimum cross section where crack formation 

occurs first is expressed as: 

 
1

ln(1 )
3 2

a
T

R
  (1) 

where a  and R  are the current minimum cross-section radius and the notch curvature radius of a necked 

tensile specimen, respectively. Bao performed tensile test with smooth round bar specimen numerically, 

minimum cross-section. Based on numerical simulation, an empirical expression of stress triaxiality in 

the center of specimen minimum cross-section was proposed 33, 37: 

 
1

2 ln(1 )
3 2

a
T

R
  (2) 

According to Eq. (1) and Eq. (2), the stress triaxiality in the center of specimen minimum cross-section 

is a function of the notch radius ratio a R . By machining axisymmetric notch in the center of smooth 

specimen, different initial stress triaxiality can be realized by varying the initial notch radius ratio, 0 0a R . 

For all the axisymmetric notched specimens tested in present study, 0 6a mm. 0 0a R  varied from 0.5 

to 3 by varying 0R  from 2 mm to 12 mm. Combined with the smooth round bar specimen, the initial 

stress triaxiality varied in a range from 0.33 to 1.63, calculated by Eq. (2). 
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Fig. 1    Sketches of the tensile Specimens: (a) axisymmetric notched tensile specimen; (b) smooth 

round bar specimen. 

2.2 Test set-up  

The test set-up is shown in Fig. 2. The tests were carried out using an universal test machine Instron 

5985, with the loading cell of 250 KN. A liquid nitrogen-cooled temperature chamber was used to create 

low temperature environment. The tests were carried out at room temperature, -30 , and -60 . The air 

inside of the temperature chamber was replaced with nitrogen gas first, in order to avoid ice formation 

on the specimen surface. A thermocouple shown in Fig. 3 (a) was used to measure the temperature at 

the specimen surface. On one side of the temperature chamber, there is a window, through which the 

inside of the temperature chamber can be observed clearly. A digital high-speed CCD camera with the 

resolution of 2448×2050 pixels was located besides the window to take pictures of the specimen during 

the test, with the framing rate of 1 frame per second. All the tests were performed in displacement control 

manner, with the crosshead speed of 0.3 mm/minute. During the tests, the force was recorded with the 

same camera framing frequency  

 

Inside the temperature chamber, there are two LED lights and a two-plane mirrors system, as seen in 

Fig. 3. The two-plane mirrors system consists of 2 plane mirrors with the angle of 135°, as illustrated in 

Fig. 3 (b). The specimen and the camera located on the angle bisector of the two-plane mirrors system. 

According to the plane image formation principle, the specimen images form in two orthogonal planes, 

seen in Fig. 3 (b). Therefore, the deformation of the specimen can be observed in two perpendicular 

directions during the test. The consideration of using the two-plane mirrors system is that, due to the 

localized deformation on necked smooth and axisymmetric notched specimens, it is more accurate to 

use the average value of minimum cross-section diameter in two orthogonal directions to calculate the 

current minimum cross-section area, instead of only one direction 36. By adjusting the position of the 

LED lights, the specimen images can be located in the LED light images center. The camera was set in 

(a) 

(b) 
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mono mode in the test. A very strong grey-value gradient can be formed between the specimen images 

and the picture background, for the purpose to use the edge tracing method to measure the specimen 

deformation. Fig. 4 shows a picture of a smooth specimen taken with the camera in the beginning of the 

test.  

 

 

 

Fig. 2    Test system in this study  

 

 

 

Fig. 3    (a) Layout of the inside of temperature chamber; (b) Illustration of the two-plane mirrors 

system. 
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Fig. 4    Picture of smooth round bar specimen taken at the beginning of the test. 

 

2.3 The edge tracing method 

 

Digital pictures consists of numbers of pixels which depend on the resolution of the digital camera 38. 

Each pixel in the picture represents a grey-value. From black to white, the grey-value ranges from 0 to 

255. Digital pictures can be read by Matlab and grey-value of each pixel can be output and stored in a 

matrix for analysis. For one arbitrary row in the digital pictures as red line marked in Fig. 5 (a), peak 

values of the derivative (absolute value) of grey-value can be found, due to the strong contrast between 

the specimen images and the background, as shown in Fig. 5 (b). There were several peak values in Fig. 

5 (b), however, only the two maximum peak values were regarded as the boundaries between the 

specimen image and the background. The small peak values were caused by the white color on the 

specimen image, formed due to light reflection. The pixel numbers between the two boundaries represent 

the corresponding cross-section diameter. By scanning each row of the picture, the edges of the specimen 

image can be captured, together with the minimum cross-section diameter, shown as red curves in Fig. 

6. Due to the existence of necking or notch, the deformation was localized in the necking /notch region. 

The edge tracing method was therefore mainly focused on the necking/notch region to save calculation 

cost. 

   

LED light image 

Specimen 

Image 1 Image 2 

LED light image 
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Fig. 5    The edge tracing method. (a) One arbitrary row of pixels of axisymmetric notched specimen 

with 0 0 0.5a R  ; (b) absolute value of derivative of the grey-value. 

 

 

 

Fig. 6    Specimen image edges in Fig. 5 (a) derived with the edge tracing method. The minimum cross-

section diameter is also shown in pixels. 

 

Before the test, the minimum cross-section diameter of each specimen was measured with a laser gauge. 

unit initial minimum cross-section diameter by 
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section diameters are unit in all the 

following pictures taken during the test. In order to verify the accuracy of the edge tracing method, 

several trial tests with notched specimens were performed. After certain deformation, we held the test 

and took a picture of the specimen. Then the minimum cross-section diameter in the same directions as 

in the picture was measured by the laser gauge. The picture was analyzed with the edge tracing method. 

The minimum cross-section diameter calculated from the picture agreed well with the value measured 

by the laser gauge in the same direction, with errors within 1.2 % . The trial tests confirmed that the 

edge tracing method can be used to measure the specimen minimum cross-section diameter accurately. 

A difference of the minimum cross-section diameters measured in the two perpendicular directions has 

been observed, from both the edge tracing method and the laser gauge measurement. For example, for 

the axisymmetric notched specimen with 0 0
0.5a R , the minimum cross-section diameters measured 

were 8.05 and 8.23 mm, at the load 54.33 P KN . This is attributed to the material anisotropy and 

anisotropic damage evolution. Therefore, it is more accurate to use the average value of diameters 

measured in two orthogonal planes in minimum cross-section to characterize the diameter reduction. For 

all the pictures taken in each test, the edge tracing method was used to detect the specimen image edges 

and to measure the corresponding average minimum cross-section diameter.  

3. Experimental results 

In this study, the specimen deformation is characterized by the average true strain , which is defined 

by the minimum cross-section area reduction 39: 

 0 0ln( ) 2ln( )A A a a   (3) 

where 0A  and A  are the initial and current minimum cross-section area, respectively. a is the current 

averaged minimum cross-section radius measured from the specimen images with the edge tracing 

method. True stress t  for the smooth round bar specimen is calculated by dividing load by the current 

minimum cross-section area: 

 2

t P a   (4) 

Deformed plots of the smooth round bar specimen tested at room temperature and axisymmetric notched 

specimen with 0 0 0.5a R  tested at -60  are presented in Fig. 7 and Fig. 8, respectively. For the 

smooth round bar specimen in Fig. 7, the deformation developed in the whole specimen when the strain 

is small. As the load increases, diffuse necking occurred, which can be observed on the specimen image 

in Fig. 7. By studying the specimen images and the load-strain curves, it was found that diffuse necking 

occurred approximately at the strain 0.1 for tests performed at room temperature. For the smooth 

specimen tested at low temperatures, the strain corresponding to diffuse necking increased slightly as 

temperature decreased, seen in Fig. 9 (a). After diffuse necking, the deformation localized in the necking 
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zone, and a blunt axisymmetric notch was formed. The blunt notch became sharper and sharper, until 

the specimen failed into two parts. For the axisymmetric notched specimen, deformation localized 

mainly in the notch region. As the strain increases, the notch deformed form an initial 

shape, until the specimen failed into two parts, as seen in Fig. 8. For the first picture in which the 

specimen failure (broken into two parts) was observed in each test, specimen images in the previous 

frames were used to calculate the strain with the edge tracing method. Note that, in Fig. 7 and Fig. 8, the 

picture annotated by 
f
 corresponds to crack initiation, instead of measuring after the complete 

fracture. This will be discussed in the following section. 

 

Fig. 7    Smooth specimen at different deformation level tested at room temperature. 

 

 

Fig. 8    Axisymmetric notched specimen with 0 0 0.5a R  at different deformation levels tested at -

60 . 

0 0.05  0.1 0.3 

0.5  1 f  fractured  

0 0.05  0.1 0.3 

0.5  1 
f  fractured  
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The load-strain curves and true stress-stain curves of the smooth round bar specimens tested at different 

temperatures are presented in Fig. 9. As expected, the load increased to a maximum value and then 

decreased, up to specimen failed. The true stress increases with the decrease of test temperature at the 

same strain. It can be seen that the maximum load and the strain at the maximum load, 
maxP

, increase 

with the decrease of the test temperature. At the end of the load-strain curves, a sudden drop of load 

which indicates specimen load carrying capacity loss can be found 13. This point is regarded as the crack 

initiation and the corresponding strain is defined as fracture strain, 
f

. It has been pointed out by 

Benzerga 34 that the strain at crack initiation is smaller than the strain measured from broken specimen 

fracture surface. The difference is induced due to the server deformation after crack initiation. It is 

evident in Fig. 9 that the fracture strain 
f

 of the smooth round bar specimen increases slightly as 

temperature decreases. Usually, for most structural steels, decreasing test temperature increases 

 and hardening . Michael and Richard 40 

performed quasi-static tensile tests with smooth round bar from 25  to 150 . The specimens were cut 

from an Al-Cu-Mg-Ag alloy sheet. They found that fracture strain for smooth round bar specimen 

increased with test temperature increase. Quasi-static tensile test conducted by Børvik and Hopperstad 

41 at temperature from 20  to 500  showed that fracture strain for smooth round bar specimen of 

Weldox 460 E steel was independent of temperature from 20  to 300 ; while from 300  to 500 , 

fracture strain increased with temperature increase. It is very interesting that the ductility for this 420 

MPa structural steel indeed increases (slightly) with decreasing test temperature (down to -60 ). The 

reason may be that the fracture strain here is defined at crack initiation, instead of strain at the complete 

fracture of specimens.  
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Fig. 9    (a) Load-strain curves of smooth round bar specimen. (b) True stress-strain curves of smooth 

round bar specimen. The strain corresponding to diffuse necking and fracture are annotated. 
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Fig. 10    Load-strain curves for axisymmetric notched tensile specimens with same geometry tested at 

different temperatures. (a) 0 0 0.5a R ; (b) 0 0 0.75a R ;(c) 0 0 1a R ;(d) 0 0 1.5a R ;(e) 

0 0 2a R ;(f) 0 0 3a R . 
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Fig. 11    Load-strain curve for specimens tested at same temperature.  

(a) Room temperature; (b) -30 ; (c) -60 . 
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Representative load-strain curves for axisymmetric notched specimens with same geometry at different 

test temperatures are presented in Fig. 10. As expected, the load for specimen tested at lower temperature 

is larger than that at higher temperature at the same strain level. The maximum load also increases with 

the decrease of test temperature. The influence of lowering temperature on the fracture strain for each 

notch geometry shown in Fig. 10 is not very obvious.  

 

Load-strain curves in Fig. 9 and Fig. 10 are regrouped by test temperature and are presented in Fig. 11. 

It is clearly seen that specimen with sharper notch (larger 0 0a R ) corresponds to higher load at the same 

strain. The maximum load increases with the increase of 0 0a R  at each test temperature. Instability 

analysis of axisymmetric notched tensile specimen showed that the strain corresponding to the maximum 

load, 
maxP , is a material parameter which is approximately equal to the value of 

maxP for the smooth 

round bar specimen and independent of the notch geometry 42. This is true for the axisymmetric notched 

specimen tested at the same temperature, as red dash curve points out in Fig. 11. For materials following 

power law hardening rule, the value of 
maxP equals to the strain hardening exponent. It should be noted 

that
maxP is sensitive to temperature. For the structural steel studied,

maxP  increases slightly as temperature 

decreases.  
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Fig. 12    Fracture strain versus initial notch radius ratio.  

 

The average value of fracture strains from parallel tests in Fig. 11 are presented in Fig. 12 as a function 

of initial notch radius ratio. It is very interesting to observe that the average fracture strains do not 

deteriorate with the decrease of temperature to -60 . For the notched specimens, the fracture strains at 

low temperatures are somewhat slightly higher than those at room temperature. Michael and Richard 40 
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performed quasi-static tensile test with Al-Cu-Mg-Ag alloy from 25  to 150 . They found that the 

temperature effect on fracture strain for axisymmetric notched specimens can be neglected. Spit 

Hopkinson tension bar tests at 100 to 500  reported by Bøvrik and Hopperstad 18, 36 showed that the 

influence of test temperature on fracture locus of Weldox 460 E steel was insignificant. Our study in this 

paper shows that load carrying capacity of smooth and notched specimens of this 420MPa structural 

steel increase with low temperature, however, the fracture strains (ductility) for smooth and notched 

specimens don t tend to deteriorate with decreasing test temperature (down to -60 ).  

4. Numerical analysis 

In order to construct the fracture locus, we need to perform numerical analysis to capture the stress 

triaxiality evolution. During the loading, the specimen deformed and the stress triaxiality at the center 

of the specimen minimum cross-section varied accordingly. For non-proportional loading, a strain-

weighted average stress triaxiality *T  is widely used 19, 33, 34, 43: 

 
*

0

1
( )d

f

f

T T   (5) 

In order to capture the evolution of stress triaxiality in the center of minimum cross-section of the 

necked/notched specimen, we performed numerical analyses with Abaqus/Standard 6.1444. The 

specimen configurations used for numerical analyses are the same as used in experiments. Axisymmetric 

model is used with very small mesh size (approximately 0.4*0.4 mm) in the notch region. The 4-noded 

axisymmetric element with reduced integration (CAX4R) is used. Large deformation is accounted. 

Symmetric boundary condition is applied in the symmetric plane of smooth specimen and axisymmetric 

notched specimens. A typical mesh of axisymmetric notched specimen with 0 0 3a R  is presented in 

Fig. 13. For all the numerical analyses, the specimen is loaded in displacement control manner.  

 

 

Fig. 13    Typical mesh for axisymmetric notched tensile specimen with 0 0 3a R . 

 

The true stress-strain curves in Fig. 9 (b) cannot be used directly for numerical analyses, due to the tri-

axial stress state in the specimen necked region after diffuse necking 21, 37, 39, 45. Bridgman 21 proposed 

Symmetric plane 

Axis of symmetry 
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an analytical correction method based on axisymmetric analysis of a necked round bar specimen, Eq. 

(6). However, the Bridgman correction is difficult to practice, since the current notch curvature radius 

should be measured. Le Roy have presented an empirical relation with a R  and 46, see Eq. (7). 

Combined with Eq. (6) and Eq. (7), true stress-strain curves from smooth round bar specimen can be 

corrected. Fig. 14 shows the equivalent stress-strain curves by correcting the curves in Fig. 9 (b), together 

with the corresponding true stress-strain curves. Obvious difference can be seen between the true stress-

strain curves and equivalent stress-strain curves at large strain. Recently, we proposed a new correction 

function, with which true stress-strain curve from an axisymmetric notched tensile specimen can be 

-strain curve accurately 47, 48. The equivalent stress-strain curves 

derived with notch specimens present to be identical to the Bridgman method for this 420 MPa structure 

steel. The equivalent stress-strain curves in Fig. 14 are then used in the numerical analyses, together with 

Poisson ratio 0.3 200E GPa .  

 

 
2

(1 ) ln(1 )
2

R a

a R
  (6) 

 max1.1 ( )P

a

R
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Fig. 14    Equivalent stress-strain curves obtained by correcting true stress-strain curves from smooth 

specimen at each test temperature with the Bridgman method, Eq. (8). 

 

Load-strain curves from numerical analyses are compared with those from experiments for specimen 

with same geometry and test temperature. Fig. 15 presents the load-strain curves from experiment and 
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from numerical simulation for axisymmetric notched specimen with 0 0 2a R  tested at -60 . Very 

good agreement can be observed, which confirms that the correction function Eq. (8) is accurate. It also 

indicates that the deformation in the notch region can be well captured during the loading process. 
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Fig. 15    Comparison of load-strain curves from experiment and from numerical analysis for notched 

tensile specimen with 0 0 2a R  tested at -60 . 

 

From numerical analysis, the stress triaxiality at each material point can be calculated. Fig. 16 presents 

the stress triaxiality evolution at the center of the minimum cross-section, up to fracture strain. As it can 

be seen in Fig. 16, for the smooth specimen, the stress triaxiality is constant and equals to 1/3 at the 

beginning, and then increases with the increase of strain. For axisymmetric notched specimens with 

0 0 1a R , stress triaxiality increases with the increase of strain, while for specimens with 0 0 1a R , 

stress triaxiality increases firstly and then decrease with the increase of strain. This infers that the 

specimen initial notch geometry strongly affects the stress triaxiality evolution. For the smooth specimen, 

the value of stress triaxiality at fracture presents to be even larger than the notched specimen with 

0 0 0.5a R in Fig. 16, reflecting the severe deformation in the necking region at failure for smooth 

specimen. 
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Fig. 16    Stress triaxiality evolution at the specimen minimum cross-section center up to fracture 

strain. (a) Room temperature; (b) -30 ; (c) -60 . 
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For each specimen in Fig. 16, the average stress triaxiality is calculated by Eq. (5). Fracture strain is 

plotted against the corresponding average stress triaxiality in Fig. 17 for specimens tested at the same 

temperature. It can be clearly observed that the fracture strain decreases with the increase of average 

stress triaxiality. Similar to Fig. 12, the three curves in Fig. 17 almost collapse into one, except small 

scatter. Interestingly, the local behavior shown in Fig. 17 closely reflect the global behavior in Fig. 12. 
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Fig. 17    Fracture strain versus average stress triaxiality at different temperatures. 

 

Indeed, we can formulate the fracture locus with different measures of stress triaxiality: the initial stress 

triaxiality (calculated by Eq. (1) ), the strain-weighted average stress triaxiality and the stress triaxiality 

at failure. Fig. 18 presents these three measures of fracture loci for specimens tested at room temperature. 

These three curves behave differently, but show similar trend that the fracture strain decreases with the 

increase of stress triaxiality. It can be observed that for the smooth specimens, the values of stress 

triaxiality by different measures differ significantly; while for the notched specimen, the difference tend 

to decrease with increasing 0 0a R , especially for the red and green curves. It is difficult to conclude 

which curve in Fig. 18 is better, since each of them presents pros and cons in certain aspects. For the 

fracture locus determined with the initial stress triaxiality, it can be conveniently formulated once the 

fracture strain is known. However, the stress triaxiality evolution or the damage evolution is not 

considered. The curve constructed on the space of average stress triaxiality and fracture strain takes the 

strain history into account and depicts the damage accumulation in the form: *

0
( ) 

f

fD T d T . 

D  is a material failure indicator. However, we need to run numerical analyses in parallel to capture the 

deformation history and stress triaxiality evolution. The stress triaxiality at failure is more 
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straightforward to represent the instantaneous stress state at the fracture point. Similar to the strain-

weighted average stress triaxiality, numerical analysis is also necessary. Only for proportional loading, 

fracture loci constructed by initial stress triaxiality, strain-weighted average stress triaxiality and stress 

triaxiality at failure collapse into one. It should be noted that when it comes to complex or non-

proportional loading, the initial and finial value of stress triaxiality are more or less meaningless and the 

strain-weighted average stress triaxiality tends to be more representative. 
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Fig. 18    Fracture strain versus different measures of stress triaxiality for the tests performed at room 

temperature. 

 

5. Concluding remarks 

In this study, smooth round bar specimens and axisymmetric notched tensile specimens have been used 

to investigate low temperature (down to -60 ) effect on a 420 MPa structural steel fracture locus. A 

two-plane mirror system and a digital high-speed camera were used together to monitor specimen 

deformation in the tests. Combined with numerical analyses, the specimen deformation was simulated 

to capture the stress triaxiality evolution up to failure. Tensile tests with smooth and notched specimen 

show that decreasing temperature inc  strain at maximum load, while the 

fracture strain (ductility -60 . The fracture locus 

formulated with the initial, strain-weighted or the finial value (the value at failure) of stress triaxiality 

and the fracture strain shows the significant dependence of ductile failure on the stress state. The 

mechanical response at low temperature in this study indicate that this 420 MPa structural steel is very 

promising for the application in the Arctic region. 
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