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Abstract

The main task of this assignment is to filter out noise from a series of radar images and
to carry out short term precipitation forecasts. It is important that the final routine
is performed online, yielding new forecasts as radar images arrive with time. The data
available is a time series arriving at a one hour ratio, from the Rissa radar located in
Sør Trøndelag.

Gaussian radial basis functions are introduced to create the precipitation field, whose
movement is solely governed by its velocity field, called advection. By performing dis-
cretization forward in time, from the basis given by the differential advection equation,
prior distributions can be obtained for both basis functions and advection. Assuming
normal distributed radar errors, the basis functions and advection are conditioned on
associating radar images, which in turn can be taken into the prior distributions, yielding
new forecasts. A modification to the model, labeling the basis functions either active or
inactive, enable the process of birth and death of new rain showers. The preferred filter-
ing technique is a joint MCMC sampler, but we make some approximations, sampling
from a single MCMC sampler, to successfully implement an online routine.

The model yield good results on synthetic data. In the real data situation the filtered
images are satisfying, and the forecast images are approximately predicting the forth-
coming precipitation.

The model removes statistical noise efficiently and obtain satisfying predictions. How-
ever, due to the approximation in the MCMC algorithm used, the variance is somewhat
underestimated. With some further work with the MCMC update scheme, and given a
higher frequency of incoming data, it is the authors belief that the model can be a very
useful tool in short term precipitation forecasting. Using gauge data to estimate the
radar errors, and merging online gauge data with incoming radar images using block-
Kriging, will further improve the estimates.
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1 Introduction

For thousands of years man has been trying to predict the weather so that he can adjust
his nearby future in the best possible manner. Whether it is the farmer hoping for a good
harvest, the fisherman going to sea or the businessman considering taking his bicycle to
work, they all want to plan ahead using the knowledge of the forthcoming weather as the
major factor for making a wise decision. Ancient local knowledge, the use of barometers
and in recent years advanced numerical models, have all been important tools in weather
forecasting. In this report however, the aim is to use radar images in forecasting and
estimating the precipitation.

In many situations there is also an economical aspect to precipitation forecasting. Power
companies which produces hydroelectric power, fit into this category. A costly conse-
quence of not having good estimates of the amount of water pouring into a reservoirs
might cause a dam to overflow. This is every power company’s nightmare, since in reality
means that money are running loose of the mountainside with no one to catch it. Hence
they wish to calculate how much water are coming into their reservoirs in the nearby
future and also to estimate the level of precipitation at the current, by removing mea-
surement errors. Through improving the short term forecasts of precipitation volumes,
the power company may improve their earnings by adjusting the water flow to the power
station.

In recent years there has been an extensive build out of weather radars in Norway. Im-
ages of the precipitation intensity and wind are available at a time scale as short as 30
minutes. These data are currently not being used to predict the weather, but rather for
surveillance of the weather system at the current. Since these images are rather precise
compared to satellite images [1], and more importantly shows incredibly well the entire
structure of the precipitation field compared to ground based gauges, it is reasonable
to think that this can be used for short time precipitation forecasting in meteorology,
and equally important as a tool for estimating the amount of water running into a wa-
ter system. This could prove as an important tool in hydrology and flood forecasting
[2], very profitable for both the community and power companies and might result in
a reduction in CO2 emissions since better rainfall estimates improves the production of
hydro power. Recently engineers have also been looking at increasing the production of
hydro power to compensate when the production from wind mills gets smaller than the
demand [3]. To do this, accurate precipitation estimates would be beneficial.

The use of radars enables a lot of data to be analyzed and to be used for predicting the
precipitation. There is written some papers on the subject in recent years. This rapport
deals with a non-linear state-space filtering, using MCMC. The basic idea is taken from
Cornford’s article from 2003 [4], which describes the use of basis functions to recreate
the precipitation field for a given radar image, and use a simple differential equation
for predicting the precipitation at the next time steps. Other papers take on different
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approaches, such as [5]. The focus here is on tracking weather storms, but the situation
is very similar to ours, using a series of radar images as input. The aim is to track down
a weather storm, and further to build a stochastic model that also incorporates birth,
death, merging and splitting of targets into the likelihood. Due to the fact that such a
model is very complex and that the model is more focused on tracking larger system over
vast areas, this approach is not the focus of this paper. However, we will use a simple
technique suited for this problem which labels each basis function as active or inactive,
where only the active centers are taken forward in time to predict the precipitation.
There is also ground based gauges available at various different locations in the middle
part of Norway. [2] deals with adjusting the radar image with respect to the gauge data
to increase the accuracy of the image by use of block-Kriging. [6] introduces a statistical
framework for combining radar reflectivity and gauge measurements to obtain estimates
of rainfall rate, taking into account the different sources of error and bias in both sources
of data. Here we only do the prediction based on radar images, leaving the adjustment
of ground based gauges to further work.

Section 2 gives a presentation of radars and traditional weather forecasting. Here we
give a brief introduction of how the data is collected, and which physical relations which
govern the atmosphere. In the end of this section, the physics which defines the basis for
the model in section 3 is described, and this is summarized as the advection equation. We
will assume that the only governing physics of the system is the advection field. Section
3 then defines the Gaussian radial basis functions, which will yield the framework for the
precipitation field. Further, a discretization of the advection equation yields a stochastic
time series for all basis functions. The full likelihood is presented, before introducing
the classification of each basis function as active or inactive. This classification will
enable the process of birth and death, yielding a more flexible model. The stochastic
time series define a prior to the basis variables, which in section 4 are conditioned on an
observed radar image, adjusted and finally taken forward in time. The conditioning step,
which is the major time-consuming procedure, is done by modifying the joint MCMC
sampler presented in [7]. The first part of the result, section 5, shows the filtering
and the prediction result of a computer simulated model. These are used to verify the
model, which is tested on a real data set from the Rissa radar located in Sør Trøndelag.
The results, shortcomings of the model, and possible further work is summarized in the
conclusion given in section 6.



3

2 Radars and meteorology

This section will give a brief presentation of how a radar works and standard numer-
ical weather forecasting. The last part of the section will present a simple differential
equation which later will be used when modeling the precipitation field.

2.1 Radar measuring in a meteorological setting

The radar, radio detection and ranging, was first used in 1941 [8]. In our setting, radars
are used to take measures of wind and precipitation intensity and cover large areas, also
where ground and gauge data are not available. Radars used for this purpose are called
weather radars. A radar consists of three main parts, transmitter, antenna and receiver.
By sending out electromagnetic waves, either radio waves or micro waves, the radar can
detect a moving objects motion, direction, altitude and speed.

The radar antenna sends out electromagnetic waves which travel through the air. When
these waves hit an object, such as a drop of water falling to the ground, the waves bounce
back and are detected by the radar dish. The radar then sends the signals to a computer
which in turn calculates the distance, using the time difference from when the signal
was emitted to when it was detected. As the distance to an object increases, it gets
harder to detect. There are several reasons for this, first is the curvature of the Earth.
Secondly, the signal strength decreases proportionally to the distance of and object. If
the distance gets to great, the time it takes for a signal to be detected from emission,
might be larger than the time to when the next signal is emitted [8]. In later sections,
when dealing with radar errors, we will discard these facts and treat all locations with
the same amount of error. This is done in order to simplify calculations and develop
faster algorithms.

Weather radars send out directed pulses of microwaves which are used to locate precip-
itation, measuring the precipitation rate R given as millimeter pr. hour, classify it as
snow, rain or hail etc. and calculate its motion and height. The motion can be calculated
as most new weather radars are pulse-Doppler radars, and as the name implies it uses
the Doppler effect to calculate the motion due to the change in frequencies of an object
relative to the radar. The grid resolution is typically of distance 1 km by 1 km, yielding
a highly accurate spacial orientation. By changing the elevation of the antenna at each
rotation, and repeating this process for a number of different angels, the radar is able to
scan the volume of the air within its maximum range. This process can take up to 10
minutes and gather data up to 15 km above ground and within a radius of 250 km from
the radar. Figure 1(a) shows an image of the radar from which the data in section 5 are
collected. It is located in Sør Trøndelag in middle Norway, and is one of eight radars
which together cover almost all of Norway’s mainland and coastal lines. This can be seen
in real time at www.yr.no, which is the joint online weather service from the Norwegian
Meteorological Institute and the Norwegian Broadcasting Corporation. Figure 1(b) is
a visualization of one such image, were data from Swedish and Danish radars are also
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merged.

(a) Rissa radar (b) www.Yr.no, combined weather images

The calculation of the precipitation intensity itself, also adds to the radar measurement
error. When measuring the radar reflectivity(Ze), the emission rate of the microwaves,
the weather radar does not measure rainfall rate directly. The rate is calculated through
the relation,

Ze = αRβ.

In [9], an estimation of the parameters are α = 200 and β = 1.6. However, the con-
version equation is derived from the measured drop size distributions which might vary
from storm to storm, and even within a storm [9]. We will not address this issue, but
the reader is referred to [6], where a method for combining radar reflectivity with gauge
data is presented.

In stead of using the usual longitude and latitude degrees to describe a given position
on the radar image, there is a widespread use of the UTM coordinates. UTM stands for
Universal Transverse Mercator, and divides the earth into 60 zones [10]. These zones
are determined by the transverse Mercator projection, and use the imaginary line from
the north to the south pole, the so called meridian line, as its projection axis instead of
the equator. UTM coordinates are easy to handle, and the Pythagorean Theorem can
be used as a very good approximation for positioning and distance calculation.



2.2 Numerical weather forecasting 5

2.2 Numerical weather forecasting

Meteorology is the scientific study of the atmosphere [11]. In recent years, the intro-
duction of powerful computers has enabled the use of numerical calculations in weather
forecasting. The movement and behavior of the atmosphere are governed by differential
equations from fluid dynamics and thermodynamics. The collection of equations that
are used to model the atmospheric flow are called the primitive equations [12]. They
are a set of nonlinear differential equations which predict the atmospheric flow and are
common in most atmospheric modeling [12]. The primitive equations are derived from
the fundamental principles given in the next two subsections.

2.2.1 Conservation of momentum and mass, Navier-Stokes equation

Navier-Stokes equation is used in a variety of disciplines within physics. It describes the
motion of fluid substances, and can be applied when modeling the atmosphere. In its
most general form it can be expressed as,

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p+∇T + f. (1)

Here ρ is the fluids density, u is the velocity, p is pressure, T is the average of internal
forces, f is a force which acts on the surfaces of the control volume [13]. It can be
shown that equation 1 is a statement of the conservation of momentum by applying
Newtons second law [13]. Navier-Stokes equation for an incompressible fluid, such as
the atmosphere, can be expressed as [14],

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p− µ∇2u− ρgβ(T − T0). (2)

Here µ is the viscosity, g is the gravitational constant, T is fluid temperature, T0 is
surface temperature and β is a constant proportional to the buoyancy force.

Another statement that often comes with the conservation of momentum is the conser-
vation of mass. In a steady state condition, this statement can be summarized as the
rate at which mass enters a system is equal to the rate at which mass leaves the system.
Mathematically this is expressed as,

∂ρ

∂t
+∇ · ρu = 0. (3)

When the medium is also incompressible, the statement reduces to,

∇ · u = 0. (4)

Equation 3 is a special case of the continuity equation for a fluid in steady state motion.
This equation will found the basis for the model described in section 3. Equations 3 and
2 are often referred to as the Navier-Stokes equations and are together with Thermal
energy equation essential in modeling the atmosphere.
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2.2.2 Conservation of thermal energy, the thermal energy equation

Together with conservation of momentum and mass, the thermal energy also has to
be conserved within the system. Heat transfer always take place from a region with
higher temperature to a region with lower temperature. A property called the thermal
conductivity, k, relates the rate of thermal energy per unit area, q, to the temperature
gradient, ∇T . Through physical experiments a proportional relation between these units
has been verified, and it is known as Fourier’s law of heat conduction [13],

q = −k∇T. (5)

The first law of thermodynamics states that the change of internal thermal energy in
the system is equal to the heat added to the system, plus the work done by the system.
This can be mathematically expressed as,

dU = δQ− δW. (6)

Here dU is a small increase in the internal energy of the system, δQ is a small amount of
heat added to the system, and δW is a small amount of work performed by the system
[13]. It is shown in [14], that using the first law of thermodynamics, one can obtain the
following partial differential equation for an incompressible fluid,

ρcp

(
∂T

∂t
+ u · T

)
= ∇ · k∇T + q. (7)

Here cp is the specified heat capacity for the fluid, and q indicates the internal energy
for a small element of the fluid.

We will not go further into numerical weather forecasting here than to say that the
equations 2,3 and 7 found the basic when modeling, solving and predicting the state of
the atmosphere. For further reading regarding numerical weather prediction see [15]. In
the next subsection we will instead look at a series of radar images, a situation were data
for pressure and temperature is not available but instead the precipitation intensity, and
use stochastic variables to obtain a simple model of the precipitation field at a given
image of the atmosphere.

2.3 The advection equation

Let us now assume that we have a time series of radar images. An example of a computer
generated sequence of radar images according to the framework that will be presented in
section 3 can be seen from figure 1. The sequence of images comes in frequently, and the
aim is to describe the precipitation field in a 0-3 hour ratio. Due to the frequent image
series, it is possible to make a number of simplifications/linearizations of the physics
governing precipitation field. One important approximation is to say that there is no
imminent loss or gain of precipitation between two observations of the time series. This
will in most situations not be a correct assumption, but for now it work as satisfying
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approximation, and section 3 will later deal with the issue of a net gain or loss of
precipitation. All external forces are left out, since the data available does not contain
any information but the rate of precipitation.

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50  

  Radar image at time t−1

 Eastern coordinates

 

N
o

r
t
h

e
r
n

 c
o

o
r
d

in
a

t
e

s

0

1

2

3

4

5

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50  

 Radar image at time t

 Eastern coordinates

 

 
N

o
r
t
h

e
r
n

 c
o

o
r
d

in
a

t
e

s

0

1

2

3

4

5

6

7

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50  

 Radar image at time t+1

 Eastern coordinates

 

 
N

o
r
t
h

e
r
n

 c
o

o
r
d

in
a

t
e

s

0

1

2

3

4

5

Figure 1: An image of computer generated radar images for three time steps. The advection is
shown with arrows. The lighter colors indicate locations with high intensities of precipitation,
given as millimeter pr. hour.

It is obvious however, that the air carrying the precipitation field, R, might be moving
in one direction and the precipitation is drifting(diffusing) in different directions. Such
transport, where certain properties are conserved within a medium, in our case the to-
tal amount of precipitation, is called advection. In other words, the advection field, u
describes the net flow of the medium [13], and is given as a vector field. We will assume
that there might be some variation across the advection field, hence the transport is not
in a constant direction.

Conservation of the total amount of precipitation equals the conservation of mass. This
information is summarized in equation 8, and deals with the movement of the precipi-
tation given the advection field,

∂R
∂t

+ u · ∇R ≈ 0. (8)

In words this equation tells us that, the rate at which the precipitation changes with
respect to time, equals the amount of precipitation moving in or out of a given control
area.
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3 Model

3.1 Hidden Markov models

As in the previous section, and in many other occasions, mathematicians have modeled
temporal phenomena in nature or through man made activities, using differential equa-
tions. We however will take on a statistical approach, trying to combine the use of time
series with the use of a partial equation. Hidden Markov models have proven to be a
successful approach of combining such models [16]. By introducing unknown(hidden)
stochastic parameters that are only dependent on the previous state(Markov), we will
try to recreate the precipitation field at the current time, given a series of previous radar
images.

In the general case, let xt denote the unknown state for any given system. The data
is given as dt. Assume Markovian property for the prior for the state model. The
dependency structure of a 2-level hidden Markov Model is shown in dag in figure 2.

xt

dt dt+2

xt+2xt+1

dt+1

Figure 2: A hidden Markov model illustrated as a dag. The hidden state is xt at time t, and
dt is the corresponding observation. Data are conditionally independent, given the states as
we have no arrows between the dt values. Hidden states are dependent by the dynamical
model, indicated by the arrows from xt to xt+1.

A formal model with additive Gaussian noise can now be expressed as,

xt = f(xt−1) + εx

dt = g(xt) + εd, (9)

where the error terms are multinormal distributed,

εx ∼ N(0,Σx)
εd ∼ N(0,Σd).

We will get back to the sequential conditioning and forecasting for the state of a given
time series of data, in section 4. This section specify the full model, obtaining the priors
for the state model and the likelihood equation for one radar image given the state.
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3.2 Basis function for precipitation field

Let us now go back to the situation were we have a precipitation field measured by a
radar. Label the observed radar image as It, and let Rt be the true underlying precip-
itation field, both being measured in mm. pr. hour. Hence It will yield the data, and
Rt will yield the state of the system according to the framework presented in section 3.1.

We must first find a representation of Rt which yield the hidden state model according
to the framework presented in section 3.1. In its simplest form, the representation of
the model framework should be able to recreate Rt. The idea presented in [4] is to
represent the precipitation field as a sum of N , of basis functions. Each basis function is
constructed as a Gaussian radial function with a corresponding two dimensional center,
radius and intensity. The entire precipitation field is obtained by taking the sum of such
basis functions. At a given time step t, we define the variables,

x = [x, y] , position vector,

ct = [ctx , cty ] =

 ctx1
cty1

...
...

ctxN
ctyN

 , center coordinates,

ht = [ht1 , · · · , htN ]′ , intensities,
wt = [wt1 , · · · , wtN ]′ , radii.

The precipitation at time t, given position x, can then be calculated as,

Rt(x) =
N∑
n=1

htnexp

[
−1

2
(x− ctxn

)2 + (y − ctyn
)2

w2
tn

]
. (10)

An illustration of a few basis functions are given in figure 3. By choosing a sufficient
number of basis functions, any real precipitation field could potentially be approximately
recreated in terms of equation 10.

Since both all elements wt and ht must clearly be larger than zero, the representation
of Rt(x) in terms of equation 10 means that it is never really zero. This is off course
not an accurate assumption, and the precipitation level should therefore be set to zero
below a given limit, Rcrit. By choosing ellipses instead of circles when constructing
basis functions, one should expect to get a more flexible representation of the actual
precipitation field. However, for computational reasons, we choose to use circles and
and assume that this will give a sufficient description of the field.

3.3 Model dynamics, discretization and prior distributions

In a short term setting, the dynamics is simplified such that no precipitation is set to
be generated, and no precipitation is set to disappear. This is off course not the case in
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cell n

hncn

wn

R model

Figure 3: Representation of precipitation field Rt, given by radial basis functions. In the
representation cn is the center, wn is the radius and hn is the intensity for a specified basis
function n.

almost any true scenario, but will be fairly accurate in a short time frame. The system
equation is as before given by the advection equation 8, from section 2.3,

∂R
∂t

+ u · ∇R ≈ 0. (11)

We will now look at how equation 11 acts on the parameters ctn , wtn and htn , for
n = 1, . . . , N . After adding random noise to each parameter, the resulting discretization
will yield the prior distributions to state of the model according to Bayesian terminology.

3.3.1 Prior distribution for basis radii, wt

The situation for the radii wtn for n = 1, . . . , N , is simple. On the basis of the physics
described in the advection equation 11, we do not expect any of the wtn to change from
one time step to another since we do not expect any growth or decay of the precipitation.
Adding an extra error term allows for a small change in the extent of the basis functions
between each time step. This allows for a slight growth or decay of the precipitation
field as a function of time,

wt+1 = wt + εw

εw ∼ N (0,Σw) . (12)

Here Σw is a properly chosen diagonal covariance matrix, having σ2
w as nonzero elements.

The dependence structure is simple and is shown by figure 4.
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Σw

wt+2
wt+1wt

Figure 4: Dependency structure for the radii wt of the basis functions. The next state is
only dependent on the current state and a common constant covariance matrix Σw.

3.3.2 Prior distribution for basis intensities, ht

The situation for the intensities htn for n = 1, . . . , N is similar. On the basis of the
physics described by equation 11, none of the htn is expected to change from one time
step to another. But to allow for some gain of strength or decay in the intensity we add
some random noise. Hence we get,

ht+1 = ht + εh

εh ∼ N(0,Σh). (13)

The dependence structure of the intensities is shown in figure 5.

Σh

ht ht+1 ht+2

Figure 5: Dependency structure for the intensities ht of the basis functions. The next state
is only dependent on the current state and a common constant covariance matrix Σh.
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3.3.3 Prior distributions for basis centers, ct, and advection, ut

It is clear from equation 11 that the movement of the centers, ct, are solely decided by the
advection field ut which acts as the velocity field of the basis functions and is assumed to
be locally constant. Since this linearization is not entirely correct, we add some random
noise when performing the discretization of the position vector of the center at each time
step. The change in the northern y, direction and the eastern x, direction are assumed
independent. The discretization then becomes,

{ct+1}x,y = {ct + δt · ut+1 + εc}x,y
εc ∼ N(0,Σc). (14)

Here δt is the length of the time step. The covariance matrix Σc, is diagonal where all
nonzero elements are of size σc.

The advection field ut+1 is assumed to be locally constant at each time step when
updating the basis functions. After this update, one can allow for a change in the
advection in the same manner as before by introducing an error term εu, holding the
basis functions constant. Assuming that the change in the eastern direction, x, and
northern direction, y is independent, this yield,

{ut+1}x,y = {ut + εu}x,y
εu ∼ N(0,Σut). (15)

It is important that Σut is a full covariance matrix with positive elements. This is clear
since the atmosphere tends to drift in the same direction over large areas, and if there
is a rapid change at one time step, this change is assumed to be somewhat uniform over
the entire grid. The advection at one geographical coordinate must be fairly equal to
the advection at a nearby location. Therefore the correlation structure for the advection
vectors ut is chosen so that it drops of with an exponential rate proportional to the
distance to the next center. The covariance matrix Σut , is then a function of the centers,

Σut = σ2
u · exp



0 (−dt1,2

a ) · · · (−
dt1,N−1

a ) (−
dt1,N

a )

(−dt2,1

a ) 0 · · · (−
dt2,N−1

a ) (−
dt2,N

a )
...

. . .
...

(−
dtN−1,1

a ) (−
dtN−1,2

a ) · · · 0 (−
dtN−1,N

a )

(−
dtN,1

a ) (−
dtN,2

a ) · · · (−
dtN,N−1

a ) 0


. (16)

The drop off in correlation is given as a. Each dti,j is the Euclidean distance between
center i to center j at time t, and Σut then secures that centers close to each other move
in a similar direction. This leads to a dependency from the centers to the advection
field. This is shown in figure 6, giving the dependence structure between ct and ut.
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Σc

ut ut+1 ut+2

ct ct+1

σu, a

ct+2

Figure 6: Dependency structure between centers ct and advection ut. The next state of the
advection, ut+1, is dependent on the current state, ut, and its covariance matrix, Σu, which
is calculated at each time step, t, by correlation parameter a, the standard deviation σu, and
the distance between centers ct. The next state for the centers, ct+1, is dependent on the
current state, ct and the constant covariance matrix, Σc, in addition to the advection, ut+1.
All dependencies are indicated with arrows.

After the prior distributions have been specified in section 3.3, where the dependence
structure between the basis functions is visualized in figures 4, 5 and 6. We can now
build the complete hierarchical model. Given the specification of Rt in terms of ct, wt

and ht, the update via the advection ut is shown in figure 7.

3.4 Likelihood

The radar image contains M number of discretization in each direction, together making
up a M×M sized 2-dimensional grid X, where each pixel contains a radar measurement
at a given (x, y) coordinate. The radar grid X consists of equally spaced pixels, on this
M ×M sized radar grid. For computational reasons X is given as a one dimensional
vector with length M2,

X = [(x1, y1), (x1, y2), · · · , (x1, yM ), (x2, y1), . . . , (x2, yM ), (x3, y1) . . . , (xM , yM )]′ . (17)

All the measurements are from now on assumed normal, independent and identically
distributed (i.i.d.),

It(X) = Rt(X) + εI

εI ∼ N(0,ΣI) (18)

ΣI = diag(σ2
I ). (19)
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ut+1

Rt Rt+1 Rt+2

It It+1 It+2

ut ut+2

Figure 7: The hierarchical structure of the stochastic parameters specified in the model, all
constants are left out. The next state of ut+1 is dependent of the current state ut and
the state of the precipitation field, Rt. The next state of the precipitation field ,Rt+1, is
dependent of the current state, Rt, and the next update of ut+1. All dependency relations
are indicated with arrows.

Here the diagonal M × M covariance matrix ΣI , is independent of time and spatial
orientation. This is not a true assumption since the error in the radar image is highly
dependent of the intensity of the precipitation at a given time, and geographical obsta-
cles and distortions, as explained in section 2.1. For simplicity this has been discarded,
but for future work this should be implemented in a full model. For example, [1] suggest
to estimate the covariance matrix ΣI by comparison with ground based gauge data.

We will now look at the likelihood function L(It|ct,wt,ht) at one given time step, for
the grid defined by equation 17. We assume spatial independence, that all of the errors
in the radar measurements, εI , are independent from the others. Hence we get,

L(It|ct,wt,ht) ∝
M∏
i,j=1

exp

−
(

I(xi, yj)−
∑N

n=1 htnexp

[
−1

2

(xi−ctnx
)2+(yj−ctny

)2

w2
tn

])2

2 · σ2
I

 .

This is a rather expensive function to calculate. It is therefore useful to write the
likelihood as a product of vectors. Define the Kronecker vector of the x and y coordinates,

XKron = [x1, . . . , xM , x1, . . . , xM , . . . , . . . , x1, . . . xM ]′, M2 × 1 vector, (20)

YKron = [y1, . . . , y1, y2, . . . , y2, . . . , . . . , yM , . . . , yM ]′, M2 × 1 vector, (21)
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and convert the measured radar image M ×M matrix It, to a M2 × 1 vector,

Ît = It(x1, y1), It(x1, y2), ..., It(x1, yM ), It(x2, yM ), ...It(xM , YM ). (22)

Let OM2×1 be a M2 × 1 vector of ones. The logarithm of the likelihood can now be
written as,

logL(It|ct,wt,ht) = −1
2

(Ît −
N∑
n=1

Rn)′ΣI
−1(Ît −

N∑
n=1

Rn). (23)

Here Rn is a M2 × 1 vector defined so that,

Rn = hn ·O′M2×1exp

[
−1

2
(Xcron − cnx ·OM2×1).2 + (Ycron − cny ·OM2×1).2

]
. (24)

The dot in the squared expressions in equation 24 denotes that the elements of the
vectors should be squared, not the vector itself. The likelihood function is still rather
expensive to calculate, but is now written as a sum of vector products which drastically
reduces the time it takes to compute it.

3.5 Priors at time t0

Finally, to have a complete model we need to decide the prior distributions at initial
time t0. We have no prior information about the basis functions of the precipitation
field, except that radii and intensities must be larger than zero. We start by defining
uniform prior distributions for the basis variables on legal intervals,

wt0n
∼ U [0,∞] n = 1, ..., N

ht0n
∼ U [0,∞] n = 1, ..., N

ct0nx
∼ U [x1, xm] n = 1, ..., N

ct0ny
∼ U [y1, ym] n = 1, ..., N.

(25)

One could argue that the priors for w0 and h0 could be more restricted and therefore
given a more informative distribution such as a gamma or log normal distribution. Also
one could expect the position of the centers to be correlated, but for computational rea-
sons and the rather extensive amount of information in the likelihood, this is discarded.

The only prior knowledge we have about the advection is that the magnitude and direc-
tion has a strong correlation. Therefore we choose,

ut1 ∼ N(0,Σut0
). (26)

This means that the prior at the initial state, for the advection field this is t1, is basically
the same as for the other time step from equation 26. The only difference is that the
mean is set to zero since we have no previous value to compare with.
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3.6 Model modifications, inactive basis functions,birth and death

The model, as it is described in previous sections, is somewhat incomplete. We can not
have any new rain showers entering the system, have any birth or death of rain show-
ers but all variables are bound to the initial image at t0. There is also another issue
that must be addressed. That is, what if a basis function n, has too low intensity hn to
overcome the critical lower value Rcrit, or too narrow radius to be calculated at a grid lo-
cation. This means that the current basis function is hidden, or as we will call it, inactive.

Remember that the precipitation level is only calculated at fixed grid locations. This
might cause problems if the radius of a basis function gets to small. As seen from figure
8, a basis functions might not contribute to any of the nearby pixels, even though its
corresponding intensity could be of a large value. This might cause problems at the next
time step, when this large value might be calculated at a grid location. The problem
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n

center ctn

center ct+1n

Figure 8: To the left we see a specified basis function n, with a high intensity but small
radius, getting caught in between two neighboring pixels. When updating to next location
ct+1n , the figure to the right shows that the contribution from basis function n will greatly
differ even though the specified basis function is basically of the same magnitude in both
situations.

with a given radius wtn , getting to small is solved simply by setting a proper lower limit
for any wtn ,

wtn > wcrit, for t = 0, . . . , T and n = 1, . . . , N . (27)

To secure better control with the location of the basis center ctn , they are strictly defined
to be within the grid,

ctj ∈ X, for t = 0, . . . , T and n = 1, . . . , N . (28)
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Assume further that the requirements of equations 27 and 28 are fulfilled. For a given
basis function n at time t, imagine that the precipitation level at the position of the
corresponding center Rt(ctn) is below the critical value,

Rt(ctn) < Rcrit. (29)

In fact this means that the contribution from basis function n, to Rt, is of no importance
at all. The basis function is then defined to be inactive. Further define the vector,

At = [At1 , . . . , Atn , . . . , AtN ],

containing binary variables, 0 indicating an inactive variable. Since an inactive basis
function do not contribute to Rt, it is completely redundant, and it contains no infor-
mation of which should be taken into account into the next update. If for a given time
t and for a specified basis function n, Atn = 0, this equals the situation at t0, and the
prior values for the basis functions at the next time step are therefore reset to the value
specified in section 3.5,

wt+1n ∼ U [0,∞]
ht+1n ∼ U [0,∞]
ct+1nx

∼ U [x1, xm]
ct+1ny

∼ U [y1, ym]

 if Atn = 0. (30)

Asserting a basis function as inactive, corresponds to resetting the basis functions to the
initial conditions at the next time step. This could mean that a rain shower has died out,
and the basis function can then be moved freely around the image, possibly resulting in
a new rain shower somewhere else on X. Modifying the model by introducing the active
variable At, has then allowed for birth and death of new rain showers, not just some
slight growth or decay of the initialized image.

For the advection at the next time step ut+1, the situation is a bit more complex. If a
basis function is declared as inactive, it means that it does not contribute to the image
Rt and has no corresponding ut+1j . In other words the advection can not be updated at
the current center at that time. The stochastic binary vectors A0, . . . ,AT might vary,
and the number of advection vectors equals the sum of each of At at that specified time
step. Hence we have a different dimension parameter space for each ut. So there is now
two possible situations for each ut+1n given previous At and ut+1,

ut+1n =


utn + εu if Atn = 1

0 if Atn = 0.
(31)

If Atn = 1 and At−1n = 0, the previous utn is not yet specified. Since the advection are
highly correlated, we choose to set this value to the mean of the advection of the active
functions,

utn =
1
Na

Na∑
i=1

uti , if Atn = 1 and At−1n = 0, (32)
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were Na is the number of active basis functions at time t.

The covariance matrix Σut is almost as before,

Σut = σ2
u · exp


0 (−d1,2

a ) · · · (−d1,Na−1

a ) (−d1,Na
a )

(−d2,1

a ) 0 · · · (−d2,Na−1

a ) (−d2,Na
a )

...
. . .

...
(−dNa−1,1

a ) (−dNa−1,2

a ) · · · 0 (−dNa−1,Na
a )

(−dNa,1

a ) (−dNa,2

a ) · · · (−dNa,Na−1

a ) 0

 , (33)

the only difference being N being replaced by Na. The model has now become more
flexible, but it does come with a prize. As we shall see in the next section, this goes on
the expense of the traditional filtering methods, which is often used to condition and
forecast a hidden Markov chain.
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4 Filtering techniques and posterior distributions

The aim is to obtain the forecast and the conditioning of the precipitation field R(ct,wt,ht),
given radar data arriving with time. Express the basis variables as,[

cut+1,w
u
t+1,h

u
t+1

]
= [ct+1,wt+1,ht+1|I0:t][

cct+1,w
c
t+1,h

c
t+1

]
= [ct+1,wt+1,ht+1|I0:t+1] .

The hyper index u indicates the forecast, and stands for unconditioned. The hyper index
c indicates the filtering step, and stands for conditioned. For notational purposes later
in this section, let

yt =

 ct
wt

ht

 . (34)

From the framework presented in the previous section, we have also introduced the
advection field which needs to be analyzed in the same manor,

uut+1 = [ut+1|I0:t]
uct+1 = [ut+1|I0:t+1] .

In state space modeling there exists various filtering techniques for obtaining this forecast
and conditioning. The Markovian property enables us to update the forecast and the
conditioning recursively, which is very convenient when data is arriving online. This
section first presents some basic filters, and finally a MCMC scheme for filtering within
the Bayesian framework.

4.1 Traditional Kalman Filter

Consider a dynamic system, modeled as a hidden Markov model via the linear state
space model with additive Gaussian noise,

xt = Gtxt−1 + εx

dt = Htxt + εd, (35)

Gt and Ht being linear operators(matrices). The conditioned and unconditioned variable
are then also Gaussian,

xut = [xt|d0, ..., dt−1] ∼ N(µut ,Σ
u
t ),

xct = [xt|d0, ..., dt] ∼ N(µct ,Σ
c
t).

The normality is a result of the linear model given in equation 35. The exact solution for
the mean and the variance is obtained from the Kalman filter algorithm. As described in
[16], it is given as algorithm 1. As one can see from algorithm 1, the expected values and
uncertainties can be analytically calculated recursively using the Gauss linear relations.
Unfortunately our model can not be resolved this neatly, but the idea of using the
previous forecast to update the conditioning suits the situation very well.
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Algorithm 1 Traditional Kalman Filter
Initiate:
µu0 = µx0
Σu

0 = Σx
0

for t=1 to T do
Conditioning:
µct = µut + Σu

t H
′
t

[
H′tΣ

u
t H
′
t + Σd

t

]−1 (dt −Htµ
u
t )

Σc
t = Σu

t −Σu
t H
′
t[HtΣu

t H
′
t + Σd

t ]
−1HtΣu

t

Forecasting:
µut+1 = Atµ

c
t

Σu
t+1 = AtΣc

tA
′
t + Σx

t

end for

4.2 Kalman related filters

4.2.1 Extended Kalman filter (EKF)

In many cases there are deviations from the Gauss linearity in the model. When such
deviations occur, either in the state equation or in the likelihood, a simple approach is
the extended Kalman filter. The problem with the nonlinearity is then solved by taking
the Taylor expansion of first order, converting the system to a Gauss linear one. This
corresponds to linearizing the current mean and covariance. In many cases however, this
is not sufficient for obtaining a good approximation, making the extended Kalman filter a
poor solution to the problem [16]. This is also the case for us, since the high dimensional
precipitation function Rt(x) given in equation 10, is not suited for linearization.

4.2.2 Ensemble Kalman filter (EnKF)

In the case of a nonlinear state equation, but where the error term/likelihood for the
data is linear, the ensemble Kalman filter has in many situations proven to be a very
efficient filter. The basic idea is to generate ensembles from the state equation, adjusting
it according to the data model. The update is done by estimating the covariance struc-
ture between the ensembles and the data, assuming Gaussian distributions. Consider a
nonlinear state equation, xt, and a Gauss linear data model, dt,

xt = f(xt|xt−1) + εx , where εx ∼ N(0,Σx), (36)
dt = Htxt + εd , where εd ∼ N(0,Σd). (37)

Algorithm 2, the ensemble Kalman filter, is also taken from [16]. The ensemble Kalman
filter replaces the covariance matrix in the traditional Kalman filter with the sample
covariance, under the assumption that all probability distributions involved are Gaus-
sian. When this approximation is sufficient, the EnKF performs very well and has a
satisfying runtime. But due to the nonlinear nature of the likelihood from equation 20,
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Algorithm 2 Ensemble Kalman Filter
Initiate:
Ne =no. of ensembles
xu(i)0 ; i = 1, . . . , Ne

ε
d(i)
0 ∼ Npd

(0, Ipd
); i = 1, . . . , Ne

d(i)
0 = f(xu(i)0 , ε

d(i)
0 ); i = 1, . . . , Ne

e0:
{

(xu0 ,d0)(i)
}

for t=1,..T do
Estimate Σxd from et → Σ̂xd

Forwarding:
ε
x(i)
t ∼ Npx(0, Ipx

)

xut+1 = ωt(x
c(i)
t , ε

x(i)
t )

ε
d(i)
t+1 ∼ Npd

(0, Ipd
)

d(i)
t+1 = νt+1(xu(i)t+1 , ε

d(i)
t+1)

et+1 :
{

(xut+1,dt+1)(i)
}

end for

the ensemble Kalman filter is not suited for the current situation.

The randomized maximum likelihood filter will not be described in this paper, but the
reader is referred to Omre and Myrseth [16]. The randomized maximum likelihood filter
requires a challenging and time consuming optimization step of the likelihood and is also
left out as a solution to the filtering step.

4.3 Particle Filter

The basic particle filter is a sequential Monte Carlo method based on point mass, or
particle, representations of probability densities [17]. The idea is to generate a set of Ns

random samples xi0:t for i = 1, . . . , Ns, from a proposal distribution q(x0:t|d1:t), and to
estimate the posterior density function by assigning each sample a corresponding weight.
The posterior distribution at time step t, can be approximated as,

f(x0:t|d1:t) ≈
Ns∑
i=1

witδ
(
x0:t − xi0:t

)
, (38)

where
{
xi0:t, w

i
t

}Ns

i=1
, denotes a random measure, and the weights are normalized so that∑Ns

i=1w
i
t = 1. The weights are asserted by importance sampling [17],

wit ∝
f(xi0:t|d1:t)
q(xi0:t|d1:t)

. (39)

By choosing an importance density so that it factorizes to

q(x0:t|d1:t) = q(xt|xt−1,d1:t)q(x0:t−1|d1:t−1), (40)
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it can be shown that [17],

wit ∝ wit−1

p(dt|xit)p(xit|xit−1)
q(xit|xi0:t−1,dt)

. (41)

Furthermore, by choosing q(xit|xi0:t−1,dt) = q(xit|xit−1,dt), the weights can be sequen-
tially found as,

wit ∝ wit−1

L(dt|xit)p(xit|xit−1)
q(xit|xit−1)

. (42)

The most convenient choice for the importance distribution is the prior, then the weights
reduce to,

wit ∝ wit−1L(dt|xit).

One practical problem with the particle filter is known as degeneracy, that is after a few
iterations all but one particle is of negligible weight. A good choice of importance density
is crucial, but in many situation there is still a need of resampling. The full method for
resampling will not be presented here, but the basic idea is to eliminate particles that
have small weights and to concentrate on the particles with large weights. Resampling
involves generating a new set

{
xi∗t
}Ns

i=1
by resampling Ns times from an approximate

discrete representation of,

p(x∗t|d1:t) ≈
Ns∑
i=1

witδ(x
∗
t − xit)

=
1
Ns

.

For further details and full algorithm the reader is referred to [17].

Let us now turn back to our case with the basis functions for precipitation and the
advection field. Remember from section 3.6 that inactive functions are reset at the next
update. Generating particles forward in time would demand that we somehow modify
the particle filter, allowing for the classification of inactive functions when filtering the
basis functions ct, wt and ht, and not taking these forward in time when updating the
advection, ut. Choosing the prior as proposal distribution in equation 42 is certainly a
far too simple choice, requiring us to generate a vast number particles to filter a new
satisfying image because of the high dimensionality of the model. In particular the
initialization of the image, requires a very large number of particles before satisfying
results are obtained. Other proposals could certainly perform better, but in addition
there is the problem of degeneracy. Of the filters presented so far, the particle filter is
certainly the most suited one, since it allows for highly nonlinear state space models [17].
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4.4 Bayesian filtering, MCMC update

Applying any of the filters described in section 4.2 and 4.3, on the model specified in
section 3, is not straight forward. As discussed there are several reasons for this. The
likelihood from equation 20 model is highly non linear, having N×4 stochastic variables
at each time step, N being the number of basis functions. The hidden Markov chain
shown in figure 7, is rather complex since we have to update the advection holding the
basis parameters constant, and vice versa. The situation would have been more com-
fortable if the basis variables could have been updated without dealing with a changing
advection field. In addition to this we have the issue of a varying parameter space for
ut.

4.4.1 Metropolis-Hastings algorithm

Before we introduce the filtering scheme using MCMC, the sampling technique must be
specified. The most used MCMC updated scheme is perhaps the Metropolis-Hastings
(MH) algorithm. Assume we want to explore the multivariate distribution,

π(x) = π(x1, . . . , xnpx
), (43)

and that both standard Monte Carlo sampling and numerical integration is unavailable.
The normalization factor is often extremely difficult to compute, but the ability to
generate a sample without knowing this constant of proportionality is a major virtue of
the MH algorithm. The target distribution, π(x), is assumed from Bayesian framework,
proportional to the likelihood, L(x), and the prior, p(x),

π(x) ∝ L(x)p(x).

The main idea is to construct a Markov chain that converges on π(x). The MH algorithm
uses a proposal density, Q(x̂|x̄), which can generate a proposed value, x̂, given the
previous sample, x̄. Whether the proposed value is accepted or rejected as the new
value, is decided by the acceptance probability,

α = min

{
1,
π(x̂)
π(x̄)

Q(x̄|x̂)
Q(x̂|x̄)

}
. (44)

By drawing a uniform variable u, on the interval [0, 1], x̂ is accepted as the new value
if u is smaller than α. Using a random walk proposal, the proposal distribution Q(x̂|x̄)
is symmetric, and it is easy see from equation 44 that the probability for acceptance α,
reduce to,

α = min

{
1,
π(x̂)
π(x̄)

}
= min

{
1,
L(x̂)p(x̂)
L(x̄)p(x̄)

}
.
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Sampling from one variable at the time, conditioned on the other parameters, is called
single site MH algorithm. Algorithm 3 describes the procedure for a single site MH
algorithm with a random walk proposal.

Algorithm 3 Metropolis-Hastings single site update
Initiate:
x0 =

[
x0

1, ..., x
0
npx

]′
for i=1 to Ns do

for j=1 to npx do
x̂

(i)
j ∼ N(x(i−1)

j , a) {a is tuning parameter}

x̂(i)
j =

[
x

(i)
1 , . . . , x̂

(i)
j , . . . , x

(i)
npx

]′
α

(i)
j =

L(x̂
(i)
j )p(x̂

(i)
j )

L(x
(i)
j )p(x

(i)
j )
{Acceptance probability}

u ∼ U [0, 1]
if αtj < u then

x
(i)
j = x̂

(i)
tj

else
x

(i)
j = x

(i−1)
j

end if
end for

end for

4.4.2 MCMC filtering

The idea presented in [7] is quite simple. Assume we want to do an online sampling of
the sequential target distribution π(xt+1|dt+1). Further assume that a MCMC run is
available from time 0, ..., t. By estimating π(xt+1|d0:t+1) as a discrete distribution, and
then sampling from the joint distribution π(xt+1,xt|dt+1), via an empirical resampling of
the previous MCMC run from the last time step, a highly efficient and powerful algorithm
is obtained for online tracking. The joint posterior distribution π(xt+1,xt|d1:t+1) can
easily be obtained via Bayes rule,

π(xt+1,xt|d1:t+1) ∝ π(xt+1,xt,d1:t,dt+1)
∝ π(dt+1|xt+1,xt,d1:t) · π(xt+1,xt,d1:t)
∝ L(dt+1|xt+1) · p(xt+1|xt) · π(xt|d0:t). (45)

The resampling of the previous filtration is done empirically so that,

π(xt|d0:t) ≈
1
Ns

Ns∑
i=1

δ
x

(i)
t

(x(i)
t ), (46)
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where Ns is the number of simulations after the MCMC run has converged. The algo-
rithm for the MCMC scheme is given from algorithm 4.

Algorithm 4 Bayesian filtering with MCMC
Initiate:
x(1)

0 , ...,x(Ns)
0 ∼ f(x0|d0){Initial distribution}

for t=0,...,T-1 do
Sample from the joint distribution by MCMC using algorithm 3.
[xt+1,xt|d0:t+1] ∼ L(dt+1|xt+1) · p(xt+1|xt) · π(xt|d0:t)

end for

The advantages with this approach over the importance sampling approach such as the
particle filter, are that no weighting is required and degeneracy is avoided. The MCMC
approach also deals very well with high dimensional and structured state space mod-
els [7]. However, remember that we have to update the advection ut holding the basis
functions yt constant and vice versa. In the general case were xt is the stochastic vari-
able we want to sample from, the hierarchical structure is given in figure 2 in section
3.1. Our model, whose hierarchical model is specified in figure 7 in section 3.3.3, dif-
fers in structure, since we update ut and yt sequential holding one variable constant
when updating the other. Therefore we must sample from both target distributions for
π(ut+1,ut|I0, . . . , It+1) and π(yt+1,yt|I0, . . . , It+1). In addition to this, ut differ in its
dimension of the parameter space, making sampling from a joint distribution an even
more intricate process. Finally, since everything happens online, it is difficult to verify
burn in and implement a routine that discard realizations before convergence is achieved.
Due to these issues we have chosen to make a simplification to algorithm 4.

An approximative solution is to hold xt in π(xt+,xt|d0:t) constant, by setting it to a
proper value. Assume previous run is available, x(i)

t for i = 1, . . . , Ns and that the
chain has converged so that the last realization is a true realization from π(xt|I0:t). By
taking only the last value, x(Ns)

t when updating next conditioned variable xt+1|I0:t+1,
algorithm 4 reduces to algorithm 5. We use last realization of xt instead of the mean
for two reasons. First, since the model is not expected to be Gauss linear it could be
multi heaped, indicating the mean being an improbable value. Secondly the sampling
is done online, making it hard to implement a routine which cuts and uses only values
after burn in has occurred.

The verification of this approximation is somewhat informal. The target distributions
for the single and the joint sampler are,

π(xt+1|d1:t+1) ∝ L(dt+1|xt+1) · p(xt+1|x̄t)
π(xt+1,xt|d1:t+1) ∝ L(dt+1|xt+1) · p(xt+1|xt) · π(xt|d1:t). (47)

When performing a MCMC run in the joint sampler, the term π(xt|d1:t) will not affect
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Algorithm 5 Approximative Bayesian filtering with MCMC
Initiate:
x(1)

0 , ...,x(Ns)
0 ∼ f(x0|d0){Initial distribution}

for t=0,...,T-1 do
x̄t = x(Ns)

t

Sample from single distribution by MCMC using algorithm 3.
[xt+1|d0:t+1] ∼ L(dt+1|xt+1) · p(xt+1|x̄t)

end for

the acceptance probability. Hence both target distributions reduce to the product of the
likelihood L(dt+1|xt+1) and a slightly different prior distributions, p(xt+1|·). Which of
the factors that dominates is due to the amount of information they contain relative to
the other. In many situations the likelihood contains enough data to say it is the domi-
nating factor. We will assume that this is also the case in our situation, since the likeli-
hood contains M2 data points, and assuming the variance ΣI being relative small. The
likelihood will then dominate in both distributions, and the sampling from π(xt+1|I0:t+1)
will yield approximately the same results as sampling from π(xt+1,xt|I0:t+1). In addition
to the likelihood being the dominant factor, the priors are expected to be of the same
family, only having a different mean value. Sampling from the approximative distribu-
tion is then assumed sufficient. Intuitively this will underestimate the variance, since we
do not sample from the entire sample space but only sample with respect a new value
with respect to the last realization of previous run. The mean however will hopefully be
close to the true value since each parameter are adjusted according to the likelihood.

We can soon define an update scheme for the filtered and forecast values of R. Before
we do this, we must derive the posterior distributions for the basis functions, yt, and
advection, ut. The deviation of the posterior distributions is simple as our model is a
two level hierarchical model, visualized in figure 7 in section 3.3.3. When updating the
advection ut, treat the basis parameters yt and previous advection ut−1 as constants,
ȳt−1 and ūt. Hence we get for the advection,

π(ut|I0:t) ∝ π(ut, I0:t)
∝ π(I0:t|ut)π(ut)
∝ L(It|c̄t−1 + δt · ut, w̄t−1, h̄t−1, ūt−1)p(ut|ūt−1). (48)

Deriving the posterior distributions of the basis functions yt, is similar, updating the
last variable holding everything else constant,

π(yt|I0:t) ∝ π(yt, I0:t)
= π(I0:t|yt)π(yt)
∝ L(It|yt)p(yt|ȳt−1, ūt).
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If we write this out for each basis parameter we get,

π(ct|I0:t) ∝ L(It|ct,wt,ht)p(ct|c̄t−1, ūt) (49)
π(wt|I0:t) ∝ L(It|ct,wt,ht)p(wt|w̄t−1) (50)
π(ht|I0:t) ∝ L(It|ct,wt,ht)p(ht|h̄t−1). (51)

Using the single site update algorithm we propose to change only one value at the time,
that is you sample one variable conditioned on everything else. This corresponds to the
full conditional distributions. If we had been able to sample from these directly, it can
be shown that the acceptance probability would always be of value 1 [18]. This is called
the Gibbs sampler, and is the mos widely used version of the MH algorithm. However,
our full conditional distributions can not be sampled directly from, and the acceptance
probability must be calculated at each step.

For any N dimensional variable zt, let,

z−nt = zt1 , . . . , ztn−1 , ztn+1 , . . . , ztN .

The full conditional distributions for a basis function n, then reduce to,

π(ytn |I0:t,y−nt ) ∝ π(I0:t,yt)
∝ L(It|yt) · p(ytn |ȳt−1n , ūtn). (52)

Here the distribution of the prior p(·), of each ytn will be classified whether the previous
basis function yt−1n , is classified as active or inactive. If the previous basis function i
passive, the prior is set to the initial prior, given from equation 25 in section 3.5. In fact,
all priors for inactive basis functions are proper or improper uniform distributions. In
this case, it can be seen directly from equation 52 that the resulting posterior distribution
is proportional to the likelihood. If the previous basis function is classified as active,
that is At−1n = 1, the multi normal priors from section 3.3, equation 12, 13 and 14 are
chosen. The full conditional distribution for one center, ctn , with corresponding active
yt−1n , given everything else, then becomes,

π(ctn |I0:t, c−nt ,ht,wt, At−1n = 1) ∝ L(It|ct,ht,wt) · exp

{
−1

2
(ctn − c̄t−1n − δt · ūtn)2

σ2
c

}
.

(53)

As for the centers, the full conditional distribution for the height function htn with
corresponding active basis function yt−1n , becomes,

π(htn |I0:t,h−nt , ct,wt, At−1n = 1) ∝ L(It|ct,ht,wt) · exp

{
−1

2

(
htn − h̄t−1n

)2
σ2
h

}
. (54)
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By the same argument, the full conditional distribution for the weight function wtn with
corresponding active basis function yt−1n , becomes,

π(wtn |I0:t,w−nt , ct,ht, At−1n = 1) ∝ L(It|ct,ht,wt) · exp

{
−1

2
(wtn − w̄t−1n)2

σ2
w

}
. (55)

If the previous corresponding basis function is inactive, that is At−1n = 0, all priors are
uniform, and it can be seen directly from equation 52 that all full conditional distribu-
tions simply reduce to the likelihood,

π(ytn |I0:t,y−nt , At−1n = 0) ∝ π(I0:t,yt) ∝ L(It|yt). (56)

The full conditional distribution for the advection follow the same argument,

π(ut+1n |I0:t+1,u−nt+1) ∝ L(It+1|c̄t + δt · ut+1, h̄t, w̄t) · p(ut+1|ūt), (57)

where the likelihood has been altered by substituting c̄t + δt · ut for c̄t+1 since the
advection has to be updated before the basis parameters can be obtained. The full
conditional distribution then becomes,

π(utn |I0:t,u−nt ,Atn−1 = 1) ∝ (58)

L∗(It|c̄t−1 + δt · ut, h̄t, w̄t) · exp
{
−1

2
(ut − ūt−1)′Σut(ut − ūt−1)

}
.

(59)

L∗ indicates the likelihood of only active basis functions. The design of Σut and assert-
ing values for ūtj when the basis function is recently activated, is done according to the
framework presented in section 3.6. The full algorithm for our update scheme is given
as algorithm 6.

When realizations of basis parameters with corresponding advection are available, we
can easily obtain the filtered image and forecasts. We use the standard estimators for
mean and prediction intervals. The mean of the filtered and predicted image is then,

E[Rc
t ] =

1
Ns
·
Ns∑
i=1

Rt(c
(i)
t ,w

(i)
t ,h

(i)
t ) (60)

E[Ru
t+δt] =

1
Ns
·
Ns∑
i=1

Rt+δt(c
(i)
t + δtūt,w

(i)
t ,h

(i)
t ). (61)

The estimator for the precipitation level to exceed a specified value z at given location
x is given as,

P (Rt(x) > z) =
1
Ns
·
Ns∑
i=1

δ(R(i)
t (x) > z)). (62)
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When updating ct+1n , and the previous center is inactive, Atn = 0, ct+1n has equal prob-
ability to be located anywhere on the grid. We exploit this by starting the MCMC run by
asserting the starting value for the previous inactive centers at the most underestimated
location, x ∈ X, given the expected value of the previous forecast of,

c
(0)
t+1n

= maxx

(
It+1 − E[Rut+1(X)]

)
. (63)

This helps the MCMC run to converge faster, and quickly locating any new rain showers
that might have entered the system.
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Algorithm 6 MCMC update scheme for full model
Set Advection at first image to zero:
u(i)

0 = 0 for i=1,. . . ,Nsim

Initialize first image:
for i=1 to Nsim do

Sample c0,w0,h0 using MCMC from algorithm 3:
π(c(i)

0 ,w(i)
0 ,h(i)

0 ) ∼ L(c(i)
0 ,w(i)

0 ,h(i)
0 )

end for
Ā0 ← getAct(c̄0, w̄0, h̄0) {Find Active basis functions at t0}
for t=1 to T do

ūt−1 = u(Nsim)
t−1 {Treat previous values as constants.}

c̄t−1 = c(Nsim)
t−1 , w̄t−1 = w̄(Nsim)

t−1 , h̄t−1 = h(Nsim)
t−1

Update advection field ut.
u(0)
t = ūt−1 {Initialize advection field}

for i = 1 to Nsim do
Sample u(i)

t using MCMC from algorithm 3:
π(u(i)

t ) ∼ L(It|u(i)
t + c̄t−1, w̄t−1, h̄t−1,At−1)p(u(i)

t |ūt−1,At−1)
end for
Update basis functions ct, wt and ht.
ūt = u(Nsim)

t {Hold the advection field constant using only last realization}
c(0)
t = c(Nsim)

t1
, w(0)

t = w(Nsim)
t1

, h(0)
t = h(Nsim)

t1
{Initialize basis functions}

for i = 1 to Nsim do
Sample ct,wt,ht using MCMC from algorithm 3:

π(c(i)
t ,w

(i)
t ,h

(i)
t ) ∼ L(It|c(i)

t ,w
(i)
t ,h

(i)
t , Āt−1)p(c(i)

t ,h
(i)

t ,w
(i)
t |c̄t−1, w̄t−1, h̄t−1, ūt, Āt−1)

end for
Āt ← getAct(c̄t, w̄t, h̄t) {Find Active basis functions}
if Ātj = 1 and Āt−1j = 0, for j = 1, . . . , N then
ūtj = mean(ūt) {Set advection value for new active centers to mean value.}

else
if Ātj = 0 then
ūtj = 0 {If center is inactive, set advection to zero}

end if
end if
Filtering
R̄(i)
t =R(c(i)

t ,w
(i)
t ,h

(i)
t )

Forecasting
R̂(i)
t+1=R(c(i)

t + δtūt,w
(i)
t ,h

(i)
t )

end for
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5 Result

5.1 Synthetic data

5.1.1 Initialization

To justify the model, we first start to verify it by using synthetic data generated from the
model itself. This has the advantage that we can inference about known parameters to see
if the model is operating correctly. After initializing the first image with corresponding
advection, proper values for the covariance matrices were used to simulate the model
forward in time. After simulating basis functions, random Gaussian noise was added
over the entire grid. The lower critical limit for the precipitation field is chosen relatively
large, so that the random noise added after the simulation of the basis functions does
not exceed this limit. The parameters for the synthetic data is shown in table 1. To
ensure that we infer about a satisfying number of basis functions, the number of basis
functions used to generate the data is smaller than the number used to infer about the
model. The standard deviation of the advection σu, is chosen relatively large to test the
model flexibility when the advection might move rather rapidly.

Table 1: Parameters for synthetic data

Parameter symbol Value
Number of basis function N 24

Number of simulated basis functions Nb 16
Number of simulations Ns 6000

Grid dimension M 50
Advection correlation parameter a 0.005
Standard deviation of advection σu 1

Standard deviation of centers σc 0.2
Standard deviation of radii σw 0.1

Standard deviation of intensities σh 0.1
Radar error σI 0.1

Critical lower value for radii wcrit 0.4
Critical lower value for precipitation Rcrit 0.5

The model was initialized at time t0, and simulated sequentially seven steps forward in
time. In the synthetic data case, only the last realization is visualized to justify our
approximative MCMC scheme.

5.1.2 Filtering

The results for the filtering procedure for the six first time steps can be seen on the
right side of figure 9. The left hand side of the figure shows the simulated precipitation
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field together with added random noise. As expected the filtered images are very similar
to the ”radar” images, removes the added Gaussian noise, and smoothen the observed
images. The top of figure 9 shows the initialized image, where the advection is not yet
calculated. The images at time t1 shows the filtered image where the advection is up-
dated for the first time. Even though t0 and t1 are where the initialization is performed,
they both yield good results. Observing the colorbars, we see that the intensities are
also of approximately same magnitude. The reason for the filtered images to recreate the
radar image so good, is that the elements of the variance matrix for the radar error ΣI ,
is relatively small, indicating that the radar image contains very accurate information.
Another factor is the relative fine-meshed grid, providing enough calculations to provide
sufficient information about the basis functions.

The advection can be found after initializing the first image, and the resulting advection
is about of same magnitude and direction as the generated one. Observing the images
for t2 we can see that the ”real” advection is somewhat of different direction at various
geographical locations. Most of the vectors point to north east, but the vector located at
the center furthest to west is pointing almost vertically. This is approximately identical
to the filtered image, and we conclude that the filtering procedure is satisfying in this
simple synthetic case.

5.1.3 Forecasting

After the initialization of the first image, and updating the advection field at time 1,
the forecast prediction can be found for time 2. One step forecast predictions for time
2,3 and 4, compared with the true underlying image without the radar measurement
noise, are shown in figure 10. The advection vectors are remain the same as for the
previous filtered image since they are not expected to change. The forecast for t2 looks
very satisfying, due to the fact there is little growth or decay from t1 to t2, and that the
direction of the advection stays approximately the same. The intensity of the forecast
at t2 compared to the real intensity seems is a bit high, but this probably the result of
wcrit being too small, resulting in a blown up value at the location where the intensity
is close to 4. The forecast at t3 is similar in shape to the corresponding real image.
However, we see that the advection has had a rapid change from t2 to t3, resulting in the
forecast to move to far east. This is one weakness for this model, that it can not take
into account a rapid change in advection when the next forecast is yielded. At t4 we see
that the change in advection has been adjusted, and that the location of the centers look
good. However, there has been some decay in one of the western basis functions, and
some growth of some of those to north east of the system, from t3 to t4. This can not
be taken into account in the forecast, and the forecast will always be similar in shape
compared to the previous filtered image.

Figure 11 shows the forecasts at time 5,6 and 7, but now the only available radar image
is from time 4. This yields a one, two and three step prediction. The images to the left
shows the corresponding true images at the given time. The advection used to forecast
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all three images is found from the filtering at time 4. And since this, along with updating
the basis parameters, are not adjusted for as time passes, the forecasts are increasingly
inaccurate. The one step forecast is as expected the best one, and approximately recre-
ates the true image, but the last to yields rather poor forecasts. One can see from the
true images that the advection changes some between time 4 and 5. This explains some
of the inaccuracy of the forecasts, since the advection used is quite different from the
”real one”. If this is not the case, the performance of the forecasting is expected to
improve. However, even the two step forecast for t7 gives us reliable information that
the system has moved north and that it is about to leave the chosen geographical area.

From this synthetic case we can summarize that the filtering performs well, and handles
a quite rapidly shifting advection field. The one step forecasts also yield good results,
but forecast on further time intervals might yield mixed results, depending on the rate
at which the advection change.

5.1.4 Realization and convergence of sampled parameters

We will now look at the convergence of precipitation levels at the grid locations, basis
functions and advection. Figure 12 shows the realizations from the MCMC algorithm of
the precipitation levels for the filtering at t0. The figure only shows realizations for every
tenth grid location to make the figure more surveyable. As seen from figure 12 the values
converge quickly, being approximately normal. However, the situation for the underly-
ing basis functions and advection are not as stable as for the resulting precipitation field.

Figure 13 shows the realizations of center coordinates c0nx
at top, and c0ny

at bottom,
for basis functions n labeled as active at the last realization. As seen from the figure
most of the center coordinates converge quickly, except from two. These two centers
seem to randomly wander about until they ”settle in” at about 5000 iterations. The
situation for the advection is shown in figure 14, u0nx

at top, and u0ny
at bottom, is

even more complex. Most realizations seem to converge about one single value, but
some do not. This might be the result of their associating intensity htn being of a small
value, not yielding large effect to the likelihood when updating the specified advection
utn . This seems reasonable as the realizations that do not converge do not seem to affect
the realizations of the precipitation field, as seen from figure 12. Figure 15 shows the
number of basis functions classified as active at each realization at t0, starting at 10,
and having a maximum value of 22. The starting value 10 is not chosen, but a result of
the random initialization of the MCMC run at time t0. It is clear that the number of
active basis functions does not converge to one single value. The run converges to values
spanning from 18 to 22, which is below the true number, 24. It is reasonable that the
filtered image is not able to recreate the full complexity of the true image as we have
added some uncertainty in the radar image. The number of active basis functions at
time t decides the parameter space of ut+1. This in addition to the chaotic behavior of
the other underlying variables, justifies our approximative MCMC scheme from section
4.4.2, to use only the last realization to update the next parameter.
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Figure 9: Radar images(left) with corresponding filtered images(right) for time t0, t1 and t2.
At time t0 the advection is not yet initialized, but for time t1 and t2 the advection is of same
magnitude and direction as the ”real” advection. All three images are very similar in shape,
and the ”real” colorbars are showing about the same intensities as those from the filtered
images.
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Figure 10: True images(left) and one step forecast images(right) at t2, t3 and t4. The
forecasts for t2 and t3 yield very good results as the precipitation fields have little changes
between the updates. The forecast for t4 is also satisfying, but due to some rapid change in
advection and the amount of precipitation between t3 and t4 it is not as accurate as the two
previous forecasts. The intensities of the filtered images, indicated by the colorbars, differ
some compared to the ”real” intensities because the distance from the centers to the closest
pixels have changed slightly compared to the filtered ones.
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Figure 11: True images(left) and one, two and three step forecasts(right) at t5, t6 and t7.
All forecasts are conditioned on the ”radar” image at t3, and the advection is held constant
for all three updates. The one step forecast at t5 yield best result, and forecasts for t6 and
t7 are increasingly inaccurate. However, both t5 and t6 yield approximately results as to how
the predicted precipitation field will be. Some of the inaccuracy are ascribed to the rapid
change in the advection field between t4 and t5. Also there is some growth and decay in the
real images at time steps t5, t6 and t7 which can not be accounted for.
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Figure 12: Realizations of precipitation levels at every 10th grid location, for time t0. All
values converge quickly, indicating a burn-in of less than 500 realizations. The values close
to zero have discrete jumps from zero to a value close to the critical lower value Wcrit, set
to 0.5 mm. pr. hour.
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Figure 13: Realizations of coordinates of centers labeled as active at last realization at initial
time, upper figure x coordinates, bottom figure y coordinates. Most centers converge quickly,
but two centers performs a random walk over the legal area, until they finally find their place
at about 4500 iterations.
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Figure 14: Realizations of advection at active centers at time t1, upper figure x direction,
bottom figure y direction. For many of the basis functions it is hard to decide convergence,
illustrating the rather chaotic nature of the underlying distributions.
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Figure 15: The classification of each basis function as active or passive at each realization
at t0. The initialization values for the basis functions are chosen at random, and this gives
ten active basis functions at first realization. The synthetic precipitation field consists of 24
basis functions, and the realizations of the filtered image tends to have between 18 and 22
after the MCMC run seems to have converged. The run never converges to a single value,
and this is one of the reasons why it is hard to sample from the entire sample space of the
advection ut, as its parameter space varies.
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5.2 Real data from the Rissa radar in Sør Trøndelag

Testing the model on real data images is more challenging because of explicit factors and
uncertainties in the variances and correlation used in our model. We are not capable
of forecasting growth and decay of new rain showers, but we are able to deal with
this in the filtering procedure.The data are measured at 06.03.2006, providing a time
series spanning from 12:00 to 18:00, and are gathered by the Rissa radar located in Sør
Trøndelag, Norway. Figure 16 shows the geographical area of which we have chosen to
evaluate, with the arrow pointing at Trondheim. Trondheim is the largest city in the area
and and we will explore a two hour prediction from an image series where precipitation is
moving towards the city. It should be mentioned that the radar image has been modified
so that that the image used, only contains every fourth pixel of the original grid in each
direction. The cell coordinates for Trondheim is [28, 7] for the modified grid, as seen
from figure 16 where the shown axes are scaled to fit the modified grid. The values used
for each pixel at the unmodified grid is the mean value of the surrounding pixels and
the pixel itself. This is done in order to shorten the run time in the MCMC run. In a
full scale implementation all data point could be used, but this might severely increase
the run time. The parameters chosen are shown in table 2. The images occur in a time
difference of one hour, which might be a unfortunate since the model is based on a short
time frame. Probably an occurrence sequence of 15 minutes would be ideal, but such
data were not available at the time. All intensities are given as millimeter precipitation
pr. hour.

Table 2: Parameters for real data
Parameter symbol Value

Number of basis function N 25
Number of simulations Ns 15000

Grid size M 38
Correlation parameter a 0.005

Advection standard deviation σu 1
Center standard deviation σc 1
Width standard deviation σw 4
Height standard deviation σh 1

Radar error σI 0.1
Critical lower value for radii wcrit 0.4

Critical lower value for precipitation Rcrit 0.1

The radar image at time 12:00 was used to initialize the model, and the last image in the
sequence is at time 19:00, all together making up a sequence of eight images. In the real
case, the mean of the filtered images and predictions are shown, not the last realization
as for the synthetic case. The realizations were cut after 10000 iterations, using the last
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5000 as the basis to do inference. This might be a bit exaggerated, but we want to be
sure that the model has converged to yield good results. In order to reduce the run time,
using a fewer number of realizations would be reasonable to consider.

5.2.1 Filtering

Figure 17 and 18 show the average of the filtered images to the right at time 13:00 to
18:00 over the geographical area shown in figure 16. Corresponding radar images are
shown to the left. The image at time 13:00 is accurate in shape but is smoother than the
observed radar images. There is also a small rain shower to the north west that filtered
image does not capture. The image at 14:00, has a more detailed structure in the largest
precipitation are, and we see that the model is able to build up the new precipitation
showers entering the north west corner. This new filtered precipitation however, do not
have a very detailed structure. We see that the filtered image over estimates the precip-
itation levels outside the boundaries at the moving precipitation field, as a result of the
filtered image being very smooth. The advection looks reasonable, as the precipitation
seems to move from north west,arriving from the North See. At the image at 15:00
there is also small levels of precipitation, but now at the north east corner, that is not
captured by the filtered image. The trend is the same as for the previous two filtered
images, that the precipitation fields that have been in the system for some time seem to
get more detailed at each update.

At the top of figure 18, we see the radar and filtered image at time 16:00. The area of
precipitation at north west is now the more detailed one, and the ”old” one is seemingly
dying out. The number of active basis functions seem to increase as time goes by,
indicating that the model should be run a few times before we should inference about
it. The advection seems reasonable as it points from north west, the direction where
precipitation seems to enter. At time 17:00 the radar image shows precipitation moving
”undiserable” from time 16:00, as the two radar images are not very similar. The one at
time 17:00 is more smeared out. Still the filtered image looks satisfying, recreating and
removing noise from the radar image. There is however parts with low intensities that
do not show in the filtered image, but here the precipitation level is very small, below 1
mm. pr. hour. At time 18:00 the filtered image looks very much like the radar image,
and the advection is pointing in a reasonable direction. It is also worth noticing that
the small areas with the highest intensities are almost identical in the two images. The
model can be said to focus on the most important rain showers, those which contains
most precipitation, and not focus on areas with little and close to no precipitation.

5.2.2 Forecasting

Figure 19 show one hour forecast for time 14:00, 15:00 to 16:00 compared with the cor-
responding observed radar images. The forecast at 14:00 is of same shape as the filtered
image at time 13:00, but can not predict the precipitation coming in from north west.
Otherwise the forecast can be said to be good, showing a moving precipitation field that
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Figure 16: The geographical map of the real data situation. Trondheim is marked with an
arrow. The axis are scaled to fit with the radar, filter and forecast images. The pixels are
distanced 1000 m from each other, but each unit on the axis is of distance 4000 m.
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is pretty accurate compared to the radar image. At time 14:00, there has been some
decay of precipitation in the north east corner of the radar image, which our forecast
could not predict. Also for time 15:00 we see that the forecast have difficulties with
predicting the movement of the precipitation moving in from north west. But for all
three predicted images in figure 19 we can see that the movement of the precipitation
that has stayed in the grid for a couple of time steps are well tracked.

Figure 20 shows the one step forecasts for time 17:00, 18:00 and 19:00. At time 17:00 we
see that there is an increasing number of active basis functions located at the north west
corner. This is because the corresponding precipitation now have stayed in the grid for
a couple of time steps, giving the model enough information to track the precipitation.
To the next time step at 18:00, we see that the real advection has shifted a some, going
from southern to a more eastern direction. The forecast then misses somewhat when
estimating the new shape, but still we see that the outer contour of the field is generally
satisfying. As time goes, and we get more basis functions, we see that the forecast gets
less smooth. This is most likely a result of us holding the advection constant to the
last realization in the MCMC algorithm presented in section 4.4.2, underestimating the
variance and rely to much on this last realization when taking the model forward in
time. However, the shape of the forecast precipitation field looks good, but it would be
preferable that the image were smoother.
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Figure 17: The filtered images(right) at time 13:00, 14:00 and 15:00 with corresponding
radar images(left). Advection at active centers from last realization is shown with arrows.
The filtered image at time 13:00 is the first update after the initialization, and is smoother
than the radar image, indicating there is used too few basis functions. The filtered image
at time 15:00 shows the build up of a new shower to the north west corner, but this shower
is smother than the precipitation that have stayed in the grid from time 14:00. The filtered
image at time 15:00 is the most detailed one, indicating that the model recreates the structure
of the precipitation that have been in the grid for some time, better than new rain showers.
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Figure 18: The filtered images(right) at time 16:00, 1700 and 18:00 with corresponding
radar images(left). Advection at active centers from last realization is shown with arrows.
As for figure 17 we see that the figures get more detailed, having more active basis functions
as time passes. The filtered image at time 16:00 recreates the radar image well, having
advection pointing to south east, the direction the precipitation seems to move. The filtered
image at time 17:00 seems very reasonable, but misses some areas where the precipitation
level is very light. The filtered image at time 18:00 is the most detailed one, as the model
has been run for a few time steps. All intensities for the three filtered images are of same
magnitude as the radar images.
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Figure 19: The average of the predicted images(right) at time 14:00, 1500 and 16:00 with
corresponding radar images(left). The predictions are the mean of 5000 MCMC realizations
from the one hour forecasting distribution. The advection illustrated is the last realization.
The forecast at time 14:00 is smooth, but is similar in shape of the observed radar image.
However, an underestimation of the advection, makes the prediction miss slightly at the loca-
tion of the observed precipitation. The forecast at time 15:00 is able to predict precipitation
at the north west corner, but fail to predict the decay of the precipitation located in the
middle of the image. The forecast at time 16:00 looks at lot like the radar image at time
15:00, but fail to predict the decay of the precipitation in the middle and the increase at the
north west corner.
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Figure 20: The predicted images(right) at time 17:00, 18:00 and 19:00 with corresponding
radar images(left). The predicted image at time 17:00 is relatively good, but it is hard to
predict the rapid changing shape and direction of the precipitation field. This is also the
case for the forecast for time 18:00, that the model struggles to predict the rapid changing
weather system. The forecast at time 19:00 is perhaps the best, but it would be preferable if
all three forecasts were more smooth. This is the result of us only using the last realization
when predicting, resulting in an underestimation of the variance.
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5.2.3 Two hour precipitation forecasting for Trondheim

Looking at the radar image at time 17:00 from figure 20, we see that there is a precipita-
tion field moving towards the city of Trondheim. The radar value at this time is 0, but
we suspect that there might be some light rain showers moving towards the city. Assume
we want to plan a head some weather sensitive outdoor activity in the hour from 18:00
to 19:00, and therefore want to predict when, and at which intensity, this precipitation
will strike. A MCMC run with corresponding filtered values is assumed to be available
at time 17:00.

We performs our predictions using estimators from section 4.4.2, and the current esti-
mation for time 17:00 using the available filtered realizations. The results are available
in table 3, with corresponding 99% confidence bands and radar observation. We use the
strict criteria of 99% confidence bands due to the fact that we suspect to be underesti-
mating the variance.The expected precipitation is calculated at every twentieth minute,
from 18:00 to 19:00.

Table 3: Predicted precipitation values over Trondheim from 17:00 to 19:00

Time lower 1 % percentile Estimated value upper 99 % percentile Radar value
17:00 0 0.0050 0.1015 0
17:20 0 0.0080 0.1204 -
17:40 0 0.0134 0.1369 -
18:00 0 0.0332 0.1780 0.2221
18:20 0 0.0797 0.2213 -
18:40 0. 0.1397 0.2870 -
19:00 0.1169 0.1963 0.3879 0.4391

Looking at time 17:00, we see that the starting value, the last available filtered value, is
close to the radar value. In fact we see that the first filtered value is below the critical
lower value wcrit = 0.1, which states that most realizations are zero. As time goes by,
we notice that the expected amount of precipitation increase slightly the first hour, and
increases up to almost 0.2 mm. pr. hour at time 19:00. The uncertainty also increases
as a function of time, which is reasonable since longer forecasts are harder to predict.
This was as expected, however we also notice that both radar values for time 18:00 and
19:00 are just outside the 99% confidence bounds. As discussed earlier in section 4.4.2,
we know that we are probably underestimating the variance due to the fact that only
the last realization of the advection is taken to the next level. In addition to this, some-
thing unexpected might have occurred which the model can not intercept. However, the
expected values miss by about 0.19 mm. pr. hour at time 18:00, and by 0.24 mm. pr.
hour at time 19:00, which could be said to be pretty accurate, giving a decent prediction
as to how much rain is expected. The relative error might be said to be pretty high,
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but we are capable to predict that there are incoming rain, that the intensity is not very
high and that there is some uncertainty as to how much rain we could expect. It should
also be stated that the observed radar values, which itself might not be correct, are close
to the upper confidence bounds.
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6 Conclusion

This paper defines a probabilistic model for short term forecasting using online radar
images. The precipitation field is given as a sum of Gaussian basis functions, each con-
sisting of a center, radius and an intensity. Using a sufficient number of such basis
functions, any precipitation field can be created. The movement of each basis function
is only governed by its corresponding advection, which is used to yield the forecast as
a function of time. Labeling those basis functions that do not contribute to the final
image as inactive, they can in turn be used to generate birth or death of rain showers.
By assigning the basis functions and the advection prior distributions, the variables can
be conditioned on a given radar image which is assumed to have independent normal
distributed measurement errors. This update is done online via a approximated MCMC
scheme which can account for birth and death of new rain showers.

Testing the model on data that are generated from the model itself, yield good results
for both filtering and forecasting. Testing the model on real data also yield good filtered
images, but the results from the prediction is mixed. The forecast images approximately
predicts the weather, but it is hard to obtain very accurate predictions for a rapidly
changing precipitation field. The confidence bounds obtained are assumed to be too
narrow as we underestimate the uncertainty of the precipitation level due to the fact that
the MCMC scheme is an approximated solution to the scheme presented in [7]. There
are some weaknesses with the model, the most significant of these can be summarized
as follows:

• We use an MCMC algorithm where only the last realization is taken to the next
step, and the advection is held constant when estimating the forecast distribution.
Ideally a routine that samples from the joint distribution of the previous and
current state, of both the basis functions and the advection should be implemented.
Without the joint sampling, and that only one value of the advection is used, the
method does not account for the full uncertainty when forecasting.

• The time series used is measured at a rate of one hour. This is not ideal since
the degree of change within the system might be too chaotic in this time frame.
An arrival rate at 30 or 15 minutes would most likely improve the forecasting
properties of the model.

• The hyper parameters of the system,the variances and correlation structure of the
advection field, is specified using expert judgment. To obtain the radar error, [1]
suggest to analyze the radar uncertainties on comparison against rain-gauge mea-
surements. Using block-Kriging, [2] gives an online method to merge gauge data
with radar images. The covariance matrices for the basis functions and advection
can be estimated by adding an extra level to the hierarchical model, running an
extensive MCMC run for many time steps offline. A routine that can account for
a time dependent radar measurement error is presented in [9], combining radar
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reflectivity with gauge data to deal with rapidly changing weather systems, each
having a different drop size distribution.

• Using elliptical basis functions rather than circles, would be more flexible, which
in turn would allow the precipitation field to be well represented with a smaller
number of basis functions. This in turn might reduce the run time when updating
the model at each time step.

• This model assumes that the advection has no dynamics, but there are many situ-
ations where the advection change rapidly or have more complex structure. Using
the large scale information of the atmosphere from numerical weather forecasts
when updating the advection, would most likely improve this update. However,
lack of information about the error structure on the numerical weather forecasts
would require further assumptions to be made [4].
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