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Abstract: Materials with a complex visual appearance, like goniochromatic or non-diffuse, are widely
used for the packaging industry. Measuring optical properties of such materials requires a
bidirectional approach, and therefore, it is difficult and time consuming to characterize such a
material. We investigate the suitability of using an image-based measurement setup to measure
materials with a complex visual appearance and model them using two well-established reflection
models, Cook–Torrance and isotropic Ward. It was learned that the complex materials typically
used in the print and packaging industry, similar to the ones used in this paper, can be measured
bidirectionally using our measurement setup, but with a noticeable error. Furthermore, the
performance of the reflection models used in this paper shows big errors colorimetrically, especially
for the goniochromatic material measured.
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1. Introduction

Non-diffuse materials like metallic inks, varnish coatings, and effect paints are widely used in the
industry such as for print and packaging to produce a desirable visual appearance of a product. The
visual appearance of a material plays an important role in purchase decisions made by the customers.

In traditional printing that uses diffuse material, the color pigments used will absorb part of
the incident light, while the rest is diffusely scattered. The perceived color from such pigments is
therefore independent of the measurement geometry, and the traditional single geometry 0◦ : 45◦

measurements are sufficient to characterize these pigments [1]. Non-diffuse materials like metallic ink
used in the print industry contain metal flakes that specularly reflect the light incident on it. Pearlescent
pigments (pearl interference pigments) usually consist of thin metal oxide layers on transparent mica
platelets. The multi-layered structure of these pearlescent pigments contributes to the variation in
visual appearance depending on the illumination and viewing direction. They contain a base layer plus
multiple layers of metal oxides with varying refractive indices [2]. The change in visual appearance of
these pearlescent pigments with respect to the illumination and viewing direction can be controlled
by varying the thickness of the metal oxide layer(s) [3,4]. Colour appearance attributes (like hue,
chroma, and brightness) of these pigments are therefore dependent on both illumination and viewing
directions. Such materials are called ‘goniochromatic’ [5,6] and are also used in car paint and the
cosmetics industry, apart from the print and packaging industry.

Because of the directional properties, bi-directional measurements are needed [5] to characterize
such materials. ASTM standards [7,8] provide a measurement geometry guide to measure such
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materials. Instruments performing bidirectional spectral measurements are commercially available
and are termed goniospectrophotometers. A goniospectrophotometer usually measures the ratio of
the reflected to incident power (φr/φi) over a broad range of illumination and viewing directions.
The obtained measurement is then used to compute the bidirectional reflectance distribution function
(BRDF) [9], fr, of a material.

Image-based goniospectrophotometers have been proposed and presented in the past [10–13] to
perform bidirectional reflectance measurements in a fast and relatively inexpensive way. However,
they are less accurate when compared with slow and expensive techniques similar to the ones used
for standardization in metrology. Sole et al. [14] used and evaluated such a measurement setup
by measuring fairly diffuse flexible packaging paper samples. The measurements obtained can be
used to fit a reflection model (BRDF for an opaque homogeneous material), which will describe the
material reflectance properties mathematically for computer graphics rendering or simulating visual
appearance attributes.

Many reflection models have been proposed and presented in the past to measure and understand
the bidirectional reflectance properties of a given material. Bidirectional reflectance properties of a
material are described using a distribution function called the bidirectional reflectance distribution
function (BRDF), defined by Nicodemus et al. [9] as:

fr(θi, φi; θr, φr, λ) =
dLr(θi, φi, θr, φr, Ei)

dEi(θi, φi)
(1)

where Lr(θi, φi, θr, φr, λ) is the spectral reflected radiance in the direction (θr, φr), Ei(θi, φi, λ) is the
spectral irradiance from the direction (θi, φi), and d is the differential. Following the ASTM E2175-01 [15]
standard and the CIE 175 [16] technical report, the illumination and viewing directions defined above
are in relation to the surface normal, called ‘anormal’ angles.

An overview of different reflection models was provided by Guarnera et al. [17]. Models can be
classified into physical-based and phenomenological models. As described in [17], physical models
describe the material physically using micro-facets of different sizes and orientations, while
phenomenological models are approximations obtained by fitting the measured data using analytical
models. Two well-established models, Cook–Torrance (CT) [18] and isotropic Ward (Ward) [19] have
been extensively used to study different sample materials.

To fit such reflection models for isotropic materials, it would be ideal to use in-plane measurement
data that will cover all the possible combinations of incident (θi) and viewing (θr) directions. A virtual
gonioreflectometer simulation software was used in [20] to assess different sets of measurement
geometries. It was demonstrated that the measurements made at equispaced-angular grid points led
to inefficient sampling and were sub-optimal for the different loss functions used. It was proposed
that for accurate sampling, a greater number of measurements should be made in the specular region
compared to non-specular areas with the understanding that the diffuse part BRDF of the material
varies less with the change in illumination and viewing directions compared to the specular part.

In the situation where we use the measurement setup (used in [14]), a greater number of
illumination directions (θL) would result in a higher number of incident and viewing direction
combinations, thus giving a dense sampling and possibly a better estimation of the material BRDF.
Measuring the samples at a number of θL directions, however, adds to the measurement setup
complexity. It would therefore be ideal to use a minimum sampling dataset ((that is, a dataset
obtained by illuminating the curved samples using a single illumination direction (θL)) to estimate
the material BRDF successfully. Nielsen et al. [21] presented a novel method to map BRDF space
and to optimize for the best sampling direction. They used the MERLdatabase to test the method
and concluded that when using an image-based measurement setup, two illumination directions are
enough to characterize the BRDF of a given material. Aittala et al. [22] presented a two-shot method to
capture spatially-varying BRDF of a textured material using a mobile camera.

Modeling complex materials present a challenge due to their optical properties, and measuring
them bidirectionally using goniospectrophotometers is a time-consuming task. Image-based
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goniospectrophotometers, similar to the one used by Sole et al. [23,24], can be used for bidirectional
measurements, as they can be fast, but might need multiple shots to model such materials due to their
goniochromatic and non-diffuse reflectance properties.

In this paper, we investigate the suitability of the image-based measurement setup used in [23–25]
to measure such complex materials and model them using well-established reflection models. This
setup is well explained in [14,23–25], and we would request the reader to refer to these articles for
more details. We use the terminology ‘our measurement setup’ when referring to this image-based
measurement setup. Two reflection models, CT and Ward, are fitted using the measured data, and
their performance is compared against a commercially-available goniospectrophotometer (GCMS).
Second, we simplify the measurement procedure, when using our measurement setup, by finding the
optimal sampling data to fit the reflection models, CT and Ward, for the materials measured in this
paper.

2. Method

2.1. Measurement Samples

Three flexible packaging sample materials, a fairly diffuse chromatic packaging print paper
sample generated using an OCE ColorWave 600 plotter, referred to as “Red”, one metallic gold
thin card board commonly used for decorative purposes in packaging, referred to as “Gold”, and a
goniochromatic sample (a packaging paper printed using effect pigments and varnish coating), referred
to as “Blue-Green”, were measured using our measurement setup and the GCMS instrument. Looking
at the surface properties, the Red and Blue-Green sample were less homogeneous and appeared
rougher compared to the Gold sample, which was smoother and uniform.

These samples showed fairly diffuse (Red) to highly specular reflectance properties (Gold and
Blue-Green). The Blue-Green sample was non-diffuse and also goniochromatic in nature. It showed
a shift in chromaticity with the change in the viewing direction. Figure 1 shows the spectral shift
obtained with the change in illumination and viewing direction for the Blue-Green sample. Figure 2
shows the spectral reflectance of all three samples measured using specular included (di : 8◦) and
excluded (de : 8◦) measurement geometry. di : 8◦ and de : 8◦ are sphere-based reflectance measurement
geometries, as defined in [26], where the sample to be measured is irradiated by an integrating
sphere, so that the sample gets irradiated uniformly from all directions within the hemisphere, and
the radiation reflected from the sample surface is received at 8◦ off the sample normal. The difference
between specular included (di : 8◦) and excluded (de : 8◦) measurement is that in specular excluded
(de : 8◦) geometry, the radiation reflected in the direction of the receiver from the mirror angle is
blocked using a black-trap. No difference was observed in the spectral reflectance curve of the Red
sample when comparing the specular included and excluded measurements. However, the same was
not the case for the Gold and Blue-Green samples. Along with these samples, a Munsell White N9/
sheet (MW) that was produced according to the ANSI standards was measured as a reference white.

2.2. BRDF Measurement and Reflection Model Fitting

All three samples were measured using our measurement setup and the GCMS
goniospectrophotometer. The measurement output of the GCMS was the radiance factor (βr). It records
the spectral radiance factor in the range of 390 nm–730 nm at 10-nm intervals at anormal incident (θi)
and reflection (θr) angles in the range of [+80◦,−80◦] at 5◦ intervals. Please refer to Appendix B in [14]
for more details about the GCMS instrument.
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Figure 1. Color shift obtained from the spectral radiance factor measurements of the Blue-Green sample
surface using the GCMSinstrument at θi = −45◦ and θr = −65◦, −25◦ and 0◦. Please note: fr can be
further calculated using the fr =

βr
π relation [27].

400 450 500 550 600 650 700
Wavelength

0.0

0.2

0.4

0.6

0.8

1.0

Sp
ec

tra
l r

ef
le

ct
an

ce

Gold sample di : 8  measure
Gold sample de : 8  measure
Blue-Green sample di : 8  measure
Blue-Green sample de : 8  measure
Red sample di : 8  measure
Red sample de : 8  measure

Figure 2. Spectral reflectance measurements using the X-rite SP64 spectrophotometer (with specular
included and excluded measurement geometry.).
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In our measurement setup, the samples were wrapped around a cylinder of known radius
and were illuminated and measured respectively using a tungsten point light source and a
commercially-available digital camera (Nikon D200). The detector and the point light source were at a
fixed position from the sample curved onto a cylinder of known radius (for example, light source at
45◦ and detector at 0◦). Each point, P, on the curved sample surface made a corresponding incident
(θi) and viewing (θr) angle depending on the illumination direction (θL) of the point light source in
the setup. Figure 3 shows the setup in a vector plane. Our measurement setup was well explained
in [14,23–25], which can be referred to for more details. As discussed in [28], the captured image
records the radiance (Lr(θi, θr)) exited from the sample surface in digital values for each camera sensor.
It saves a 16-bit raw image without any white balance or gamma correction.

dL
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(L)

(C)(dC)

(R)

θL
θS

θi
θr (n)

(S)

(cosθS, sinθS)(P)

P = (RcosθS, RsinθS)

C = (dC, 0)

L = (dLcosθL, dLsinθL)

Camera

Light source

PL

PC

Figure 3. Measurement setup in a vector plane (reprinted with permission of IS&T: The Society for
Imaging Science and Technology, sole copyright owners of CIC22: Twenty-second Color and Imaging
Conference) [23].

Each pixel in the captured image corresponds to point (P) on the curved sample surface.
Five vertical pixels from the sample center for the given point (P) were averaged. Incident (θi)
and viewing (θr) angles at point (P) on the curved sample surface can be calculated using the respective
illumination direction (θL) information[23]. Please note that even with a single illumination direction
(θL), that is a single position of the point light source, a whole range of incident (θi) and viewing (θr)
angles was obtained in a single measurement due to the curvature of the sample and the spatial nature
of the imaging sensor. MW and the samples were measured at six illumination directions (θL = −20◦,
−25◦, −30◦, −35◦, −40◦, −45◦) (see Figure 4).



J. Imaging 2018, xx, 1 6 of 16

(O)

(L)

(C)
θS

(n)

(S) (P) Camera

Light source θL=

-20°
-25°

-30°

-45°

-35°
-40°

Figure 4. Sample measurement at six different illumination directions (θL) and image captured at θL = −20◦.

Being non-diffuse, for the samples Gold and Blue-Green, it was not possible to record the complete
dynamic range in a single exposure image. Both samples were therefore captured at multiple exposures
by controlling the shutter speed in the range of 1/2–1/100 s. A high dynamic range image (a radiance
map) (HDR) was generated using Debevec and Malik’s [29] algorithm. As the obtained HDR image
was a radiance map and in order to compare the measurements with the measurements obtained
using GCMS, we calculated the radiance factor at the sample surface by using the MW radiance
measurements from the same HDR image. As defined in [30] and discussed in [27], the radiance factor
(βr) at the material surface is the ratio of the radiance of that material surface in a given direction to that
of a perfect reflecting diffuser (PRD) when both are identically irradiated. The generalized definition
of βr will therefore be as defined in [27] and given in Equation (2).

βr(θi, φi, θr, φr, λ) =
Lr(θi, φi, θr, φr, λ)

LPRD
r (θi, φi, θr, φr, λ)

(2)

where Lr and LPRD
r is radiance at the sample and PRD surface, and θ and φ are the polar and azimuth

angles, respectively. Indexes i and r are incident and reflected radiation. λ denotes the wavelength.
As defined in [31], PRD is an ideal isotropic diffuser with reflectance equal to unity. It is known that
PRD does not exist in the real world, as it is not possible to have a material with such characteristics.
In practice, commercially-available reflection standards (such as a Spectralon tile) that have a traceable
calibration to a transfer standard at the material supplier are used [27]. As the samples were wrapped
around a cylinder and illuminated using a point light source in our measurement setup, using a flat
Spectralon tile (similar to how it was used in [25]) will not be precise, as both the wrapped sample
and flat Spectralon tile will not be irradiated identically. The Spectralon tile being physically inflexible,
the curved sample and the Spectralon tile will be irradiated identically only at a single illumination
and viewing direction, thus requiring further assumptions about the homogeneity of the light source
used. We therefore use a Munsell White N9/ sheet produced according to ANSI standards to calculate
the radiance factor at the sample surface.

As the samples and the MW are wrapped around the cylinder (see Figure 4), one below the other,
vertically, any given point (P) on the MW surface will have the same incident (θi) and viewing angle
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(θr) (with respect to the point light source and the detector) as at point (P) on the sample surface.
We assume the MW as a PRD, and using the definition of radiance factor (βr) (see Equation (2)),
we calculated βr at the sample surface using Equation (3).

βr(θi; θr) =
LrSample(θi, θr)

Lr MW(θi, θr)
(3)

In Equation (3), LrSample and Lr MW is the in-plane radiance measurement at the sample surface
and the MW surface, respectively. Both surfaces were irradiated identically using the point light source
in the measurement setup. The Red sample being a diffuse sample, a single exposure image was
sufficient to calculate βr using MW measurements and Equation (3).

Figure 5 shows the incident and viewing directions at which the samples were measured using
GCMS and our measurement setup. Each diagonal line represents the illumination direction (θL) used
in our measurement setup. GCMS measures at 1◦ near specular angles, while at 5◦ intervals away
from the specular direction.
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80
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20
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r

Measurement setup angles
GCMS measurements

Figure 5. θi and θr angles at which measurements are performed using our measurement setup and GCMS.

Measurements made using GCMS and our measurement setup had different dimensions. GCMS
measurement dimensions were n × m × 35, where n and m are the incident (θi) and reflection (θr)
angles at the sample surface. The measurement unit was a spectral radiance factor in the range of
390 nm–730 nm at 10-nm intervals; whereas, measurements performed using our measurement setup
were per pixel, where each pixel corresponds to the curved sample surface point (P), thus making a
unique incident and reflection angle relative to the surface normal. The measurement data obtained
consisted of 3 channels (R, G, and B). As we used a high resolution camera, the measurement points (P)
(or the θi and θr angle combinations) were many (approximately 1000 pixels horizontally) and different
compared to the GCMS measurements. Please note that the measurement setup measurements are
sampled at every 20 pixels for visual representation in Figure 5



J. Imaging 2018, xx, 1 8 of 16

In order to compare both measurements, we converted the radiance factor measurements
performed with our measurement setup into a camera color domain (camera RGB domain) using
Equation (4).

βRsetup = k · frRsetup ·
700nm

∑
λ=400nm

r(λ) · Ii(λ),

βGsetup = k · frGsetup ·
700nm

∑
λ=400nm

g(λ) · Ii(λ),

βBsetup = k · frBsetup ·
700nm

∑
λ=400nm

b(λ) · Ii(λ),

k =
100

∑700
λ400nm g(λ) · Ii(λ)

(4)

where k is a normalizing coefficient, frRGBsetup is the sample radiance factor obtained from Equation (3)
for each camera channel,. r̄, ḡ, and b̄ are the spectral sensitivities of the camera used as a detector,
and Ii(λ) is spectral light intensity normally incident on the sample. Spectral camera sensitivities (r̄, ḡ,
b̄) were measured using a monochromator as described in [28]. Ii(λ) was estimated using the relative
normalization method described in [32] and implemented in [14].

Similarly, we converted measurements performed using GCMS into the camera RBG domain
using Equation (5).

βRGCMS = k ·
700nm

∑
λ=400nm

frGCMS (λ) · r(λ) · Ii(λ),

βGGCMS = k ·
700nm

∑
λ=400nm

frGCMS (λ) · g(λ) · Ii(λ),

βBGCMS = k ·
700nm

∑
λ=400nm

frGCMS (λ) · b(λ) · Ii(λ),

k =
100

∑700
λ400nm g(λ) · Ii(λ)

(5)

In Equation (5), k, r̄, ḡ, b̄, and Ii(λ) are similar to those used in Equation (4). frGCMS is the sample
radiance factor measured using the GCMS goniospectrophotometer.

To compare sample measurements from both the instruments directly, we can interpolate the
camera RGB measurements calculated using GCMS measurements in Equation (5) at the incident and
reflection angles of our measurement setup using a standard piece-wise cubic spline interpolation
method. The sample measurements obtained can be used to train different reflection models.

Both the CT and Ward model consist of a diffuse and a specular reflection component along with
a roughness parameter that controls the width of the specular component. Considering the diffuse
and non-diffuse reflectance properties of the Red and Gold sample, we trained the CT and Ward
model by optimizing the diffuse (Kd) and specular reflection coefficient (Ks) individually for each
channel (R, G, B), while only a single roughness (m) parameter across all three channels, as shown in
Equations (6) and (7) respectively.
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βp =

βpR

βpG

βpB

 =

KsR

KsG

KsB

 · Rs +

KdR

KdG

KdB



Rs =
F · D · G

π(n · l)(n · v)

G = min
{

1,
2 (n · h) (n · v)

(v · h) ,
2 (n · h) (n · l)

(v · h)

}

D =
1

m2 cos4 α
e−[(tan α)/m]2

(6)

βp =

βpR

βpG

βpB

 =

KdR

KdG

KdB

 · 1
π

+

KsR

KsG

KsB

 · 1√
cos θi cos θr

· e[− tan2 α/m2]

4πm2 (7)

where Rs, D, G, and F are as defined in Equation (6) and [18]. F is assumed to be one; θi = the
angle between the illumination direction and normal to the sample surface; θr = the angle between
the viewing direction and normal to the sample surface; ksR,G,B = the specular reflection component
coefficient of the sample material per channel; Rs = the specular reflectance component, Kd = the
diffuse reflectance componentreflection coefficient; α = n · h = cos((θi − θr)/2) at the given pixel point
(P) in the used measurement setup; n · l = cos θi; and n · v = cos θr.

For the Blue-Green sample, we optimized the roughness coefficient (m) individually for each
channel (RGB) along with the specular (Ks) and diffuse (Kd) component, as defined in Equation (8)
and (9). Gis same as defined in Equations (6).

βp =

βpR

βpG

βpB

 =

KsR · RsR

KsG · RsG

KsB · RsB

+

KdR

KdG

KdB



RsRGB =
F · DRGB · G

π(n · l)(n · v)

DRGB =
1

m2
RGB cos4 α

e−[(tan α)/mRGB ]
2

(8)

βp =

βpR

βpG

βpB

 =

KdR

KdG

KdB

 · 1
π

+

KsR

KsG

KsB

 · 1√
cos θi cos θr

·


e[− tan2 α/m2

R ]

4πm2
R

e[− tan2 α/m2
G ]

4πm2
G

e[− tan2 α/m2
B ]

4πm2
B

 (9)

The Nelder–Mead down-hill simplex algorithm [33] was used to optimize the coefficients using
the RMS error (βErr) as defined in Equation (10).
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βErr =
√
(βRPmea − βRPest )

2 + (βGPmea − βGPest )
2 + (βBPmea − βBPest )

2 (10)

βpRmea
, βpGmea

, and βpBmea
are the radiance factor measurements in the camera RGB domain obtained

using Equation (4) and (5) for the three channels, while βpRest
, βpGest

, βpBest
are the radiance factor

measurements (again in the camera RGB domain) of the sample calculated using the fitted CT and
Ward models.

2.3. Optimal Sampling Dataset

When collecting the sampling dataset using our measurement setup, it was important to use the
best and least possible illumination directions (θL) to fit the reflection models successfully. This would
help towards reducing the measurement complexity and performing fast measurements. We, therefore,
fit both the models using the sampling dataset collected from all combinations (63 in total) of the six
illumination directions (θL), respectively. The obtained model parameters were then used to estimate
the bidirectional reflectance measurements in the camera RGB domain (βRGB).

3. Results

Figure 6 shows the measured (using GCMS) and predicted (using the fitted reflection models)
camera RGB G-channel data.
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Figure 6. G-channel camera RGB data measured using GCMS and estimated using models fitted with
the data set captured with θL = −25◦ using our measurement setup.

The relative error (∆ErrP) was calculated, using Equation (11), between camera RGB data that
were calculated using the measured data and predicted using the fitted reflection models for the
respective channel.

∆ErrP =
∑p | βPmea − βPest |

∑p βPmea

(11)
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In Equation (11), βPmea is camera RGB data calculated from measurements, and βPest is camera
RGB data estimated using the fitted reflection models.

Using measurements made with our measurement setup, we fit both the reflection models, CT and
Ward, with sampling data obtained from all the possible combinations (63 in total) of the incident light
directions (θL = −20◦–−45◦), respectively.

Figure 7 shows box-and-whisker plots for average relative error (∆ErrP) calculated using
Equation (11) for the G-channel between camera RGB data calculated from GCMS measurements and
data estimated using both the reflection models fitted with different combinations of sampling data.
The box-and-whiskers plots show that the error variation was reduced to some extent when a bigger
sampling dataset was used (from a single illumination direction (θL) to two θL directions) to fit the
models. However, in many cases, the optimization algorithm converged to a local minimum instead
of a global minimum when finding the reflection model parameters using the cost function given in
Equation (10). This can also be seen in the results shown in Figure 7.
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Figure 7. Box-and-whisker plots showing ∆ErrP between G-channel camera RGB data calculated from
GCMS measurements and data estimated using both models of all the samples. The orange line in
the boxes shows the median error value obtained between the θL combinations used for model fitting.
Circle dots are large ∆ErrP error obtained (approximately three-times the range of error variation
(boxes) obtained). CT, Cook–Torrance.

One of the objectives of our measurement setup being bidirectional reflectance measurement
of goniochromatic materials, we colorimetrically evaluated the setup by calculating CIE1976 u

′
v
′

uniform chromaticity coordinates [1] from the obtained camera RGB data. We converted the obtained
camera RGB data to the CIEXYZ colorimetric space using a transformation matrix (M̂). M̂ was
calculated using the camera spectral sensitivities and CIE 2◦ color matching functions, as described



J. Imaging 2018, xx, 1 12 of 16

in [28]. The obtained CIEXYZ values were then transformed into CIE1976 u
′
v
′

uniform chromaticity
coordinates using Equation (12).

u
′
=

4 · X
X + 15 ·Y + 3 · Z , v

′
=

9 ·Y
X + 15 ·Y + 3 · Z

(12)

Figure 8 shows the CIE1976 u
′
v
′

values from measured (using GCMS) and predicted (using the
fitted reflection models) values for all the samples. The total number of measurements being many,
we present below CIE1976 u

′
v
′

plots for all the samples measured (with GCMS) and predicted using
reflections models fitted with the dataset captured with our measurement setup at a single illumination
direction (θL = −45◦).
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Figure 8. CIE1976 u
′
v
′

uniform chromaticity coordinates calculated using Equation (12) for all the
samples measured with GCMS and estimated from reflection models trained using the dataset obtained
from our measurement setup with one illumination direction (θL = −45◦).

The relative error (∆Eu′ v′ ) was calculated using Equation (13) between CIE1976 u
′
v
′

coordinates
obtained from the measured and predicted camera RGB data.

∆Eu′ v′ =


√(

u′mea − u′est
)2

u′mea
+

√(
v′mea − v′est

)2

v′mea

 (13)

where u
′
mea and v

′
mea are the CIE1976 u

′
v
′

coordinates obtained from the measured βr data and u
′
est

and v
′
est were obtained from βr estimated using the reflection models. Figure 9 shows box-and-whisker

plots for the average relative error calculated using Equation (13) for all the samples. Samples were
measured using GCMS and predicted using both reflection models fitted with the datasets obtained
using all (63) combinations of θL directions in our measurement setup.
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Figure 9. Box-and-whisker plots showing average ∆Eu′ v′ between camera RGB data calculated from
GCMS measurements and data estimated using both models of all the samples. The orange line in
the boxes shows the median error value obtained between the θL combinations used for model fitting.
Circle dots are large ∆Eu′ v′ error obtained (approximately three-times the range of error variation
(boxes) obtained).

The median error remained fairly constant for all three samples with the increase in the number
of measurements to fit the reflection models. Adding more illumination directions did not improve
the fitting performance colorimetrically. Modeling goniochromatic materials using the CT and Ward
model was difficult given the nature of these models, and it would be more appropriate to use a
mixture of BTFand BRDF models.

4. Discussion

This paper investigates the suitability of measuring materials with a complex visual appearance
bidirectionally using our measurement setup. The setup is evaluated against measurements made
using a commercially available goniospectrophotometer (GCMS). Two well-established reflection
models are fitted using sampling data obtained from our measurement setup. Figure 6 shows the
G-channel camera RGB data measured and estimated using the GCMS instrument and the fitted
reflection models, respectively. It can be seen that the performance of the CT model was better
compared to the Ward especially for the Blue-Green material and Gold sample. Estimated BRDF
values match well with the measurements for the Gold sample for non-grazing illumination and
viewing directions.

Box-and-whisker plots shown in Figure 7 show a similar result, with the performance of CT
being better for all the samples. The variation in the error value was much higher (maximum error
value (∆Errp) of 0.8), for the Blue-Green sample G-channel measurements when we used a minimum
sampling dataset (that is, the dataset collected using a single θL in our measurement setup). The
median relative error obtained was around 0.4 (using the CT model), which is a fairly big error.
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The error was even higher for the Ward model (median relative error of almost 0.6). Similar results
were obtained for the Red sample with a median relative error around 0.6 for both, CT and Ward,
reflection models. For the Gold sample, the median relative error was approximately 0.2 for both the
reflection models, which is much smaller compared to the Blue-Green and Red sample. Using a bigger
sampling dataset for any of the samples or the reflection models did not reduce the error variation
significantly. In many cases, the optimization algorithm did converge to a local minimum instead of a
global minimum, thus adding to the uncertainty in fitting the models.

Overall, the relative error was large for Blue-Green and Red material compared to Gold. Some of
the possible reasons for having less error for the Gold sample are the material being smoother and
uniform. Furthermore, the Gold sample can be called uni-modular, which shows a bigger change in
intensity compared to hue and chroma for different illumination (θi) and viewing (θr) directions.

The CIE 1976 u′v′ chromaticity coordinates were calculated from the camera RGB data for
colorimetric evaluation. The performance of both models was similar for the Blue-Green and
Gold samples, but with less variation in the relative ∆Eu′v′ error when using the Ward model.
Colorimetrically, the performance was not good for either of the models for the Blue-Green sample.
Variation in the relative error (∆Eu′ v′ ) was small with the Ward model compared to CT for the Gold and
Blue-Green samples. Colorimetrically, both models struggled to predict the Blue-Green sample. One of
the possible reasons for this is that we had constant diffuse reflection components (KdRGB ) trained using
the measured data, while the Blue-Green sample showed a shift in color depending on the viewing
direction. Another observation made using the analysis was that the sample measurements showed
retro-reflection, which cannot be modeled using CT and Ward. Furthermore, the relative error (∆Errp)
obtained was maximum at the grazing angles, which the models struggled to predict.

The samples also being non-diffuse (similar to the Gold sample) added the further complexities
of a dynamic range and the need to capture a high dynamic range image. Capturing an HDR image
adds to measurement error and uncertainty, as the accuracy of the radiance map will depend on the
fusion algorithm. The need to capture an HDR image also reduces the measurement speed and limits
the use of such a measurement setup to measure the BRDF of complex materials.

A Munsell White sheet (MW) was used as a reference white standard when calculating the
radiance factor from the measurements obtained using our measurement setup. MW is a white
paper material reproduced by following the ANSI specifications according to the Munsell color
system. In practice, commercially-available reflection standards such as a Spectralon tile are used in
reference instruments or commercially-available goniospectrophotometers like GCMS. The tiles are
spectrally calibrated with high accuracy, and double beam measurements are performed to record
the bidirectional radiance factor on the sample surface, resulting in a very precise measurement. The
MW sheet is not as precise as a Spectralon tile as a reference white standard and can contribute to
measurement error. As discussed in detail in [27], performing absolute calibration would be the most
appropriate method to obtain accurate radiance factor measurements. This, however, is difficult to
implement in the industry, where performing measurements in a fast and inexpensive way is expected.
When performing measurements using our measurement setup, using a Spectralon tile that can be
curved onto the cylinder along with the material to be measured would be one of the methods to
perform BRDF calculations. This way, it would be possible to follow the definition to have both
the sample and the Spectralon tile irradiated identically. It was not possible to obtain a Spectralon
tile that could be used in this way, and therefore, we attempted in this paper to use a Munsell white
N9/ sheet (N9/) that was produced according to the ANSI standards. Furthermore, if we use a flat
Spectralon tile, it would only be valid for a single incident (θi) and viewing (θr) angle combinationone
θi, θr combination in our measurement setup, and we would have to make further assumptions about
the homogeneity of the light source. With the MW, this was avoided. Using MW as a reference
white standard in our measurement setup is a known source of error, which needs to be addressed in
future work.
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There are many factors that contribute to the total error when fitting both models. Some of the
error sources with respect to our measurement setup were identified in [14]. HDR image capture
will further add to the setup error when measuring complex materials along with the reference white
standard to be used for radiance factor calculations. This will need further study, measurements and
analysis.

5. Conclusions

Complex materials with different reflectance properties are measured using our measurement
setup. The setup is evaluated using two well-established reflections models. The measurement
procedure, when using our measurement setup, is simplified by evaluating optimal sampling data
that can be used to fit the reflection models for the complex materials measured. A commercial
goniospectrophotometer is used to evaluate the performance of the model fitting and to investigate
the feasibility to use our measurement setup to measure complex materials.

Though the error obtained is fairly big, the estimated BRDF of the non-diffuse and goniochromatic
material measured look similar to the GCMS measurements, especially at the non-grazing angles.
Colorimetrically, both models struggle with the Blue-Green sample. The Gold sample showed less
relative error compared to the Red and Blue-Green samples, possibly due to its surface properties being
smoother and homogeneous compared to the Red and Blue-Green samples. Using more sampling
data (in terms of illumination directions (θL)) did not reduce the median error significantly, though the
error variation was reduced to some extent. We learned that the complex materials typically used in
the print and packaging industry, similar to the ones used in this paper, can be measured using our
measurement setup, but with a noticeable error.
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