
REGULARITY FOR AN ANISOTROPIC EQUATION IN THE PLANE

PETER LINDQVIST AND DIEGO RICCIOTTI

Abstract. We present a simple proof of the C1 regularity of p-anisotropic functions in the
plane for 2 ≤ p < ∞. We achieve a logarithmic modulus of continuity for the derivatives.
The monotonicity (in the sense of Lebesgue) of the derivatives is used. The case with two
exponents is also included.
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1. Introduction

The minimization of the “anisotropic” variational integral

IΩ(v) =

ˆ
Ω

n∑
i=1

1
pi

∣∣∣∣∣ ∂v
∂xi

∣∣∣∣∣pi

dx (1.1)

over functions v(x) = v(x1, · · · , xn) with given values on the boundary of the bounded
domain Ω ⊂ Rn, leads to the Euler-Lagrange equation

ˆ
Ω

n∑
i=1

∣∣∣∣∣ ∂u
∂xi

∣∣∣∣∣pi−2 ∂u
∂xi

∂φ

∂xi
dx = 0 (1.2)

for all test functions φ ∈ C∞0 (Ω). Denoting by p = (p1, · · · , pn), it is required that a solution
u belongs to the anisotropic Sobolev space

W1,p(Ω) :=
{
u ∈W1,1(Ω) : uxi ∈ Lpi(Ω) , i = 1, · · · ,n

}
.

Formally one has the equation

n∑
i=1

∂
∂xi

(∣∣∣∣∣ ∂u
∂xi

∣∣∣∣∣pi−2 ∂u
∂xi

)
= 0

in Ω.
The equation is demanding even in the plane. We shall restrict ourselves to the case

n = 2 and 2 ≤ p1 ≤ p2 < ∞. Our object is the continuity of the gradient ∇u = (ux1 ,ux2) in
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the plane. The recent work [1] of P. Bousquet and L. Brasco is devoted to the “orthotropic
equation”, as they call it,

∂
∂x1

(∣∣∣∣∣ ∂u
∂x1

∣∣∣∣∣p−2 ∂u
∂x1

)
+

∂
∂x2

(∣∣∣∣∣ ∂u
∂x2

∣∣∣∣∣p−2 ∂u
∂x2

)
= 0 (1.3)

in Ω, with only one exponent 1 < p < ∞. They proved that u ∈ C1
loc(Ω). Our first result is

a very simple proof of the continuity of the gradient.

Theorem 1.1. Let p ≥ 2 and suppose that u ∈ W1,p(Ω) is a solution of (1.3) in Ω. Then ∇u
is continuous and

osc
Br

(∇u) ≤ A

 1

R2 log
(

R
r

) ¨
B2R

|∇u|p dx1dx2


1
p

where A = A(p) and Br, BR are concentric balls Br ⊂ BR ⊂ B2R ⊂⊂ Ω.

The advantage of our proof is, besides its simplicity, that a modulus of continuity of
the size (

log
(1

r

))− 1
p

is provided. The main ingredient is an elementary inequality used by Lebesgue in 1907,
valid for functions that are monotone (in the sense of Lebesgue). We exploit the fact that
the partial derivative uxi obeys the maximum and minimum principle, a key property
observed in [1] Lemma 2.6 .

Second, we consider the equation

∂
∂x1

(∣∣∣∣∣ ∂u
∂x1

∣∣∣∣∣p1−2 ∂u
∂x1

)
+

∂
∂x2

(∣∣∣∣∣ ∂u
∂x2

∣∣∣∣∣p2−2 ∂u
∂x2

)
= 0 (1.4)

in Ω, under the restriction 2 ≤ p1 < p2.

Theorem 1.2. Letp = (p1, p2) with 2 ≤ p1 < p2 and assume that u ∈W1,p(Ω). If u = u(x1, x2)
is a solution of equation (1.2), then the gradient ∇u is continuous and

osc
Br

(
uxi

)
≤ A

(
1

R2 log(R/r)

¨
B2R

(|∇u|p1 + |∇u|p2) dx1dx2

) 1
pi
, (1.5)

where A = A(p1, p2) and Br, BR are concentric balls Br ⊂ BR ⊂ B2R ⊂⊂ Ω. The integral
converges.

Here we encounter an extra difficulty. Naturally ux1 ∈ Lp1(Ω), ux2 ∈ Lp2(Ω), and,
consequently, ux2 ∈ Lp1(Ω), but one cannot assume ux1 ∈ Lp2(Ω). Indeed, the term |vx1 |

p2 is
not present in the variational integral (1.1). This difficulty is discussed in [6]. Under the
restriction p2 < p1 + 2, this problem is settled in Proposition 5.1 below, the proof of which
is a direct adaptation of the method in [4]. By a recent result in [3], the solution of (1.2) is
locally Lipschitz continuous (n = 2, 2 ≤ p1 ≤ p2), see Theorem 1.4 and Remark 1.5 there.
By Rademacher’s Theorem the gradient belongs to L∞loc(Ω). Thus the integral in the right
hand side is convergent also for p2 ≥ p1 + 2. Nonetheless, we have included a sketch of
the proof based on the iteration in [4], since the extra assumption leads to a considerable
simplification. Furthermore, this approach seems to allow a generalization to the vector
valued case.

1.1. Acknowledgments. We thank Lorenzo Brasco for a discussion about [3]. P.L. was
partially supported by the Norwegian Research Council. He wants to thank the University
of Pittsburgh for its hospitality.
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2. Standard Estimates

Notation. We use standard notation. Br = Br(a) denotes the ball {x ∈ R2 : |x − a| < r}
and when several balls like Br, BR appear in the same formula they are assumed to be
concentric. Usually,

∑
i means

∑2
i=1, although the formulas in this section are valid also in

n dimensions. A variable subscript in a function denotes a derivative with respect to that
variable, e.g. vxi = ∂v

∂xi
and vxix j = ∂2v

∂xi∂x j
.

Regularization. We shall regularize the equation so that at least second continuous deriva-
tives are available. The variational integral

IεΩ(v) =
∑

i

¨
Ω

 |vxi |
pi

pi
+ ε(pi − 2)

v2
xi

2

 dx1dx2 ε > 0,

has Euler-Lagrange equation∑
i

¨
Ω

(
|uxi |

pi−2uxi + ε(pi − 1)uxi

)
φxi dx1dx2 = 0 (2.1)

valid for all φ ∈ C∞0 (Ω). Let uε ∈ W1,p(Ω) denote a solution. By elliptic regularity theory,
uε is smooth.

Estimates. Below ξ ∈ C∞0 (Ω) is a test function, 0 ≤ ξ ≤ 1. Recall that p1 ≤ p2.

Lemma 2.1. Let uε be a solution of (2.1). We have∑
i

¨
Ω
ξp2 |uεxi

|
pi dx1dx2 ≤ a

∑
i

¨
Ω
ξp2−pi |ξxi |

pi |uε|pi dx1dx2

+ ε(p2 − 1)p2
2

¨
Ω
ξp2−2

|∇ξ|2|uε|2 dx1dx2,

where a = a(p1, p2).

Proof. Use the test function φ = ξp2uε in (2.1).

Lemma 2.2. Let uε be a solution of (2.1). For ν = 1, 2 we have∑
i

¨
Ω

(pi − 1)ξ2
|uεxi
|
pi−2(uεxixν)

2 dx1dx2 ≤ 4
∑

i

¨
Ω

(pi − 1)ξ2
xi
|uεxi
|
pi−2(uεxν)

2 dx1dx2

+ 4ε(p2 − 1)
¨

Ω
|∇ξ|2(uεxν)

2 dx1dx2.

Proof. We can use the derivative φxν in place of φ as a test function in (2.1). An integration
by parts with respect to xν yields the differentiated equation∑

i

¨
Ω

(pi − 1)(|uεxi
|
pi−2 + ε)uεxixνφxi dx1dx2 = 0. (2.2)

Now use the test function

φ = ξ2uεxν
φxi = ξ2uεxixν + 2ξξxiu

ε
xν

and Young’s inequality.
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Remark 2.3. The quantity |uεx2
|
p2−2(uεx1

)2 has unfavourable exponents. A bound indepen-
dent of ε is not immediate for the term¨

Ω
ξ2

x2
|uεx2
|
p2−2(uεx1

)2 dx1dx2.

Corollary 2.4. Let uε be a solution of (2.1). We have∑
i

¨
Ω
ξ2

∣∣∣∣∣∇ (
|uεxi
|

pi−2
2 uεxi

)∣∣∣∣∣2 dx1dx2 ≤ C
(∑

i

¨
Ω
|∇ξ|2|uεxi

|
pi−2
|∇uε|2 dx1dx2

+ε

¨
Ω
|∇ξ|2|∇uε|2 dx1dx2

)
where C = C(p1, p2).

Proof. Use ∣∣∣∣∣ ∂∂xν

(
|uεxi
|

pi−2
2 uεxi

)∣∣∣∣∣2 =
(pi

2

)2
|uεxi
|
pi−2(uεxixν)

2

and sum over ν.

Convergence. uε −→ u.

Let u ∈W1,p(Ω) be a solution of equation (1.2). Here we take BR ⊂⊂ Ω and let uε be the
solution of (2.1) with boundary values u on ∂BR. Subtract the weak equations (1.2) and
(2.1) and use the test function φ = uε − u. After some arrangements∑

i

¨
BR

(|uεxi
|
pi−2uεxi

− |uxi |
pi−2uxi)(u

ε
xi
− uxi) dx1dx2

+
∑

i

ε(pi − 1)
¨

BR

(uεxi
− uxi)

2 dx1dx2

=
∑

i

ε(pi − 1)
¨

BR

uxi(u
ε
xi
− uxi) dx1dx2

≤
ε
2

∑
i

(pi − 1)
¨

BR

u2
xi

dx1dx2 +
ε
2

∑
i

(pi − 1)
¨

BR

(uεxi
− uxi)

2 dx1dx2

and the last term can be absorbed into the left-hand side. The inequality

22−p
|b − a|p ≤ (|b|p−2b − |a|p−2a)(b − a) (2.3)

yields ∑
i

22−pi

¨
BR

|uεxi
− uxi |

pi dx1dx2 ≤
ε
2

(p2 − 1)
¨

BR

|∇u|2 dx1dx2.

The next Lemma follows from this.

Lemma 2.5. Assume u ∈ W1,p(Ω) solves equation (1.2) and let uε be the solution of (2.1)
in BR with boundary values u on ∂BR. Then

uε −→ u uniformly in BR

uεxi
−→ uxi in Lpi(BR)

as ε→ 0.
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Proof. It remains to establish the convergence of the functions. If p1 > 2 it follows from
Morrey’s inequality in the plane that

uε −→ u uniformly in BR.

The case p1 = 2 follows from Lemma 3.1 below, since the maximum/minimum principle
obviously is valid for uε.

3. Oscillation of monotone functions

A continuous function v : Ω −→ R is monotone (in the sense of Lebesgue) if

max
D

v = max
∂D

v and min
D

v = min
∂D

v

for all subdomains D ⊂⊂ Ω. For the next Lemma it us enough that

osc
Br

v = osc
∂Br

v

holds for circles. Monotone functions are discussed in [7].

Lemma 3.1 (Lebesgue). Let Ω ⊂ R2. If v ∈W1,2
loc (Ω) ∩ C(Ω) is monotone, then

(osc
Br1

v)2 log
(r2

r1

)
≤ π

¨
Br2

|∇v|2 dx1dx2 (3.1)

holds for all concentric disks Br1 ⊂ Br2 ⊂⊂ Ω.

Proof. As on page 388 of [5] an integration in polar coordinates yields

v(r, θ2) − v(r, θ1) =

ˆ θ2

θ1

∂v(r, θ)
∂θ

dθ

for a smooth function v. It is enough to integrate over a half circle and use the Cauchy-
Schwartz inequality to obtain

(osc
∂Br

v)2
≤ π

ˆ 2π

0

∣∣∣∣∣ ∂v
∂θ

∣∣∣∣∣2 dθ.

Since

|∇v|2 =

(
∂v
∂r

)2

+
1
r2

(
∂v
∂θ

)2

≥
1
r2

(
∂v
∂θ

)2

we have
1
r

(osc
∂Br

v)2
≤ π

ˆ 2π

0
|∇v|2r dθ

integrated over a circle of radius r. By the monotonicity

osc
∂Br

v = osc
Br

v ≥ osc
Br1

v

when r ≥ r1. An integration with respect to r yields (3.1). The Lemma follows by
approximation.

We shall apply the oscillation Lemma to the functions

|uεxi
|

pi−2
2 uεxi

.

To this end, we prove that uεxi
is monotone. This is credited to [1].

Proposition 3.2. Let uε denote a solution of equation (2.1). Then

min
∂Br

uεxν ≤ uεxν(x) ≤ max
∂Br

uεxν

when x ∈ Br, Br ⊂⊂ Ω, and ν = 1, 2.
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Proof. Fix ν. Assume first that uεxν ≤ C on ∂Br, where C is a constant. We claim that uεxν ≤ C
in Br.

Use the test function

φ+(x) = (uεxν − C)+ = max{uεxν − C, 0}

defined in Br. Note that φ+ = 0 on ∂Br and set φ+ = 0 outside Br. Then φ+ is admissible
in the differentiated equation (2.2). It follows that

0 =

¨
Br

(pi − 1)(|uεxi
|
pi−2 + ε)uεxixν(u

ε
xν − C)+

xi
dx1dx2

≥ ε
∑

i

(pi − 1)
¨

Br

|(uεxν − C)+
xi
|
2 dx1dx2

and hence
(uεxν − C)+

xi
= 0 in Br

for i = 1, 2. Thus (uεxν − C)+ is constant in Br. We conclude that uεxν ≤ C in Br as desired.
A similar proof goes for the case uεxν ≥ C. Now use

φ−(x) = (C − uεxν)
+.

Corollary 3.3. Let uε denote a solution of equation (2.1). For i = 1, 2 the function

|uεxi
|

pi−2
2 uεxi

is monotone in Ω.

4. The case p1 = p2 ≥ 2

Let p1 = p2 = p ≥ 2 and let u ∈ W1,p(Ω) be a solution of (1.2). In order to prove
Theorem 1.1 we denote by uε the solution of the regularized equation (2.1) in B2R ⊂⊂ Ω
with boundary values uε = u on ∂B2R. Let r ≤ R. By Lebesgue’s Lemma

osc
Br

2
(
|uεxi
|

p−2
2 uεxi

)
log

(R
r

)
≤ π

¨
BR

|∇(|uεxi
|

p−2
2 uεxi

)|2 dx1dx2.

Observe that
22−p(osc

Br
uεxi

)p log
(R

r

)
≤ osc

Br

2
(
|uεxi
|

p−2
2 uεxi

)
log

(R
r

)
by the elementary inequality (2.3). Choose the test function ξ in Corollary 2.4 so that
0 ≤ ξ ≤ 1, ξ = 1 in BR, ξ = 0 in Ω \ B3R/2, and |∇ξ| ≤ CR−1. Thus we can majorize the right
hand side:¨

BR

|∇(|uεxi
|

p−2
2 uεxi

)|2 dx1dx2 ≤
C′p
R2

(¨
B2R

|∇uε|p dx1dx2 + ε

¨
B2R

|∇uε|2 dx1dx2

)
which is uniformly bounded in ε (0 < ε < 1). To see this, it is enough to test equation (2.1)
with φ = uε − u and use Young’s inequality to get∑

i

¨
B2R

|uεxi
|
p
≤ C(p)

¨
B2R

|∇u|p dx1dx2 + ε(p − 1)
¨

B2R

|∇u|2 dx1dx2.

Since, by Lemma 2.5, uεxi
−→ uxi a.e. in B2R as ε → 0 (at least for a subsequence), we

finally obtain

(osc
Br

uxi)
p log

(R
r

)
≤

Cp

R2

¨
B2R

|∇u|p dx1dx2.

This concludes the proof of Theorem 1.1.



REGULARITY FOR AN ANISOTROPIC EQUATION IN THE PLANE 7

Remark 4.1. For B4R ⊂⊂ Ω let ξ ∈ C∞0 (B4R), 0 ≤ ξ ≤ 1, ξ = 1 in B2R, and |∇ξ| ≤ CR−1.
Testing equation (1.2) with φ = uξp2 and using Young’s inequality we obtain∑

i

¨
B4R

ξp2 |uxi |
pi dx1dx2 ≤ C(p1, p2)

∑
i

¨
B4R

ξp2−pi |∇ξ|pi |u|pi dx1dx2.

Hence we can write the estimate of Theorem 1.1 in the form

(osc
Br

uxi)
p
≤

Dp

R2+p log
(

R
r

) ¨
B4R

|u|p dx1dx2

for r < R.

5. The case 2 ≤ p1 < p2 < p1 + 2

We shall adapt the proof in [4] to obtain the following summability result for the
derivative of the solution uε of the regularized equation (2.1). 1 We omit the details and
refer to [4] for missing parts.

Proposition 5.1. Let BR ⊂⊂ Ω and let uε be a solution of equation (2.1) in BR. Then there
exists an exponent β = β(p1, p2) and a constant C = C(p1, p2, r,R) such that

¨
Br

|uεx1
|
p2 dx1dx2 ≤ C

(¨
BR

(1 + |uεx1
|
p1 + |uεx2

|
p2) dx1dx2

)β
(5.1)

for all r < R.

The proof is based on a double regularization. The Euler-Lagrange equation of the
variational integral

Iε,σBR
(v) =

∑
i

¨
BR

(
|vxi |

pi

pi
+ ε(pi − 1)

|vxi |
2

2

)
dx1dx2 + σ

¨
BR

|vx1 |
p2

p2
dx1dx2

is ¨
BR

∑
i

(|uxi |
pi−2 + ε(pi − 1))uxiφxi + σ|ux1 |

p2−2ux1φx1 dx1dx2 = 0, (5.2)

for all φ ∈ C∞0 (BR). Let uε,σ denote the solution of (5.2) with boundary values uε,σ = uε

on ∂BR. A similar reasoning as in [4], pages 421-427, leads for any δ, p1 ≤ δ < p2, to the
estimate¨

Bα2R

|uε,σx1
|

p1
1−b dx1dx2


1−b

2

≤ C(p1, p2, δ,R, α)

(¨BαR

|uε,σx1
|
p1 dx1dx2

) 1
2

+

(¨
BαR

|∇uε,σ|δ dx1dx2

) 1
2


where 0 < α < 1. This is valid for every b in the range

0 < b < 2 −
p2

δ
.

The idea is to iterate this estimate over concentric disks of radii αR, α2R, α3R, ...( a finite
number will do) starting with δ0 = p1 and increasing the exponent at each step. If, for
instance,

2κ =
2p1 − p2

p2 − p1
p1

we can always find an admissible b such that
p1

1 − b
= δ + κ.

1The assumption |z|p1 ≤ f (z) on page 417, eqn. (2.2) of [4] is not valid here, but we have |z1|
p1 + |z2|

p2 ≤ f (z)
instead.
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Hence the powers in the iteration become p1, p1 + κ, (p1 + κ) + κ = p1 + 2κ, ..., p1 + mκ.
This yields the Lemma, but for uε,σ insted of uε. The limit procedure σ → 0 leads to the
desired result, when one uses the minimization property

Iε,σBR
(uε,σ) ≤ IεBR

(uε) +
σ
2

¨
BR

|uεx1
|
p2 dx1dx2,

provided that we already know ¨
BR

|uεx1
|
p2 dx1dx2 < ∞. (5.3)

To get rid of this restriction, we use a convenient convolution with some mollifier ρ:

u∗ = u ∗ ρ

approximating the solution u of the original equation (1.2). Let uε,∗ be the solution of
the regularized equation (2.1) in BR, with boundary values uε,∗ = u∗ on ∂BR. Let uε,σ,∗ be
a solution of (5.2) with the same boundary values. Then the difficult term (5.3) can be
dismissed, since now

Iε,σBR
(uε,σ,∗) ≤ IεBR

(u∗) +
σ
2

¨
BR

|u∗x1
|
p2 dx1dx2

≤ IεBR∗
(u) +

σ
2

¨
BR∗

|ux1 |
p2 dx1dx2

where R∗ > R, and R∗ − R can be made as small as we please (depending on ρ in the
convolution). We used the fact that the convolution is a contraction. We now have a
bound free of σ and can take the limit as σ→ 0. The result is¨

BR

|uε,∗x1
|
p2 dx1dx2 ≤ C

(¨
BR∗

(1 + |ux1 |
p1 + |ux2 |

p2) dx1dx2

)β
.

As u∗ = u ∗ ρ→ u, we conclude from

IBR(uε,∗) ≤ IεBR
(uε,∗) ≤ IεBR

(u∗)→ IεBR
(u)

that the weak limit in L2(BR) of ∇uε,∗ must be ∇uε, since the minimizer of this strictly
convex variational integral is unique. By weak lower semicontinuity

¨
Br

|uεx1
|
p2 dx1dx2 ≤ C

(¨
BR

(1 + |ux1 |
p1 + |ux2 |

p2) dx1dx2

)β
since R∗ → R. This version of inequality (5.1) is enough for us.

6. Proof of Theorem 1.2

Proof of Theorem 1.2. This is almost the same as the proof of Theorem 1.1. For the regular-
ized equation (2.1) one first obtains as before, though with a few obvious changes,

R2(osc
Br

uεxi
)pi log

(R
r

)
≤ A
¨

B2R

(|∇uε|p1 + |∇uε|p2) dx1dx2

when r ≤ R, B2R ⊂⊂ Ω and for a constant A = A(p1, p2).
In the case p2 < p1 + 2 we proceed as follows. If B4R ⊂⊂ Ω, using Proposition 5.1, we

can bound the right hand side by

C(p1, p2,R)
(¨

B4R

(
1 + |ux1 |

p1 + |ux2 |
p2
)

dx1dx2

)β(p1,p2)

which is a finite quantity independent of ε. The desired result follows as ε→ 0.
The general case can be extracted from Theorem 1.4 in [3].
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Remark 6.1. The exact dependence on R is not worked out here. The result that comes
from the iteration in the proof of Proposition (5.1) above, if all steps are computed, is not
illuminating.
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