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Abstract—Measurements from the on-board systems of marine
vessels are increasingly available for data analysis and are
growing in importance as the ship industry enters a phase of
digitalization. The purposes of the data analysis from vessels in
operation include the verification of the power system design in
general and improvement of the electrical power load analysis
(EPLA) in particular. In this paper, we show how to extract
valuable information from the data-driven operational profile
analysis, which reveals the real power demand, and how the vessel
was operated. Using the real power range analysis, we emphasize
the significance of rarely occurring high power demands, which
are critical for power system design and optimization. We
propose a methodology for the quantification of variability in
the generated power, which explains the tails of probability
distributions of a power signal based on signal decomposition.
The proposed methodology makes use of the data and it can
facilitate the selection of the optimal size, number, and config-
uration of generators or batteries when designing new power
systems. Measurements from a data collection system are used
to demonstrate the methodology for dynamic positioning (DP)
mode of the operation of a platform supply vessel (PSV).

Index Terms—electric power load analysis (EPLA), power
variability quantification, load variability, power system design.

I. INTRODUCTION

POWER systems have a significant role in marine ves-
sels to propel the vessel and to cover the demand for

various loads during operations of the vessel. Power plants
of modern vessels are growing in size and complexity with
increasing demand for ship size, speed, safety, operability, and
economy [1]. The interconnections between the power system
and diverse systems on a vessel have become increasingly
complex, making the design, engineering, and building of a
vessel a more integrated effort [2]. The main power system
design tasks include: selection of the optimal power system
configuration, load analysis (which supports the selection of
the right number and size of electrical power generators), and
selection of the configuration and the size of power distribution
for propulsion and service loads. The power system design is
made based on the personal experience and knowledge gath-
ered from prior vessel designs. Additionally, there are many
rules and regulations imposed by the International Maritime
Organization (IMO), National Authorities and classification
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societies, e.g., Det Norske Veritas-Germanischer Lloyd (DNV-
GL), American Bureau of Shipping (ABS), or Lloyd’s Register
(LR), which establish the requirements for the power system
design and redundancy. Recommended standards for designing
the shipboard power systems include, e.g., [3], [4]. For many
vessels there will also be additional class notations and recom-
mended practices, depending on the function of the vessel, e.g.,
DP class [5], [6]. Improvements in the power system design
can be supported by mathematical modeling and simulations
(based on physical and empirical laws) [7]–[9] or data-driven
modeling (machine learning, statistical approach) [10]–[12].

A. Challenges in power system design

The electrical load lists, containing load factors, are standard
procedures for the dimensioning of vessel power systems. The
power demand is determined by assigning a load factor to
each electrical consumer, based on the experience from similar
ships [1], [13]. This method has limitations, since the output is
only a single number and the range of possible combinations
of loads remains unknown. Simultaneously, the current load
factors do not reflect the way in which the equipment is
operated [14]. Traditional methods based on the load factor
are often not found sufficient in cases where vessels have large
varying electrical loads, because many load deviations appear
during a specific operation [13].

Therefore, a stochastic load analysis will be more appropri-
ate for the power system design and this method is described
in a design data sheet (DDS) [15]–[17]. The important impact
of performing stochastic load analysis is the determination of
the minimum, mean, and maximum loads, what is a challenge.
Making correct assumptions regarding a range of expected
loads enables more appropriate sizing of generators. Therefore,
the assumptions about operational profile and the real power
load range used in various operational modes are crucial.

Challenges in power system design, such as expected
load ranges, total load demand, and power variability in
real conditions [18], [19] have prompted researchers to fo-
cus on the efficiency of power systems and few alternative
techniques to perform EPLA were proposed [20]–[22]. To
improve power system efficiency, power system optimization
has become crucial to reduce operational and installation
costs. Optimization methods were applied using a classifier-
guided sampling [23] or heuristic solution Generic Algorithm
[22] based on power demand calculated using load factors
or the stochastic approach with Monte Carlo simulation. An
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important approach for power system dimensioning is load
modeling using behavioral models of loads for smaller power
systems [17]. All these methods shows that there is scope for
power system optimization and adjustment of a designed peak
power; this motivates to analyze real power requirements of a
vessel applying measurements.

B. Support of power system design by data analysis

As we described above, the major challenge in the power
system design is assumptions about load ranges. The loading
on thrusters will vary greatly depending on the weather condi-
tions; however, the proper number and the size of generators
will be optimized for the worst case heavy sea and maximum
power, which is not the most probable scenario [13]. There-
fore, sometimes we can see non-efficient installations.

Marine diesel engines of offshore vessels in a DP mode are
typically operated at 20–50% of maximum continues rating
(MCR); however, their optimum is about 80% MCR (see
Fig. 1), which causes non-efficient and expensive operations
with high fuel consumption. The aim of power system design
is a choice of an engine with an operating point at 80% MCR.
To overcome that challenge, we can use real measurements
from the monitoring systems of vessels and apply the data-
driven methodology to improve standard design methods and
verify the current power systems. By a careful study of
real power demands and rarely occurring high power and
variability, we are able to adjust the size of the engine to fit
the most economic and environment-friendly operational point
of the engine.

The knowledge about real power demand lets us to choose
the optimal size of generators by adjusting the peak power
limits (see Fig. 2). Then we can install additional power

Fig. 1: Specific fuel consumption (SFC) for a medium speed
diesel engine [24]

Fig. 2: A typical probability distribution function of power
generated. MCR refers to generator rated power at cosφ = 0.9

source to cover loads above the set limit or to cover the
power variability by adding new equipments like batteries
or capacitors. This will let the engines run at more optimal
and constant load and enhance the vessel safety for optimized
installation.

Thus far, measurements from on-board systems of a vessel
have been used to estimate load of economic operation of elec-
tric generators and load shedding and were applied involving
pattern recognition techniques [25]. Measurements were used
to establish the representative load curves based on 15-min
average power demand over a time horizon [26] and to cluster
load profiles for electric consumers of a ship [27]. The research
on load curve classification was originally conducted for short-
term load forecasting of anomalous days [28] and to cluster
power systems customers [29], [30].

This implies that the analysis of measurements can be
applied to improve power system design [26] and to increase
the knowledge on complex power systems.

Additionally, data analysis allows:
• support for dimensioning of the batteries. In the past

several years, focus on the environment has increased
and led to the application of energy storage and use
of renewable energy sources in marine power systems.
The advantages and disadvantages of installing batteries
for application in peak shaving and load shedding are
reported in [31]–[35];

• onboard optimization of the configuration, e.g., turning
on or off generator sets or connecting additional switch-
boards depending on the load level, or cyclic operation
with batteries (charge/discharge);

• optimization of the onboard operation of the power
system that includes control strategies, and coordinated
control based on the level of power variability [1], [36].

As we see, there is room for power system design optimiza-
tion; however, we have to study, understand, and investigate
the power variability and rarely occurring power demands to
avoid underestimation and to ensure vessel safety.

C. Overview of the paper

In this paper, we propose the use of the vessel operational
profile analysis for power system design verification, based
on real measurements from an on-board monitoring system.
Operational profile analysis enables establishing real load
ranges and motivates to study high and rarely occurring power
demands.

We propose a methodology for the quantification of vari-
ability and dynamics originating from different types of op-
erational loads and weather conditions affecting the generated
power based on the one-year data from a PSV in a DP mode.
The outputs of the method, namely probability distributions
of a power signal, enhance the knowledge of the portion
of the load originating from varying electrical consumers
and environmental factors. We emphasize the need to study
rarely occurring high power demands, which appear in tails
of probability distributions of a power signal, and it can be
explained with the quantification of variability in power. The
methodology can help to facilitate the selection of the optimal
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size, number, and configuration of generators or batteries when
designing new power systems as well as can be applied to
analyze various types of power systems of vessels.

In the section II of this article, we present the typical power
system set-up of the vessel, from which we analyze the data.
Then, in section III, we describe the analysis of operational
profile of the vessel based on probability distributions. In
section IV we describe and motivate the methodology for
power decomposition. In section V and VI we describe the
application case and practical applications of the proposed
methodology. Finally, we present the main conclusions.

II. POWER SYSTEM SET-UP OF THE VESSEL

As an example, to illustrate the methodology of analysis,
we use a PSV with a diesel-electric configuration and a
power system set-up shown in Fig. 3. The total generated
electrical power is the total power output of four generators
(G), y[n] =

∑4
i=1 yi[n] (n is number of measurements, yi[n]

is power generated by the i-th generator), connected to the
main 690 V switchboard and equivalent to 100% (values
are anonymized). The signal of the total generated power is
registered by an on-board monitoring system and sampled
with the sampling frequency of 1 Hz. Power generated by
the generator is a 4-20 mA signal from a multi-transducer in
the main switchboard, based on inputs from the three current
transformer and three-phase voltage.

The main power consumed is the sum of power used by the
two main propulsors (M) and the three thrusters (T), x[n] =∑5
i=1 xi[n] (xi[n] is the power consumed by the i-th main

consumer). Power consumed is limited only to the main power
consumed by large consumers. The difference, y[n]− x[n] is
represented by hotel loads and part of the operational loads,
which are not measured directly.

III. OPERATIONAL PROFILE ANALYSIS

Operational profile analysis is a known method to under-
stand how a vessel has been operated over a period of time.
An operational profile shows the percentage of time in which
a vessel has been in a specific mode of operation, i.e., the
amount of time in which a vessel was in a DP, transit, or any
other specified mode.

The first steps of the operational profile analysis are to
establish the definitions of different vessel operational modes

Fig. 3: A typical power system set-up of the vessel.

Fig. 4: The operational profile of a PSV in one-month of
operation

[1] and to apply them to available measurements, in order to
quantify the time spent in each of the mode of operation over a
specific period. In Fig. 4, we show the one-month operational
profile for a PSV operating in the North Sea. PSVs need to
have good maneuverability and station-keeping capabilities in
order to keep a vessel in position during operations at the
platform. Using operational profile analysis allows us to assess
which modes of operation occur most frequently. Fig. 4 shows
that the vessel was mostly performing the DP (station-keeping)
operations, which is a major operational task for this type of
vessel; therefore, we focused on this vessel operation. The
advantage of having measurements and the operational profile
is the possibility to study the distribution of the total generated
power in each of the operational modes, as described in the
next subsection.

A. PDF and CDF for specific vessel operations

Statistical properties of the analyzed electrical power dis-
tributions and maximal load ranges of power can be assessed
by using the following functions [37]: cumulative distribution
function (CDF) and probability density function (PDF).

As an example, in Fig. 5, we present a PDF and CDF
of the total power generated and consumed in a DP mode
for one-year measurements. These plots enable us to see the
most probable and maximal electrical loads. We can assess
that in a DP mode, approximately 99% of the time, the total
electrical power, both generated and consumed, is below 40%
of the total power available. This is connected with redundancy
requirement. In addition, the maximum power produced is
69% of MCR; this gives us an indication of design margin
as a difference between the designed and real peak power in
this mode of operation.

The probability distribution of total power generated and
consumed, in specific modes of operation, can be used for
the verification of size and margins of the power plant and as
an input for the power system optimization which should be
preformed for each mode of operation. Additionally, the PDF
tails and even 1% of high loads can be important in case of
special purpose vessels, so it is required to carry out an in-
depth study of high loads, the frequency of their occurrence,
and the PDF tails.

For different type of vessels, a PDF and CDF analysis can
be used to identify the critical vessel operations from the
power perspective, i.e., to verify in which mode the vessel
used the maximum power, the percentage time duration for
which the vessel was in this operation mode and the critical
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Fig. 5: PDF (left axis): electrical power generated (black),
power consumed in a DP mode (gray), CDF for the relevant
PDFs (right axis). % MCR refers to the generator-rated power,
values are anonymized.

operation when the maximum power was used. For example,
for fishing vessels, it will be trawling, and for ferry, it will be
maneuvering.

In the next section, we will describe a method for the
power decomposition, which is able to explain the variability
in power measurements linked with the PDF tail.

IV. ELECTRICAL POWER ANALYSIS BASED ON POWER
SIGNAL DECOMPOSITION

The probability distributions of a electrical power signal
depend on the mode of operation of the vessel. Additional
information can be obtained by performing a time series
analysis of the generated power. The total generated power
signal contains a large amount of dynamics and/or variability.
Large variability in the power system can be caused by
operating the vessel in harsh environmental conditions with
varying operational loads, and it can explain the PDF tail.

In Fig. 6, we see the example of classification variability
of power signal in the function of frequency. We can see that
loads are associated with frequency bands, e.g., steady-state
loads from operations of the vessel are present at low fre-
quencies and they vary slowly; varying loads from operations
associated with environment appear in the frequency band
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Fig. 6: Typical variability in power signal [24], [36], [38], [39]

Fig. 7: Influence of the weather conditions on the power
generated by generators. Left subplot: spectrum of the power
generated for large vessel’s motions (black) and power gener-
ated for small vessel’s motions (gray). Right subplot: spectrum
of the vessel’s pitch for large pitch motions (black) and small
pitch motions (gray).

[f1, f3], which is motivated by the ocean wave classification
[39] and ocean wave spectra [40], [41]. The most-influenced
loads by environmental conditions are propulsion loads which
are used to keep the position of the vessel in a DP operation.

Based on the ocean spectrum we can see that the long
period waves have smaller energy spectrum than the shorter
waves. The measured frequency spectrum for a heavy sea
shows the high peak for the frequency band [f2, f3] [42]–
[44]. Similar peaks we see in the spectrum of the vessel’s
motion signals (vessel’s roll and pitch) are associated with
the sea conditions (see Fig. 7). From Fig. 7, we see that
the peak in the frequency band related with the environment
also appears in the spectrum of the power generated signal.
Based on the Fig. 7, we can conclude that the environmental
conditions effects the power generated. The most impact of the
environment is in the frequency band [f2, f3]; however, based
on the ocean wave spectra, we know that some influence of the
long waves will be in the frequency band [f1, f2]. To conclude
which frequency band and which loads are associated with
the power probability distribution tail, we are motivated to
use three filters to extract these frequency bands and see how
they affect the power probability distribution in the further
analysis. More details about the choice of frequencies are
given in section V, based on the application example.

A. Overview on the proposed methodology

In order to analyze the electrical power generated by the
generators, we propose a methodology for power signal de-
composition, which is presented in Fig. 8 in a block diagram.
The key aspect of the methodology is to separate the power
signals into appropriate frequency bands in order to extract
information related to the phenomena at slow, medium, and
high frequencies. In order to study and quantify the range of
variability of the power generated in the time domain, digital
filtering is used to decompose the signal. The first step of the
methodology is the spectral analysis of the power signal, which
is used, in combination with additional signals such as vessel
pitch and roll, to link frequency properties of the analyzed
signal to the vessel’s operations and environmental conditions.
In the frequency domain, we can select the frequency bands
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Fig. 8: Block diagram of the methodology for the quantifica-
tion of dynamics in the generated power.

that are linked to the rate of change of the power signal. The
choice of cut-off frequencies is made through the inference in
the frequency domain on the significance of frequency bands:

a. Low-pass (LP ) filter (cut-off frequency f1), which ex-
tracts the low frequency component, is associated with
slowly changing, steady-state operational loads

b. Band-pass (BP1) filter (cut-off frequency f ∈ [f1, f2]),
which extracts the medium frequency component, is asso-
ciated with operational loads and low impact of weather
conditions

c. Band-pass (BP2) filter (cut-off frequency f ∈ [f2, f3]),
which extracts the high variable component, is associated
with the high impact of environmental conditions.

Applying digital filtering enables us to extract desirable fre-
quency bands from the power signals. In the next stage, we
apply descriptive statistics to signals obtained at the output
of digital filters. In the final step, the quantified variability
from frequency bands is linked to the total power of the
system. By the association of frequency bands with the power
variability, we can explain which loads influenced the high
power demands and PDF tails. The estimated value can be
used in the vessel’s electrical power load analysis and power
system optimization for new vessels.

The main objective of the described methodology is to show
relevant steps that should be performed on a large data set
to extract information on power variability. A large data set
represent at least one year of measurements (continuously
registered) that contain sufficient representations of possible
scenarios; therefore, the data is assumed to be representative.
All measurements are split according to operational modes.
Each vessel operation should be analyzed separately because
of various probability distributions functions of power (in
our case, we analyze the DP mode). Spectral analysis based
on periodogram and coherence function should be applied
by averaging periodogram and coherence function after the
set of realizations. This approach allows minimization of the
influence of noise on the final results. However, for insufficient
data set, this analysis may lead to poor results. To provide
robust results that can be used for power system design,
the analysis should be repeated on measurements obtained
from few vessels that are of similar type and have similar
operational area. In addition, the outcome of the analysis can

be reinforced by simulations. An extension of the proposed
methodology, on the basis of analysis of power variability from
several vessels, may result in generalizations of probability
distribution functions of power signal by fitting one of the
common distribution; however, this is presently out of scope
of the paper.

The proposed methodology applies to new vessels that have
similar operational profile and area as well as for retrofits of
old vessels where owners would like to install, e.g., batteries
and implement more environmental friendly and efficient
operations. The proposed method allows a more accurate
design of installations of new (similar) vessels, validation
of the power installation of existing vessels, and possible
development of new concepts on the basis of knowledge
gained from measurements and analyzes. It allows to validate
assumptions of peak power and adjust the size of engines or
propose batteries and dimension it.

In the following subsections, we will describe the applied
techniques and show the practical example of application.

B. Spectral analysis

Frequency domain analysis is well known in the field of
electrical engineering. In the case of random signals, the
standard method for spectral analysis is power spectral den-
sity (PSD, periodogram) [45]. Actual measurements include
random elements, which suggests the use of the PSD for the
frequency domain analysis. In this case, we assume that the
signal is stationary in a wide sense [37], i.e., the mean value
of the signal do not depend on time and the average value
of the product of two samples depends only upon the time
interval between samples. The PSD quantifies the distribution
of power with frequency and it is defined in the following way
[46]:

Px(f) = lim
M→∞

1

2M + 1
E

∣∣∣∣∣
n=M∑
n=−M

x[n]e−j2πfn

∣∣∣∣∣
2
 (1)

where E is the mean value, M is the number of samples, f
denotes discrete-time frequency, which is assumed to be in the
range −0.5 ≤ f < 0.5. There are a number of methods for the
PSD estimation [47], [48]. In practice, the most common is
the Welch method [48], which ensures the bias-variance trade-
off. Periodogram, defined by (1), can be applied as a detector
of a sinusoidal signal embedded in random noise [46], [49],
[50] and is called generalized likelihood ratio test (GLRT).
That detector has optimal properties, termed uniformly most
powerful invariant or within a restricted class of detectors
it has the highest probability of detection [51]. Therefore,
conclusions about the presence of a signal in the selected
frequency band can be drown on the grounds of periodogram
properties.

A signal analysis based on a periodogram shows significant
frequencies and their importance. Therefore, it is a common
step in the quantification of signal variability. In order to
delve the information from a periodogram, we propose to
use a coherence function. A coherence function can provide
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additional information on the relationships between signals
and can be defined as [46]:

|γx,y(f)|2 =
|Px,y(f)|2

Px(f)Py(f)
, |γx,y(f)|2 ≤ 1 (2)

It is sometimes called the coherence-squared function [52],
where Px,y(f) is cross-power spectral density (CPSD) of two
joined (stationary) random processes as [37]:

Px,y(f) = lim
M→∞

1

2M + 1
·

· E

[(
n=M∑
n=−M

x[n]e−j2πfn

)∗( n=M∑
n=−M

y[n]e−j2πfn

)] (3)

The coherence function has the following properties [46]:
• if |γx,y(f)|2 = 1 then x[n] and y[n] are linearly related;
• if |γx,y(f)|2 = 0 then the two signals are uncorrelated;
• if 0 < |γx,y(f)|2 < 1 then x[n] and y[n] are partially

related. Possible deviations from the linear relationship
between x[n] and y[n] include:
– noise may be present in the measurements of either or

both x[n] and y[n]
– x[n] and y[n] are not only linearly related

Based on the foregoing properties, we see that the coherence
function can be interpreted as the squared correlation coeffi-
cient between the signals at given frequencies.

The tools described above allow us to interpret properties
of the power signal in the frequency domain. Based on
the spectral analysis, we choose desirable cut-off frequencies
which are used for the specification of digital filtering. For
spectral analysis we used nonparametric methods which as-
sure unbiased estimation of the power density spectrum and
additionally averaging after the set of realizations results in a
reduction of the variance of the estimator, more details can be
find in [47], [48]. The basics of digital filtering are described
in the next subsection.

C. Digital filtering
In order to perform a detailed statistical analysis of the

power decomposed into different loads, we apply the LP and
BP filters.

All filters are finite impulse response (FIR) filters designed
based on windowed Fourier series [45]. All filters have the
same length of the impulse response. Applied FIR filters
guarantee a linear phase response and do not introduce phase
distortions, which is crucial for the synchronization [53] and
is necessary for proper analysis.

Based on the digital filtering, we decompose the generated
power signal into three components and enable the statistical
analysis of each component. The appropriate tools for a
statistical analysis will be described in the next subsection.

D. Statistical analysis
By using the theory of stochastic processes, it can be shown

that signals at the output of the filters are uncorrelated [37];
this can be expressed as follows:

E(x[n]) = E(xLP [n]) + E(xBP1
[n])+

+ E(xBP2
[n]) + E(xnoise[n])

(4)

where x[n] is power generated, xLP [n] is the signal at the
output of the LP filter, xBP1 [n] is the signal at the output of
the BP1 filter, xBP2 [n] is the signal at the output of the BP2

filter, and xnoise[n] is the signal component from frequency
f > f3 Hz. This can be interpreted as follows: the average
value of the sum of signals (in this case signal x[n], which
we decompose) is equal to the sum of the average values from
each signal. Additionally, the variance of signals is determined
as follows:

var(x[n]) = var(xLP [n]) + var(xBP1
[n])+

+ var(xBP2
[n]) + var(xnoise[n])

(5)

and PDF are associated by formula [37], [54]:

fx(x) ∼= fxLP
(x) ∗ fxBP1

(x) ∗ fxBP2
(x) ∗ fxnoise(x) (6)

where ∗ is a linear convolution defined by:

fx(x) = fy(x) ∗ fz(x) =
∫ ∞
−∞

fy(u)fz(x− u)du (7)

For the statistical analysis of power decomposed into three
components xLP [n], xBP1 [n] and xBP2 [n], we propose the use
of a PDF. Looking at the plot of a PDF of a signal at the output
of filters, we can see the distribution shape, the most common
values, and the PDF tail.

In order to quantify the variability of each frequency compo-
nent in the power signal, it is necessary to assess the dispersion
of the distribution. To compare and establish the dispersion of
each distribution, we propose to use variance and range, R:

R = xmax − xmin (8)

where xmax and xmin are largest and smallest values of the
distribution, respectively. Additionally, based on a definition
of quantile Q of order p :

Q(p) = {xp : F (xp) = p} (9)

where F () is a distribution function, we propose to use the
modified interquartile range [55], IQRm, which is defined as
follows:

IQRm = Q(0.9985)−Q(0.0015) (10)

It is worth noting that, based on formulas (9) and (10), IQRm
describes the width/range of the interval P [x0.0015 ≤ X ≤
x0.9985] = 0.9985 − 0.0015 = 0.997, i.e., this is an interval
that contains 99.7% of values of the random variable X .

The motivation for applying the modified interquartile range
is the use of the 3σ rule of thumb for Gaussian distributions.
Quartiles are less sensitive in case of outliers and distributions
with long tails, which helps to achieve a robust estimation of
the PDF dispersion and quantification of the load variability.
This property is useful for the analysis of measurements
distorted by noise.

It can be noticed, that properties of R and IQRm, have not
additive properties, i.e.:

R(x[n]) 6= R(xLP [n]) +R(xBP1 [n])+

+R(xBP2 [n]) +R(xnoise[n])
(11)

IQRm(x[n]) 6= IQRm(xLP [n]) + IQRm(xBP1
[n])+

+ IQRm(xBP2
[n]) + IQRm(xnoise[n])

(12)
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TABLE I: Power decomposition frequencies

Loads Frequency [Hz]
Slow variable Loads fc < 0.005

Medium variable Loads fc ∈ [0.005,0.05)
Fast variable Loads fc ∈ [0.05,0.25]

Noise fc > 0.25

V. APPLICATION CASE OF THE METHODOLOGY

In the following section, we present the application of
the proposed methodology as a case study for the generated
power, vessel roll and pitch signals from a PSV with a diesel-
electric configuration in a DP mode (see Fig. 3). The fragments
of measurements were selected by analyzing one-year time
series and by choosing extreme and representative examples
which fulfil the stationarity in a wide sense condition [37]
and have a high variance. In the design of power system such
extreme cases are the most critical and the power system is
dimensioned for the worst case weather scenario, therefore we
concentrate on such cases.

An example of the waveform of the power signal is shown
in Fig. 9. The slow variable component of the signal is shown
in black. We can see a significant difference between the slow
variable component and the instantaneous values. Looking at
the time domain analysis, we can see that the power signal has
high variability. This leads us to a study of signal properties
in the frequency domain.

1) Spectral analysis: Based on the spectral analysis, we
select frequencies that are linked to different electrical loads
and are used for digital filtering and power decomposition. In
Fig. 10, we show the normalized PSD of the total generated
power (black) together with motions measurements of the
vessel associated with weather conditions, vessel pitch (black
dotted) and vessel roll (black dashed). The analysis of PSDs
the from one-year data, verifies the choice of frequencies
{f1, f2, f3} described in section IV. Additionally, the choice of
frequency band [f2, f3] is motivated by the dominating wave
frequency [38]. Chosen frequencies are summarized in Table I.

Additionally, the selected frequencies presented in Table I
can be verified by a coherence function of the generated power
and the vessel’s roll and pitch signals, which are shown in
Fig. 11. Based on the coherence function, we can see that
vessel motions, which are influenced by the environment,
can explain approximately 50% of variability in the medium

Fig. 9: An example of the waveform of the power signal (gray)
and slow variable component (black) of the generated power.

Fig. 10: Overlay plot of PSDs and ensemble average for the
power generated signal (black), vessel pitch (black dotted),
vessel roll (black dashed).

Fig. 11: Overlay plot of coherence functions and ensemble
average for the generated power and vessel roll (black) and
for the generated power and vessel pitch (black dashed).

variable loads frequency interval [f1, f2] and approximately
45% in the fast variable loads frequency interval [f2, f3]. The
assessment of the influence of the environment based on the
coherence function can be underestimated due to a high level
of noise, especially in the case of the fast variable component.
Therefore, in order to analyze the environmental impact, it is
recommended to use simultaneous analysis of the normalized
PSD and coherence function.

Based on the spectral analysis (Fig. 10 and Fig. 11), we
see that the generated power can be decomposed into load
fluctuations, which are linked to different frequency bands.
This analysis can be performed for the entire power system
and for a single power consumer, such as the main propulsion
thrusters or bow thrusters, in order to see the power dynam-
ics/variability. This leads to the use of digital filtering as a tool
for the extraction of load fluctuations from a specific frequency
band, enabling the quantification of the dynamics originating
from different loads in the power system.

For the power decomposition, we apply three digital filters,
as described in section IV.C, with the cut-off frequencies
defined in Table I.

2) Statistical analysis based on electrical load distributions
of decomposed power: A statistical analysis allows for power
dynamic quantification based on the dispersion of distribution
from the decomposed power. Quantification of power dynam-
ics plays a crucial role in the system optimization, where
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Fig. 12: Load distributions of the power decomposed into var-
ious frequencies. Upper subplot: PDF of the power generated
(dark gray); Middle subplot: PDF for the power decomposed
into: slow varying loads (light gray), fast varying loads (black);
Lower subplot: PDF for the power decomposed into medium
varying loads (black). % MCR refers to the generator-rated
power at cosφ = 0.9; values are anonymized.

design margins are adjusted to maximal real loads. In the upper
subplot of Fig. 12, we showed PDFs of the total electrical
power generated by four generators. We see that the distribu-
tion is unimodal and the mean value is approximately 26% of
the total power available. The distribution is skewed right. The
maximal value is equal to 69 % of the total power available.
We showed all distributions of the decomposed signal in the
subplots of Fig. 12. Analyzing the output of the LP filter
(light gray, the middle subplot), we see the lower range of
distribution compared to the primary distribution. Therefore,
the wide range/dispersion of the PDFs of the total generated
power can be explained by the PDFs originating from the
output of BP filters (black distributions, see formula (5)). The
most significant difference between these distributions is the
difference between their ranges/dispersion. Looking at this, we
see that the tail of the probability distribution of a power signal
can be explained by the range of the medium varying loads
(black distribution, the lowest subplot), which further can be
explained by the slowly changing operational loads and some
influence of the environmental conditions. The fast varying
loads, predominantly linked to the environmental factors, have
the smallest dispersion.

TABLE II: Descriptive statistics for distribution (all values in
[% MCR]).

Loads xmin xmax R IQRm mean var
Total 4.8 68.8 64.0 49.5 25.6 68.5
Slow 12.6 38.3 25.7 20.6 25.6 15.3

Medium -22.1 33.7 55.8 44.4 0 40.6
Fast -15.6 16.3 32.1 21.5 0 10.0

Descriptive statistics of distributions are summarized in
Table II, which confirms the results described above. Based
on the results presented in Table II, we see that the difference
between the range R and IQRm is not significant for slow,
higher for medium and most significant for fast variable
loads. The significant difference observed in the case of fast
variable loads is a result of noise level in the frequency band.
Therefore, a more appropriate method for power the variability
quantification, which is less sensitive to noise, is IQRm.

Interpretation of statistical properties of signals after de-
composition can be associated with analysis of time series
and properties of Fourier transform (FT). Fig. 13 shows a
close-up of time series of power signal before and after signal
decomposition with the following properties:

1) signal at the output of the low-pass (LP) filter with
cut-off frequency f1 = 0.005. The aim of the filter is
attenuation of the signal components above the frequency
f1 and extraction of the slow variable component (direct
component (DC)). On the basis of the properties of
the FT, it is shown that the mean value of the signal
corresponds to the amplitude at the frequency f = 0 Hz.
Therefore, the aim of the LP filter is extraction of the
slowly changing average value. Such filters are frequently
called as a moving average filter. If we assume that x[n]
is a generated power, and xLP [n] is a signal at the output
of the LP filter, then we can show that

E(x[n]) = E(xLP [n]) (13)

i.e., the average value of the signal x[n] is equal to
average value of the signal xLP [n]. This property is
apparent from the analysis of the PDF of the signal
xLP [n].

2) signal at the output of the band-pass filter with cut
off frequency interval [f1, f2) = [0.005, 0.05) Hz. The
purpose of this filter is extraction of the information

Fig. 13: Close-up of the power generated x[n] (gray dashed),
slow varying loads xLP [n] (light gray), medium varying loads
xBP1

[n] (black) and fast varying loads xBP2
[n] (black dotted).
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that is associated with the filter bandpass frequencies
and attenuate other frequency components. This filter
attenuates the signal component with frequency f = 0
Hz; therefore, the average value of the signal at the output
of the filter xBP1

[n] is as follows:

E(xBP1
[n]) = 0 (14)

Property (14) implies that instantaneous values of the sig-
nal xBP1 [n] oscillates around zero, i.e., xBP1 [n] can have
both positive and negative values. It is worth noting that
the signal period is equivalent to [1/f1, 1/f2) = [200, 20)
s. In Table II, we show that the mean of the medium
variable is 0.

3) signal at the output of the band-pass filter with cut off
frequencies [f2, f3] = [0.05, 0.2] Hz, whose aim is to
extract of the fast variable signal component xBP2

[n].
This filter also attenuates the frequency component at f =
0 Hz; this means:

E(xBP2
[n]) = 0 (15)

In addition, it is worth noting that the signal period is
equivalent to [1/f2, 1/f3] = [20, 4] s.

The analysis can be extended to identify distributions that
best fit the data in order to extract generalizations; however
this was beyond of the scope of the paper.

VI. PRACTICAL APPLICATION OF THE METHODOLOGY

In section we present practical applications of the proposed
methodology. The proposed methodology, based on signal de-
composition, allows for extracting slowly varying operational
loads and to quantify the variability from different frequencies.
Quantified variability helps dimensioning a separate source
of power to cover the power variability or to adjust the
configuration and the size of generators. Adjusting the size
of generators to cover slowly varying loads allow for more
efficient operations and lets the engine run with more optimal
specific fuel consumption (SFC) [g/kWh], which saves costs,
reduces emissions and decreases maintenance.

A. Support in new power system design and optimization

In the upper subplot of Fig. 14, we see the probability
distribution function of power generated in the DP mode (left
axis). The black dashed line shows a SFC (right axis) with the
indicated optimal point of operation in terms of fuel efficiency
and environmental pollution [56]. We observe that the con-
centration of low loads leads to inefficient engine operation
and high fuel consumption. The proposed methodology can
support the standard methods based on load factor analysis
and can be applied to select a new engine size with more
optimal operating point.

To illustrate an example of application, we assume that for
further analysis, the installed power of the vessel is equal to
8000kW [34]. The support for a new power system design can
based on the properties of the decomposed power signal, which
are summarised in Table II. On the basis of the methodology,
we propose the following minimum configuration of a new
power system:

1) an engine operating at its optimal point, i.e., ensuring
a possible minimum SFC, and which is used to cover
loads associated with the slow variable component. From
Fig. 14 and according to the described properties of
the power signal, we propose to use an engine whose
MCR = 90% will correspond to the maximum value of
the slow variable component xmax = 38.3% of MCR of
the power installed. If we assume that the installed power
is 8000 kW, then the maximum power of the engine will
be 0.383×8000 = 3064 kW, and the engine will produce
the power within interval [xmin×8000, xmax×8000] kW,
i.e., [1008, 3064] kW, which is equivalent to [29, 90]%
of MCR. On average, the engine will work around
xmean×8000 kW, i.e., 2048 kW ≡ 60% of MCR. There
is a possibility to further move the optimal point toward
a maximum of 100% MCR;

2) a battery that will serve as a source of power to cover
loads from a medium variable component. The medium
variable component has positive values; this means that
a battery will deliver the power and discharge as well as
the medium variable component has negative values when
battery will charge (see Fig. 13). The maximum value of
the medium variable components, according to statistical
analysis presented in Table II, is equal to xmax = 33.7%
of MCR; this is equivalent to 0.337 × 8000 = 2696
kW. It is worth noting that the maximum time interval
for the medium component is only 200 s; this means
that in the worst case, the battery will have to provide
2696 kW for a maximum of 200 s. Therefore, the battery
needs to have a minimum capacity of 150 kWh to cover
medium variable loads. Because of a large amount of
variations in power fluctuation, batteries can overheat and
their life span is reduced [57]. This suggests that power
signal decomposition gives us an indication that for loads
associated with high frequencies, batteries are not the best
solution and prompt us to use supercapacitors for rapidly

Fig. 14: Application of the proposed methodology for power
system design improvement.
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meeting power demands [31];
3) a supercapacitor, flywheel, or a battery that will serve

as a source of power for a fast variable component.
The fast variable component also oscillates around zero;
therefore, in time, when it adopts negative values, it
means that the energy source is being charged, while
when the fast variable component adopts positive values,
it means that the energy source discharge (see Fig. 13).
The maximum value for the fast variable component,
according to statistical analysis presented in Table II, is
xmax = 16.3% of MCR, which corresponds to the power
of 0.163 × 8000 = 1304 kW. The maximum period for
which the battery will be providing the energy is 20 s.
Therefore, to cover fast variable loads, there is a need for
a supercapacitor with the minimum capacity of 7.2 kWh.

On the basis of the proposed methodology we achieved
following benefits, see Fig. 14:

• originally, the engine operated at [4.8%, 68.8%] of MCR
range, with an average of 25.6% MCR, see Table II.
After power decomposition, the new engine can operate
at [29%, 90%] of MCR range with an average 60% MCR.
Such modification of the current design ensures that the
engine operates at its optimal point of operation, thereby
providing a reduced SFC of approximately 100 [g/kWh];

• dimensioning the engine to work constantly helps to keep
environment safe and enable efficient operations;

• power decomposition based on frequency intervals al-
low to establish the minimum and maximum period of
medium and fast variable loads that can be used for
battery dimensioning.

Numerous applications of batteries are reported in [35],
[58], [59], which show different potentials to improve perfor-
mance of distribution systems in peak load shaving, load lev-
eling, power quality improvements, and energy management
applications. Batteries can also be used as a back-up power
source, e.g., for powering the propulsion system for a short
period of time to reposition the vessel [58].

In the case we would like to have the same power capacity
as that in the previous design, e.g., to keep a large reserve of
power required in DP condition for power supply vessel, we
can install larger batteries as a spinning reserve or an addi-
tional engine. In this scenario, we do not adjust peak power
designed by the load factor analysis and assure the vessel
operability by keeping the installed power at the same value;
however, we adjust the size of engines or configuration of
new power plant. There are number of possible configurations
based on the proposed methodology. By performing signal
decomposition, the designer can adjust the number and size of
generators and dedicate them to cover various load variability.

The proposed methodology can be used for dimensioning of
the power system of similar vessels, a situation that is common
in the industry when ship owners order a vessel fleet; it can
also be used for vessel retrofit and to extend the knowledge
of power systems in a dynamic environment. For the retrofit
of the existing vessel, the proposed methodology helps to
dimension the battery and adjust the energy management
system to run the installed engine with optimal loads and

use the battery when frequency of the loads changes. The
benefit of power decomposition based on frequency analysis
for battery dimensioning is that we know exactly the maximum
time period required to supply the energy, and according to
distribution of loads, we can find the maximum power which
we need.

B. Other practical applications

The analysis based on real measurements can be applied
for:
• Power system design verification

The analysis of power generated in each vessel operation can
be used in electric power load analysis for the dimensioning
of the power plant and to define important specific modes and
scenarios. The most important modes will be the ones where
the vessel used the maximum power most frequently, or with
a wide distribution of power. Applying the PDF and CDF
analysis of real measurement helps to verify the maximum and
mean values of electric power used in every mode of operation.
This analysis allows power design verification, comparison of
the electrical power load analysis based on the load factors,
and is complementary. When the PDF analysis reveals that
the maximum load and designed peak power is never used in
reality and the design margin is too large, we can consider
installing smaller engines on a new vessel, and e.g., batteries
that will be used in extreme situations or as a safety reserve.
As shown in Section III-A, in the DP mode, 99% of time
the power generated is below 40% and the design margin
is approximately 31%; in this mode, the design margin is
a redundancy requirement. However, in similar way design
margin can be verified in each operational mode.
• Validation of ”sea-margin” in power system design

Another practical application of the proposed methodology is
quantification of the variability from environmental conditions
that can be used as a verification of the ”sea-margin”, which
is applied as a safety factor on the top of the results from
hydrodynamic simulations conducted for the calm sea in the
power system design. The dynamic factor is often assumed
during the electrical power load analysis by marine engineers,
and currently, EPLA does not account for this. The assumption
of the variability of the environmental conditions can result
in overdimension of the power installation if the designer
assume more variability than needed. In other situations, not
assuming a dynamic environmental conditions can result in
unavailability of power in dangerous situations. The variability
from varying sea conditions for the analyzed vessel was equal
to IQRm=21.5% of MCR, and this can be used as a validation
of applied assumptions and to improve simulations of steady-
state scenarios.

VII. CONCLUSIONS

In this paper, we have demonstrated techniques for the ex-
ploration of data from the vessel on-board monitoring system,
based on the one-year measurements from the PSV. Analysis,
based on the probability distribution function (PDF), enabled
us to observe the most common loads and maximal loads
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whilst the cumulative distribution functions (CDF) allowed us
to see the amount of time spent in specific load intervals.
This information can be an input for the power system design
verification, optimization, and new system design requirements
by establishing real design margins and investigating high
power demands, resulting in PDF tails.

In order to improve our understanding of properties of
power signal, we proposed and described a data-driven
methodology where the power is decomposed based on dif-
ferent frequency bands. Power variability, associated with
frequency bands, was linked with the environmental conditions
that the vessel is exposed to as well as with the frequency
of electrical loads from the power system. The properties of
decomposed power enable better understanding of probability
distributions of a power signal tails and to improve the power
system design of new vessel.

Statistical analysis of decomposed power enable to dedicate
a separate source of power to cover loads associated with dif-
ferent frequency bands, e.g., engine that covers slowly varying
loads; batteries and supercapacitors that serve as a source of
power for medium and fast varying loads. The association of
statistical properties of decomposed signals with the properties
of signals in the time domain allows for dimensioning, e.g.,
batteries that are alternately charged and discharged during
the operation of the power system. The analysis allow to
dimension more efficient, hybrid power systems, for various
types of vessels with special operational profile, e.g. offshore,
naval, fishing vessels or ferries.
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