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Preface
This master thesis is sort of a continuation of a project which was about commutative
Gröbner bases in Polly Cracker cryptosystems. In the project I only wrote from my own
head and had more of a scholastic angle which lead to inaccuracy in the presentation of
the theory. One of the subjects was to consider graph-3-coloring in the construction of a
public key. Later, this gave me an idea of a way to solve and create sudoku puzzles using
the algorithm of computing Gröbner bases. Due to some occupation with this thesis, I
have not done any further research on the following system of equations:

- Regard every route as a variable, {xi}81
i=1.

- Regard the numbers 2-9 as prime numbers 2,3,5,7,11,13,17,19

- Set up 81 equations, one for each variable, xi, on the form:
(xi − 1)(xi − 2)(xi − 3)(xi − 5)(xi − 7)(xi − 11)(xi − 13)(xi − 17)(xi − 19) = 0

- Set up 27 equations, one for each row, column and square on the form:
xj1 · xj2 · xj3 · xj4 · xj5 · xj6 · xj7 · xj8 · xj9 − 9699690 = 0

The variables, {xjs}9
s=1, are in the same row, column or square, and we have 1 ≤ j ≤ 27.

Notice that 2 · 3 · 5 · 7 · 11 · 13 · 17 · 19 = 9699690. Computing a reduced Gröbner basis for
these 108 equations should make it easy to solve any sudoku (because they only have one
solution), and by considering the reduced basis one could get ideas of how to construct
your own sudokus of different levels.

The chapter 2 of this thesis is given without proof or examples, and I refer the reader
to my project for more details. Of course, it may not be available for the general public,
but there are other works to read about the subject. Later, the reader will observe that
some of the results that are presented, comes from research using Opal [GHK]. This is a
system for computing noncommutative Gröbner bases, but the details of how this work
will not be presented. This is partly due to the lack of availability, but also because it is
not a part of the objective in this thesis.

At last, I would like to thank myself for doing all the writing and thinking.
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Abstract
We present the noncommutative version of the Polly Cracker cryptosystem, which is

more promising than the commutative version. This is partly because many of the ideals
in a free (noncommutative) algebra have an infinite Gröbner basis, which can be used as
the public key in the cryptosystem. We start with a short brief of the commutative case
which ends with the conclusion that the existence of "intelligent" linear algebra attacks
ensures that such cryptosystems are left insecure.

Further, we see that it is hard to prove that noncommutative ideals have an infinite
reduced Gröbner basis for all admissible orders. Nevertheless, in chapter 4 we consider
some ideals for which it seems infeasible to realize a finite Gröbner basis. These are
considered further in a cryptographic setting, and there will be shown that one class of
ideals seems more promising than the others with respect to encountering attacks on the
cryptosystem. In fact, at the end of this thesis we are proposing a way of constructing
a cryptosystem based on this class of ideals, such that any linear algebra attack will not
be successful.

However, many of the results are on experimental level, so there remains a serious
amount of research in order to conclude that we have found a secure cryptosystem.
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1 Introduction

Noncommutative Polly Cracker cryptosystems are a class of public key or asymmetric
cryptosystems. The advantage of these systems compared to private key or symmetric
cryptosystems, is that there is no need to secretly exchange a common decryption key.
Any user of a public key cryptosystem can keep the decryption key, f−1, to themselves
and create an encryption key, f , which is public. The message space, M , and the cipher-
text space, C, are also public, and we have

f : M −→ C

f−1 : C −→ M

where f−1 should be infeasible to obtain for a cryptanalyst by looking at f (or any
other way for that matter). The encryption key, f , is also called the public key, and the
decryption key, f−1, is also called the private key.

In later years, public key cryptosystems have grown in significance due to the in-
creasing use of electronic communications. Here, it is hard to find a trusted channel to
exchange decryption keys in, and therefore a private key cryptosystem is not considered
secure. An example of a public key cryptosystem in use on the internet today is RSA,
which is based on the infeasibility of factoring large integers. However, this system is
deterministic, which means that any message, m ∈ M , will always be encrypted into the
same ciphertext, f : m → c ∈ C. If the message space is relatively small, a cryptanalyst
can exploit this weakness by encrypting all possible messages and find the corresponding
ciphertexts. Now he has knowledge of all the possible forms of c, and any ciphertext he
intercepts is readable.

This disadvantage of deterministic encryption has lead to the introduction of proba-
bilistic cryptosystems. The public key, f , in these systems can be viewed as a "one-to-
many" function where a message, m, can be encrypted into infinitely many variations of
ciphertexts. This means that the function, f , is not injective. Of course, decrypting a
certain ciphertext with the private key, f−1, will always give the same message.

The Polly Cracker cryptosystem was presented in 1993 by Fellows and Koblitz [FeKo],
and is an asymmetric probabilistic cryptosystem. It is based on the theory of Gröbner
bases, which has received much attention following the growth in computational power.
Now, let p be an arbitrary element in a commutative algebra over a finite field, R, where
we have the ideal, I ⊂ R. In general, the security of a Polly Cracker cryptosystem is
based on the intractability of deciding if p ∈ I or p /∈ I, also called the ideal membership
problem. This is later extended to also regard noncommutative algebras.

The main threat to a commutative Polly Cracker cryptosystem is the linear algebra
attack, which is basically a way to correctly decrypt the ciphertext only by looking at
the public key. In fact, there exists no known methods which provide that this system is
resistant to such an attack. This is why people have tried to generalize this cryptosystem
in order to make it secure, by introducing the noncommutative Polly Cracker cryptosys-
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tem. This cryptosystem gives two promising advantages compared to the commutative
case:

- Ideals in a free (noncommutative) algebra are not noehterian, and may therefore
have infinite Gröbner bases.

- The ciphertext are constructed by c = p + m, where p =
∑s

i=1

∑ki
j=1 FijqiHij . The

coefficient of any monomial in c is given by two unknown coefficients of Fij and Hij , and
the linear algebra attack will hopefully not work since the equations are quadratic.

These two points are mainly what caused the research on noncommutative Polly Cracker
cryptosystems. The basic approach is to construct ideals, J ( I, where J has an infinite
Gröbner basis, but I has not.
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2 Commutative Gröbner bases and Polly Cracker

We start up with presenting commutative Gröbner bases used in the Polly Cracker cryp-
tosystem. This is a cryptosystem which is considered to be insecure due to the existence
of a linear algebra attack. There exists many good references for this material, such as
[AdLo] and [Ko] which we refer the reader to for the proofs of the results we present here.

Commutative reduced Gröbner bases are always finite and easier to treat intuitively
than the noncommutative. When you get an understanding of the basics, the step over
to the noncommutative case will go relatively smooth, because you will see that it is
quite similar to the commutative.

2.1 Monomial orders

As you will see later, the computation of Gröbner bases is relying on a well defined multi-
variate polynomial division, and for that, we need a well defined order of the monomials.
We start with defining a monomial.

Definition 2.1. A monomial is a product of powers of variables and is denoted xα,
where x = (x1, x2, .., xn) and α = (a1, a2, .., an) ∈ Nn. ai is the power of the variable xi.
The degree of a monomial is the sum of the powers |α| = a1 + a2 + .. + an.

Remark: It is the vector α which defines the monomial xα. If the monomial is without
a variable xk, then ak i simply equal zero.

For an order of such monomials to be well defined, it has to satisfy the following condi-
tions:
(i) xα > 1 for all |α| 6= 0.
(ii) If xα > xβ , then xαxδ > xβxδ for all δ ∈ Nn.
(iii) Given any α, β ∈ Nn, exactly one of the orders xα > xβ, xα = xβ or xα < xβ holds.

Now we are ready to give the two most important total monomial orders.

The lexicographic order: We have an arbitrary order x1 > x2 > ... > xn and two
vectors α = (a1, a2, .., an) and β = (b1, b2, .., bn), both in Nn. The order of the two mono-
mials, xα and xβ , is depending on the vector ω = α − β. If the first element from the
left, unequal zero, in ω is positive, then we have the order xα > xβ . If it is negative, the
order will be xα < xβ . (Simple summarize: Look first at the order, then the degree).

The degree-lexicographic order: We have an arbitrary order x1 > x2 > ... > xn

and two vectors α = (a1, a2, .., an) and β = (b1, b2, .., bn), both in Nn. The monomial
order is xα > xβ if |α| > |β|. If |α| = |β|, we use the lexicographic order. (Simple
summarize: Look first at the degree, then the order.)
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Definition 2.2. We have a polynomial p(x) = c1xα1 + c2xα2 + .. + crxαr where xα1 >
xα2 > .. > xαr for a given order. We define:
The leading term of p(x): LT(p(x)) = c1xα1

The leading monomial of p(x): LM(p(x)) = xα1

The leading coefficient of p(x): LC(p(x)) = c1

Remarks
(i) The coefficients of the monomials has no influence on the order.
(ii) The leading monomial in a polynomial can vary depending on the monomial order
that are being used.

2.2 Multivariate polynomial division

The multivariate polynomial division is very similar to the one variable polynomial di-
vision, but there are three important differences. Nevertheless, this is fairly easy to get
hold of, so i will not present a division algorithm here. The three differences are:

(i) The outcome of the polynomial division depends on which order we use on the
divisors, and is in general not unique. (In the case with one variable, the outcome is
always unique.)

(ii) You need to have a total order on the monomials so the polynomial division is
consistent. (In the case with one variable, a total order is given automatically by the
degree of the monomials.)

(iii) When dividing a polynomial, p, by a polynomial, f , consider if each term in p
is divisible by LT(f). (In the case with one variable, the division stops if LT(f) does not
divide LT(p), without considering the rest of the terms in p.)

Definition 2.3. Let p be a polynomial and F = {f1, f2, .., fr} a set of r polynomials in
a certain order. We denote the multivariate polynomial division of p by F as

p
F−→ p′

where none of the terms in p′ are divisible by any term in LT(F ) = {LT(f1), LT(f2), .., LT(fr)}.
We say that p is reduced to p′ modulo F .

Remark: In general, p′ depends on the order on the set, F , but the next section presents
special sets of polynomials where a polynomial order has no impact on the outcome of
polynomial division by the set.

2.3 Gröbner bases

Let R = F[x] be a polynomial ring where x = (x1, x2, .., xn) (n commuting variables)
and F is any field. The elements of R are polynomials which consist of finite sums of
terms on the form cxα, where c ∈ F is a coefficient of a monomial xα.
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All ideals of R are finitely generated, which means that every ideal, I, can be gener-
ated by a finite set of polynomials. The proof of this is based on the Hilbert basis
theorem [AdLo, page 5]. An arbitrary subset S ⊂ R, generates an ideal, Is, which we
denote 〈S〉 = Is. The ideal Is is the smallest ideal of R that contains S, and S is called
a generating set or a basis for Is.

Definition 2.4. [Ra] Let G = {g1, g2, .., gt} be a set of t polynomials which generates an
ideal 〈G〉 = I ⊂ R = F[x]. If for all p ∈ I and any order on G we have p

G−→ 0, then G
is called a Gröbner basis for I. Equivalently, if G is a Gröbner basis for I, then:
(i) 〈LT(G)〉 = 〈LT(I)〉.
(ii) For f ∈ R and any order on G, the remainder f

G−→ f ′ is unique and is called the
normal form of f which we denote N(f) = f ′.
(iii) p ∈ I if and only if p =

∑t
i=1 higi with LM(p) = max1≤i≤t(LM(hi) LM(gi)).

Remark: In part (iii) each hi is given from the polynomial division of p by the corre-
sponding gi. If G was not a Gröbner basis for I, the polynomial division by G would in
most cases not reveal a linear combination p =

∑t
i=1 higi for some p ∈ I. This means

that p
G−→ p′ 6= 0 = N(p), which would make us conclude that that p /∈ I.

It is not hard to see the disadvantage in not having a Gröbner basis for the ideal when
we are operating in a quotient ring R/I. The polynomial division modulo I is clearly not
consistent if the basis of I is not a Gröbner basis. This is why we need a way to obtain
a Gröbner basis for an ideal, I, given 〈f1, .., fr〉 = I where r ≥ 2.

Constructing a Gröbner basis

The essential step in finding a way to construct Gröbner bases for ideals, is Buchberger’s
Theorem where the S-polynomial is introduced.

Definition 2.5. Let f1, f2 ∈ R = F[x] and L = lcm(LM(f1), LM(f2)). The linear
combination S(f1, f2) = L

LT(f1)f1 − L
LT(f2)f2 is called the S-polynomial of f1 and f2.

Theorem 2.6. Buchberger’s Theorem [Bu]
Let G = {g1, g2, .., gt} be a set of polynomials in F[x]. G is a Gröbner basis for the ideal
I = 〈g1, g2, .., gt〉 if and only if S(gi, gj)

G−→ 0 for all i 6= j.

Buchberger’s theorem leads to Buchberger’s algorithm. The input of the algorithm is a
basis for an ideal, 〈F 〉 = 〈f1, f2, .., fr〉 = I. It uses all the different combinations of the
fi’s to create S-polynomials, which are reduced modulo F to a polynomial p. Every p 6= 0
is added to the extended basis F ∗, and makes combinations with the other polynomials
in the basis to create other S-polynomials. This continues until all S-polynomials can be
reduced to zero modulo F ∗. Then F ∗ is a Gröbner basis for I. The termination of this
algorithm is given by using the Hilbert basis theorem.
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Buchberger’s Algorithm

INPUT: Ideal generating polynomials, F = {f1, f2, .., fs} ∈ I ⊂ F[x]
OUTPUT: A Gröbner basis, G = {g1, g2, .., gt} for I.
INITIALIZE: G := F , H := {{fi, fj}|fi 6= fj ∈ F}.
(H consists of all possible pairs of the input polynomials)

WHILE H 6= ∅ DO

Choose arbitrarily {f, g} ∈ H
(Going through all polynomial pairs)

H := H − {f, g}
(Removing our chosen polynomial pair)

S(f, g) G−→ h
(Constructing the S-polynomial and reducing it to h mod G)

IF h 6= 0 THEN
(Checking if the basis, G, needs to be extended)

H := H
⋃{{gi, h}| for all gi ∈ G}

(Finding all possible pair combinations with h)

G := G
⋃{h}

(Extending the basis, G, by h)

Remark: The Gröbner basis produced by this algorithm is not unique, in fact, an
ideal can have infinitely many Gröbner bases.

Reduced Gröbner basis

When we compute a Gröbner basis for an ideal from Buchberger’s algorithm, it will most
likely contain redundant polynomials. These polynomials can be left out from the basis,
without loosing the property of a Gröbner basis.

Definition 2.7. We have an ideal I = 〈G〉, where G = {g1, g2, .., gt} is a Gröbner basis.
G is called a reduced Gröbner basis for I, if gi

G∗−−→ gi where G∗ = G\{gi} and LC(gi) = 1
for all gi ∈ G. Every ideal, I ∈ R, has a unique and reduced Gröbner basis for a given
order.
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Remark: To compute a reduced Gröbner basis from a non-reduced Gröbner basis, we
only need to consider the following:
(i) If gk

G∗−−→ 0, then gk has to be left out from the basis.
(ii) If gk

G∗−−→ g′k, we remove gk from the basis and replace it with g′k.

This can be done after using Buchberger’s algorithm, but the fastest way to get the
unique and reduced Gröbner basis for an ideal, is to modify the algorithm so that you
remove redundant polynomials during the computation. It is obvious that polynomial
division by a reduced Gröbner basis is in general more efficient than by a non-reduced
Gröbner basis.

2.4 The commutative Polly Cracker cryptosystem

Polly Cracker is a cryptosystem introduced by [FeKo] where the theory of Gröbner bases
is essential. The security is based on the intractability of finding a Gröbner basis for
an ideal in polynomial time. A person without access to a Gröbner basis for an ideal,
I = 〈F 〉, can not be sure of what the normal form of p ∈ R/I is. In other words, the poly-
nomial division p

F−→ p′ is not consistent. We give now a description of this cryptosystem.

We have a reduced Gröbner basis, G = {g1, g2, .., gt}, for an ideal in a polynomial ring,
I ⊂ Fq[x], as the private key of the cryptosystem. Fq is a finite field.

The public key is a set of polynomials B = {pj}s
j=1 ∈ I where every pj is chosen as a

linear combination of the polynomials gi in the private key. The goal is to construct these
linear combinations in such a way that finding a Gröbner basis for 〈B〉 computationally
infeasible.

The message space, M , consists of polynomials on the normal form of the residue
classes in the quotient ring Fq[x]/I. We wish to send the message m ∈ M . The encryption
is achieved by adding the message with a linear combination of the polynomials in the
public key. We obtain a ciphertext, c = r + m, where r =

∑s
j=1 ujpj . The polynomials

{uj}s
j=1 are chosen arbitrarily.
Decryption is achieved by polynomial division of c by a Gröbner basis G′. As we

know, the outcome of this polynomial division is the unique normal form of c, namely m

(c G′−→ m, because r ∈ I[x]).

Remark: If you obtain a Gröbner basis, G′, for an ideal, 〈G′〉 = I, the computa-
tions to get the reduced Gröbner basis, G, can be done efficiently. This means that any
Gröbner basis should be computational infeasible to achieve.

We summarize:
Private key: The reduced Gröbner basis G = {g1, g2, .., gt} for an ideal, I[x] ∈ Fq[x].
Public key: A set of polynomials, B = {pj}s

j=1, where pj =
∑t

i=1 higi, is "cleverly"
constructed.
Message space: All polynomials q(x), where q(x) G−→ q(x).
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Encryption: c = r + m, where r =
∑s

j=1 ujpj , message: m ∈ Fq[x]/I[x].

Decryption: Reduction of c modulo G: c
G−→ m.

Attacks on the Polly Cracker cryptosystem

When attacking this kind of cryptosystem, there are two possible goals of achievement.

(i) You examine the polynomials in the public key to find weakness in their construction.
This can help you reveal the private key. If you succeed, every future message can be read.

(ii) You obtain a encrypted message, c, and compare it to the polynomials in the public
key. If c is poorly constructed, it can be sorted out which terms of c is the message, m.
If you succeed here, you only get to read this one message.

There exists no results which states that the private key (a Gröbner basis) will stay
unrevealed for an attack of the type described in part (i), but Koblitz [Ko] suggests
ways of constructing the public key such that finding a Gröbner basis is a NP-complete
problem. Nevertheless, it is the part (ii) which has caught the most attention from
cryptanalysts. Koblitz describes an attack of the type in part (ii), called a "linear al-
gebra attack". The original form of this attack has a weakness, but H. W. Lenstra, Jr.
proposed an improved version of it, called the "intelligent linear algebra attack".

The intelligent linear algebra attack
We obtain an encrypted message c = r + m, where r =

∑s
j=1 ujpj and m ∈ M . It is

reasonable to believe that a monomial multiple of an arbitrary polynomial in the public
key, pk, is presented as terms in c.

When constructing the ciphertext, we see that an unknown monomial, d, in uk is
multiplied with pk such that d · pk appears in c, and then from pk, it should be easy to
recognise the polynomial d · pk. It follows that the coefficient of d will be revealed. This
can be done several times for each polynomial, pj , in the public key. The monomials in
c that can not be written as any monomial multiple of some polynomial in {pj}s

j=1, are
most likely the message, m.

Remark: This method can be extended to also consider the coefficients of the poly-
nomials in the public key. A scalar multiple of the coefficients of the monomials in pk

may be presented as coefficients of some monomials, d · pk, in c.

Lenstra has come up with a suggestion of what to do to provide security from this
attack. When constructing the ciphertext, the encryptor should build monomials, dj,i,
into the polynomials, uj , such that dk,i (appearing in uk) times some term in pk is can-
celled in the entire sum. The number of the monomials, dj,i, should not be too small. If
none of the monomials are cancelled, the attack will succeed without any problems at all.
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Despite Lenstra’s suggestion, the existence of this attack has made T.Mora and others
[Mo] conjecture that a commutative Polly Cracker cryptosystem can not be constructed
in a way that gives sufficient security.
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3 Noncommutative Gröbner bases

This section will present the basics of how to compute a Gröbner basis for a (noncom-
mutative) free algebra over a finite field. As mentioned before, many of these Gröbner
bases will be infinite, and that is what prompted the studies of noncommutative Gröbner
bases in a Polly Cracker cryptosystem.

Most of the theory we present here holds for more general classes of noncommutative
algebras, but a proper understanding of the material should come fairly easy if you are
well aquainted with commutative Gröbner bases over polynomial rings. The notation we
will use for a free algebra is R = Fq〈x〉, where Fq is a finite field and x = x1, x2, .., xn

represent n non-commuting variables.

3.1 Noncommutative monomial orders

Monomials in a free algebra have the same nature as words in the alphabet, and are
therefore also called strings. The only difference to be aware of, is that in this setting,
the dictionary order is not an acceptable order to use.

Definition 3.1. A monomial or string in a free algebra, R, is a noncommutative product
of variables and is denoted ~x = xσ1xσ2 ..xσs where 1 ≤ σi ≤ n.

Remark: A monomial/string, ~x, is defined by the variable index values {σi}s
i=1 and the

size of 0 ≤ s < ∞ (the string length). We define a monomial where s = 0 as 1.

The monomial orders in the noncommutative case needs to satisfy some conditions to
avoid infinite descending chains of monomials. These conditions are written differently
from the commutative case, but the content is the same. A monomial order is called
admissible if it for all monomials, p, q, r, s, satisfies:

(i) If p > q, then s · p · r > s · q · r.
(ii) If p = s · r, then p > s and p > r.

Now we are ready to give the two most important noncommutative admissible mono-
mial orders.

The (left) length-lexicographic order: We have an arbitrary order x1 > x2 >
... > xn and two monomials ~x1 = xa1xa2 ..xas1

and ~x2 = xb1xb2 ..xbs2
where we denote

the monomial length as l(~xi) = si. The order is ~x1 > ~x2

(i) if l(~x1) > l(~x2) (s1 > s2).
(ii) if l(~x1) = l(~x2) (s1 = s2) and for some 1 ≤ k ≤ s1, we have xak

> xbk
where

xa1xa2 ..xak−1
= xb1xb2 ..xbk−1

.
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The (left) weight-lexicographic order: We have an arbitrary order x1 > x2 > ... >
xn where every variable, xi, has a scalar weight w(xi) ∈ N. The weight of a monomial is
denoted W (~xi) =

∑si
j=1 w(xσj ). We order two monomials ~x1 > ~x2

(i) if W (~x1) > W (~x2).
(ii) if W (~x1) = W (~x2), by ~x1 > ~x2 by the (left) length-lexicographic order.

Remark: If every variable in a weight-lexicographic order has weight w(xi) = 1, it is
the same as the length-lexicographic order. Both orders can be modified by considering
the strings from the right.

Definition 3.2. We have a polynomial f = c1~x1 + c2~x2 + ..+ cr~xr ∈ R where ~x1 > ~x2 >
.. > ~xr for an arbitrary admissible order, and an ideal I ⊂ R. We define
the tip of f : tip(f) = ~x1

the tip coefficient of f : Ctip(f) = c1

the tail of f : tail(f) = f − Ctip(f) tip(f)
the tips of a set F : tip(F ) = {tip(f)| f ∈ F}
the set of residue classes in R/I: NonTip(I) = {N(f)| f ∈ R}
Remark: The tip of a polynomial can vary depending on the monomial order, and
corresponds to the leading monomial in the commutative case.

3.2 Noncommutative polynomial division

Polynomial division in the noncommutative case is based on the same principals as in
the commutative, but some of the aspects are more complicated. Say we want to divide
(reduce) a polynomial, p, by a set of polynomials F = {f1, f2, .., fs}. Then we need to
find monomials, uij and vij , and integers k1, k2, .., ks ∈ N such that:
(i) p

F−→ r ⇒ p =
∑s

i=1

∑ki
j=1 uij · fi · vij + r.

(ii) The remainder is a polynomial, r, which is not divisible by any fi.

Remark: The monomials uij and vij are elsewhere in literature considered as poly-
nomials. That is in my opinion not necessary. If uij and vij are polynomials,

∑k
j=1 ujfvj

can always be rewritten as a sum over monomials
∑d

j=1 u′jfv′j where d ≥ k for monomials
u′j and v′j in the polynomials uj and vj respectively.

Example 1
In this example we only divide a polynomial, p, by one polynomial, f , which compared
to the formula above, gives us i = 1 and leads to p =

∑k
j=1 uj · f · vj + r. The order in

use is the length-lexicographic order with x > y.

a) We want to divide the monomial p = x2y3, by the polynomial f = xy − x. Ob-
serve that since xy > x, it follows that tip(f) = xy and Ctip(f) = 1. By the first
division we get p = x · f · y2 + x2y2, and further we see that there are three steps of
division:
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p = x · f · y2 + x · f · y + x · f · 1 + x2 = x · f · (y2 + y + 1) + x2

which we also can write p
f−→ x2. In this case we see that the monomials from the three

steps of division can be merged into one (k = 1) multiple of f with polynomials u1 = x
and v1 = (y2 + y + 1). As mentioned above, this can also be written as three (k = 3)
multiples of f with the monomials v1 = y2, v2 = y and v3 = 1 on the right side.

b) Now we divide the monomial p = x2zy3 by the polynomial f = xzy − z and get
two steps of division,

p = x · f · y2 + 1 · f · y + zy

which can be written p
f−→ zy. It is clear that this sum (k = 2) over monomials can not be

rewritten as polynomials. If we try, we see that p = (x+1)·f ·(y2+y)−x·f ·y−1·f ·y2+zy,
which does not contribute to more simplicity. This observation supports my remark of
using sums over monomials rather than polynomials. In comparison with the commuta-
tive case, p can be written as (xy2 + y) · f + zy.

We now present a noncommutative division algorithm in pseudocode1. As in the
commutative case, the outcome of this polynomial division depends on the order of the
divisors {fi}s

i=1, and there is no guarantee that p
F−→ r = N(p). As we saw in definition

2.4, N(p) is the normal form of p.

1Some of the disagreements with the algorithm in [Ra] are that it is not restarting the division by
the set, F , after reducing the tip of the dividend. If further the tip is not divisible by F , the algorithm
stops because it does not change from "true" to "false" in the checking of division occurred.
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The noncommutative division algorithm

INPUT: f1, f2, .., fs, p
OUTPUT: ti, uij , vij , r, for 1 ≤ i ≤ s and 1 ≤ j(i) ≤ ti
INITIALIZE: k1, k2, .., ks := 0, r := 0, h := p, i := 1

WHILE (h 6= 0) DO

WHILE (i ≤ s) DO
(Going through all the fi’s)

IF tip(h) = u · tip(fi) · v for monomials u, v, THEN
(Checking if tip(h) can be divided by fi)

ki := ki + 1
(Counting one more division by fi)

uiki := (Ctip(h)/Ctip(fi)) · u
(Adapting the coefficient so we can eliminate tip(h))

viki := v

(The proper coefficient has been taken care of in uiki)

h := h− uiki · fi · uiki

(Reducing h by fi so that tip(h) is eliminated)

IF (h 6= 0) THEN i := 1
(When h is reduced to h′ 6= 0, we need to start over with all the fi’s)

ELSE i := s + 1
(Terminating the while loop if h is reduced to 0)

ELSE i := i + 1
(Checking if the next fi divides h)

IF (h 6= 0) THEN

r := r + Ctip(h) · tip(h)
(If none of the fi’s divide the tip of h, we put it in the remainder)

h := tail(h)
(Removing the non-dividable tip of h so the algorithm can continue)
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3.3 Noncommutative Gröbner bases

Let R = Fq〈x〉 be a free algebra in n non-commuting variables where Fq is a finite field.
An ideal, I ⊂ R, is two-sided if f · g ·h ∈ I for all g ∈ I and f, h ∈ R. Left or right ideals
will not be considered here. If G = {g1, g2, g3, ..} is a generating set or basis for I, the
elements of I = 〈G〉 can be written as finite sums on the form

∑t
i=1

∑
j fijgihij where

fij , hij ∈ R are monomials. As earlier mentioned, an ideal in a noncommutative algebra
might be infinitely generated.

Definition 3.3. [Ra] Let G = {g1, g2, g3, ..} be a set of polynomials which generates a
two-sided ideal 〈G〉 = I ∈ R = Fq〈x〉. If for all p ∈ I and any order on G we have p

G−→ 0,
then G is called a Gröbner basis for I. Equivalently, if G is a Gröbner basis for I, then:
(i) 〈tip(G)〉 = 〈tip(I)〉.
(ii) For f ∈ R and any order on G, the remainder f

G−→ f ′ is unique, and is called the
normal form of p which we denote N(f) = f ′.
(iii) p ∈ I if and only if p =

∑
i

∑ki
j=1 fijgihij with tip(p) = maxi,1≤j≤ki(tip(fij) tip(gi) tip(hij)).

Remarks
(i) For any ideal, I ⊂ R, we have R = I ⊕ NonTip(I), which means that every f ∈ R
can be written uniquely as f = if + N(f) where if ∈ I and N(f) ∈ NonTip(I). Only
division by a Gröbner basis for I can guarantee the unique normal form as outcome.
(ii) We will of course only consider finitely generated ideals, but the Gröbner bases may
be infinite.

Constructing a noncommutative Gröbner basis

The construction of a noncommutative Gröbner basis for an ideal follows the same proce-
dure as in the commutative case. The essential difference is that this can go on forever due
to the possibility that the ideal has an infinite Gröbner basis. We start with presenting
the noncommutative analogue to the S-polynomial.

Definition 3.4. Let f1, f2 ∈ R = Fq〈x〉 and a, b be monomials such that
(i) tip(f1) · a = b · tip(f2).
(ii) a is not divisible by f2 and b is not divisible by f1.

Then f1 and f2 have a overlap relation (or overlap) which we write

O(f1 · a, b · f2) =
f1 · a

Ctip(f1)
− b · f2

Ctip(f2)

Remarks
(i) If a = 1, then f2 divides f1. If b = 1, then f1 divides f2.
(ii) tip(O(f1 · a, b · f2)) < tip(f1) · a = b · tip(f2)
(iii) In contrary to the commutative S-polynomial, each polynomial pair can have several
overlaps and there may also be self-overlaps. This you have to consider when construct-
ing a Gröbner basis for an ideal.
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Example 2
Let R = Z7〈x, y, z〉 where we use the length-lexicographic order with x > y > z. We
look at an ideal, I = 〈G〉 = 〈g1, g2〉, where g1 = yxz − yz and g2 = zy − x. In order to
find a Gröbner basis for I, we compute the two overlap relations between g1 and g2 and
reduce them modulo I:

O(g1 · y, yx · g2) = yxzy − yzy − (yxzy − yxx) = yxx− yzy
g2−→ yxx− yx = g3

O(g2 · xz, z · g1) = zyxz − xxz − (zyxz − zyz) = xxz − zyz
g2−→ xxz − xz = g4

We add g3 and g4 to the basis G and find four more overlaps in G:

O(g2 · xx, z · g3) = xxx− zyx
g2−→ xxx− xx = g5

O(g4 · y, xx · g2) = xzy − xxx
g2,g5−−−→ 0

O(g3 · z, y · g4) = yxz − yxz = 0
O(g3 · xz, yx · g4) = yxxz − yxxz = 0

Further we see that g5 has two overlaps with each of g3 and g4, and two self-overlaps
where all of them are reduced to zero modulo G = {g1, g2, g3, g4, g5}. This means that G
is a finite Gröbner basis for I.

As the example shows, the overlap relations are used to construct a Gröbner basis
for an ideal in the same way as the S-polynomials do in the commutative case. But
there is one additional detail to take in concern, and that is why we present the following
definition.

Definition 3.5. Let F = {f1, f2, f3, ..} be a generating set for an ideal, I ⊂ R = Fq〈x〉.
We say F is tip-reduced if no tip(fi) divides tip(fj) for all fi 6= fj ∈ F .

If in addition, all monomials h ∈ tip(I) can be written as h = r1 · t · r2 for any
t ∈ tip(F ) and r1, r2 ∈ R, we say that F is completely tip-reduced.

Remark: Every completely tip-reduced set, F , has a unique set of tips, tip(F ), which
may be infinite, and it follows that if a monomial is divisible by any element in tip(I), it
is also divisible by some element in tip(F ).

Example 3
Let F = {f1, f2} generate an ideal I, where f1 = xxz − z and f2 = xxxzy − y, us-
ing the length-lexicographic order with x > y > z. We obtain a tip-reduced gener-
ating set for the ideal by dividing f2 with f1, such that f2

f1−→ xzy − y := f2 (up-
dated). We can find out if the set is completely tip-reduced by considering overlaps in
F = {f1 = xxz−z, f2 = xzy−y}. One overlap relation is O(f1 ·y, x ·f2) = xy−zy, which
gives us the tip xy ∈ tip(I). We see clearly that xy can not be written as a multiple of
tip(f1) or tip(f2), thus F is not a completely tip-reduced set.
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Now we present the termination theorem which is the noncommutative version of
Buchberger’s theorem and leads to a noncommutative version of Buchberger’s algorithm.
The proof is given using G. Bergman’s Diamond Lemma [Be]. The algorithm may not
terminate because the input ideal, I = 〈f1, f2, .., fs〉, has possibly a infinite Gröbner
basis.

Theorem 3.6. The termination theorem
Let G = {g1, g2, g3, ..} be a possible infinite set of tip-reduced polynomials in Fq〈x〉. G is
a Gröbner basis for the ideal I = 〈g1, g2, g3, ..〉 if O(gi · a, b · gj)

G−→ 0 for all gi, gj ∈ G
where a and b are monomials.

Buchberger’s algorithm modified for noncommutative polynomial rings [Bu2]

INPUT: A tip-reduced set F = {f1, f2, .., fs}.
OUTPUT: A Gröbner basis, G = {g1, g2, g3, ..} for I = 〈F 〉.
INITIALIZE: G := F , H := {{fi, fj}|fi 6= fj ∈ F}.
(H consists of all possible pairs of the input polynomials)

WHILE H 6= DO

Choose arbitrary {u, v} ∈ H
(Going through all polynomial pairs)

H := H − {u, v}
(Removing our chosen polynomial pair)

FOR each overlap relation of u, v DO

O(u · a, b · v) G−→ h
(Constructing the overlap relations and reducing it to h mod G)

IF h 6= 0 THEN
(Checking if the basis, G, needs to be extended)

H := H
⋃{{g, h}| for all g ∈ G}

(Finding all possible pair combinations with h)

G := G
⋃{h}

(Extending the basis, G, by h)
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Remarks
(i) As in the commutative case, this algorithm does not create a unique Gröbner basis.
The uniqueness is given for the reduced Gröbner basis.
(ii) If the input ideal does not have a finite Gröbner basis, we can still obtain a partial
finite Gröbner basis by terminating the algorithm after a certain number steps.

The observant reader will notice that the demand of a tip-reduced polynomial set differs
from the commutative case. This demand is to guarantee that the noncommutative ver-
sion of Buchberger’s algorithm gives us a Gröbner basis as output, and prevent a possible
infinitely long running time of the algorithm, even if the input ideal has a finite Gröbner
basis. If you do not use tip-reduced polynomials, you have to take some precautions, as
the following example shows.

Example 4
a) Let Fq〈x, y, x〉 be a free algebra where we use the length-lexicographic order with
x > y > z. We want to find a Gröbner basis for the ideal I = 〈G〉 = 〈g1, g2, g3〉 where
g1 = xy − x, g2 = yxyz − xz and g3 = zxyyxy − x.

We easily see that tip(g1) divides tip(g2) and tip(g3), and we get
g2

g1−→ yxz − xz := g2 (reduced) and
g3

g1−→ zxx− x := g3 (reduced)
Then we find the overlap relations:

O(g1 · xz, x · g2) = xxz − xxz = 0
O(g2 · xx, yx · g3) = xzxx− yxx

g3−→ yxx− xx = g4

O(g3 · y, zx · g1) = xy − zxx
g3,g1−−−→ 0

We add the polynomial g4 = yxx − xx to the basis, G, and find the new overlap
relations:
O(g1 · xx, x · g4) = xxx− xxx = 0
O(g4 · y, yx · g1) = xxy − yxx

g4,g1−−−→ 0
This means that {g1, g2, g3, g4} = G is indeed a finite Gröbner basis for I.

b) Now we try to find a Gröbner basis without tip-reducing G at the beginning. We find
the overlap relations:
O(g1 · xyz, x · g2) = xxyz − xxz

g1−→ xxz − xxz = 0
O(g3 · xyz, zxyyx · g2) = zxyyxxz − xxyz

g1−→ zxxxz − xxz = g4

O(g3 · z, zxy · g2) = zxyxz − xz
g1−→ zxxz − xz = g5

O(g2 · xyyxy, yxy · g3) = xzxyyxy − yxyx
g3,g1−−−→= yxx− xx = g6

O(g3 · 1, zxyy · g1) = zxyyx− x
g3−→ zxx− x = g7

Here we see that overlap relations between g4 and g5 will give infinitely many poly-
nomials on the form zxiz − xi−1z. To prevent this, it is crucial that we discover g7,
which can reduce these polynomials to zero.

If we compute every overlap relation by turn and checking if the remainder, gi 6= 0,
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reduces any other polynomial in the basis, this problem will most likely not occur. (If
we did that to begin with, we would have started with a tip-reduced set of polynomials.)
An arbitrary selection between all possible overlap relations could clearly cause some
problems by not discovering O(g3 · 1, zxyy · g2)

g3−→ zxx− x = g7.
Further. we use g7 to reduce g4 and g5 to zero, and add the polynomials g6 = yxx−xx

and g7 = zxx− x to the basis, G, and find the new overlap relations:
O(g7 · y, zx · g1) = zxx− xy

g7,g1−−−→ 0
O(g6 · y, yx · g1) = xxy − yxx

g1,g6−−−→ 0
O(g1 · xx, x · g6) = xxx− xxx = 0
O(g2 · xx, yxy · g7) = xzxx− yxyx

g7,g1,g6−−−−−→ 0
O(g3 · xx, zxyyx · g6) = zxyyxxx− xxx

g1,g7−−−→ xxx− xxx = 0
It is clear that {g1, g2, g3, g6, g7} = G′ is not a Gröbner basis for I, and a simple

example shows that yxz
G′−→ yxz but yxz

G−→ xz. If we now reduce the polynomials we
had at the start, g2 and g3, we see that g3

g1,g7−−−→= 0 and g2
g1−→= yxz−xz and we obtain

the same Gröbner basis we found in part a) of the example.
We see that the demand of tip-reduction is just to avoid issues with reduction in

the algorithm. The same Gröbner basis can be obtained from a polynomial set which
is not tip-reduced if you modify the algorithm with the necessary reductions, but it is
obvious that it is far more easy to just tip-reduce the set before starting on the algorithm.

c) We now look at the commutative version of the ideal, I = 〈g1, g2, g3〉, where we
rewrite the polynomials g1 = xy − x, g2 = xy2z − xz and g3 = x2y3z − x. We use
the degree-lexicographic order with x > y > z. Without tip-reducing, we find the S-
polynomials:
S(g1, g2) = xyz − xz = g4

S(g1, g3) = x2y2z − x
g1−→ x2z − x = g5

S(g2, g3) = x2yz − x
g1−→ g5

We continue computing the S-polynomials
S(g1, g4) = xz − xz = 0
S(g2, g4) = xyz − xz

g4−→ 0
S(g3, g4) = x2y2z − x

g2,g5−−−→ 0
S(g1, g5) = x2z − xy

g1,g5−−−→ 0
S(g2, g5) = x2z − xy2 g1,g5−−−→ 0
S(g3, g5) = xy3 − x

g1−→ x− x = 0
S(g4, g5) = x2z − xy

g1,g5−−−→ 0

G′ = {g1, g2, g3, g4, g5} is a Gröbner basis for I with several redundant polynomials. If
we look at the noncommutative case in part b), the noncommutative polynomial yxz−xz
was not discovered and was the reason why we did not obtain a Gröbner basis. In both
cases we can find this polynomial (yxz − xz or xyz − xz) by dividing g2 by g1, but in
the commutative case, it was also revealed by S(g1, g2).

Nevertheless, we find the commutative reduced Gröbner basis G = {g1, g2} where
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g1 = xy − x and g2 = x2z − x, and observe that the commutative analogues to the
noncommutative polynomials, yxz − xz and yxx− xx, are reduced to zero by g1.

Reduced noncommutative Gröbner basis

The definition of a noncommutative reduced Gröbner basis is formulated differently than
in the commutative case, but both definitions provides uniqueness. The noncommutative
definition has a lack of focus on the computational aspects and is not that intuitive.

Definition 3.7. We have an ideal I ⊂ Fq〈x〉 and F as a completely tip-reduced generating
set of I with Ctip(f) = 1 for all f ∈ F . Then the reduced Gröbner basis for I is
G = {ti −N(ti)} for all ti ∈ tip(F ).

Remark: For all gi ∈ G, tip(gi) = ti ∈ tip(F ) and tail(gi) = N(ti) ∈ NonTip(I).

This gives the same result as the definition in the commutative case, except for the
possibility of an infinite basis, 1 ≤ i ≤ ∞. We see that the tips of the reduced Gröbner
basis are equal the tips of the completely tip-reduced set, F , and the tail of a polynomial
in the basis is not divisible by any element in tip(I), which is exactly the result of the
definition in the commutative case.

Example 5
Look at I = 〈G〉 where G = {g1 = xyz−xzy, g2 = xz−yy} using the length-lexicographic
order with x > y > z. We observe that there are no overlaps between g1 and g2, which
means that G is a finite Gröbner basis for I. In addition we see that tip(g1) and tip(g2)
does not divide each other, and we can then conclude that G is a completely tip-reduced
set.

Since there are only two monomials in the unique set of tips, tip(G) = {t1 =
xyz, t2 = xz}, the reduced Gröbner basis will also only consist of two polynomials,
g1 = t1 −N(t1) = xzy −N(t1) and g2 = t2 −N(t2) = xz −N(t2). The normal forms of
t1 and t2 can fortunately be computed because we have a Gröbner basis. We get

N(t1): xyz
g1−→ xzy

g2−→ yyy

N(t2): xz
g2−→ yy

which gives us the reduced Gröbner basis G = {g1 = xyz − yyy, g2 = xz − yy}

Remark: Using the commutative definition, we would have obtained the reduced Gröb-
ner basis by g1

g2−→ xyz − yyy.

It is worth noticing that the noncommutative definition is taking starting point in the
unique set of tips from a completely tip-reduced generating set for an ideal, in contrary
to the commutative case where you start with a Gröbner basis. The two problems that
occur is how to find a completely tip-reduced generating set and how to compute the
normal form N(t) in R/I of a monomial ti ∈ tip(F ).
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It is obvious that both these problems can be solved with a Gröbner basis, G, for I,
by reducing the set tip(G) to find tip(F ), and reducing ti

G−→ N(ti). In practice, you are
doing the same thing as in the commutative case, namely removing all redundant polyno-
mials and monomial factors, and it seems clear that the definition from the commutative
case can be used in the noncommutative case, and vice versa.
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4 Infinite Gröbner bases

In a free algebra, Fq〈x〉, there exists ideals with infinite Gröbner bases which is of cryp-
tographic interest. In fact, most of the ideals are believed to have infinite Gröbner bases,
but proving them to be infinite is hard due to a lack of research on this subject. How-
ever, there exists techniques to realize finite Gröbner bases, which has to be taken in
consideration.

T. S. Rai [Ra] has made use of a system called Opal [GHK] to compute Gröbner
bases and partial Gröbner bases in search for a proper class of ideals to use in the Polly
Cracker cryptosystem. Due to the existence of techniques to realize finite Gröbner bases,
we need ideals which have infinite Gröbner bases for all admissible orders.

In comparison to the commuative case, we see that a cryptanalyst in both cases wants
to find a Gröbner basis, but the methods of finding them are different. In the commutative
case the security is based on the computational time, which has to be so large that
computing a Gröbner basis for a given order is infeasible. In the noncommutative case,
the security is based on using an ideal with infinite Gröbner bases for all admissible
orders. It is obvious that when you try to compute a Gröbner basis for such an ideal,
the running time is infinite. The cryptanalyst tries out all possible admissible orders in
search for a finite Gröbner basis.

4.1 Ideals with infinite Gröbner bases

It is pretty easy to find ideals which have an infinite reduced Gröbner basis. If you
consider a set of polynomials with several overlaps, you will most likely succeed. In
this section we look at some principal ideals and their infinite Gröbner bases in the free
algebra Fq〈x, y〉 where we use a length-lexicographic order with x > y.

An ideal generated by xx -xy

The ideal I = 〈xx − xy〉 has an infinite reduced Gröbner basis on the form G = {gi =
xyi−1x− xyi|i ≥ 1}. The polynomial g1 = xx− xy has a self-overlap, O(g1 · x, x · g1) =
xxy − xyx

g1−→ xyx− xy2 = g2, and further we see that

O(gi · yj−1x, xyi−1 · gj) = xyiyj−1x− xyi−1xyj gi−→ xyj+i−1x− xyi+j = gi+j

for all i, j ≥ 1.

Remark: There are exactly two overlap relations for each polynomial pair gi, gj which
are reduced to the same polynomial, gi+j . You can say that the overlap function com-
mutes for this ideal.

It is easy to see that if we change the order to y > x, we get the polynomial, xy − xx,
which has no (self-)overlaps. We now have a finite Gröbner basis, G′ = {xy − xx}, for
the ideal, and a way to make use of it is presented later. Observe that xx

G−→ xy and
xx

G′−→ xx.
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An ideal generated by xyx -xy

In the same way as above, it can be shown that I = 〈xyx− xy〉 has an infinite reduced
Gröbner basis on the form G = {gi = xyix− xyi|i ≥ 1}.

If we consider all possible forms of the admissible orders presented earlier, we see
that no order can change the tip of the polynomial xyx − xy, and the infinite reduced
Gröbner basis holds for any admissible order. Still there is a way of realizing a finite
Gröbner basis for this ideal, which we are coming back to.

An ideal generated by xTx -a · xW
We now present ideals of a more general form in the free algebra Fq〈x〉 with n variables,
namely I = 〈xTx− a · xW 〉, where a ∈ Fq − {0} and T, W are monomials.

Remark: If T = W = y we have the special case presented above.

The ideal has an infinite reduced Gröbner basis on the form
G = {gi = xW i−1Tx− a · xW i|i ≥ 1} if
(i) T ≥ W
(ii) The set {T, W} has no overlaps.
(iii) T and W do not begin or end with x.

This can be shown by proving the following statements:
a) Every two polynomials, gi, gj , has exactly two overlaps for all i, j which are contribut-
ing to the infinite reduced Gröbner basis.
b) No tip(gi) divides tip(gj) for all i 6= j

We see that part a) provides the construction of G with overlap relations. How these
overlaps are computed and how many they are, is not important as long as they con-
tribute to G. However, in this case, we eliminate the possibility that there are more
overlaps than the two obvious ones. From the following proof we will see that every gi

is constructed by the overlap relation of some polynomials, gr and gs, where r + s = i
for i ≥ 2. Part b) provides that elements in G do not reduce each other, and it follows
that the proof of these points are sufficient in order to verify that 〈G〉 = I has an infinite
Gröbner basis.

Proof.
a) We denote an overlap between two monomials, m1 = ABx and m2 = BxC, in a new
way as O[AB(x), B(x)C] v O(m1 · C,A ·m2). Note that Bx is the actual overlap, but
it is the last variable, x, in the first monomial which determines where the overlap ends,
and is therefore put in parenthesis.

Every two polynomials, gi, gj ∈ G, has obviously two overlaps by the x on each side
of the tips. If there are more than these overlaps, there must be at least one x in at least
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one of W and T such that T = AxB and/or W = CxD for some monomials A, B,C, D.
From condition (iii), we know that A and C do not start with x, and B and D do not
end with x.

We see that such an overlap between xW iTx and xW jTx has to be on the form
(1.) O[xW iT (x), xW j ·A(x)B · x] or
(2.) O[xW iT (x), xW k · C(x)D ·W lTx] where k + l + 1 = j.

- If x ∈ T , we see that xW iT (x) = xW iAxB(x), which makes it clear that B has
to end with A or C so that Ax or Cx is a part of the overlap. Notice that B has an x on
each side, and it is easy to see that because of condition (i) (C, D < T ), there are only
four alternative forms of B:
B = W j ·A
B = D ·W e ·A, where 0 ≤ e ≤ j − 1
B = W k · C
B = D ·W f · C, where 0 ≤ f ≤ k − 1

- If x /∈ T , we only have overlap relations on form (2.), and by condition (i) we see
that the possible forms of T are:
T = ExW kC, where E does not start with x by condition (iii).
T = W k−iC, if k ≥ i

Every one of these forms of B and T contradicts condition (ii), namely that the set
{T = AxB,W = CxD} has no overlaps, and thus we have shown that there are only
two overlap relations between some tip(gi+1) = xW iTx and tip(gj+1) = xW jTx, which
are on the form O[xW iT (x), (x)W jTx] v O(gi+1 ·W jTx, xW iT · gj+1) for any i, j ∈ N.
Finally, we show that the overlap relations between any two polynomials, gi, gj ∈ G, is
reduced to the Gröbner basis polynomial gi+j .

O(gi ·W j−1Tx, xW i−1T · gj) = a · xW iW j−1Tx− a · xW i−1TxW j =
a(xW i+j−1Tx− xW i−1TxW j)

gi−→ a(xW i+j−1Tx− a · xW iW j) =
a−1a(xW i+j−1Tx− a · xW iW j) = xW i+j−1Tx− a · xW i+j = gi+j

Remark: Also for this ideal, the overlap relation can be considered as commutative
(gj+i = gi+j).

b) If some monomial, xW iTx, divides any polynomial xW jTx for i 6= j, then j > i
and A · xW iTx ·B = xW jTx for some monomials A,B.

- If B 6= 1, we use the same arguments as in the proof of part a), that T has to be on
such a form that there will be overlaps in the set {T, W}, contradicting condition (ii).

- If B = 1, we see that when j > i, we get W = Cx for some monomial C and
A = xW j−i−1C such that

A · xW iTx = xW j−i−1CxW iTx = xW jTx
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This is a contradiction to condition (iii) where W can not start or begin with x, and
thus we have shown that G is an infinite reduced Gröbner basis for I for all admissible
orders.

In search for a finite Gröbner basis, the order of the monomials, T ≥ W , can possibly
be changed by choosing another admissible order. If W > T , it may lead to a·xW > xTx,
and the ideal, I = 〈a · xW + xTx〉, has indeed a finite reduced Gröbner basis because W
has no overlaps.

Lemma 4.1. Consider two monomials in Fq〈x1, x2, .., xn〉 with the ordering ~x1 > ~x2.
We define |xi ∈ ~x| as the number of times xi appears in ~x. Given any variation of the
monomial orders presented in chapter 3, the ordering ~x1 > ~x2 will not change if
(i) l(~x1) > l(~x2)
(ii) |xi ∈ ~x1| ≥ |xi ∈ ~x2| for all 1 ≤ i ≤ n

Proof. We consider the weight-lexicographic order because it is a generalization of the
length-lexicographic order. For any value of w(xi), of every variable xi, part (ii) ensures
that the total weight of ~x1 will be at least as big as ~x2. It follows from part (i) that
|xk ∈ ~x1| > |xk ∈ ~x2| for at least one xk.

This means that w(~x1) + w(xk) ≥ w(~x2), and thus, ~x1 > ~x2 for any variation for the
monomial orders presented in chapter 3.

An example of two such monomials is xyx > xy, which was presented above.

4.2 String rewrite system

This section describes a way to find a finite reduced Gröbner basis for some ideals in
Fq〈x〉 = R called string rewrite system. In this setting, we use the technique to rewrite
strings into new variables and compute a Gröbner basis out of this. The same principal
ideals as in previous section will be considered, and it will be shown that it is possible
to realize a finite Gröbner basis for every one of them using this technique.

The ideal generated by xx -xy

The ideal I = 〈xx − xy〉 has an infinite reduced Gröbner basis on the form G = {gi =
xyi−1x−xyi|i ≥ 1} using the length-lexicographic order with x > y. We now rewrite xx =
z, which is the same as reducing g1 with respect to p = xx− z, and we get g1

p−→ xy− z.
Notice that the outcome of this rewrite is the change of monomial order to xy > z = xx
because of l(xy) > l(z). We compute all overlaps from the set {xx−z, xy−z} and find a
finite reduced Gröbner basis G′ = {g′1 = xx− z, g′2 = xy− z, g′3 = zx−xz, g′4 = zy−xz}
for the order z > x > y.

We now give an example where we present three methods for reducing a polynomial
by the set G.
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Example 6
We want to find the normal form of a monomial, p = yxy3xy, in the quotient ring R/I
by reducing p by a Gröbner basis of I. This can be done by an infinite Gröbner basis,
the string rewrite system or in this particular case, changing the order on the variables.

a) If we have knowledge of the infinite Gröbner basis, we see that g4 = xy3x − xy4

can be used, and we get p
g4−→ yxy5 = N(p).

b) An infinite Gröbner basis can be infeasible to obtain for more complex ideals. Instead,
we can use the finite reduced Gröbner basis, G′, we found by introducing the polynomial
xx− z (xx = z) for the order z > x > y. We see that

p = yxy3xy
g′2−→ yzy2z

g′4−→ yx2z2 g′1−→ yz3 = p′

which can be written p
G′−→ yz3. Now we switch the monomials in g′1 from xx − z to

z−xx, because we want to reverse the string rewrite xx = z. We now reduce p′ by z−xx
and the generating polynomial of G, g1 = xx− xy. Now there are two important steps:

(i) We first reduce p′ by z − xx, to reverse the string rewrite, and get p′ z−xx−−−→ yx6

(ii) Then we divide by g1 from the right and get yx6 g1∗−−→ yxy5 = N(p)

It is crucial that the division by g1 is done from the right to get N(p). Another way
of dividing may have sent us back to the start. When deciding how you shall do this
division, we look at g1 = xx− xy = x(x− y) and observe that to reduce as many x’s to
y as possible (by (x− y)), we need an x on the left side of an reducible x. It is clear that
if we then start reducing from the right, every x but one of yx6 is reduced to y.

c) Now we only consider the finite Gröbner basis {g = xy − xx} obtained by chang-
ing the order to y > x. Observe that g2 = xy − z from the Gröbner basis G′, gives the
order xy > z = xx. It seems like this is the same as changing the order to y > x, as we
did in the previous section, but the finite Gröbner basis is of course different. Neverthe-
less, the method of reducing p is quite similar, and we see that p = yxy3xy

g−→ yx6. If we
now change the order back, we can obtain the normal form of p (for x > y) by following
the same procedure as in part b). One of the reasons why this method works here, is
that xy does not divide xx.

The way we reversed the string rewrite system to find N(p) described in part b), can
be much more complicated and maybe not efficient when having several large generating
polynomials of the ideal.

The ideal generated by xyx -xy

The ideal I = 〈xyx− xy〉 has an infinite reduced Gröbner basis on the form G = {gi =
xyix − xyi|i ≥ 1} using the length-lexicographic order with x > y. We notice that the
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tips of these polynomials can not be changed be choosing another of the monomial orders
from chapter 3, based on lemma 4.1.

Example 7
We want to find the normal form of the monomial p = xy4xy in the quotient ring R/I
by using string rewrite system. We see that from the infinite Gröbner basis we get
p

g4−→ xy5 = N(p).

We rewrite xy = z and use the polynomial g′1 = xy − z to reduce xyx − xy
g′1−→

zx − z = g′2. From this we find a finite reduced Gröbner basis G′ = {g′1 = xy − z, g′2 =
zx− z, g′3 = zy − zz} for a chosen order y > z, and we reduce p modulo G′:

p
g′1−→ zy3z

g′3−→ z5 = p′

Now we reverse the string rewrite, using z − xy and the generator of the Gröbner basis,
g1 = xyx− xy:

p′ z−xy−−−→ xyxyxyxyxy
g1∗−−→ xy5 = N(p)

The division by g1 = xyx − xy = xy(x − 1) is done from right for the same arguments
as in example 6.

Observe that the string rewrite gives us the order y > z = xy, which can be seen upon
as a way of omitting the rules of admissibility. We can rewrite xyx by for example yx = v
with y > v such that we get a non-admissible ordering, xy > xyx, on an admissible form,
xy > xv. It follows by the use of this string rewrite that any monomial ordering can be
changed, and we have to consider that any monomial in a polynomial, can appear as the
tip of the polynomial.

If there exists at least one monomial with no self-overlaps in a polynomial, it seems
reasonable to think that it is possible that the principal ideal, generated by that polyno-
mial, has a finite Gröbner basis on some admissible form by using string rewrite system.
Notice that the generating set of a principal ideal can only have self-overlaps.

The ideal generated by xTx +a · xW
It can be proven that one can find a finite Gröbner basis for the ideal, I = 〈xTx−a ·xW 〉
where a ∈ Fq − {0} and T ≥ W are monomials with no overlaps and which do not start
or end with x. The proof will be presented later because we need some results from the
next section.

4.3 The search for an ideal of cryptographic interest

It seems clear that if it shall be impossible to realize a finite reduced Gröbner basis for
an ideal, a Gröbner basis must be proven infinite for all admissible orders, but as we have
shown, this may still not be enough. Trial and failure with the string rewrite system can
take a lot of time in the attempt of proving that an ideal can not have a finite Gröbner
basis for any admissible order or any monomial ordering. Therefore it is not easy to be
sure if a finite Gröbner basis is infeasible to realize for an ideal.



4.3 The search for an ideal of cryptographic interest 27

An ideal where it is infeasible to realize a finite Gröbner basis

We now present an ideal, I = 〈G〉, which is proven to have an infinite Gröbner basis
for any admissible order. The proof is given in [Ra, page 29], but will not be duplicated
here.

G = {g1 = xzy + yz, g2 = yzx + zy} (1)

Here we must consider yz > xzy and zy > yzx as admissible monomial orderings. They
do not follow lemma 4.1, but can still be shown to be admissible. If yz > xzy shall
be legitimate in a monomial order, we could by example modify the definition of the
weight-lexicographic order such that w(yz) 6= w(zy). Of course, in a free algebra we can
not assume the variables to commute when ordering them2. We present an example to
show how such monomial orderings can be admissible.

Example 8
We look at the monomial ~x = xzxyyz and observe that we have five different substrings
of length 2 in the set S2(~x) = {xz, zx, xy, yy, yz}. By the rules of admissibility, we know
that ~x is ordered before any of these substrings for any order on x, y, z. Now observe
that zy /∈ S2(~x) and we can write zy > xzxyyz if zy > s for all s ∈ S2(~x), which means
that we need the order z > y > x.

Consider monomials with an ordering ~x1 > ~x2 by lemma 4.1, where l(~x2) = k. In
general, the ordering may still be changed for some admissible order if ~x2 /∈ Sk(~x1). We
see that such a monomial order is not presented in chapter 3.

Lemma 4.2. Consider two monomials in Fq〈x1, x2, .., xn〉 with the ordering ~x1 > ~x2.
The monomial ordering will not change for any admissible order if and only if we can
write ~x1 = a · ~x2 · b where at least one of the nonzero monomials, a and b, are different
from 1. In other words: if and only if ~x2 divides ~x1.

Proof. Say ~x2 > ~x1 and ~x2 divides ~x1. Then we can write ~x1 = u · ~x2 · v for some
monomials u, v. We use the rules of admissibility and get ~x2 > ~x1 = u ·~x2 ·v > ~x2, which
contradicts the monomial ordering ~x2 > ~x1.

This lemma makes it easy to accept that yz > xzy is an admissible monomial or-
dering (for yz > xz and yz > zy), and if we try out all admissible orders, we see that
there are three possible sets of tip(G), namely {xzy, yzx}, {xzy, zy} and {yz, yzx}. For
each of these three sets, there has been proved in [Ra] that the overlap relations in G
generates infinite sequences of monomials which is not divisible by any other polynomial
in the Gröbner basis, similar to what we had in the ideal I ′ = 〈xyx− xy〉 3.

2In [Ra], this is not brought to attention, and the order yz > xzy is stated as admissible without
explanation.

3A weakness in [Ra] appears after he proves that the ideals, I = 〈G〉 and I ′ = 〈xyx − xy〉, have
infinite reduced Gröbner bases for all admissible orders. He presents a way of realizing a finite Gröbner
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Remark: If we use yz > xzy and zy > yzx with the rules of admissibility xzy > zy and
yzx > yz, we see that yz > xzy > zy > yzx > yz, which means that we do not have an
admissible order.

Example 9
By curiosity, we try to string rewrite the generators of I, g1 and g2, such that tip(g′1) = yz
and tip(g′2) = zy. These tips are not considered in [Ra] because they are obtained by
violating the rules of admissibility.

It seems like the simplest way to obtain the monomial orderings, yz > xzy and
zy > yzx, on an admissible form is to rewrite xz = v where z > y > x > v under the
length-lexicographic order. This order is settled due to the demand of the monomial
ordering zy > yzx > yz > vy where we also know that yzx > zx by the rules of
admissibility.

Now we have the reduced basis G′ = {g′1, g′2, g′3} where g′1 = yz + vy, g′2 = zy + vyx
and g′3 = xz − v. We find the overlap relations:

O(g′1 · y, y · g′2) = yvyx− vyy = g′4
O(g′2 · z, z · g′1) = vyxz − zvy

g′3−→ zvy − vyv = g′5
O(g′3 · y, x · g′2) = xvyx + vy = g′6

O(g′2 · vyx, z · g′4) = vyxvyx + zvyy
g′6,g′5−−−→ vyvy − vyvy = 0

O(g′4 · z, yvy · g′3) = yvyv − vyyz
g′1−→ yvyv + vyvy = g′7

O(g′3 · vy, x · g′5) = xvyv − vvy = g′8
O(g′1 · vy, y · g′5) = yvyv + vyvy

g′7−→ 0
O(g′5 · z, zv · g′1) = zvvy + vyvz = g′9
O(g′6 · z, xvy · g′3) = xvyv + vyz

g′8,g′1−−−→ vvy − vvy = 0

O(g′4 · vyx, yvy · g′6) = vyyvyx + yvyvy
g′4,g′7−−−→ vyvyy − vyvyy = 0

O(g′6 · vyx, xvy · g′6) = xvyvy − vyvyx
g′8,g′4−−−→ vvyy − vvyy = 0

O(g′5 · vyv, zv · g′7) = zvvyvy + vyvvyv
g′9,g′5−−−→ vyvvyv − vyvvyv = 0

O(g′7 · yx, yv · g′4) = vyvyyx + yvvyy = g′10

O(g′2 · vyv, z · g′7) = vyxvyv − zvyvy
g′8,g′5−−−→ vyvvy − vyvvy = 0

O(g′8 · yv, xv · g′7) = xvvyvy + vvyyv = g′11

O(g′6 · vyv, xvy · g′8) = xvyvvy + vyvyv
g′8,g′7−−−→ vvyvy − vvyvy = 0

O(g′4 · vyv, yvy · g′8) = yvyvvy − vyyvyv
g′7−→ vyvyvy − vyvyvy = 0

O(g′8 · yx, xv · g′4) = xvvyy − vvyyx = g′12

basis for the ideal I ′ using the string rewrite system, but when it comes to I, he just claims that it is
not possible without explaining why. There are obvious differences between the ideals, but exactly what
makes I so special he does not say.
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O(g′9 · z, zvv · g′1) = zvvvy − vyvzz = g′13

O(g′9 · vyv, zvv · g′7) = zvvvyvy − vyvzvyv
g13,g′5−−−→ vyvvyvv − vyvvyvv = 0

O(g′9 · vyx, zvv · g′4) = vyvzvyx + zvvvyy
g13,g′5,g′2−−−−−→ vyvvyvx− vyvvyvx = 0

O(g′1 · vvy, y · g′9) = yvyvz − vyvvy
g′7,g′1−−−→ vyvvy − vyvvy = 0

O(g′3 · vvy, x · g′9) = xvyvz + vvvy
g′8,g′1−−−→ vvvy − vvy = 0

We stop computing overlap relations and observe that g′5, g′9 and g′13 are on the form
pi = zviy + (−1)ivyvzi−1, generated by g′1 such that O(pi · z, zvi · g′1) = pi+1. At this
point, other patterns in the infinite Gröbner basis are not easy to see, but the number
and the complexity of the pattern seems to grow, even though there are many overlap
relations which are reduced to zero.

Another way of rewriting strings can of course also be done, but it seems infeasible
to do this in a way that would give a finite Gröbner basis. We see that the generating
polynomials of I have several overlaps, but no self-overlaps, for any combination of tips.
Thus, the conclusion in [Ra] that ideals on the form of I are infeasible to realize a finite
Gröbner basis for, seems reasonable.

An ideal generated by the set in (1) can be generalized by exchanging the variables,
x, y, z, with monomials, X,Y, Z. As with the variables, the set of monomials, {X, Y, Z}
can not have any overlaps. The monomials must consist of n ≥ 5 variables, x1, x2, .., xn,
such that

X = x1 · ρ1

(
n−1∏

i=2

xi

)
· xn

Y = x1 · ρ2

(
n−1∏

i=2

xi

)
· xn

Z = x1 · ρ3

(
n−1∏

i=2

xi

)
· xn

where ρ1, ρ2, ρ3 are distinct permutations of the variables {x2, x3, .., xn−1}. Notice if
n < 5, it is impossible to obtain three different permutations. We now have a generalized
version of the generating set in (1):

G = {g1 = XZY + Y Z, g2 = Y ZX + ZY } (2)

Realizing finite Gröbner bases for principal ideals

Lemma 4.2 gives us an idea of how we easily can realize a finite Gröbner basis for some
principal ideals. One thing to have in mind, is that a principal ideal can only have
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a possible infinite reduced Gröbner basis if the tip of the generating polynomial has
self-overlaps.

Notice that both example 8 and lemma 4.2 do not make explicitly use of the rule
of admissibility (i). So the arguments of why the ordering yz > xzy is admissible are
incomplete. However, the following lemma gives the full proof of why yz > xzy is an
admissible monomial ordering.

Lemma 4.3. Let f = c1~x1 + c2~x2 + ..+ cr~xr be a polynomial which generates a principal
ideal I = 〈f〉. We compare some monomial, ~xk, with all the other monomials {~xi}r

i=1,i6=k

by setting ~xk = Ai ·X ·Bi and ~xi = Ai · Yi ·Bi where Ai is the largest common substring
from the left, and Bi is the largest common substring form the right between ~xk and ~xi.

If there exists a monomial, ~xk, in f with no self-overlaps and where X 6= 1 does not
divide any Yi in comparison to all {~xi}r

i=1,i6=k, then we can find a finite Gröbner basis
for the ideal for some admissible order where tip(f) = ~xk.

Proof. Let ~x1 = A ·X ·B and ~x2 = A · Y ·B be two monomials where X and Y do not
divide each other, and where ~x2 > ~x1 by lemma 4.1 for some monomials A,B (possibly
equal 1) and X,Y 6= 1. Still, we can show that the ordering ~x1 > ~x2 does not violate the
rules of admissibility presented at the beginning of chapter 3. We denote Sk(~xi) as the
set of substrings of ~xi with length k. This means that every element in Sk(~xi) divides
~xi.

From lemma 4.1 we know that l(~x2) > l(~x1) = k, and by using the rule of admissibility
(ii), we see that ~x2 > e for all e ∈ Sk(~x2). Since ~x1 does not divide ~x2, we know that
~x1 /∈ Sk(~x2). If follows that the ordering ~x1 > ~x2 does not violate condition (ii). Further,
if ~x1 > ~x2, we see that also X > Y by the rule of admissibility (i). Since X does not
divide Y , we can use the same arguments as above and thus, the ordering ~x1 > ~x2 must
be admissible.

If a polynomial, f , contains such a monomial described in lemma 4.3, the monomial
can be set as the tip without violating the rules of admissibility. Since it got no self-
overlaps, a principal ideal generated by this polynomial will of course have f as a finite
Gröbner basis.

Remark: Exactly how to define an admissible monomial order which do not follow
lemma 4.1, seems to be hard. One may use one of the given monomial orders from chap-
ter 3 and add exceptions, but this can be inconvenient to operate with.

Example 10
This example gives a generalization of the monomial ordering yz > xzy, which is ad-
missible by lemma 4.3, but do not follow the given monomial orders in chapter 3. If we
write ~x1 = A ·X ·B = yz, and ~x2 = A ·Y ·B = xzy, we see that A = B = 1 and X = yz
does not divide Y = xzy.

By the rule of admissibility (i), we multiply with zi−1 from the right on each side of
yz > xzy and get yzi > xzyzi−1. We now see that xzyzi−1 can be reduced i−1 times by
yz−xzy such that xzyzi−1 yz−xzy−−−−−→= (xz)iy. It follows that yzi > (xz)iy for i ∈ N−{0},
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which has to be considered in the attempt of creating a suitable monomial order 4.

Lemma 4.3 is the first approach you should consider in the attempt to realize a finite
Gröbner basis for some principal ideal. If all monomials with no self-overlaps do divide
another monomial, the next step is to try the string rewrite system, as we did successfully
with the principal ideal 〈xyx− xy〉. In general, we can realize a finite Gröbner basis for
any principal ideal generated by a polynomial on the form

ABA− a ·AB

where the monomial AB has no self-overlaps for some monomials A and B. By symmet-
ric arguments, we could do the same for the polynomial ABA−BA. We see that lemma
4.3 does not help us, so we rewrite the string AB = z and get a finite reduced Gröbner
basis on the form:

zA− a · z
AB − z
zB − a−1 · zz, (B > z)

Since z is not a part of A or B, there are no self-overlaps. We see that AB is rep-
resented as a tip, which by lemma 4.2, is impossible to obtain by only changing the
(admissible) order.

Remark: There is one case where this set is not tip-reduced, and that is if zA di-
vides zB, which means B = Ak · C for some monomial C. This division can only be
done k times due to the lack of z’s in B. We see that we get zB

zA−az−−−−→ zC − a−k−1 · zz.
C 6= 1 because else the monomial AB will have overlaps, so the finite reduced Gröbner
basis holds for C > z.

At the end of section 4.2, we left the proof for realizing a finite Gröbner basis on hold.
The principal ideal that was considered in that section is on the form I = 〈xTx−a ·xW 〉
where a ∈ Fq − {0} and T ≥ W are monomials with no overlaps which does not start or
end with x.

The similarity to the polynomial presented above (ABA−AB) is big, but we see that
there are used stronger conditions with A = x, and that both T and W can not start or
end with x or have overlaps. We see that T and W corresponds to the B’s which may
have self-overlaps.

The equal conditions is that neither xW or xT have self-overlaps. This is due to the
fact that W and T can not have self-overlaps. As we know, the corresponding AB’s has
also no self-overlaps.

The property gained by increasing the strictness of the conditions, is the possibility
that T > W , so which of these principal ideals is the most generalized, is hard to say.

4y may be viewed as an operator where z goes in on the right, and xz comes out on the left.
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Proof.
If W = T , we see that the generating polynomial, xTx− a · xT , is on the same form as
above, which we found a finite Gröbner basis for.

One way of realizing a finite Gröbner basis is to get xW as the tip for some admissible
order. The use of lemma 4.3 will help us find out if the monomial ordering xW > xTx
is admissible. If it is, we can get a finite Gröbner basis because xW does not have
self-overlaps.

Further, if xW does not divide xTx, we can use the rewrite xT = z and get a Gröbner
basis for the ordering xW > zx:

xT − z

xW − a−1 · zx

Since this Gröbner basis is tip-reduced and the set, {T, W}, does not have any overlaps,
it is indeed a finite reduced Gröbner basis.

It is clear that we now can continue the proof with considering T > W and xT =
u · xW · v for some monomials u and v. Observe that if u 6= 1, then it starts with x. We
use the rewrite uxWv = z and get the polynomials

p = uxWv − z
p2−→ uzxv − a · z = p1

xTx− a · xW ⇒ uxWvx− a · xW
p−→ xW − a−1 · zx = p2

for x > z. Now there are four cases depending on the values of u and v.

(i) u = v = 1 gives W = T

(ii) u = 1, v 6= 1: p1 = zxv − a · z and p2 = xW − a−1 · zx.
z is not represented in v or W , so the only possible overlap relation is that the x on the
left in p2 overlaps with some x in v or the x next to z. By u = 1, we see that T = W · v
which means that v can not end with x This forces the left part of W to overlap with
parts of (or the whole) v, which contradicts the fact that W and T has no overlaps.

If v is on the form W k · v′, then p1 is reduced to zk+1xv′ − ak+1 · z = p′1. Because
T = Wv has no overlaps, v can not end with W . It follows that p1 can not be reduced
by p2 such that tip(p′1) ends with x. Thus, an overlap relation between p1 and p2 will
never occur for any "legal" form of v.

(iii) u, v 6= 1: p1 = xu′zxv − a · z and p2 = xW − a−1 · zx
As mentioned, if u 6= 1, we can rewrite u = xu′ where T = u′xWv. Since W and v do
not end with x, the only possible overlaps is obtained by violating the rule that T and
W can not have overlaps.

If xW divides xv or xu′ from the left, we have the same case as in part (ii), so
that is already considered. But now the v can end with xW , and then we get p1 =
xu′zxv − a · z = xu′zx · v′xW − a · z p2−→ xu′zxv′zx− a2 · z := p1 (updated). This means
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that we get two overlaps from the set {p1, p2}:

O(p1 · u′zxv′zx, xu′zxv′z · p1) = xu′zxv′zz − zu′zxv′zx = p3

O(p1 ·W,xu′zxv′z · p2) = zW − a−2 · xu′zxv′zzx
p3−→ zW − a−2 · zu′zxv′zxx = p4

The monomial ordering in p3 is set due to x > z, and by using lemma 4.3 we can get
zW > xu′zxv′zzx since W do not start or end with x. Now notice that T = u′xWv′xW ,
and because it can not have any self-overlaps, we can not have v′ = M ·u′ for any mono-
mial M . This eliminates the possibility of p1 to have any self-overlaps, we will only have
two more overlap relations:

O(p3 · W,xu′zxv′z · p4)zu′zxv′zxW − a−2 · xu′zxv′zzu′zxv′zxx
p3−→ zu′zxv′zxW −

a−2 · zu′zxv′zxu′zxv′zxx
p1−→ zu′zxv′zxW − a−1 · zu′zxv′zzx

p2−→ a−1 · zu′zxv′zzx− a−1 ·
zu′zxv′zzx = 0

O(p1 ·u′zxv′zz, xu′zxv′z · p3) = a · zu′zxv′zz−xu′zxv′zzu′zxv′zx
p3−→ a · zu′zxv′zz−

zu′zxv′zxu′zxv′zx
p1−→ a · zu′zxv′zz − a · zu′zxv′zz = 0

All overlap relations are reduced to zero, and this means that we have realized a fi-
nite Gröbner basis, G = {p1, p2, p3, p4}, where

p1 = xu′zxv′zx− a · z
p2 = xW − a−1 · zx

p3 = xu′zxv′zz − zu′zxv′zx

p4 = zW − a−2 · zu′zxv′zxx

If tip(p2) divides tip(p1) or tip(p3) by u′ or v′ it will not affect the overlap relations
since u′, v′ or W do not contain z.

(iv) v = 15, u 6= 1: p1 = xu′zx− a · z and p2 = xW − a−1 · zx
By the same method as in part (iii), we get the finite Gröbner basis:

p1 = xu′zx− a · z
p2 = xW − a−1 · zx

p3 = xu′zz − zu′zx

p4 = zW − a−2 · zu′zxx

We have now proven two principal ideals on a general form to have finite Gröbner
bases, but not all principal ideals seem to have a finite Gröbner basis, even if we use
string rewrite system. However, in the following we do not consider principal ideals,

5The case where v = 1 gives us obviously an overlap relation between p1 and p2, but in [Ra, page 29],
it is stated that there are no overlaps, even though the monomials u and v are considered to possibly be
1.
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because in general, principal ideals tend to have less complex (infinite) Gröbner bases
than non-principal ideals.

Other ideals where it is infeasible to realize a finite Gröbner basis

In addition to the ideal given earlier, [Ra] presents a conjecture as a result of research
with Opal. The conjecture is based on probability, and there exists exceptional cases for
specific values of the coefficients.

Conjecture 4.4. Let G = {g1, g2, .., gs} be a finite subset of Fq〈x1, x2, .., xn〉 whose
elements have the same tip, T , of length l(T ) = α ≥ 5. Let N be the set of distinct
strings of length (α− 1) that occur in all the gi’s combined. Then if

(i) |N | ≈ 2 · s
(ii) |N | ≈ 1

3nα−1

(iii) |N | < 1
2nα−1

there is a high probability that the reduced Gröbner basis of 〈G〉 is infinite.

Remarks
(i) nα−1 is the number of all possible strings of n variables of length α− 1
(ii) After reduction of G, there will at most be just one polynomial with the tip T .
(iii) The coefficients of the monomials in the gi’s has to be chosen randomly.

Example 11
We now give an example of such an ideal in Fq〈x〉 = Z331〈x, y〉. The generating polyno-
mials, G = {g1, g2, g3, g4, g5}, are all on the form

gi = xxxyyy + a1 · xyxyyy + a2 · yxxyyy + a3 · xxxyx + a4 · xxxyy + a5 · xxyyy +
a6 ·xyxyx+a7 ·xyxyy +a8 ·xyyyy +a9 · yxxyx+a10 · yxxyy +a11 · yxyyy+ lower terms.

We see that n = 2, s = 5, α = 6 and |N | = 9 (because all gi’s consist of the same
monomials). This means that the conditions from conjecture 4.4 are fulfilled by

|N | ≈ 10 = 2 · s, |N | ≈ 10, 66 = 1
3nα−1, |N | < 16 = 1

2nα−1

The set, G, can be reduced such that the five first monomials of any gi are represented
as the tips of the five generating polynomials. Then we get
tip(G) = {xxxyyy, xyxyyy, yxxyyy, xxxyx, xxxyy}. We see that xxxyy divides xxxyyy
and therefore the tips of a tip-reduced G are tip(G) = {xyxyyy, yxxyyy, xxxyx, xxxyy, xxyyy}
where the monomials do not divide each other. 6 Notice that the original common tip,
xxxyyy, is not presented in tip(G).

In general, if the first k monomials do not divide each other for k generating polyno-
mials with equal monomials, the tips of the reduced set equals those k monomials.

6The tip-reduced set presented in example 3.5.2 in [Ra], has the same tips.
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Remark: If all coefficients but one in a polynomial, gi (2 ≤ i ≤ 5), equals the cor-
responding coefficients in g1, the reduction by g1 will only leave us a single monomial.
This makes it easy to find examples of ideals based on conjecture 4.4 with finite Gröbner
bases by "choosing" tip(G) to have no overlaps.

The lack of techniques of proving that an ideal do not have a finite Gröbner basis,
leaves us no proof for conjecture 4.4. This could be something to do research on, with
the goal of increasing the probability that no finite Gröbner basis can be realized. Nev-
ertheless, we can do some observations which supports the conjecture. We know that
one-third of all possible strings of length α− 1 occurs in the gi’s, and since the number
of polynomials is half of |N |, the tip-reduced set of G will most likely have tips of length
approximately to α−1. This gives us a high probability that the elements of tip(G) have
overlaps. There is also a high probability that some of these overlaps do not reduce to
zero because the number of strings of length α − 1 in G are not too many by condition
(iii).

Using lemma 4.3 in order to get tips with no overlaps seems hopeless due to the mag-
nitude of this system. One could think that increasing the number of variables could help
minimizing the number of overlaps, but as we see of the conjecture, there are conditions
which provides a certain relationship between the size of the system and the number of
variables.

To summarize this chapter, we observe that principal ideals are left out from further
use in a cryptographic setting. The reason for this is that principal ideals with infinite
Gröbner bases tend to generate predictable sequences of polynomials. If g1 generates
polynomials g2, g3, g4, .., we have tip(g1) < tip(g2) < tip(g3) < tip(g4) < ... In general,
sequences generated by self-overlaps, seem to be predictable.

Ideals generated by polynomials on the form of (1) and (2), are together with conjec-
ture 4.4 considered further in Polly Cracker cryptosystems, because it seems infeasible to
obtain a finite Gröbner basis for these ideals. In addition, their infinite reduced Gröbner
basis have complex patterns which are hard to predict.
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5 Noncommutative Polly Cracker cryptosystems

The noncommutative Polly Cracker cryptosystem can be described in a similar way as
in the commutative case. The main difference is that finding a Gröbner basis from the
polynomials in the public key is infeasible because the basis is infinite. One should be
aware that the ideals considered in the previous chapter are used as the public key. The
private key is a finite Gröbner basis for a larger ideal. From the ideal generated by the
polynomials in the public key, it may be possible to obtain partial Gröbner bases which
can be used by a cryptanalyst. What [Ra] means with a "partial" Gröbner basis is hard
to understand. It is stated that: "Opal was unable to compute a partial Gröbner basis.",
but does that mean that no extra element in the infinite Gröbner basis was computed at
all? My interpretation is that a partial Gröbner basis is a vague description, but which
deals with a significant amount of computed elements in a infinite Gröbner basis.

Further, we present a summarize of the noncommutative Polly Cracker cryptosystem.

Private key: The reduced finite Gröbner basis, G = {g1, g2, .., gt}, for a two-sided
ideal, I ∈ Fq〈x〉.
Public key: A set of polynomials, B = {qr}s

r=1, where qr =
∑t

i=1

∑dir
j=1 frijgihrij , such

that computing a Gröbner basis for 〈B〉 ⊂ I is infeasible.
Message space: Monomials in M ⊆ NonTip(I).

Encryption: c = p + m, where m ∈ M , and p =
∑s

i=1

∑ki
j=1 FijqiHij

7 is a polyno-
mial in J = 〈B〉 ( I.
Decryption: Reduction of c modulo G, c

G−→ m.

In general, we use a single polynomial, g, as the private key where its tip has no overlaps
for some admissible order. This is because we want to minimize the computational time
when decrypting, and also because it is easier to create public keys with no finite Gröbner
bases. For completeness, we present again the two goals of achievement when attacking
this kind of cryptosystem:

(i) You examine the polynomials in the public key to find weakness in their construction.
This can help you reveal the private key. If you succeed, every future message can be read.

(ii) You obtain a encrypted message, c, and compare it to the polynomials in the public
key. If c is poorly constructed, it can be sorted out which terms of c is the message, m.
If you succeed here, you only get to read this one message.

Remark: Examples of attacks based on part (ii), are the linear algebra attack and
reduction of c by the public key or a partial Gröbner basis.

7In [Ra], the ki in the construction of p are denoted kir. In comparision to the construction of the
qr’s, the function of r in dir is to sort out which qr are being constructed. Since we only construct one
p, the r in kir is useless and can be dropped.
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One of the security aspects of this system, is the infeasibility of realizing a finite Gröb-
ner basis for the ideal J = 〈B〉. Seemingly suitable ideals to use were presented in the
previous chapter. There are also problems with constructing the ciphertext such that
attacks of the type in part (ii) will not succeed. In general, the linear algebra attack is
hoped to be useless because the ciphertext is generated by a multiple on each side of the
qr’s (due to the noncommutativity), which gives the cryptanalyst a non-linear system of
equations to solve.

Further we consider Polly Cracker cryptosystems where the public key is on the form
presented in (1), (2) and conjecture 4.4.

5.1 Cryptosystems with the public key: xzy + yz and yzx + zy

As mentioned at the end of the last chapter, the infinite Gröbner basis of the ideal
I = 〈q1, q2〉 where q1 = xzy + yz and q2 = yzx + zy, has many sequences where the
patterns are hard to predict compared to some principal ideal. In fact, [Ra] found the
number of such sequences to grow as the magnitude of the computation of partial Gröb-
ner bases were increased, using Opal. Another important discovery is that the tip of a
computed element will often have shorter length than the element computed in the pre-
vious step. This helps the unpredictability of the infinite Gröbner basis, and we present
some of the sequences:

u1,n = x(zx)n−1zn+1y − yznx(zx)n−1, n ≥ 1
u2,n = zyzynx + yn−1yzzy, n ≥ 1
u3,n = xzn+2yzy + yzzyzn+1, n ≥ 1
u4,n = zyzzyzynx + yzynx + yzyn+1zzy, n ≥ 1
u5,n = zyzyn+1zzx + ynzzyzzy, n ≥ 2

Remark: For every n ≥ 1, the tip of a polynomial in the second sequence divides a
tip of a polynomial in the fourth sequence. This is not mentioned in [Ra], but it should
not effect the promising properties of this ideal.

When constructing a public key on the form B = {q1, q2}, we can replace the vari-
ables x, z, y by polynomials f, g, h with the same properties. This means that the tips
are on the form tip(f) = x, tip(g) = z and tip(h) = y for any admissible order. It
follows from lemma 4.3 that the only possible additional terms in these polynomials are
constants, a, b, c. Thus, the public key, B, is on the form q1 = fgh + hg, q2 = hgf + gh
where f = x− a, h = y − b and the private key: g = z − c. This gives us:

q1 = xzy − azy − cxy − bxz + yz + bcx + (ac− c)y + (ab− b)z + (bc− abc)
q2 = yzx− bzx− cyx− ayz + zy + bcx + (ac− c)z + (ab− b)y + (bc− abc)

We know that the ideal, J = 〈q1, q2〉, has an infinite reduced Gröbner basis for all
admissible orders, as proved for ideals on the form of (1) from section 4.3. By comparison
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to the general form of the polynomials in the public key, qr =
∑t

i=1

∑dir
j=1 frijgihrij , we

see that t = 1 and d11 = d12 = 2. The private key, g, seems infeasible to obtain due to the
fact that J ( I = 〈g〉. Notice that tip(g) = z, so the message space, M ⊆ NonTip(I),
consists of all monomials without z. We can write M = Fq〈x, y〉.

The encryption of a message, m, is presented in [Ra, page 42] as c = F1q1H1 +
F2q2H2+m for polynomials F1, F2,H1,H2 ∈ R. In comparison to c =

∑s
i=1

∑ki
j=1 FijqiHij+

m, we see that s = 2 and k1 = k2 = 1. This way of encrypting has obvious flaws because
there are many instances where a sum over ki monomials, Fij and Hij , multiplied with
qi, can not be rewritten as a multiple of qi and two polynomials, F1,H1. That is why, in
general, encryption should be done by using some chosen number of ki monomials. This
issue is brought to attention in example 1.

After studying attacks of the type in part (ii), [Ra] states that unless tip(c) is large,
you can correctly reduce the ciphertext, c, using the public key, {q1, q2}. Still, if tip(c)
is large, a partial Gröbner basis can be used to correctly reduce c, so we now present
some techniques to construct the ciphertext such that reduction by the public key does
not give the message, m, as outcome.

a) We try to construct c, such that tip(c) is on the form x(zyzx)n(zy)k or (yz)k(xzyz)nx
for some n ∈ N and k ∈ {1, 2}. This will ensure that the public key, {q1, q2}, does not
correctly reduce c. However, if the cryptanalyst has computed a partial Gröbner basis,
he will most likely manage to reduce c correctly, and thus, this approach do not provide
sufficient security.

b) Another way of ensuring that the public key does not correctly reduce the cipher-
text, is to construct c such that the tip(qi)’s do not appear in c. For this method to
work, we need the polynomials in the public key to have "overlapping overlaps". Notice
that if they would only have overlaps, a partial Gröbner basis could most likely reduce c
correctly, because it is constructed using such overlaps 8.

In order to have "overlapping overlaps", we need at least three polynomials, qi, qj

and qk, where tip(qi) = W1W2W3, tip(qj) = W2W3W4 and tip(qk) = W3W4W5 for some
monomials {Wi}5

i=1. It follows that the public key has to be extended to a finite set of
polynomials, Q = {qi}s

i=1 for s ≥ 3, where the qi’s are carefully selected from a partial
Gröbner basis. Even though q1 and q2 do not contribute to the "overlapping overlaps",
they must be a part of the public key to ensure that 〈Q〉 = 〈B〉 = J , which do not have
a finite Gröbner basis9.

Considering the sequences, u1,n, u3,n and u5,n, presented at the beginning of this
section, we see that the tips have "overlapping overlaps" for some values of n. We find
the the suitable tips of the polynomials in these sequences, where k ≥ 2:

8This is my way of explaining an issue that is not brought to attention in [Ra].
9This is also not brought to attention in [Ra], and needs therefore an explanation.
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u1,n = x(zx)k−1zk+1y = x(zx)k−2z · xzk · zy = W1 ·W2 ·W3

u3,n = xzk+1yzy = xzk · zy · zy = W2 ·W3 ·W4

u5,n = zyzyk+1zzx = zy · zy · ykzzx = W3 ·W4 ·W5

In general, the encryption is done by choosing arbitrary constants, α, β ∈ Fq, such that
c = αqiW4W5 +βW1qjW5− (α+β)W1W2qk +m, which ensures that multiples of tip(qi),
tip(gj) and tip(qk) are canceled in the entire sum.

It follows from this way of encrypting that the cryptanalyst will not find the mes-
sage, m, by reduction of c using the public key, {qi}s

i=1. However, if he can compute a
partial Gröbner basis, this system will not provide sufficient security even if the number
of "overlapping overlaps" is large.

c) This next approach is also based on the idea that the tips of the polynomials in
the public key should be subtracted off in c. The difference is that the extended public
key, Q, consists of polynomials with the same tip, T . For s polynomials in Q = {Fi}s

i=1,
we need to find s arbitrary constants, αi, such that

∑s
i=1 αi = 0. The encryption is done

by setting c =
∑s

i=1 αiFi +m, and it is easy to see that T does not appear as a monomial
in c. Notice that the Fi’s are generated by q1 and q2, and then of course, also generated
by the private key, g.

As in approach b), the reduction of c by Q does not reveal the message, m, but if the
cryptanalyst is able to compute a partial Gröbner basis or tip-reduce Q, this technique
is vulnerable in the same way as in the previous settings. However, this approach led to
the conjecture 4.4, which is discussed in a cryptographic setting in section 5.3.

Remark: This approach needs a method for how we can create the set Q = {F1, F2, .., Fs}
out of q1, q2 as the public key, and still maintain 〈Q〉 = J .

Security evaluation
We evaluate the security based on the type of attacks presented at the beginning of this
chapter.

(i) The private key can not be revealed by computation of a Gröbner basis for the
ideal generated by the public key. Nevertheless, this system is so small and predictable
(the tips of f, g, h are always x, z, y) that the cryptanalyst would know how the public
key and its coefficients are created. Then he can equate the coefficients of the monomials
in c with the constants given in the general form of q1 and q2, and thus, find the private
key, g = z − c.

(ii) It is clear that if the cryptanalyst can compute a partial Gröbner basis, he can
possibly decrypt any encrypted message, c, based on the techniques presented above.
We assume that the small size of this system makes any computational obstacle feasible
to overcome.
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5.2 Cryptosystems with the public key: XZY + Y Z and Y ZX + ZY

We now consider a cryptosystem with the public key B = {q1, q2} where q1 = XZY +Y Z
and q2 = Y ZX + ZY . We choose the number of variables arbitrarily to be n = 6, and
observe that the forms of X, Y and Z are

X = x1 · ρ1

(
5∏

i=2

xi

)
· x6, Y = x1 · ρ2

(
5∏

i=2

xi

)
· x6, Z = x1 · ρ3

(
5∏

i=2

xi

)
· x6

for some distinct permutations {ρi}3
i=1 of x2x3x4x5. The ideal, I = 〈B〉, should have

the same properties as the one presented in previous section, and in general, the same
cryptographic evaluations can be done.

When constructing a public key on the form B = {q1, q2}, we can replace the mono-
mials X, Z, Y by polynomials f, g, h with the same properties. This means that the tips
are on the form tip(f) = X, tip(g) = Z and tip(h) = Y for any admissible order. It
follows from lemma 4.3 that the only possible additional terms in these polynomials are
a0+a1x1+a2x2+a3x3+a4x4+a5x5+a6x6, since these are the only terms which are guar-
anteed to divide X, Y and Z 10. Thus, the public key, B, is on the form q1 = fgh + hg,
q2 = hgf + gh where f = X +

∑6
i=1 aixi + a0, h = Y +

∑6
i=1 bixi + b0 and the pri-

vate key: g = Z +
∑6

i=1 cixi + c0. Notice that since tip(g) = Z, the message space,
M ⊆ NonTip(I), can consist of all one variable polynomials. An explicit presentation of
q1 and q2 is avoided due to their large size.

The encryption can be done in the same way as any of the three techniques from the
previous section, but in this setting, Opal is not able to compute a finite Gröbner basis
after running for at least 24 hours, according to [Ra].

Remarks
(i) A partial Gröbner basis of the ideal generated by the public key, will have tips on
the same form as in the previous section, but the size of this system seems to increase
the computational time of the partial Gröbner basis enormously.
(ii) The approach of encryption, b), from the previous section needs a partial Gröbner
basis to be viable, so in this case it may not work.

Security evaluation
We evaluate the security based on the type of attacks presented at the beginning of this
chapter.

(i) In this cryptosystem the private key, g, might seem to be better concealed, because
its tip can consist of any permutation, ρi, with the following terms cixi with arbitrary
nonzero coefficients, ci. In addition, this public key is much larger and complex than the
one presented in the previous section. Still, the form of the public key is predictable,

10In [Ra] there are no arguments for why f , g and h have to be on the given form. Nevertheless, by
seeing things in connection with lemma 4.3, I express my understanding here.
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and a cryptanalyst with knowledge of the construction can easily reveal the private key,
g = Z +

∑6
i=1 cixi + co. For example, the cryptanalyst would know that tip(q1) = XZY

and tip(q2) = Y ZX, which makes it easy to spot out tip(g) = Z.

(ii) The public key of this system is so large that Opal is unable to compute a par-
tial Gröbner basis for the ideal generated by the public key. This makes the techniques
of encryption from the previous section, a) and c), promising if the ciphertext, c, is con-
structed such that the public key does not reduce c correctly. This cryptosystem are
suggested to be worth more research, but is not evaluated further in [Ra]. However, the
idea of similar tips of the polynomials in the public key from c), is investigated further
in the next section.

5.3 Cryptosystems with the public key based on conjecture 4.4

This section describes a cryptosystem which can possibly be made secure. We present
two techniques of encryptions, a) and b), where only technique b) seems to provide
sufficient security against the considered attacks. It may be look like a generalization
of the cryptosystem presented in the previous section, but the public key is not on the
form, q1 = fgh− hg and q2 = hgf − gh, and the inability to find finite Gröbner bases is
based on probability as mentioned in the conjecture.

We start with considering the private key, g = W +
∑n

i=1 aixi+a0
11, where {ai}n

i=0 ∈
Fq − {0} in a free algebra, Fq〈x〉, of n variables. The tip(g) = W has to contain all the
variables and have no self-overlaps. This makes the message space M ⊆ NonTip(〈g〉)
very large and can consist of all monomials which do not contain all the variables.

The private key is of course used in the construction of the public key, B = {qi}s
i=1.

We use the idea from the previous section that all the s polynomials should have equal
tips, T . The polynomials qi are constructed such that for all 1 ≤ i ≤ s and some mono-
mials WF and WH , we have:

(i) qi = fi · g · hi

(ii) tip(fi) = WF

(iii) tip(hi) = WH

(iv) fi and hi contain a proper number of words of length l(WF ) and l(WF )− 1,
l(WH) and l(WH)−1 respectively, such that the conditions in conjecture 4.4 are fulfilled.

It follows that the common tip of all qi’s is T = WF · W · WH . Further we present
two techniques of encryption.

a) Choose arbitrary constants, {βi}s
i=1 ∈ Fq, such that

∑s
i=1 βi = 0. The encryption is

done in the same way as technique c) in section 5.1, namely by setting c =
∑s

i=1 βiqi+m,
and observe that tip(c) < T . As in section 5.1, the set of polynomials in the public key,

11This form makes tip(g) have no overlaps for any admissible order. However, the only thing of
importance is that g is a finite Gröbner basis for some chosen order. This means that g can be chosen
arbitrarily as long as tip(g) has no overlaps.
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B, is easy to tip-reduce if the set is relatively small. It follows that the reduced set, B′,
is often able to reduce the ciphertext, c, correctly, and thus, this method of encryption
is considered insecure.

Remark: I comparison to the technique c) of encryption described in section 5.1, we
see a lot of resemblances, but one difference is that technique c) has to make use of
polynomials on the form, q1 = fgh + hg and q2 = hgf + gh, to generate the polynomial
set with equal tips in the public key. In this case, the polynomials are created directly by
the private key, g, without losing its secrecy. Still, the possibility of correctly reducing
the polynomials in the public key, makes any of these techniques insecure.

b) This technique of encryption appears to be secure, and it is doing the opposite of
a), namely extending the tip(c) compared to T . We choose arbitrary monomials, Fij

and Hij , and construct the ciphertext, c =
∑s

i=1

∑ki
j=1 FijqiHij + m, where for every qk,

there is at least one pair of Fkj , Hkj that satisfies Fkj ·Hkj ≥ T .
The intention is not to avoid that c is divisible by any qi, but make the outcome of

any reduction of c, have more terms than before the reduction. Using the polynomials in
the public key or partial Gröbner basis in reduction of c, will thus not reveal the message,
m. According to [Ra], if the number of variables are n = 3, there are instances where
Opal is not able to compute partial Gröbner bases after running for at least 24 hours.
That is not crucial here, because the security is based on other aspects, but it can make
it easier to do some precautions regarding the encryption.

If we compare these cryptosystems with the ones in section 5.1 and 5.2, we see that
the main difference is that we do not use public keys on the form q1 = fgh + hg and
q2 = hgf + gh. Because of this, it is possible to find a finite Gröbner basis for J
if we choose the right coefficients. However, ideals based on conjecture 4.4 are most
likely not to have a finite Gröbner basis as long as we randomize the coefficients. The
reason why we use conjecture 4.4 is because of the promising technique of encryption by
using polynomials in the public key with the same tips. As a result, we can have many
qi = fighi’s in the public key with the same tip, not generated by fgh+hg and hgf +gh,
but only by g.

The benefits of this system compared to the earlier ones, is that it is far less pre-
dictable, due to all the possible forms of the fi’s, hi’s and g and the arbitrary number of
elements in the public key, B.

Security evaluation
We evaluate the security based on the type of attacks presented at the beginning of this
chapter.

(i) It is clear that 〈B〉 = J ( I = 〈g〉, provided that J does have an infinite Gröb-
ner basis for all admissible orders. It follows that g /∈ J , and g is concealed from any
attack based on computing Gröbner bases. Another aspect is that the size and the unpre-
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dictability of this system makes any attempt of revealing the private key seem infeasible.
The only knowledge a cryptanalyst has about this system, is that the tip of the private
key is presented somewhere in the middle of the tip of every polynomial in the public
key. Further concerns about this issue is presented in the next chapter.

(ii) We see that canceling the tips when encrypting, as proposed in technique a), will
not ensure that a correct reduction of c is infeasible. This may have do to with that tip-
reduction of B = {qi}s

i=1 and computation of a partial Gröbner basis are also achieved
by canceling tips.

However, the technique b) of this section is promising. Encryption is done by adding
big multiples of the qi’s to the message, m, such that reduction of c by these qi’s adds
a big amount of terms to the reduced ciphertext, c′ ∈ NonTip(〈tip(B)〉)12. A crypt-
analyst will after the reduction of c have terms spread in the sets M ⊆ NonTip(I) (
NonTip(J) ( NonTip(〈tip(B)〉), where the monomials in NonTip(〈tip(B)〉)\NonTip(J)
can not be reduced without the infinite Gröbner basis of J . As long as g is safe, there is
no way he can reduce a polynomial p ∈ J to zero. It follows that a reduced ciphertext
can be written c′ = p′+m, and the cryptanalyst will not be able to sort out which terms
in c′ are components of the original message, m. Further concerns and the linear algebra
attack is considered later.

Remark: If c′ ∈ NonTip(J), no terms in c′ can be divided by any polynomial in
the infinite Gröbner basis of J . This means that c has been correctly reduced and
c′ = m ∈ M ⊆ NonTip(I).

12In [Ra, example 4.2], the reduction of some p ∈ J by B or a partial Gröbner basis of 〈B〉, gives a
remainder, p′, containing much more terms than p.
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6 Some security aspects in the Polly Cracker cryptosystem

This chapter consider the works of T. S. Rai and S. Bulygin [RaBu] in addition to [Ra],
and there will be presented suggestions of how to resist certain attacks on a Polly Cracker
cryptosystem based on conjecture 4.4. The security of such a cryptosystem has two issues.
One is how the private key can be concealed safely, and the other is how to find a method
of encryption which is resistant to linear algebra attacks.

The reader may have observed that the issue of concealing the private key now differs
from its original objective (from the commutative case). As long as the polynomials in
the public key generates an infinite Gröbner basis for an ideal which is a subset of the
ideal generated by the private key, the cryptanalyst is unable to reveal the private key
using the noncommutative version of Buchberger’s algorithm. Instead, the problem is
how to generate the public key such that not too much information about the private
key is exposed.

The problem of encryption seems only to be about the linear algebra attack. Correctly
reduction of c by the public key or a partial Gröbner basis seems infeasible if you use the
technique of encryption b) described in section 5.3.

6.1 Chosen-ciphertext attacks

In this section we assume that the cryptanalyst has temporary access to the decryption
key (also called the decryption black box) without knowing the details of it. This can
be exploited with a chosen-ciphertext attack. The cryptanalyst carefully chooses certain
ciphertexts to decrypt, in order to get as much information about the private key as
possible.

The unpredictability of the private key, G, and the public key, B, in a cryptosystem
based on conjecture 4.4, makes it hard for a cryptanalyst to explore the properties of
G by looking at B. The only thing that is for certain, is that the largest tip, T , that
occurs in B = {qi}s

i=1, is in 〈tip(G)〉. We know that every qi
G−→ 0, so of course, any

tip(qi) has to be divisible by some monomial in tip(G). Also, if it is publicly known that
M = NonTip(I), one could study the message space in order to get information about
tip(G).

In the two cryptosystems considered in section 5.1 and 5.2, it will be fairly easy
to spot out the monomials of the private key because the form of the polynomials are
publicly known. In order to prevent that further information about the private key is
revealed to the cryptanalyst, [Ra, page 51] presents the use of non-monic polynomials as
f , g and h such that the all the monomials in the public key have coefficients which are
a multiple of three unknown constants. (When using monic polynomials, we know that
three of the constants equals 1.)

However, despite the infeasibility of solving this system of cubic equations, one can
find an own version of the private key which would work just as good as the original, by
using a chosen-ciphertext attack. The reader should be aware that the exact values of
the coefficients in a private key, g, is not necessary to obtain for a cryptanalyst. What is
crucial to find, is the relations between the coefficients. For instance, if g = α·xy+β·x−γ,
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one could find another version g′ = xy + α−1 · β · x − α−1 · γ where 〈g′〉 = 〈g〉. This is
similar to the commutative case where the private key is not a specific Gröbner basis,
but just some Gröbner basis for the ideal 〈G〉 = I.

A successful chosen-ciphertext attack

Consider a Polly Cracker cryptosystem where the following conditions are satisfied:

(i) The private key is a finite (not necessarily reduced) Gröbner basis, G = {g1, g2, .., gt}.
(ii) tip(G) can be easily determined from the public key.
(iii) The cryptanalyst has temporary access to the decryption black box.

Then the chosen-ciphertext attack can be used to find a Gröbner basis for 〈G〉 = I.
The attack is using a fake ciphertext with some tip(gi) /∈ M as the "message".

The cryptanalyst uses now his temporary access to the decryption black box to decrypt
c =

∑s
i=1

∑ki
j=1 FijqiHij+tip(gi). It is clear that since

∑s
i=1

∑ki
j=1 FijqiHij

G−→ 0, the only

thing that is returned from the black box is N(tip(gi)), by tip(gi)
G−→ N(tip(gi)). This is

done for all elements tip(gi) ∈ tip(G), and we obtain a set of polynomials G′ = {g′i}t
i=1

where all g′i = tip(gi)−N(tip gi).
As earlier mentioned, any polynomial f ∈ Fq〈x〉/I can by uniquely written as f =

if + N(f), where if ∈ I. It follows that f −N(f) ∈ I. If f is substituted with tip(gi),
we see that every g′i = tip(gi) − N(tip gi) ∈ I, so we have that 〈G′〉 ⊂ 〈G〉. Since
tip(G′) = tip(G), we know that G′ is a Gröbner basis for 〈G′〉 = 〈G〉 = I.

Notice that G′ is alternative version of the private key, G. When reducing tip(gi) by
gi, we get tip(gi)− Ctip(gi)−1 · gi = Ctip(gi)−1 · tail(gi). tail(gi) may be reduced futher
if G is not a reduced Gröbner basis. It follows that g′i = Ctip(gi)−1 · gi, and it is easy to
see that Ctip(gi) = 1 and G = G′ if and only if G is a reduced Gröbner basis.

A chosen-ciphertext attack without any knowledge of tip(G)

Now we make an assumption that the tips can not be found from the public key, but the
admissible order used in the cryptosystem are publicly known.

A cryptanalyst can now only determine the largest tip in the public key, T =
max1≤i≤s(tip(qi)), which we know has to be divisible by some monomial in tip(G). He
then constructs a fake ciphertext with T as the "message" and gets N(T ) in return from
the decryption black box. Out of this he creates a polynomial, g′1 = T −N(T ) ∈ G′ ⊂ I.
Further he considers every polynomial W < T , and creates in a similar way a polynomial,
g′i ∈ G′ after using W as the "message" in a fake ciphertext, giving N(W ) as outcome.
The cryptanalyst has now obtained G′ ⊂ I in the same way as above. Notice that if
W = N(W ), then W is not divisible by any monomial in tip(G) and the polynomial
gk = W −N(W ) = 0 must be discarded.

We now know that 〈G′〉 ⊂ I, but also that tip(G) ⊂ tip(G′) 13, so it follows that

13This is stated in [RaBu], but the following example seems to give a contradiction.
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〈G′〉 = 〈G〉 = I. Thus, G′ is an alternative version of the private key.

Remark: By [RaBu], this attack does not operate in polynomial time, so one should
construct the public key such that the number of elements {W |W < T} is sufficiently
large.

Example 12
Let T = max1≤i≤s(tip(qi)) be the largest tip in the public key, B = {qi}s

i=1 which is
generated by a reduced Gröbner basis, G. We know that some monomial in tip(G) di-
vides T , but another question is if there exists a monomial W ∈ tip(G) where W > T?
If this is true, the chosen-ciphertext attack described above will not succeed in finding a
Gröbner basis.

We recall the finite reduced Gröbner basis presented in example 2, G = {g1, g2, g3, g4, g5},
where

g1 = yxz − yz

g2 = zy − x

g3 = yxx− yx

g4 = xxz − xz

g5 = xxx− xx

for a length-lexicographic order with x > y > z. Because tip(gk) has greater length
than any monomial in tail(gk), the order of x, y, z could be chosen arbitrarily without
affecting the Gröbner basis. Notice by example that neither {g5}, {g3, g4} or {g2, g3}
generates the ideal, 〈G〉 = I. The smallest set of the gi’s that generates I is {g1, g2}, and
it can be shown that if g1 or g2 are left out from G, the set would generate another ideal
I ′ ( I.

Further we present a way of constructing polynomials in the public key with the same
tips. The point here is not to exactly follow the conjecture 4.4, but to compare the largest
tip, T , of the qi’s with tips in tip(G). We construct every qi in a similar way, but with
different coefficients:

qi = az · g1 + g2 · (−axz + d) + by · g5 + g5 · cz + g3 · (−bx + e) + (−cx + f) · g4 =
azyxz−azyz−azyxz +axxz + byxxx− byxx+ cxxxz− cxxz− byxxx+ byxx− cxxxz +
cxxz + dzy − dx + eyxx− eyx + fxxz + fxz

= dzy − dx + eyxx− eyx + (a + f)xxz + fxz − azyz

In the construction, we made use of the overlap relations between the gi’s. Notice that
this would be the outcome for any order on x, y, z. Further we consider two cases.

a) The order is x > y > z
The polynomials in the public key are on the form qi = (a + f)xxz + eyxx − azyz +
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fxz − eyx + dzy − dx, and tip(qi) = xxz = T .
If a cryptanalyst uses a chosen-ciphertext attack on this system, we see that the

monomials {W |W < T}, are not including tip(g5) = xxx. This means that the cryptan-
alyst does not have a Gröbner basis at the end of the attack, contradicting the proof in
[RaBu, page 14] where they used that tip(G) ⊂ tip(G′) ⊂ {W |W < T}.

However, we know that the cryptanalyst will obtain g1 and g2 (T > tip(g1), tip(g2)),
which are the generators of the finite Gröbner basis, so he can then easily compute G.

b) The order is y > z > x
The polynomials in the public key are on the form qi = +eyxx−azyz(a+f)xxz−eyx+
dzy + fxz − dx, and we see that tip(qi) = yxx = T .

In the same way as in a), we see that tip(g1) = yxz > yxx = T , and thus, the
cryptanalyst will not find a Gröbner basis for 〈G〉 = I using the chosen-ciphertext attack.
Nevertheless, it can be shown that G′ = {g2, g3, g4, g5} is in itself a reduced Gröbner basis
for another ideal, say I ′ ( I. It follows that the cryptanalyst is unable to compute g1

and will believe that he has obtained the private key, G.
In fact, both the Gröbner bases, G and G′, can be used to decrypt correctly. We

see that z · g1 is used in the making of the polynomials in the public key, but it may be
reduced to zero by g2 and g4, such that we have z · g1 = g2 · (xz − z) + g4. This means
that the Gröbner basis G′ can be used as a version of the private key.

By this example we have shown that the chosen-ciphertext attack is not as straight-
forward as presented in [RaBu]. However, the threat seems to be unchanged.

Concealing the private key from chosen-ciphertext attacks

In the previous section, we tried to make a cryptosystem secure from a chosen-ciphertext
attack by reducing the publicly known information and increasing the size of the largest
tip, T , of the polynomials in the public key. Still the system is not sufficiently secured.

Now we try to consider the protection against this attack from a different angle,
by setting some conditions for the message space and the decryption black box. This
is proven to provide resistance from any chosen-ciphertext attack. In fact, the private
key can be a single polynomial, g, with no overlaps and where tip(g) is publicly known.
A person who wants to communicate with r other persons without fearing the chosen-
ciphertext attack, needs to do the following:

(i) Create r disjoint message spaces, Mi, such that
⋃r

i=1 Mi = M ( NonTip(I) and⋂r
i=1 Mi = ∅

(ii) Assign one of the message spaces, {Mi}r
i=1, to each of the r persons.

(iii) Ensure that every gi ∈ G contains a monomial, ~xi ∈ NonTip(I) \ M , such that
u · ~xi · v /∈ M for any monomials u and v.
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(iv) If person k wants to have a ciphertext, c, decrypted, the decryption algorithm
(or black box) must return c unreduced if some term in c is not in "his" message space,
Mk.

If a cryptanalyst tries to decrypt a fake ciphertext, c, with the decryption black box
using some tip(gi) as the "message", we see that tip(gi)

gi−→ Ctip(gi)−1 tail(gi) which we
know contains some monomial ~x /∈ M . This makes the black box return the unreduced
c. Since any Mi (M , every one of the r trusted persons will not be able to decrypt fake
ciphertexts.

However, by introducing several message spaces we do not get a "proper" public key
cryptosystem. That is why we have to modify this cryptosystem so that M is not divided
into smaller message spaces. This provides that we can have an arbitrary number of users
of the same message space. The modified cryptosystem is as follows:

(i) The message space is M ( NonTip(I)

(ii) Ensure that every gi ∈ G contains at least one monomial, ~xi ∈ NonTip(I)\M , such
that u · ~xi · v /∈ M for any monomials u and v.

(iii) If c′ is the reduced ciphertext, c
G−→ c′, we program the decryption algorithm (or

black box) to return c unreduced if any term in c′ is in NonTip(I) \M .

In this cryptosystem the private key remains safe from the chosen-ciphertext attacks
presented earlier, but now the system is vulnerable to another version of the attack:

Say person A and person B communicates with person C through this cryptosystem
created by person C. If an encrypted message, m, is sent from person A to person C, one
can see the ciphertext, c.

If person B wants to find out what person A sent, he can disguise the ciphertext, c,
as his own by constructing c′ = p + c + m′ where p =

∑s
i=1

∑ki
j=1 FijqiHij . Further he

sends c′ to person A but gives a fake excuse for having person A return the message.
Then person B will get back the reduced c′ G−→ m + m′ where it is easy to find m by
subtracting off the arbitrarily chosen m′ ∈ M .

Remark: The decryption black box is just a picture of ways to obtain the reduction of
a ciphertext you sent yourself.

One last thing to consider is if the same term a · ~x ∈ NonTip(I) \ M appears in ev-
ery gi ∈ G. If a cryptanalyst tries to decrypt c = p − tip(gk1) + tip(gk2), the term ~x
vanishes and he gets the reduction of c in return. He can continue systematically by
choosing proper pairs of the gi’s in order to find out which terms belongs to which poly-
nomial. However, he would not know the form of ~x, and of course, this attack will not
work if one just randomizes and increases the terms ai · ~xi ∈ NonTip(I) \M in each gi.
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6.2 A method of encryption which is resistant to linear algebra attacks

This section describes two different linear algebra attacks and ways of encountering them.
The first attack can only be used if the cryptanalyst knows the form of Fij and Hij in
the construction of the ciphertext. The other compares the ciphertext and the public
key, and can always be used.

Linear algebra attack

Here we consider the standard linear algebra attack presented in [Ko] and a way to
make the cryptosystem resistant to it. We recall the encryption of a message, m, using
the public key B = {qi}s

i=1 which is c =
∑s

i=1

∑ki
j=1 FijqiHij + m. By looking at the

coefficients in c and the qi’s, the cryptanalyst tries to find the unknown coefficients of
Fij , Hij and m. This gives a quadratic set of equations for which there exists no known
method for solving.

However, a simple adjustment can give us a set of linear equations. The trick is to
view the multiple of the coefficients of some monomials Fij and Hij as one unknown
coefficient, δ. Of course, the cryptanalyst is only interested in the coefficients in the
message. The coefficient, ωl, of every monomial, Wl ∈ M in c, gives a linear equation on
the following form:

ωl =
∑

r

δr · λr + mWl
(3)

If Wl /∈ M , we get:

ωl =
∑

r

δr · λr (4)

λr is a known coefficient of some monomial in one of the qi’s, δr is the unknown multiple
of the coefficients of some Fij and Hij and mWl

is the coefficient of Wl in m. This attack
will be successful it the number of such equations exceeds (or equals) the number of
variables, δr and mWl

.

Remark: The form (the monomials) of Fij and Hij has to be known in order to set
up these equations14. This means that a cryptanalyst needs only to find the coefficients
in order to obtain the message. In general, we see that the construction of c may bring
several equal monomials. This is why the coefficient of some Wl may be written as a sum
of several coefficients on the form δr · λr.

To ensure that the cryptosystem is resistant to this attack, one should increase the
number, ki, of the terms Fij and Hij . If one increases the number ki with one for all
1 ≤ i ≤ s, the linear system of coefficients will contain s more variables. The key concern
when doing this is not to increase the number of equations. Of course, if the number of
variables and equations increases with the same amount, this method will not help.

14This is not specified in [Ra].
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We illustrate this by giving an example where the public key is constructed as in
conjecture 4.4.

Example 13
Let R = Z331〈x, y〉 where we use the length-lexicographic order with x > y. The private
key is a single polynomial, g, where tip(g) = xy. We have a public key consisting of five
(s = 5) polynomials on the same form:

qi = λ1i · xxxyyy + λ2i · xyxyyy + λ3i · yxxyyy + λ4i · xxxyx + λ5i · xxxyy + λ6i · xxyyy +
λ7i · xyxyx + λ8i · xyxyy + λ9i · xyyyy + λ10i · yxxyx + λ11i · yxxyy + λ12i · yxyyy + λ13i ·
xxxx + λ14i · xxxy + λ15i · xxyx + λ16i · xxyy + λ17i · xyxx + λ18i · xyxy + λ19i · xyyx +
λ20i ·xyyy +λ21i · yxxx+λ22i · yxxy +λ23i · yxyx+λ24i · yxyy +λ25i · yyyy +λ26i ·xxx+
λ27i · xxy + λ28i · xyx + λ29i · xyy + λ30i · yxx + λ31i · yxy + λ32i · yyx + λ33i · yyy + λ34i ·
xx + λ35i · xy + λ36i · yx + λ37i · yy + λ38i · x + λ39i · y + λ40i

We construct the ciphertext by using the following forms of Fij and Hij

Fi1 = αi1 · xxx βi1 · yyy = Hi1

Fi2 = αi2 · xxx βi2 = Hi2

Fi3 = αi3 βi3 · yyy = Hi3

Fi4 = αi4 βi4 = Hi4

(5)

where αij and βij are arbitrary constants and ki = 4 for all 1 ≤ i ≤ 5. Notice that
max1≤j≤4(Fij · Hij) ≥ T = xxxyyy, as in the condition of section 5.3. We encrypt a
message, m, by setting c = p + m where p =

∑5
i=1

∑4
j=1 FijqiHij . The number of terms

in p are 130, but will not be explicitly given due to its large size.
If a cryptanalyst uses a linear algebra attack on this system, he can see that the

number of variables on the form δr = αij · βij are s · ki = 5 · 4 = 20. In addition he finds
the monomials of c which are in the message space, M . There are 18 such monomials
which are not divisible by xy:

{xi}7
i=1, {yi}7

i=1, yxx, yyx, yx and a constant term 15.

The cryptanalyst sets up 18 linear equations for the coefficients of these monomials on
the form (3). The remaining monomials in c are not in the message space, M , and lead
to 112 equations on the form (4). Now we have 38 variables but 130 equations. A way
of increasing the number of variables while the number of equations remains the same,
is to increase ki but keep the additional Fij ’s and Hij ’s on the same form as in (5)16.
This will keep the number of terms in p on 130, and one could assume that if ki ≥ 23,
we would have s · ki + 18 = 5 · 23 + 18 = 133 variables which would secure this system.

15Since the cryptanalyst knows the construction of p, these are the only monomials one should use in
the message space.

16In [Ra, page 55] it is wrongfully stated that this system is secure from a linear algebra attack if
ki ≥ 7 (in this setting: ki ≥ 28). Even the additional unknown constants mWl , has not been considered.
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However, the new variables are not interesting for a cryptanalyst to find. We see that
some polynomial, qi, are then multiplied with several terms, Fij and Hij , which are on
the same form.

Let λ be the coefficient of some monomial d in qk and Fkj1 ·Hkj1 be on the same form
as Fkj2 ·Hkj2 with the coefficients, αkj1 · βkj1 = δ1 and αkj2 · βkj2 = δ2, respectively. We
consider Wl in c as the monomial we get from Fkj1 ·λ · d ·Hkj1 and Fkj2 ·λ · d ·Hkj2 . The
coefficient ωl of Wl is now given by

ωl =
∑2

r=1 δr · λr = λ ·∑2
r=1 δr = λ(δ1 + δ2)

where λ1 = λ2 = λ is the known coefficient of d in qk. The sum over the unknown
δr’s, can then be viewed as one variable in the system of linear equations, so as long as
you do not find new forms of the Fij ’s and Hij ’s, there is no point of increasing the ki.

In general, we can see that in order to not get too many equations, one should keep
the size of all the monomials, Fij and Hij , pretty close to each other. When increasing
the number of Fij ’s and Hij ’s from this example, it seems best if they are constructed
such that 1 < Fij ·Hij < xxxyyy, and of course, not equal to each other. In addition,
the number of equations will be minimized if all the qi’s are on the same form. In the
contrary, if there are giant leaps in the size of these polynomials and monomials, the
number of terms in the ciphertext will increase and lead to more equations.

Further, if the form of the monomials, Fij and Hij , are not known, the cryptanalyst
is unable to set up equations. He could then try an attack which is described as the
intelligent linear algebra attack from the commutative case17.

The intelligent linear algebra attack

This attack is the same as presented in [Ko] for the commutative case and needs no
knowledge of the encryption. The cryptanalyst compares the public key to the ciphertext
in search for weakness in the construction.

This attack starts with the assumption that a multiple of some polynomial in the
public key, Fij · qi ·Hij , will most likely be presented as terms in c. An easy way to go
against this attack is to make sure that all the polynomials, {qi}s

i=1, are on the exact
same form18. Then the cryptanalyst has no chance of knowing which terms in c are a
multiple of which polynomial qi.

However, if every Fij and Hij are chosen arbitrarily, the cryptanalyst can find a
multiple, Fij · qk ·Hij , in c and go through the coefficients of all qi’s in order to find the
proper qk. This may work because the coefficients of some Fij and Hij can be seen upon
as one unknown multiple of the known coefficients in qk

19.
The way to provide security against this attack is to ensure that for every 1 ≤ i ≤ s,

{Fij ·Hij}k
i=1 are on the same form. Now every qi is multiplied with the same monomials

17This attack is not considered in [Ra].
18This is impossible for a public key on the form presented in section 5.2.
19This method is presented as a remark at the end of chapter 2.
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but different unknown coefficients, so the coefficients of all monomials in c are a sum of
at least s unknowns.

Example 14
We will give a small example of how arbitrarily chosen Fij ’s and Hij ’s can make a system
vulnerable to an intelligent linear algebra attack. The order is length-lexicographic with
x > y, and encryption is achieved by using the following elements:

q1 = a1 · xxy + a2 · yy + a3

q2 = a4 · xxy + a5 · yy + a6

F11 = b1 · yy b2 = H11

F12 = b3 b4 = H12

F21 = b5 · xx b6 · y = H21

F22 = b7 · xxx b8 · xyy = H22

Now we let b1 · b2 = β1, b3 · b4 = β2, b5 · b6 = β3 and b7 · b8 = β4 and compute
p =

∑2
i=1

∑2
j=1 FijqiHij :

p = β4a4 · xxxxxyxyy + β4a5 · xxxyyxyy + (β4a6 + β3a4) · xxxxyy + β3a5 · xxyyy +
β1a1 · yyxxy + β1a2 · yyyy + (β3a6 + β2a1) · xxy + (β1a3 + β2a2) · yy + β2a3

Say we send an empty message c = p, then the cryptanalyst can easily observe that
the terms β4a4 ·xxxxxyxyy +β4a5 ·xxxyyxyy +(β4a6 +β3a4) ·xxxxyy are a multiple of
either q1 and q2. Further he checks if the coefficients in q1 or q2 can help him. If he tries q2,
he computes Ctip(q2)−1 ·Ctip(p) = a−1

4 ·β4a4 = β4. Now let q′2 = tail(q2) and p′ = tail(p).
The cryptanalyst continues by computing Ctip(q′2)

−1 · Ctip(p′) = a−1
5 · β4a5 = β4.

Notice that the cryptanalyst will not get β4 as the multiple if he proceeds with this
technique. However, since two of three coefficients in q2 had the same multiple, he can
with high probability conclude that β4 · xxx · q2 · xyy is used in the construction of c.
Due to the poor construction of c, a cryptanalyst will find all the unknown βi’s by this
method.
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7 Security and weakness

In this chapter we evaluate some security aspects in a noncommutative Polly Cracker
cryptosystem. We summarize the results of the previous sections and try make the
necessary precautions such that any of the considered attacks will not be successful. The
reader is referred to the beginning of chapter 5 for an overview of the cryptosystem.

7.1 Concealing the private key

By computation of Gröbner bases, it is infeasible for a cryptanalyst to obtain the private
key as long as the polynomials in the public key, B = {qi}s

i=1, generates an ideal with no
finite Gröbner basis. Chapter 4 gave examples of such ideals, but it is essential to not
use monic polynomials. Even if the cryptanalyst knows the exact form of the private key,
he can not find the coefficients because he will have to solve a system of cubic equations,
which there are no known solutions for.

However, if a cryptanalyst succeeds with the chosen-ciphertext attack, he can find
his own variant of the private key where the relations between the coefficients is the
same as in the original private key. As we saw in chapter 6, this attack can be defeated,
so we now give some necessary precautions in order to conceal the private key sufficiently:

- Realizing a finite Gröbner basis for 〈B〉 = I must be infeasible.
- Use non-monic polynomials with arbitrary coefficients when creating the public key.
- Design the message space and the decryption algorithm as proposed in section 6.1.

7.2 Encryption

The predictable form of the public keys given in section 5.1 and 5.2 (or (1) and (2)),
makes any encrypted message by such keys vulnerable to some attack by a cryptanalyst.
The general form of an ideal from conjecture 4.4 makes any attack more difficult, and
that is why we will focus on such ideals in the following.

Decryption by reduction

The main concern regarding encryption of a message is to avoid that the cryptanalyst
can correctly reduce the ciphertext using the public key and a partial Gröbner basis20. In
section 5.3 we saw that an attempt of canceling the {tip(qi) = T}s

i=1 in the ciphertext by
using coefficients with the property

∑s
i=1 βi = 0, did not provide sufficient security from

a "reduction-attack". Instead there was presented a promising method of encryption
without elements of tip-reduction:

c =
∑s

i=1

∑ki
j=1 FijqiHij + m

max1≤j≤ki
(Fij ·Hij) ≥ T for 1 ≤ i ≤ s

20This is not avoided by using a public key on the form of (1) from section 5.1.
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The lack of a Gröbner basis for 〈B〉 = J makes it infeasible for a cryptanalyst to cor-
rectly reduce the ciphertext, because of the large terms in c, provided by Fij ·Hij ≥ T .
A reduced ciphertext, c′, by a partial Gröbner basis for J , will have many more terms
than the original c. Notice that if c′ ∈ NonTip(J), then c′ = m, so we have terms in c′

that are not divisible by any polynomial in the partial Gröbner basis, but are also not in
NonTip(J).

If a cryptanalyst is unable to compute a partial Gröbner basis (n must be large), we
could reduce the set {qi}s

i=1 → {q′i}s
i=1 and then find {tip(q′i)}s

i=1. Then we encrypt a
message such that some Fik · Hik /∈ NonTip(J) is not divisible by, or have no overlaps
with any of the tip(q′i)’s. Since a cryptanalyst only can reduce c by {q′i}s

i=1, it follows that
Fik and Hik will maintain, and we are guaranteed that c′ 6= m. However, this technique
seems hard to realize in practice.

Linear algebra attack

As stated in the last chapter, we can construct a ciphertext which is resistant to this at-
tack if we ensure that the number of unknowns exceed the number of equations. Further
we present some observations which can be used to regulate this:

- For 1 ≤ i ≤ s, if Fil · Hil 6= Fij 6= Hij for all 1 ≤ l 6= j ≤ ki, then we increase
the number of unknowns by ki and get s · ki unknowns.

- The number of equations will be at the lowest if all polynomials {qi}s
i=1 have the

same form. Different qi’s will give different terms in c, and thus, more equations.

- Say mini,j(Fij ·Hij) is a constant, then the number of equations increases with maxi,j(Fij ·
Hij). To introduce more unknowns without increasing the number of equations too much,
we chose monomials Fij ·Hij < maxi,j(Fij ·Hij).

It is important to ensure that a sufficient amount of terms of
∑s

i=1

∑ki
j=1 FijqiHij are in

the message space, such that m can not easily be determined from c.
This attack needs precise knowledge of the construction of the ciphertext to be used.

If the Fij ’s and Hij ’s are chosen arbitrarily, the attack is useless.

The intelligent linear algebra attack

It seems clear from the previous chapter that protection against such an attack is pro-
vided if we do the following:

- Let all elements in the public key, B = {qi}i, be on the same form.
- For every 1 ≤ i ≤ s, let {Fij ·Hij}k

j=1 be on the same form.
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7.3 A proposal of a Polly Cracker cryptosystem

Now we present a way to create a Polly Cracker cryptosystem which is hopefully resistant
to all the considered attacks.

- Choose an arbitrary polynomial, g, as the private key where tip(g) has no over-
laps. Make also sure that M ( NonTip(〈g〉) such that at least one term in g are in
NonTip(〈g〉) \M .

- Construct the public key, B = {qi}s
i=1, such that 〈B〉 = J is an ideal on the form

of conjecture 4.4, and let all the qi’s be on the same form, but with different arbitrary
coefficients.

- Choose 2k arbitrary monomials, u, where we have {u2i−1 ·u2i}k
i=1 such that u2i−1 ·u2i 6=

u2j−1 · u2j for all 1 ≤ i 6= j ≤ k. In addition, we must ensure that tip(qi) = T ≤
max1≤i≤k(u2i−1 · u2i).

- Let ki = k such that for 1 ≤ i ≤ s, we set {Fij ·Hij}k
j=1 = {a2i−1u2i−1 · a2iu2i}k

i=1 for
some arbitrary constants {aj}2k

i=1.

- If the decryption algorithm reduces the ciphertext c
g−→ c′, where at least one term

in c′ is in NonTip(〈g〉) \M , then c is returned without reduction.

In general, a cryptosystem on this form seems promising, but the different parameters
need have a certain magnitude. Also, it is important to design B and {uj}2k

j=1 such that
the encryption c = p + m =

∑s
i=1

∑ki
j=1 FijqiHij + m, provides p to have a significant

number of terms in the message space, M .

7.4 Conclusion

We know that the cryptosystem presented above is protected against the linear alge-
bra attacks presented in section 6.2, and the private key seems infeasible to obtain by
a cryptanalyst, even if he finds tip(g). Nevertheless, there are three weakness’s in this
system that we must consider:

1. Conjecture 4.4 is just on experimental level, and there exists no unconditional guar-
antee that an ideal generated by polynomials on the same form as in the conjecture will
have an infinite Gröbner basis.

2. The encryption method, b), presented in section 5.3 is also on an experimental level.
If the cryptanalyst is unable to compute a partial Gröbner basis and we have several
monomials Fij · Hij > T , correctly reduction by the public key seems certain to fail.
However, a proof is infeasible to give at this moment.
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3. A public key cryptosystem needs a common message space, M , for an arbitrary
number of users. That leaves this system vulnerable to an attack described in section
6.1, where one can decrypt a ciphertext constructed by another person by disguising it
as your own ciphertext, using the decryption black box.

It seems hard to prove that a cryptosystem can be secured from all these weakness’s.
However, there are several promising aspects behind these points, and this should provide
that there will be done more research in order to make this cryptosystem secure.
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