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Abstract

We consider cross-sectional genetic association studies (common and rare

variants) where non-genetic information is available, or feasible to obtain for

N individuals, but where it is infeasible to genotype all N individuals. We

consider continuously measurable Gaussian traits (phenotypes). Genotyp-

ing n < N extreme phenotype individuals can yield better power to detect

phenotype-genotype associations, as compared to randomly selecting n indi-

viduals. We define a person as having an extreme phenotype if the observed

phenotype is above a specified threshold or below a specified thresholds. We

consider a model where these thresholds can be tailored to each individual.

The classical extreme sampling design is to set equal thresholds for all in-

dividuals. We introduce a design (z-extreme sampling) where personalized

thresholds are defined based on the residuals of a regression model including

only non-genetic (fully available) information. We derive score tests for the

situation where only n extremes are analyzed (complete case analysis), and

for the situation where the non-genetic information on N − n non-extremes

is included in the analysis (all case analysis). For the classical design, all

case analysis is generally more powerful than complete case analysis. For the

z-extreme sample, we show that all case and complete case tests are equally

powerful. Simulations and data analysis also show that z-extreme sampling
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is at least as powerful as the classical extreme sampling design and the classi-

cal design is shown to be at times less powerful than random sampling. The

method of dichotomizing extreme phenotypes is also discussed.

Key words: GWAS, rare variants, outcome-dependent sampling, residual-

based sampling, the HUNT study

1 Introduction

Extreme phenotype sampling is a a two-stage design for genetic association studies,

or other association studies where the covariate of interest is expensive or infeasible

to obtain for all individuals. Selective genotyping of extreme-phenotype individ-

uals has been proposed as a strategy for achieving good statistical power under

sample size limitations.1–8 Inexpensive ‘non-genetic’ information (phenotype/trait

measurements, age, sex, lifestyle variables, etc.) is collected on N individuals in

the first stage. In the second stage, n < N individuals are selected for genotyp-

ing. Criteria for selection are based on stage 1 observations with the intention to

increase the power to detect genotype-phenotype associations, as compared to ran-

domly selecting n individuals. For simple linear regression models, Huang and Lin

proposed likelihood methods for extreme samples that made full use of the genetic

data, that modelled the continuous rather than a discretized phenotype and prop-

erly accounted for the selective genotyping design.9 Tao et al developed methods

for parameter estimation and a Wald test for two-stage sampling designs.10 Derkach

et al derived score tests for similar designs.11 Extreme phenotype sampling has also

been proposed for studies of rare genetic variants.12–15

Consider a common biallelic genetic variant g (SNP), an additive genetic model,

a Gaussian phenotype y and the model y = β0 + βgg + ε, where ε ∼ N(0, σ2).

The genetic covariate g takes values 0 (zero minor alleles), 1 (one minor allele) or

2 (two minor alleles). To establish whether βg 6= 0, a powerful sample will have a

high proportion of individuals with genotypes 0 and 2. Assuming Hardy-Weinberg

equilibrium, if the minor allele frequency of a SNP is 0.25, then in any random

sample from the population approximately 56% of individuals have genotype 0,

37% will have genotype 1, and only 6% will have genotype 2. If indeed the genetic

variant has an additive effect on the phenotype, and there are no other covariates

influencing the phenotype, then in one end of the empirical phenotype distribution

we will find an increased proportion of subjects with genotype 2, while in the other

end we will mainly find subjects with genotype 0. The extreme sample can therefore

give better power than random sampling. For studies of rare genetic variants (minor

allele frequency below 5%) an extreme sample should have a higher proportion of

individuals with at least one minor allele if the genetic variant is causal.
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If the phenotype is influenced by other ‘non-genetic’ covariates x (e.g. age, sex,

lifestyle), y = β0+β1x+βgg+ε, then it is not given that the phenotypic extremes will

have a more favorable distribution of genotypes than a random sample. Therefore,

we consider a design where extremes are defined based on a ‘residual phenotype’

(z = y − β̂0 − β̂1x), i.e. the observed phenotype after adjustment for relevant non-

genetic covariates. We refer to this design as the z-extreme sampling design.

Define complete cases as the n < N individuals that are genotyped. Under

extreme phenotype sampling, the most straightforward association analysis for the

complete cases is to compare the two extreme groups using models for binary out-

comes.7,16 This approach has been shown to be less powerful than other methods.9

A complete case test should rather be derived based on the probability distribution

of the extremes.9,17 Analysis of all cases (n complete cases and N − n cases with

missing genotype information) is based on methods for missing at random covari-

ates.10,11 When there are no non-genetic covariates in the model, complete case

and all case analysis are equally powerful.9,11 Otherwise, all case analysis is gener-

ally more powerful than complete case analysis. We prove that when extremes are

defined based on the residual phenotype (z-extreme sampling), the complete case

and all case score tests are equally powerful, regardless of the impact of non-genetic

covariates.

When the sampling design is based on the construction of the residual phenotype

z, it is not unnatural to consider testing for an association directly with this adjusted

phenotype. Although these residuals by design are not independent, we show that

score tests ‘naively’ applied to residual phenotype models (z = γ0 + γgg + ε) will

control the type-1 error rate at the desired significance level. If the genetic covariate

is correlated with some of the non-genetic covariates in the model (x) then such

residual phenotype tests are shown to be less powerful than tests based on the

original regression model (y = β0 + β1x+ βgg + ε).

In Section 2 of this paper we give some statistical background and specific results

for random sampling. In Section 3 we present score tests for testing association with

one common genetic variant in extreme samples. The multivariate version of this

theory is given in the Supplementary Material. In Section 4 we consider tests of

rare genetic variants. We derive association tests similar to the SKAT test18,19 for

rare genetic variants under extreme sampling. In Section 5 we illustrate the results

of Sections 3 and 4 by simulations, in Section 6 we apply methods to data from the

HUNT study (Helseundersøkelsen i Nord-Trøndelag),20 and in Section 7 we discuss

our findings.
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2 Statistical background

We consider the linear model

Y = Xβ + gβg + ε, ε ∼ MVN(0, σ2 I), (1)

where Y is an N -vector of phenotype observations, X an N × (d + 1) matrix of

the intercept and d non-genetic covariates (d+ 1� N), g an N -vector of genotype

observations and I is the N×N identity matrix. The residual vector ε is multivariate

normal (MVN) with mean 0 and covariance matrix σ2 I. We test H0 : βg = 0

against H1 : βg 6= 0 (genotype-phenotype association) using score tests. We further

generalize model (1) to

Y = Xβ + Gβg + ε, ε ∼ MVN(0, σ2 I), (2)

where the N × ν genotype matrix G represents a selection of ν genetic variants

(ν � N), and derive score tests for testing H0 : βg = 0 against H1 : βg 6= 0.

Definition 2.1 (The score test for H0 : βg = 0) Consider a log likelihood func-

tion l(βg,θ), where θ is a vector of ‘nuisance parameters’ and βg are the parameters

of interest. When H0 is assumed true (βg = 0) the maximum likelihood estimators

of nuisance parameters, denoted θ̂, are found by solving ∂l/∂θ(βg = 0) = 0. Define

the score statistic

Uβg =
∂l

∂βg

(
βg = 0,θ = θ̂

)
,

and the information matrix

F(βg,θ) =

[
Fβgβg(βg,θ) Fβgθ(βg,θ)

Fθβg(βg,θ) Fθθ(βg,θ)

]
= −E

[
∂2l

∂βg∂βT
g

∂2l
∂βg∂θT

∂2l
∂θ∂βT

g

∂2l
∂θ∂θT

]
.

The variance of the score statistic is

Var(Uβg) = Fβgβg(0, θ̂)− Fβgθ(0, θ̂)F−1θθ (0, θ̂)Fθβg(0, θ̂).

The score test statistic T = UT
βg

Var(Uβg)
−1Uβg is asymptotically χ2

ν-distributed

under the null. When βg is a scalar then ν = 1 and T = U2
βg
/Var(Uβg).

Definition 2.2 (Residual phenotype) Consider the null model Y = Xβ + ε,

and let β̂ = (XT X)−1 XT Y be the maximum likelihood estimator for β. Define the

residual phenotype as Z = Y−Ŷ = Y−X β̂ = (I−H)Y, where H = X(XT X)−1 XT.

If the null hypothesis is true then Z ∼ MVN(0, σ2(I−H)). The residual phenotypes

Z1, . . . , ZN are therefore generally not i.i.d. The analogs to models (1) and (2) are

the residual phenotype models

Z = 1γ0 + gγg + εz, and Z = 1γ0 + Gγg + εz. (3)

The parameter γg (γg) can be interpreted as a surrogate for βg (βg) but we assume

throughout that the main interest lies in testing H0 : βg = 0 (H0 : βg = 0).
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2.1 Score tests for the linear regression model

In this section only, assume that (Yi,xi, gi) is observed for all N individuals, ran-

domly sampled from some (infinite) population of interest. The log likelihood func-

tion is l = −N log(σ)− 1
σ2

∑N
i=1(Yi−xT

i β−giβg)
2. The score test statistic (Definition

2.1) for testing H0 : βg = 0 in model (1) is given by T = U2
βg
/Var(Uβg), where

Uβg =
1

σ̂2
gT(I−H)Y, Var(Uβg) =

1

σ̂2
gT(I−H)g. (4)

The hat matrix is defined under the null by H = X(XT X)−1 XT, and the maximum

likelihood estimator for σ2 is σ̂2 = 1
N

YT(I−H)Y. The test statistic T has an

asymptotic χ2
1 distribution when the null hypothesis is true, and the null hypothesis

is rejected when T > tα, where tα is a critical value from the χ2
1 distribution.

‘Naively’ applying the same test to the residual phenotype model (3), we obtain

Tz = U2
γg/Var(Uγg), where

Uγg =
1

σ̂2
z

gT(I− 1

N
11T)Z, Var(Uγg) =

1

σ̂2
z

gT(I− 1

N
11T)g. (5)

Note that since the assumption εz ∼ MVN(0, σ2 I) is generally incorrect, the asymp-

totic null distribution of Tz is not necessarily χ2
1. However, an asymptotically valid

test for H0 : βg = 0 against H1 : βg 6= 0 in model (1) when is to reject H0 whenever

Tz > tα, where tα is a critical value from the χ2
1-distribution. By valid we mean that

the type-1 error rate is controlled at the desired level α; Pr(reject H0|H0 true) ≤ α.

The residual phenotype test is valid because Tz ≤ T (proof given in Supplementary

Material Section 2.1), so that Tz < tα whenever T < tα. Rejecting H0 whenever

Tz > tα is then generally a less powerful test for H0 : βg = 0 because the event

Tz > tα will occur less often than T > tα. When X and g are uncorrelated (sample

correlation between each column of X and g is zero, (X− 1
N

11T X)T(g− 1
N

11Tg) = 0,

then Tz = T . This result also generalizes to the score test for H0 : βg = 0 (model

(2)) where the test statistics are compared to the χ2
ν-distribution, see Supplementary

Material Section 2.

2.2 Missing covariates

Consider a sample of size N (randomly generated from the infinite population of

interest) where the genetic covariate is missing for N − n individuals, while other

non-genetic covariates and the response variable are observed for all N individuals.

Definition 2.3 (Complete case analysis) Only the n individuals with observed

genotype (gi), non-genetic covariates (xi) and phenotype (yi) are analyzed. The set

of indexes {i : i ∈ C} denotes all completely observed individuals. Let gC be the
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n-vector of observed genotypes, YC the complete case phenotype vector and XC the

complete case covariate matrix.

Definition 2.4 (All case analysis) For all case analysis we include the n com-

plete case observations (yi,xi, gi) for all i ∈ C and the N −n observations of (yi,xi)

for all i ∈M, where M = {i ∈ {1, . . . , N} : i 6∈ C}.

Let R be a random N -vector that indicates missing entries in the genetic co-

variate vector g. The missing-mechanism is missing completely at random (MCAR)

if Pr(R = r|Y,X,g) = Pr(R = r) and missing at random (MAR) if Pr(R =

r|Y,X,g) = Pr(R = r|Y,X).21 In the case of MCAR covariates, complete case

analysis is performed by assuming that the complete case sample (YC, XC and gC)

is a random sample from the (infinite) population of interest. All case analysis

is performed by imputing the mean genotype where genotypes are missing. The

mean is estimated and imputed separately for genetically different subgroups. For

sufficiently large samples, complete case and all case score tests are approximately

equally powerful (Supplementary Material Section 5.5).

2.3 Extreme phenotype sampling

We define a general extreme phenotype sampling design where the classification rule

(extreme or not extreme) can be tailored to each individual in the sample.

Definition 2.5 (Extreme phenotype sampling) Individual i has an extreme phe-

notype if Yi < li or Yi > ui, where li and ui are known thresholds. All individuals

who are classified as extreme are selected for genotyping.

Two special cases of this design are of particular interest:

Definition 2.6 (y-extreme sampling) Individuals are y-extreme if Yi < l or

Yi > u, where thresholds l and u are equal for all i ∈ {1, . . . , N}.

Definition 2.7 (z-extreme sampling) Individuals are z-extreme if Zi < lz or

Zi > uz, where thresholds lz and uz are equal for all i ∈ {1, . . . , N}, and Zi is the

residual phenotype (Definition 2.2). By Definition 2.5, individual i has an extreme

phenotype if Yi < li or Yi > ui, where li = lz + xT
i β̂ and ui = uz + xT

i β̂.

3 Single variant tests for extreme samples

We consider model (1) under extreme phenotype sampling (Definition 2.5) and score

tests for H0 : βg = 0 vs H1 : βg 6= 0.
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3.1 Complete case analysis

Using the conditional phenotype distribution Yi|(Yi < li ∪ Yi > ui), where classifi-

cation rules li and ui are determined before seeing the data, the likelihood for the

complete cases (Definition 2.3) is

LC =
∏
i∈C

1
σ
φ
(
Yi−µi
σ

)
1− Φ

(
ui−µi
σ

)
+ Φ

(
li−µi
σ

) ,
where φ is the density function and Φ is the cumulative probability distribution for

the standard normal distribution, and µi = xT
i β+giβg. Define (similarly to Tang17),

hij =
−φ
(
ui−µi
σ

)
·
(
ui−µi
σ

)j
+ φ

(
li−µi
σ

)
·
(
li−µi
σ

)j
1− Φ

(
ui−µi
σ

)
+ Φ

(
li−µi
σ

) , (6)

ai = 1− hi1 − h2i0, bi = −hi0 − hi2 − hi0hi1, ci = 2− hi1 − hi3 − h2i1,

and let hj, a, b and c be the corresponding n-vectors for these expressions. Define

A = Diag(a) and WC = YC+σh0. Let complete case maximum likelihood estimators

of β and σ under the null (βg = 0) be denoted by a tilde ∼, and let h̃j, W̃C, Ã, b̃

and c̃ be the expressions hj, WC, A, b and c evaluated at σ̃, β̃ and βg = 0. The

complete case score test statistic is defined by TC = U2
C/Var(UC), where

UC =
1

σ̃2
gT
C (I−HC)W̃C, HC = XC(X

T
C XC)

−1 XT
C , (7)

and

Var(UC) =
1

σ̃2

gT
C ÃgC − gT

C

[
Ã XC b̃

] [XT
C Ã XC XT

C b̃

b̃T XC 1Tc̃

]−1 [
XT
C Ã

b̃T

]
gC

 . (8)

Details are given in Supplementary Material Section 4. When the null hypothesis is

true, the test statistic TC has an asymptotic χ2
1 distribution.

3.1.1 y-extreme sampling

The score test statistic for the y-extreme sample follows directly from the above by

inserting li = l and ui = u into the functions hij (6). This leads to no simplifications

unless XC = 1n. Then, the score test statistic TC is equal to the test statistic one

would find by assuming that the complete case sample ({i : i ∈ C}) is a random sam-

ple.17 Indeed, if the null hypothesis is true and there are no non-genetic covariates in-

fluencing the phenotype, then Yi ∼ N(β0, σ
2) ∀i, and all individuals have equal prob-

ability to be sampled for genotyping since Pr(Yi < l∪Yi > u) = Pr(Yj < l∪Yj > u)

for all i, j.
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3.1.2 z-extreme sampling

Under z-extreme sampling (Definition 2.7) the expression for the complete case score

test statistic can be simplified. Strictly, β̂ should be estimated from a pilot study

so that the z-extreme sampling rule is determined before seeing data. However,

we may assume that β̂ estimated from the full sample (large N) is unbiased and

estimated with low variance and may therefore be regarded as deterministic. Recall

that β̃ is the maximum likelihood estimator based on the complete cases. For large

N and n, ui − µ̃i = uz + xT
i β̂ − xT

i β̃ ≈ uz, li − µ̃i = lz + xT
i β̂ − xT

i β̃ ≈ lz, and h̃ij,

ãi, b̃i, c̃i are (approximately) equal for all i. Equations (7) and (8) simplify to

UC ≈
1

σ̃2
gT
C (I−HC)YC, Var(UC) ≈

ã

σ̃2
gT
C (I−HC) gC. (9)

Observation 3.1 Under z-extreme sampling TC ≈ Tn, where Tn is the test statistic

obtained by assuming that the complete case sample is a random sample; Tn =

U2
n/Var(Un), where Un = 1

σ̂2
n
gT
C (I−HC)YC, Var(Un) = 1

σ̂2
n
gT
C (I−HC)gC, and σ̂2

n =
1
n
YT(I−HC)YC.

Observation 3.1 follows from the fact that σ̃2 = σ̂2
n

ã
, see Supplementary Material

Section 4.4.2, and can be seen as a generalization of the result by Tang.17 If the null

hypothesis is true, then Yi − Xi β ∼ N(0, σ2) ∀i, and

Pr((Yi − xT
i β < lz) ∪ (Yi − xT

i β > uz)) = Pr((Yj − xT
j β < lz) ∪ (Yj − xT

j β > uz))

for all i, j. Replacing β by β̂, each individual in the sample will under H0 have

approximately equal probability to be sampled for genotyping.

Residual phenotype test If, under z-extreme sampling, we derive a test directly

from the residual phenotype model (3), then we obtain

UzC =
1

σ̃2
z

gT
C (I− 1

n
11T)ZC, Var(UzC) =

ãz
σ̃2
z

gT
C (I− 1

n
11T)gC, (10)

and TzC = U2
zC
/Var(UzC). Since the model assumption εz ∼ MVN(0, σ2 I) is gen-

erally incorrect (see Definition 2.2), the asymptotic null distribution of TzC is not

necessarily χ2
1. Observation 3.2 is proven in Supplementary Material Section 4.4.3.

Observation 3.2 Under z-extreme sampling, TzC ≈ TC if XC is column-wise un-

correlated with gC. Otherwise, TzC ≤ TC. If tα is a critical value from the χ2
1-

distribution, then rejecting H0 when TzC > tα is a valid but conservative test.
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3.2 All case analysis

Assuming yi and xi are observed for all N individuals, the extreme sampling design

(including y-extreme and z-extreme sampling) satisfies the MAR condition. For all

case analysis (Definition 2.4) we use a likelihood model for a sample with MAR

covariates21 based on the following assumptions:

Assumption 3.1 G is a discrete random variable (genotype) with sample space

{gk; k = 1, . . . , K}.

Assumption 3.2 The distribution of G (genotype frequencies) can differ between

different groups of individuals. Assume that there are J groups and let Pr(G =

gk|j) = pjk, k = 1, . . . , K, be the point probabilities of G in group j, j = 1, . . . , J .

Groups are defined by unique covariate patterns of X∗ (dummy coded categorical

covariates), where X∗ denotes d∗ + 1 ≤ d+ 1 columns of X (including intercept).

Let Gi denote the random genotype for individual i. For individuals i ∈ C, gi denotes

the actual observation of Gi. Assumption 3.2 implies that genetic and non-genetic

covariates g and X can be correlated. Generally, X can contain continuous covari-

ates, but X∗ is discrete (possibly including discretized and dummy coded continuous

covariates). Let Cj denote the set of all nj genotyped individuals i ∈ C who are also

in group j, letMj denote the set of all mj missing-genotype individuals i ∈M who

are also in group j, and let Nj = nj +mj,
∑

j nj = n,
∑

jmj = m,
∑

j Nj = N and

n + m = N . Let njk be the random variable that counts observations of genotype

gk among genotyped individuals in group j (i ∈ Cj). The all case likelihood is

L =
∏
i∈C

fYi|Gi=gi(yi; xi) Pr(Gi = gi; xi)
∏
i∈M

∑
k

fYi|Gi=gk(yi; xi) Pr(Gi = gk; xi)

∝
∏
i∈C

1

σ
φ

(
Yi − µi
σ

)∏
j

∏
k

p
njk

jk

∏
j

∏
i∈Mj

∑
k

1

σ
φ

(
Yi − µi(gk)

σ

)
pjk,

where µi = xT
i β+giβg for i ∈ C and µi(gk) = xT

i β+gkβg for i ∈M. The maximum

likelihood estimators of β, σ and pjk under the null are

β̂ =
(
XT X

)−1
XT Y, σ̂2 =

1

N
Y(I−H)Y, p̂jk = nobs

jk /nj, (11)

and the estimated mean under the null is µ̂ = X β̂ = H Y. These closed-form

expressions make model fitting under the null computationally efficient for all case

analysis. The score test for the all case likelihood was derived by Derkach et al11 for

models where X∗ = X (Assumption 3.2). Our test is derived using a slightly different

approach (see Supplementary Material Section 5), but the result is equivalent when

X∗ = X and probabilities pjk are unknown. Let gM be an N -vector where for
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individuals i ∈ C, gM,i = gi, while for i ∈Mj the mean genotype across individuals

i ∈ Cj is imputed. The all case score test statistic is TA = U2
A/Var(UA), where

UA =
1

σ̂2
gT
M(I−H)Y, (12)

and

Var(UA) =
1

σ2
gT
M(I−H)gM −

1

σ2

∑
j

nj Var(G|j)

+
1

σ4

∑
j

Var(G|j)

E
∑
i∈Cj

(Yi − µi(βg = 0))2 − 1

nj

E
∑
i∈Cj

(Yi − µi(βg = 0))

2
(13)

=
1

σ2
gT
M(I−H)gM −

1

σ2

∑
j

Var(G|j)

∑
i∈Cj

hi1(βg = 0) +
1

nj

∑
i∈Cj

hi0(βg = 0)

2 ,

(14)

where hi0 and hi1 are defined in Equation (6). The score test statistic has an

asymptotic χ2
1 distribution under the null.

3.2.1 y-extreme sampling

When there are no non-genetic covariates X, and therefore no groups (Assumption

3.2), then UA ≈ 1
σ̂2 g

T
C (I−HC)YC and Var(UA) ≈ â

σ̂2 g
T
C (I−HC)gC, where â = a(σ̂),

see Equation (6). Then, the complete case and all case score test statistics are

approximately equal. Details are given in Supplementary material Section 5.6.

3.2.2 z-extreme sampling

Under z-extreme sampling (Definition 2.7) the all case score statistic (12) can be

approximated by

UA ≈
1

σ̂2
gT
C (I−HC)YC.

The variance (13) can be approximated by

Var(UA) ≈ â

σ̂2
gT
C (I−HC)gC,

where a is given in Equation (6), and â denotes that the function is evaluated at the

all case maximum likelihood estimator for σ. Details are given in Supplementary

Material Section 5.7.
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Observation 3.3 Under z-extreme sampling, UA ≈ σ̃2

σ̂2UC ≈ UC, where UC is the

compete case score statistic (7), UA is the all case score statistic (12), σ̃ is the

complete case maximum likelihood estimator of σ and σ̂ is the all case estimator.

Also, Var(UA) ≈ σ̃2

σ̂2
â
ã

Var(UC) ≈ Var(UC). Under z-extreme sampling, the all case

and complete case score tests are therefore approximately equal.

Residual phenotype test Under z-extreme sampling it follows from Observation

3.3 that also the residual phenotype all case score test statistic TzA is approximately

equal to the residual phenotype complete case score test TzC (10), see Supplementary

Material Section 5.7.1.

4 Rare variant tests for extreme samples

In Supplementary Material Sections 4 and 5 we show that all results from the pre-

vious section generalize to testing H0 : βg = 0 in model (2) (i.e. simultaneously

testing ν genetic variants, 1 < ν � N). Here we consider testing ν rare genetic

variants and we derive two rare variant association tests for the extreme phenotype

sampling design; the ‘collapsing test’22–25 and the ‘variance component test’.18,19

Under extreme sampling, a binary response collapsing test was used by Peloso et

al .16 A complete case collapsing test was studied by Li et al .12 A variance com-

ponent test (the SKAT test) for complete case analysis of y-extreme samples was

proposed by Barnett et al .14 In the extreme sampling complete case setting, we find

that estimation of the variance parameter σ2 must be accounted for when deriving

the score test (the parameters σ and βg are not orthogonal (Fσβg 6= 0), see Sup-

plementary Material Section 4.2). We therefore propose a different complete case

variance component test. We also derive an all case variance component test for

extreme sampling designs and compare y-extreme and z-extreme sampling.

4.1 The collapsing test

Let w be a ν-vector of chosen weights for the ν genetic variants in the region of

interest. For the situation where all N individuals are genotyped, we construct a

single ‘collapsed’ genetic covariate gw by a weighted sum over all ν variants gw =

G w, where G is the N × ν genetic covariate matrix as defined in model (2). We

then assume a linear model Y = Xβ+ gwβg +ε, which is simply a modified version

of model (1), and test H0 : βg = 0. For extreme sampling designs, where only GC

is observed, we define gw,C = GC w and treat this n-vector as the observed genetic

covariate. The tests for H0 : βg = 0 from the previous section (complete case and

all case) apply.
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4.2 The variance component test

We assume that βg is a random vector with mean 0 and variance τ 2Σ, where Σ

is a symmetric weight matrix. Then we test H0 : τ 2 = 0 (which corresponds to

H0 : βg = 0), using the variance component score test statistic18,19

Q = UT
βg

ΣUβg , (15)

where Uβg is the score statistic from Definition 2.1. We let Σ = W W where

W = Diag(w), corresponding to SKAT with a linear weighted kernel.18 For some

score statistic Uβg (asymptotically multivariate normal) with mean 0 and covariance

Var(Uβg), the asymptotic null distribution of Q can be estimated by the distribution

of
∑ν

m=1 λmχ
2
1,m, where λm are the eigenvalues of Σ Var(Uβg) and χ2

1,m are i.i.d χ2
1

random variables.26 In Supplementary Material Sections 4 and 5, complete and all

case score statistics (UC, UA) and variances (Var(UC), Var(UA)) are derived for the

different extreme sampling designs in the multivariate setting (ν > 1 genetic vari-

ants). In Supplementary material Section 6, we show that the variance component

test follows directly from these expressions.

4.2.1 z-extreme sampling

We make three observations regarding z-extreme sampling that follow from Obser-

vations 3.1, 3.2 and 3.3 for single variant tests. Proofs are given in Supplementary

Material Section 6.

Observation 4.1 Under z-extreme sampling, complete case analysis, the test that

rejects H0 : τ 2 = 0 if Qn > tα, where Qn is the test statistic obtained by assuming

that the complete case sample is a random sample and tα is a critical value from

the asymptotic null distribution of Qn, is approximately equal to the test that rejects

H0 : τ 2 = 0 if QC > tα,C, where QC is the complete case test statistic and tα,C is a

critical value from the asymptotic distribution of QC.

Observation 4.2 A variance component score test for complete case analysis under

z-extreme sampling derived directly from the residual phenotype model (3) is valid,

but conservative, for testing H0 : τ 2 = 0.

Observation 4.3 Under z-extreme sampling, the all case and complete case vari-

ance component score test statistics are approximately equal.

Observations 4.1 and 4.3 also apply to y-extreme sampling for the particular case

when there are no non-genetic covariates in the model (X = 1).
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5 Simulations

5.1 Single variant tests

We simulated two non-genetic covariates; x1 from a N(2, 1) distribution, and x2

from a Bernoulli(0.5)-distribution. The covariate x2 may for example represent

population substructure. In each of 10000 simulations we drew a genetic covariate

gi such that gi ∼ Binom(2, p0) if x2,i = 0 and gi ∼ Binom(2, p1) if x2,i = 1, p0 = 0.4

and p1 = 0.1 or p0 = p1 = 0.25. Phenotypes were independently generated from the

model

Y ∼ N
(
5 + β1x1 + β2x2 + βgg, 4

2
)
.

Simulations were performed for three sample sizes N = 2000, 10000 and 20000.

The parameter βg was 0 for estimates of type-1 error and otherwise chosen so that

the power to detect an association in the full sample was between 80% and 90%,

βg = 0.45, 0.21, and 0.15, for N = 2000, 10000, and 20000, respectively. Coefficients

of non-genetic covariates were β1 = 10 and β2 = 5, or β1 = 5 and β2 = 2, or β1 = 2,

and β2 = 1. With these parameter choices the environmental covariates x1 and x2

were more important than the genetic covariate g for describing the response (R2

from fitting the regression model with and without the genetic covariates varied

minimally). The latter choice was motivated by the assumption that environmen-

tal variables are more important for predicting a complex trait, compared to the

genotype of a common genetic variant.27 For extreme sampling, we used estimated

population quantiles l = Y(n/2
N ), u = Y(N−n/2

N ) or lz = Z(n/2
N ), uz = Z(N−n/2

N ) to

ensure that n individuals were selected for genotyping in a symmetric fashion. Ide-

ally, l and u should be determined before seeing the data, but for large N , l and u

are unbiased estimates of the population quantiles and estimated with low variance.

Therefore, these estimates may be regarded as deterministic and we use them in

place of the true population quantiles. Under z-extreme sampling, we use thresh-

olds lz + xT
i β̂ and uz + xT

i β̂ where also β̂ is estimated based on the full population.

Estimated power when n = N/2, β1 = 10 and β2 = 5 is presented in Table 1. In

addition to y-extreme and z-extreme sampling we estimated the power of randomly

sampling n individuals. In Figure 1 we illustrate the estimated power of all methods

for increasing n (N = 10000 fixed), for p0 = 0.4, p1 = 0.1, and different values of

β1 and β2. Increasing n is equivalent to increasing l and decreasing u. Figures were

generated using the R package ggplot2.28

y-extreme sampling For y-extreme sampling, the all case test is clearly more

powerful than the complete case test. For the simulation with β1 = 10 and β2 = 5
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(Figure 1, panel A) the complete case method is in fact less powerful than the random

sample. When the non-genetic covariates have a strong effect, then the extreme-y

individuals will be extreme due to the non-genetic covariates rather than the genetic

covariate. As illustrated here, this can result in a particularly unfavorable sample

with respect to detecting causal genetic variants. For lower non-genetic coefficient

values, the power of y-extreme sampling designs improve (Figure 1, panels B and

C). The extreme-y individuals are then more likely to be extreme due to the genetic

effect.

z-extreme sampling The z-extreme sampling design is clearly more powerful

than y-extreme sampling and the power of this design is not impacted by the effect

of the non-genetic covariates (Figure 1). Three theoretical results of Section 3 are

illustrated by simulations; (i) complete case and all case score tests are approxi-

mately equally powerful (Observation 3.3), (ii) the complete case score test statistic

is approximately equal to the score test statistic we obtain by assuming that the

complete case sample is a random sample (Observation 3.1) and (iii) residual pheno-

type tests are less powerful than tests based on the original regression model when

the genetic covariate is correlated with other covariates, but equal to tests based on

the original regression model when the genetic covariate is not correlated with other

covariates (Observation 3.2). In our simulation set-up, g is uncorrelated with non-

genetic covariates when p0 = p1 = 0.25, and correlated with non-genetic covariates

when p0 = 0.4 and p1 = 0.1.

Result (i) can be seen from Table 1, where rows corresponding to z-extreme

complete case and z-extreme all case analysis are almost identical. In Figure 1,

the line corresponding to the z-extreme all case test is not visible as it lies directly

underneath the line for the z-extreme complete case test.

Result (ii) is illustrated in Table 2. By Observation 3.3 we can either use the

complete case score test, the all case score test (by result (i)), or we can use a

score test for random samples (we used the function glm.scoretest in the R Statmod

package29), to test H0 : βg = 0 under z-extreme sampling.

Result (iii) is illustrated in Table 1. For the column p0 = 0.4, p1 = 0.1, the

rows ‘z-extreme complete case (residual)’ and ‘z-extreme all case (residual)’ show

lower power than the rows ‘z-extreme complete case’ and ‘z-extreme all case’. For

the column p0 = p1 = 0.25, all these tests are equal. The simulations in Figure 1

are performed with p0 > p1 and the methods based on the model for the residual

phenotype never reach the power of the full model, even when all N individuals are

genotyped.
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Binary response methods The simplest and most commonly approach to as-

sociation testing under extreme sampling is to treat the extreme phenotypes as a

binary responses.7 We consider only the complete cases (Definition 2.3), define a bi-

nary response vector based on low and high extreme phenotypes (either y or z) and

apply a logistic regression model. For the simulations in Table 1, the y-extreme bi-

nary response model has almost no power to detect associations while the z-extreme

binary response model is quite powerful. As the effect of non-genetic covariates de-

creases, the y-extreme binary response method improves (Figure 1). We note the

behavior of the binary response methods in Figure 1. As n increases the minor

allele frequencies in each extreme tail become more similar, and it becomes harder

to detect any differences between the two extremes. After some point, the sample

size n is not large enough to detect this small difference with sufficient power. At

n = N/2 (which corresponds to Table 1, N = 10000), the z-extreme binary response

model has good power for this particular simulation set-up, but power decreases as

n increases.

Type 1 error rates Estimated type-1 error rates for n = N/2 (symmetric sam-

pling) are presented in Table 3. The residual phenotype tests are by design valid

but conservative when p0 6= p1. The y-extreme binary response test did not control

the type-1 error rate when N = 2000 (n = 1000).

5.2 Rare variant tests

We performed a rare variant simulation study similar to Wu et al .18 For 10000

individuals we generated a 1 Mb region of genetic information using the simulation

program COSI (European population, standard out-of-Africa model).30 For each

of 10000 simulations, we randomly selected N = 5000 individuals and a 30 kb

region. Then, we randomly chose 50% or 10% of variants with (observed) minor

allele frequency below 3% to be causal. The effect of a causal variant with minor

allele frequency m was set to βg = ±c · | log10(m)|, otherwise βg = 0. A certain

percentage of the causal variants were set to have a negative effect sizes. The

constant c was 0.2 when 50% of variants were causal and 1.2 when 10% of variants

were causal (chosen so that the power of the full sample was approximately 80%).

Phenotypes were simulated from

Y ∼ N
(
5 + 1x1 + 2x2 + Gβg, 4

2
)
,

where G is a genotype matrix of all variants in the selected region. We estimated

power of the collapsing method and the variance component method for increasing

n (N fixed). As proposed by Wu et al ,18 weights were fβ(m, 1, 25) where fβ() is the
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density of the Beta-distribution and m is the minor allele frequency of the genetic

variant. Power estimates are presented in Figure 2. For the collapsing methods,

the function glm.scoretest (R Statmod package29) was used for full sample, random

sample and binary response tests, while our implementation of complete case and

all case tests for single variants were used for extreme samples. For the variance

component methods, the the SKAT R package31 was used for full sample, random

sample and binary response tests, while our implementation of complete case and all

case variance component tests were used for extreme samples. We used the Davies

method32 as implemented in the R package CompQuadForm33 to obtain p-values

for the variance component score test. The power estimates presented in Figure 2

are quite similar to that of the single-variant simulation (Figure 1). The z-extreme

sample is more powerful than the y-extreme sample. Under z-extreme sampling the

complete case and all case tests are equally powerful, and under y-extreme sampling

the all case test is more powerful than the complete case test. Concerning choice

of method for rare variant association testing, we confirm the simulation results of

Wu et al ,18 namely that when many variants are causal and all effects in the same

direction (Figure 2, panel A) the collapsing test is the more powerful, while when

few variants are causal and effects are in opposite directions (Figure 2, panel B)

the variant component test is the more powerful test. For the evaluation of type-1

error rates (significance level 2.5 × 10−6, motivated by Lee et al19) we performed

6.5 million simulations under the null. All methods (collapsing method, complete

and all case, variance component method, complete and all case) rejected the null 8

times, which gives an estimated type-1 error rate of 1.2×10−6(1.1×10−7, 4.7×10−6)

(Clopper-Pearson 95% confidence interval).

6 Application to data from the HUNT study

We assess the performance of different designs and methods using data from the

HUNT Fitness study.20,34 The study of genetic association with maximum oxy-

gen uptake (VO2max) is an ongoing project that is run by co-authors Anja Bye,

Einar Ryeng and Ulrik Wisløff. Here we use genome-wide observations of about 105

common variants (minor allele frequency ≥ 0.05) that are available for N ≈ 3000

individuals. The study was designed so as not to include closely related participants.

We assume that the sample is representative of the population of Nord-Trøndelag,

Norway. The dataset consists of approximately 1500 men and 1500 women. There

is a considerable difference in variance of VO2max between men and women, and

we therefore base our analysis on a standardized VO2max variable where for each

gender we subtract the mean and divide by the standard deviation. The null model
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is then a linear regression model with (standardized) VO2max as the response, and

age and physical activity as non-genetic covariates.

Since all N individuals have been genotyped, we can compare the results of ex-

treme sampling designs to the results of analyzing the full sample. From full sample

analysis it is known that a region on chromosome 1 is associated with VO2max.

Plots of p-values (on − log 10-scale) from this region on chromosome 1 are shown in

Figure 3. The full sample size is quite low and as could be expected, the smallest

p-values do not reach genome-wide significance (5 · 10−7 for 105 tests, family-wise

error rate controlled at significance level 0.05, using Bonferroni), yet it is assumed

that the peak in − log 10(p) represents a genetic association with VO2max. Here

we attempt to replicate this finding using extreme phenotype sampling designs. We

perform y-extreme and z-extreme sampling, n = N
2

, so that approximately one quar-

ter of individuals satisfy yi < li and one quarter satisfy yi > ui. The classification

rules li and ui were set using percentiles of the empirical phenotype or residual phe-

notype distributions. With both types of extreme sampling designs (y-extreme and

z-extreme) we are to some extent able to replicate the genotype-phenotype associ-

ation. The y-extreme sampling design has low power, both when using the all case

and complete case score tests. The z-extreme sampling design is as expected more

powerful, and the complete case and all case methods are equal (Observation 3.3).

In fact, the z-extreme sampling results closely mimic the full sample results despite

using only half of the available genetic information. Residual phenotype tests under

z-extreme sampling can also be applied, and results are given in the Supplementary

Material Section 7. These results are almost equal to those shown in Figure 3, i.e.

from tests based on the original regression model (Observation 3.2).

We summarize the genome-wide test results in QQ plots. QQ plots of the p-

values (on − log 10-scale) for association tests on chromosomes 1 to 22 based on

different extreme sampling methods are presented in Figure 4. In the construction

of the QQ-plot we assume that the p-values from the score tests are exact, that

the null model is true for all variants, and that all tests are independent. If so,

each p-value is uniform(0, 1)-distributed and the ith smallest p-value p(i) follows a

Beta(i,m + 1 − i)-distribution where m is the number of tests. Then E(p(i)) =

i/(m + i). The 2.5% and 97.5% quantiles of the distribution of the ordered p-

values are also plotted. Deviations from the straight line can for example indicate

associations with VO2max. The deviation seen from the full sample analysis is solely

due to the region in chromosome 1 where the null model is rejected. As in Figure

3, we see that the z-extreme sampling design yields the results most similar to the

full sample analysis.

Tests were performed separately for each chromosome. For the largest (chro-

mosome 1), running times were 1.37 seconds for complete case analysis and 19.14
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seconds for all case analysis. For reference, the full sample analysis (based on the

function glm.scoretest in the Statmod package29) took 3.34 seconds. All computa-

tions were performed using R version 3.4.035 on a personal computer (MacBook Air

(13”, Early 2014) with 1.7 GHz Intel Core i7-4650U and 4 MB cache).

7 Discussion

Improving power with extreme phenotype sampling The aim with using

an extreme phenotype sampling design is to improve power to detect associations

between genetic variants and the phenotype. It is assumed that extreme phenotype

individuals are more informative with respect to genetic influence than the average

person. Our simulations show that when other non-genetic or environmental covari-

ates have a strong impact on the phenotype, then the classical extreme phenotype

sampling design (y-extreme sampling) is not necessarily more powerful than a ran-

dom sample. This is because the extremes are likely have a high or low phenotype

value due to the non-genetic covariates, and not due to a genetic effect. To resolve

this issue, we have defined an extreme sampling design where each person has an

individual classification rule for being extreme or not. We use the residuals of the

null model (Y = Xβ + ε), where non-genetic effects have been accounted for, to

define extreme phenotypes (z-extreme sampling). Using this design, the extreme

individuals are more likely to be extreme due to a genetic impact, and this can

improve power to detect phenotype-genotype associations.

Hypothesis testing for extreme phenotype samples We have focused on

complete case and all case analysis of selectively genotyped samples. In the former,

only the extreme individuals are analyzed. A binary response method can be applied

to the complete cases7 but dichotomizing a continuous response typically results in

loss of power.9 We have focused on a complete case method that directly models

the distribution of the extremes,9 extending current methods to allow for individual

classification rules. With all case analysis we include information on non-genetic

variables for non-extremes. It has previously been shown that when there are no

non-genetic covariates in the model, complete case and all case tests under y-extreme

sampling are equally powerful.9,11 When adding information on non-genetic covari-

ates, the all case method is generally more powerful than complete case analysis

for the classical y-extreme sampling design. For all case analysis we have restricted

attention to a situation where the covariate to be tested is discrete, and potential

confounders are discrete and completely observed. A more general all case model

has been developed by Tao et al,10 which for example can handle the issue of using
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principal components to control for confounding due to population structures.

For the z-extreme sampling design, we showed that the all case score test re-

duces to the complete case test. This is noteworthy because the complete case test

requires far fewer model assumptions: one does not need to model the distribution

of missing covariates and any potential dependencies between covariates, and we are

not restricted to discrete genetic covariates and discrete confounders. This comes in

addition to the fact that the z-extreme sampling design in itself is more powerful.

In complete case analysis it is trivial to include principal components (missing for

non-extremes) and gene-environment or gene-gene interaction terms. The complete

case score test for z-extreme samples can furthermore be shown to be equal to the

score test for a random sample (under the null, any individual is equally likely to

be classified as extreme).

For z-extreme samples, we considered the possibility of using the residual phe-

notype as the response of in a regression model that under the alternative would

only include genetic covariates (residual phenotype tests). We proved that the score

tests derived for a model with independent observations (assuming test statistic

χ2-distributed under the null) were also valid for the residual phenotype model.

Multiple variants and rare variant association tests In the Supplementary

Material we have derived score tests for simultaneously testing ν genetic variants. A

special case is the single variant tests presented in Section 3. When simultaneously

testing ν rare variants (Section 4) it is common to apply collapsing tests22–25 or

variance component score tests such as the SKAT test.18 The complete and all case

collapsing methods considered here follow directly from single variant tests, while

the complete and all case variance component tests were derived using results from

the multivariate score tests. It then follows that also in the rare variant setting,

complete case and all case tests are equal under z-extreme sampling, and that resid-

ual phenotype tests are valid, but at times conservative. Simulations showed that

the z-extreme sampling design is, as for single variant testing, the more powerful

design. The relative performance of the collapsing and variance component tests for

extreme samples were as previosuly found for random sampling.18

Practice guideline The following guideline assumes that phenotype values yi

and non-genetic covariates xi are observed for N individuals, representative of the

population on which to make inference, and that n < N of these are to be geno-

typed. Step 1: Decide the null model Y = Xβ+ ε and calculate the residuals using

standard statistical software. Step 2: From the empirical distribution of residuals,

estimate thresholds lz and uz (for example so that approximately n/2 of individ-

uals satisfy zi < lz and n/2 satisfy zi > uz) and use these to classify individuals
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as extreme or not. Step 3: After genotyping extreme individuals, perform com-

plete case hypothesis testing (using standard statistical software if no additional

covariates (e.g. interactions effects or principal components) have been added to

the model, otherwise using complete case tests as provided by us). Estimate param-

eters by maximizing the complete case likelihood. All extreme sample tests, as well

as functions for parameter estimation, are available as an R package.

8 Supplementary material

In the Supplementary Material we present all details in the derivation of score tests

for the general setting of simultaneously testing ν genetic variants, as well as ana-

lytical results regarding equality of tests under the z-extreme sampling design. The

single variant tests presented in Sections 2 and 3 of this paper represent the special

case when ν = 1. The rare variant tests of Section 4 can also be seen as a particular

implementation of these multivariate score tests. All methods are implemented in R

and available as an R package at https://github.com/theabjorn/extremesampling.

The vignette includes examples on how to make use of all the tests presented in this

paper.
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p0, p1 0.4, 0.1 0.25, 0.25

N = 20000, βg = 0.15

Full sample 0.856 (0.849,0.863) 0.934 (0.929,0.939)

Random sample 0.575 (0.565,0.585) 0.690 (0.681,0.699)

y-extreme complete case 0.462 (0.452,0.471) 0.560 (0.550,0.569)

y-extreme all case 0.615 (0.606,0.625) 0.732 (0.724,0.741)

z-extreme complete case 0.830 (0.823,0.838) 0.914 (0.909,0.920)

z-extreme complete case (residual) 0.766 (0.757,0.774) 0.915 (0.909,0.920)

z-extreme all case 0.830 (0.823,0.838) 0.914 (0.909,0.920)

z-extreme all case (residual) 0.766 (0.758,0.774) 0.914 (0.909,0.920)

y-extreme binary 0.118 (0.111,0.124) 0.131 (0.125,0.138)

z-extreme binary 0.695 (0.686,0.704) 0.873 (0.866,0.879)

N = 10000, βg = 0.21

Full sample 0.856 (0.849,0.863) 0.894 (0.888,0.900)

Random sample 0.567 (0.557,0.576) 0.626 (0.617,0.636)

y-extreme complete case 0.451 (0.441,0.461) 0.500 (0.491,0.510)

y-extreme all case 0.610 (0.601,0.620) 0.662 (0.653,0.672)

z-extreme complete case 0.833 (0.826,0.840) 0.868 (0.861,0.874)

z-extreme complete case (residual) 0.760 (0.752,0.769) 0.868 (0.861,0.874)

z-extreme all case 0.833 (0.826,0.841) 0.868 (0.861,0.875)

z-extreme all case (residual) 0.760 (0.751,0.768) 0.868 (0.861,0.874)

y-extreme binary 0.111 (0.105,0.117) 0.114 (0.108,0.120)

z-extreme binary 0.690 (0.680,0.699) 0.821 (0.814,0.829)

N = 2000, βg = 0.45

Full sample 0.827 (0.819,0.834) 0.869 (0.863,0.876)

Random sample 0.527 (0.517,0.537) 0.586 (0.577,0.596)

y-extreme complete case 0.416 (0.407,0.426) 0.475 (0.465,0.485)

y-extreme all case 0.576 (0.567,0.586) 0.640 (0.631,0.650)

z-extreme complete case 0.799 (0.791,0.807) 0.850 (0.843,0.857)

z-extreme complete case (residual) 0.722 (0.713,0.731) 0.850 (0.843,0.857)

z-extreme all case 0.797 (0.789,0.805) 0.850 (0.843,0.857)

z-extreme all case (residual) 0.721 (0.712,0.730) 0.850 (0.843,0.857)

y-extreme binary 0.113 (0.107,0.120) 0.119 (0.113,0.125)

z-extreme binary 0.658 (0.649,0.667) 0.792 (0.784,0.800)

Table 1: Estimated power (with Clopper-Pearson 95% confidence intervals) for single

variant tests at significance level α = 0.05 and with sample size n = N/2; random

sampling, y-extreme sampling and z-extreme sampling. Residual phenotype tests

under the z-extreme sampling design are denoted by (residual). Coefficients β0 = 5,

β1 = 10, β2 = 5, βg = 0.
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p0, p1 0.4, 0.1 0.25, 0.25

N = 20000, βg = 0.15

z-extreme complete case (random) 0.836 (0.828,0.843) 0.881 (0.874,0.887)

z-extreme complete case 0.836 (0.829,0.843) 0.881 (0.874,0.887)

z-extreme all case 0.836 (0.829,0.843) 0.880 (0.874,0.887)

N = 20000, βg = 0

z-extreme complete case (random) 0.049 (0.045,0.054) 0.051 (0.047,0.056)

z-extreme complete case 0.049 (0.045,0.054) 0.051 (0.047,0.056)

z-extreme all case 0.049 (0.045,0.054) 0.051 (0.047,0.056)

N = 10000, βg = 0.21

z-extreme complete case (random) 0.825 (0.818,0.833) 0.871 (0.865,0.878)

z-extreme complete case 0.825 (0.818,0.833) 0.872 (0.865,0.878)

z-extreme all case 0.825 (0.818,0.833) 0.870 (0.864,0.877)

N = 10000, βg = 0

z-extreme complete case (random) 0.052 (0.048,0.056) 0.051 (0.047,0.056)

z-extreme complete case 0.052 (0.048,0.057) 0.051 (0.047,0.056)

z-extreme all case 0.052 (0.048,0.057) 0.051 (0.047,0.056)

N = 2000, βg = 0.45

z-extreme complete case (random) 0.796 (0.788,0.804) 0.842 (0.835,0.849)

z-extreme complete case 0.797 (0.789,0.805) 0.843 (0.835,0.850)

z-extreme all case 0.796 (0.788,0.804) 0.842 (0.834,0.849)

N = 2000, βg = 0

z-extreme complete case (random) 0.048 (0.044,0.052) 0.047 (0.043,0.051)

z-extreme complete case 0.048 (0.044,0.053) 0.047 (0.043,0.052)

z-extreme all case 0.048 (0.044,0.053) 0.047 (0.043,0.051)

Table 2: Estimated power (βg > 0) and type-1 error rates (βg = 0) (with Clopper-

Pearson 95% confidence intervals) for z-extreme sampling and single variant tests

at significance level α = 0.05, applying a score test for random samples, a complete

case test with li and ui as defined for z-extreme sampling, and applying the all case

score test. Sample size n = N/2. Coefficients β0 = 5, β1 = 10, β2 = 5.
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p0, p1 0.4, 0.1 0.25, 0.25

N = 20000, βg = 0

Full sample 0.048 (0.044,0.052) 0.052 (0.048,0.057)

Random sample 0.046 (0.042,0.051) 0.052 (0.047,0.056)

y-extreme complete case 0.048 (0.044,0.053) 0.050 (0.046,0.054)

y-extreme all case 0.048 (0.044,0.052) 0.051 (0.047,0.055)

z-extreme complete case 0.048 (0.044,0.053) 0.052 (0.048,0.056)

z-extreme complete case (residual) 0.028 (0.025,0.031) 0.052 (0.048,0.056)

z-extreme all case 0.048 (0.044,0.053) 0.052 (0.048,0.056)

z-extreme all case (residual) 0.028 (0.025,0.031) 0.052 (0.048,0.056)

y-extreme binary 0.050 (0.046,0.055) 0.052 (0.048,0.057)

z-extreme binary 0.030 (0.027,0.033) 0.051 (0.047,0.056)

N = 10000, βg = 0

Full sample 0.049 (0.045,0.053) 0.052 (0.047,0.056)

Random sample 0.051 (0.047,0.056) 0.051 (0.047,0.056)

y-extreme complete case 0.051 (0.046,0.055) 0.052 (0.048,0.056)

y-extreme all case 0.052 (0.048,0.056) 0.051 (0.046,0.055)

z-extreme complete case 0.049 (0.045,0.053) 0.051 (0.047,0.055)

z-extreme complete case (residual) 0.027 (0.024,0.031) 0.051 (0.047,0.056)

z-extreme all case 0.049 (0.045,0.053) 0.051 (0.047,0.056)

z-extreme all case (residual) 0.027 (0.024,0.031) 0.051 (0.047,0.056)

y-extreme binary 0.054 (0.049,0.059) 0.050 (0.046,0.055)

z-extreme binary 0.031 (0.028,0.034) 0.050 (0.046,0.054)

N = 2000, βg = 0

Full sample 0.050 (0.045,0.054) 0.051 (0.046,0.055)

Random sample 0.050 (0.046,0.055) 0.050 (0.046,0.055)

y-extreme complete case 0.053 (0.049,0.058) 0.049 (0.045,0.054)

y-extreme all case 0.052 (0.048,0.057) 0.048 (0.044,0.052)

z-extreme complete case 0.049 (0.045,0.054) 0.051 (0.046,0.055)

z-extreme complete case (residual) 0.027 (0.024,0.030) 0.050 (0.046,0.055)

z-extreme all case 0.049 (0.045,0.053) 0.050 (0.046,0.054)

z-extreme all case (residual) 0.027 (0.024,0.030) 0.050 (0.046,0.055)

y-extreme binary 0.063 (0.058,0.068) 0.056 (0.051,0.061)

z-extreme binary 0.030 (0.026,0.033) 0.050 (0.046,0.054)

Table 3: Estimated type-1 error rates (with Clopper-Pearson 95% confidence in-

tervals) for single variant tests at significance level α = 0.05 and with sample size

n = N/2; random sampling, y-extreme sampling and z-extreme sampling. Resid-

ual phenotype tests under the z-extreme sampling design are denoted by (residual).

Coefficients β0 = 5, β1 = 10, β2 = 5, βg = 0.
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