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Abstract

It is often very difficult, particularly in higher dimensions, to find a good multivariate
model that describes both marginal behavior and dependence structure of data efficiently.
The copula approach to multivariate models has been found to fit this purpose particularly
well, and since it is a relatively new concept in statistical modeling, it is under frequent
development.

In this thesis we focus on the decomposition of a multivariate model into pairwise
copulas rather than the usual multivariate copula approach. We account for the theory
behind the decomposition of a multivariate model into pairwise copulas, and apply the
theory on both daily and intra day financial returns. The results are compared with the
usual multivariate copula approach, and problems applying the theory are accounted for.

The multivariate copula is rejected in favor of the pairwise decomposed model on daily
returns with a level of significance less than 1%, while our decomposed models on intra
day data does not lead to a rejection of the models with multivariate copulas.

On daily returns a pairwise decomposition with Student copulas is preferable to mul-
tivariate copulas, while the decomposed models on intra day data need more development
before outperforming multivariate copulas.
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Chapter 1

Introduction

In light of the financial crisis which is upon us, the search in financial analysis is for new
and improved models. It is often very difficult, particularly in higher dimensions and in
situations where we are dealing with skewed distributions, to find a good multivariate
model that describes both marginal behavior and dependence structure of data efficiently.
For instance when modeling financial returns, there are few multivariate models that can
fit margins with different behaviors in the tails. The copula approach to multivariate
models has been found to fit this purpose particularly well.

The Student copula has been found to be generally superior compared with other
n-dimensional copulas for financial data such as equities, currencies, commodities and
more [1]. However, the Student copula has only one parameter, the number of degrees of
freedom, for modeling tail dependence. If we are to consider a multivariate model with
pairs of equities with different behavior in the tails, one parameter alone might not capture
the structure when increasing the number of equities.

Aas et al. (2007) [2] have developed a framework for constructing a pairwise de-
composition of a multivariate model into bivariate copulas alone. In this manner one
can keep track of individual parameters regarding the tail dependence. When compar-
ing the goodness-of-fit for different copulas against each other, Berg (2009) [3] has made
an overview and comparison of several approaches allowing us to find the most adequate
approach for specific cases.

Our thesis is mainly built on the work of Aas et al. and Berg, and to some degree the
work on vines introduced by Bedford and Cook (2002) [4]. The numerical section focus on
fitting copulas to returns on both indices and specific stocks. We begin this thesis with a
short introduction to bivariate copulas in Chapter 2, before we briefly discuss multivariate
copulas and the fitting of copulas to data in Chapter 3. We do not account for general
theory for multivariate copulas since our focus is mainly on decomposing multivariate
models into bivariate copulas.

Chapter 4 and 5 are regarding notation used in the thesis as well as an overview of
vines - one of the many aids in building models in the decomposition framework. The
edifying of our model, and most of the algorithms used in this thesis, are accounted for in
Chapter 6. In Chapter 7, problems arising when implementing the theory and comparing
different models are discussed.

Finally, we have performed two thorough numerical experiments, discussed the results
of them and outlined further work in Chapter 8 and 9 respectively.
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Chapter 2

Bivariate Copulas

Since we in this thesis are regarding the decomposition of multivariate distributions into
bivariate copulas, we focus on copulas in two dimensions when giving a brief introduction
of general copula theory. We begin with some basic definitions and theorems in Section
2.1 before we look at independence and invariance properties in Section 2.2. The last part
of this introduction to copulas accounts for different dependency measures.

2.1 Definitions and Theorems

Definition 2.1.1. Copula of F. If the random vector X = [X1 X2]T has joint distribu-
tion function F with continuous marginal distributions F1 and F2, then the copula of F
(or X) is the distribution function C of (F1(X1), F2(X2)).

This definition is derived from the proof of Sklar’s theorem [5], stated later in this
section. In [6], a copula is defined as a function C from I2 to I which fulfill the following
two properties:

1. For every u, v in I,
C(u, 0) = 0 = C(0, v)

and
C(u, 1) = u and C(1, v) = v.

2. For every u1, u2, v1, v2 in I such that u1 ≤ u2 and v1 ≤ v2,

C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0.

Every copula has a lower and upper boundary as the following theorem states [6].

Theorem 2.1.2. Let C be a copula. Then for every (u, v) in Dom C,

W (u, v) = max (u+ v − 1, 0) ≤ C(u, v) ≤ min (u, v) = M(u, v).

These bounds are called the Fréchet-Hoeffding lower and upper bound and they
are themselves copulas, named the countermonotonicity copula and the comono-
tonicity copula respectively. The existence of the partial derivative, as stated in the
following theorem, is needed in the decomposition of a multivariate distribution in Section
4.2.

3



4 Chapter 2. Bivariate Copulas

Theorem 2.1.3. Let C be a copula. For any v in I, the partial derivative ∂C(u, v)/∂u
exists for almost all u (in the sense of Lebesgue measure), and for such v and u,

0 ≤ ∂

∂u
C(u, v) ≤ 1.

Similarly, for any u in I, the partial derivate ∂C(u, v)/∂v exists for almost all v, and for
such u and v,

0 ≤ ∂

∂v
C(u, v) ≤ 1.

Furthermore, the functions u 7→ ∂C(u, v)/∂v and v 7→ ∂C(u, v)/∂u are defined and non-
decreasing almost everywhere on I.

In later sections we need to calculate maximum likelihood measures when fitting cop-
ulas to data. For this, we need the copula density. In n dimensions it is defined as

c12...n(u1, . . . , un) =
∂C12...n(u1, . . . , un)

∂u1 · · · ∂un
. (2.1.1)

This density does not exist for all copulas, see [5] et al. for a discussion. For implicit
copulas which have no closed form, the density is also be given by [5]

c12...n(u1, . . . , un) =
f12...d(F−1

1 (u1), . . . , F−1
d (un))

f1(F−1(u1)) · · · fd(F−1(un))
, (2.1.2)

which is seen by differentiating C(·) in (2.1.4). The following theorem, named after Abe
Sklar, is among many considered as the foundation of copula theory.

Theorem 2.1.4. Sklar’s theorem. Let H be a joint distribution function with margins F
and G. Then there exists a copula C : [0, 1]2 → [0, 1] such that for all x, y in R̄ = [−∞,∞],

H(x, y) = C(F (x), G(y)). (2.1.3)

If F and G are continuous, then C is unique; otherwise, C is uniquely determined on
RanF×RanG, where RanF denotes the range of F . Conversely, if C is a copula and F
and G are univariate distribution functions, then the function H defined by (2.1.3) is a
joint distribution function with margins F and G.

Corollary 2.1.5. Let H be a joint distribution function with continuous margins F and
G, let C be a copula and let F (−1) and G(−1) be quasi-inverses (see [6]) of F and G,
respectively. Then for any (u, v) in Dom C,

C(u, v) = H(F (−1)(u), G(−1)(v)). (2.1.4)

Equation (2.1.4) provides a useful method for constructing copulas from joint distri-
bution functions together with the inverse transform sampling method.

2.2 Independence and Invariance Property

Two random variables X and Y are said to be independent if their joint distribution
function H(x, y) equals the product of their margins, F and G, i.e. H(x, y) = F (x)G(y).
To give the corresponding property when dealing with copulas we introduce the product
copula

C(u, v) = uv = Π(u, v), (2.2.1)

or often just Π.
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Theorem 2.2.1. Let X and Y be continuous random variables (i.e. their distribution
functions are continuous). Then X and Y are independent if and only if CXY = Π.

Π(u, v) is therefore also called the independence copula.
Under certain regularity conditions copulas are invariant under transformations, as the

following theorem states.

Theorem 2.2.2. Let X and Y be continuous random variables with copula CXY . If α
and β are strictly increasing on RanX and RanY , respectively, then Cα(X)β(Y ) = CXY .
Thus CXY is invariant under strictly increasing transformations of X and Y .

2.3 Dependence

One of the most interesting and applicable properties of copulas is their dependency struc-
ture. Most practitioners normally use the linear correlation coefficient defined below [7]
when they seek a measure of dependence between two variables, for example different
financial instruments.

Definition 2.3.1. The linear correlation coefficient between X and Y is

Cor(X,Y ) = ρ =
Cov(X,Y )√

Var(X)
√

Var(Y )
. (2.3.1)

There are mainly three disadvantages with this measure, see [8] for further discussion
of these:

1. X and Y must have finite variances. This is especially a poor property in extreme
value analysis where tail dependence is important.

2. Uncorrelatedness implies independence only in the multivariate normal case.

3. It is not invariant under non-linear strictly increasing transformations.

As a consequence of this we introduce Kendall’s tau and Spearman’s rho [6]:

Definition 2.3.2. Let (X1, Y1) and (X2, Y2) be independent and identically distributed
(iid) random vectors, each with joint distribution function H. The population version of
Kendall’s tau, τX,Y or just τ , is the probability of concordance minus the probability of
disconcordance, i.e.

τ = P [(X1 −X2)(Y1 − Y2) > 0]− P [(X1 −X2)(Y1 − Y2) < 0]. (2.3.2)

Definition 2.3.3. Let (X1, Y1), (X2, Y2) and (X3, Y3) be three independent random vec-
tors with joint distribution function H. The margins of X and Y are F and G. The
population version of Spearman’s rho, ρS , is

ρS = 3
(
P [(X1 −X2)(Y1 − Y3) > 0]− P [(X1 −X2)(Y1 − Y3) < 0]

)
. (2.3.3)

Spearman’s rho of X and Y is in fact the linear correlation of F (X) and G(Y ), i.e.
ρSXY = ρF (X)G(Y ).
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2.3.1 Tail Dependence

The tail dependence of a bivariate distribution is a measure of the dependence in the
upper-right- and lower-left-quadrant of the distribution. The definition is divided into two
parts, one for upper and one for lower [9].

Definition 2.3.4. Let X and Y be random variables with distribution functions F1 and
F2. The coefficient of upper tail dependence of X and Y are

λU = lim
u→1−

P[Y > F−1
2 (u)|X > F−1

1 (u)], (2.3.4)

provided a limit λU ∈ [0, 1] exists. If λU ∈ (0, 1], X and Y are said to be asymptotically
dependent in the upper tail; if λU = 0, X and Y are said to be asymptotically independent
in the upper tail.

By applying Bayes’ rule on (2.3.4), λU can be written as a function of copulas, as in
the following definition.

Definition 2.3.5. If a bivariate copula C exists such that

λU = lim
u→1−

1− 2u+ C(u, u)
1− u

(2.3.5)

exists, then C has upper tail dependence if λU ∈ (0, 1], and upper tail independence if
λU = 0.

The expression in (2.3.5) holds for continuous random variables. The lower tail depen-
dency is defined similarly:

Definition 2.3.6. If a bivariate copula C exists such that

λL = lim
u→0+

=
C(u, u)
u

(2.3.6)

exists, then C has lower tail dependence if λL ∈ (0, 1], and lower tail independence if
λL = 0.



Chapter 3

Multivariate Copulas - Fitting
Copulas to Data

Extending the theory of copulas to n dimensions results in difficulties for some copulas.
Even though most of the properties discussed in Chapter 2 can be extended to hold in
an arbitrary number of dimensions, this is not always the case when discussing specific
copulas. In Appendix A we have discussed some of the most known copulas, namely
the Gaussian copula, the Student copula and the class of Archimedean copulas with its
most known members. While the Gaussian and the Student copula possess the same
properties in an arbitrary number of dimensions, the Archimedean copulas do not. It
is mainly the generator φ defined in (A.1.1) that needs additional restrictions. Since we
are mainly considering multivariate distributions through pair-copula construction in this
thesis, these restrictions will not be accounted for here, see [6, 5] for further discussion.

In Section 3.1.1 and 3.1.2 we account for the two methods we use; method-of-moments
and maximum likelihood (ML).

3.1 Fitting Copulas to Data

In this section we will account for two different methods of fitting copulas to data; the
method-of-moments using rank correlation and maximum likelihood. We have data vec-
tors X1, . . . ,Xn with identical distribution F , and write Xt = (Xt,1, · · · , Xt,d)T for an
individual data vector. We assume the margins of F to be continuous such that Sklar’s
theorem holds, i.e. we have a unique representation F (x) = C(F1(x1), . . . , Fd(xd)).

As a first approach of fitting a copula to data, we try to limit the possible copulas
by considering the nature of the data. For instance; do we have upper or lower tail
dependency, or perhaps no (apparent) tail dependency at all. Such characteristics are
summarized in Table 3.11.

3.1.1 Method-of-Moments Using Rank Correlation

The method-of-moments procedure using rank correlations is an easy way to estimate θ
in parametrical copulas because it is not necessary to assume (or estimate) the marginal

1Due to the radial symmetry of C, it suffices to consider λL to calculate the coefficient of tail dependence
λ of C for the Gaussian and Student copula [5].

7



8 Chapter 3. Multivariate Copulas - Fitting Copulas to Data

Table 3.1: Characteristics for typical copulas [5].
Copula Upper tail dependence Lower tail dependence
Gumbel 2− 21/θ 0

Clayton 0
{

2−1/θ θ > 0
0, θ ≤ 0

}
Frank 0 0
Gaussian 0 0

Student 2tν+1

(
−
√

(ν+1)(1−ρ)
(1+ρ)

)
2tν+1

(
−
√

(ν+1)(1−ρ)
(1+ρ)

)

distributions. The method takes advantage of the fact that many copulas have a one-to-
one correspondence between θ and ρS and θ and τ . Only Kendall’s tau will be discussed
here, see [5] for examples with the use of Spearman’s rho. The relationship between τ and
θ for the Gumbel, Clayton and Frank copulas are shown in Table 3.2, and the standard
estimator of Kendall’s tau (between two variables Xi and Xj), Kendall’s rank correlation,
is [5]

τ̂ =
(
n
2

)−1 ∑
1≤t<s≤n

sign((Xt,i −Xs,i)(Xt,j −Xs,j)). (3.1.1)

Pairwise estimations of Kendall’s tau can be gathered in a matrix Rτ ,

Rτ =
(
n
2

)−1 ∑
1≤t<s≤n

sign(Xt −Xs)sign(Xt −Xs)T. (3.1.2)

Table 3.2: Relations between θ and τ . D1(θ) = θ−1
∫ θ

0
t

et−1 dt.

Copula Kendalls tau, τ Parameter range
Gumbel, CGuθ 1− 1/θ θ ≥ 1
Clayton, CClθ θ/(θ + 2) θ ≥ −1
Frank, CFrθ 1− 4θ−1(1−D1(θ)) θ ∈ R

3.1.2 Maximum Likelihood Estimation

In order to fit data to (multivariate) copulas, we can first estimate the margins, F1, . . . , Fd.
Even though our main interest is the copula itself, the estimate of the margins may provide
extra information about the data. Hence splitting the modeling into two steps can yield
more insight and allow for a more detailed analysis.

If we choose to estimate the margins, we form what is called a pseudo-sample, Û1, . . . , Ûn,
from the copula [5], where

Ût = (Ût,1, . . . , Ût,d)T = (F̂1(Xt,1), . . . , F̂d(Xt,d))T. (3.1.3)

F̂i(·) can be estimated either parametric, for instance by ML, or non-parametric, using
the following estimator

F̂i(x) =
1

n+ 1

n∑
t=1

I(Xt,i ≤ x). (3.1.4)
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We divide by (n+1) instead of n to keep the pseudo-copula data in (3.1.3) in the interior of
the unit cube. This is because in some cases the copula density is infinite on the boundaries,
thus preventing us from implementing ML [5]. The maximum likelihood estimator (MLE)
is defined as the parameter that maximizes the likelihood function. This function is defined
in the same manner as with ordinary distribution and density functions, i.e.

l(θ; Û1, . . . , Ûn) = lnL(θ; Û1, . . . , Ûn) =
n∑
t=1

ln cθ(Ût), (3.1.5)

where cθ is as defined in (2.1.1). We will use the approach with non-parametric estimators
for F̂i(·), known as the pseudo-maximum likelihood [5]. The expressions for the MLE for
the Gaussian and Student copula are given in Appendix A.
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Chapter 4

Notation and Motivation for Vines

Before we introduce vines in Chapter 5, we introduce some simplifying notation in Section
4.1 to avoid tedious expressions later. In Section 4.2 we show how a multivariate distribu-
tion function can be decomposed into pair-copulas and univariate distribution functions.
When performing this decomposition, we encounter a new problem which is solved using
the h-function described in Section 4.3.

4.1 Notation

Consider a vector X = (X1, X2, . . . , Xn)T of random variables with joint distribution
function fX1,X2,...,Xn(x1, x2, . . . , xn). We write

fX1,X2,...,Xn(x1, x2, . . . , xn) = f12...n (if necessary f1,2,...,n),
fX1,X2|X3...,Xn(x1, x2|x3 . . . , xn) = f12|3...n,

C(F1(x1), F2(x2), . . . , Fn(xn)) = C12...n,

cX1,X2|X3
{F (x1|x3), F (x2|x3)} = c12|3.

Here c12|3 is a pair-copula density for the pair of transformed variables F (x1|x3) and
F (x2|x3) and will be discussed in the next sections. Similar simplifying notation will be
used where it is found natural, for example with cumulative distribution functions (cdf’s).

4.2 Decomposing a Multivariate Distribution Function

We can decompose f12...n in the following (non-unique) way

f12...n = fn · fn−1|n · fn−2|n−1,n · · · f1|2...n. (4.2.1)

Using Definition 2.1.1 of a copula and assuming F to be absolutely continuous with strictly,
increasing marginal densities F1, . . . , Fn, we get

f12...n =
∂F12...n

∂x1 · · · ∂xn

=
∂C12...n

∂x1 · · · ∂xn
= c12...n · f1 · · · fn. (4.2.2)

11



12 Chapter 4. Notation and Motivation for Vines

The second step is done by using Sklar’s theorem and the last step by applying the chain
rule. The result in (4.2.2) can be used to represent (4.2.1) with pair-copulas and univariate
distribution functions alone. We make use of the following type of factorizations

f1|2 =
f12

f2
=
c12f1f2

f2
= c12f1,

f1|23 =
f123

f23
=
f12|3f3

f2|3f3
=
c12|3f1|3f2|3

f2|3
= c12|3c13f1, (4.2.3)

f1|234 =
f1234

f234
=
f12|34f34

f2|34f34
=
c12|34f1|34f2|34

f2|34
= c12|34c13|4c14f1. (4.2.4)

Note that (4.2.3) and (4.2.4) are not unique in that a change in the conditioning set in
step two would give different results, i.e. different pair-copulas in the final results. We see
that each term in (4.2.1) can be decomposed by the following iterative procedure [2]

fx|v = cxvj |v−j
(Fx|v−j

, Fvj |v−j
)fx|v−j , (4.2.5)

for a n-dimensional vector v. Here vj is a component of v, and v−j is the v-vector without
component j. Decomposing a distribution function with four variables could then be done
as follows:

f1234 = f1 · f2|1 · f3|12 · f4|123

= f1 · c12f2 · c23|1c13f3 · c34|12c24|1c14f4 (4.2.6)

= c34|12c23|1c24|1c12c13c14

4∏
i=1

fi.

This decomposition was especially chosen so that it would coincide with parts of the vine
in Figure 5.1.2 discussed in Chapter 5.

There are 3 different pair-copula decompositions for a three-dimensional distribution
function, there are 24 different for the four-dimensional case and as many as 240 for the
five-dimensional case [2]. With this is mind, a method helping us find the “best way” to
decompose a distribution function would be desirable. That is, we want the decomposition
that describes and preserves the (in advance) known information about the dependence
structure among the variables as good as possible. This is where the concept of vines is a
good aid. Vines will be treated in the next chapter.

4.3 The h-function

In (4.2.5) we need an expression for cxvj |v−j ’s arguments, Fx|v−j and Fvj |v−j . In [10] the
following relation is derived (under certain regularity conditions)

Fx|v =
∂Cxvj |v−j
∂Fvj |v−j

. (4.3.1)

Parts of the derivation of (4.3.1) are shown in Appendix B. If v is univariate, i.e. v = v,
we get

Fx|v =
∂Cxv
∂Fv

, (4.3.2)
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and when x and v are uniform, we define this as the h-function [2].

h(x, v,Θ) = Fx|v =
∂Cxv(x, v,Θ)

∂v
. (4.3.3)

In (4.3.3), Θ is the set of parameters for the current copula, and the second parameter of
h(·) is the conditioning variable. We define h−1(x, v,Θ) = F−1

x|v as the inverse of h(x, v,Θ)
with respect to x. The most common and applicable copulas, and their h-functions, are
discussed in Appendix A.
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Chapter 5

Vines

In order to model multivariate data through pair-copula construction in a satisfactory
fashion, we introduce the concept of vines. Vines is a relatively new concept used to
represent multivariate distributions introduced by Bedford and Cooke [4]. It has some
resemblance with Markov trees used in Bayesian inference in that it is a hierarchic way
of representing the dependence structure among random variables. Vines serve as an aid
to take advantage of information known in advance (about the dependency structure),
before we divide a multivariate distribution function into bivariate copulas and univariate
distribution functions.

In this chapter we give a short introduction to D-vines and canonical vines. The
use of these will be thoroughly accounted for when applying the theory in Chapter 8.

5.1 D-vines and Canonical Vines

A vine is a sequence of trees where the edges in tree Ti are the nodes in tree Ti+1. Each
vine represents one way of decomposing a multivariate distribution. Two of the most
common vines are the D-vine and the canonical vine illustrated for five variables in Figure
5.1.1 and Figure 5.1.2. We will return to these two vines, and subsets of them in examples
later. In [4] they choose a slightly different way to illustrate the vines graphic. We choose
to follow [2] as it is more self-explanatory.

Each edge in a vine represents a pair-copula corresponding to the label on the edge,
e.g. the first edge in T3 in Figure 5.1.1 corresponds to the copula c14|23 (recall that this
means c14|23{F (x1|x2, x3), F (x4|x2, x3)}). The multivariate density (of all the variables in
T1, i.e f12345) could then be decomposed into the product of all pair-copulas in the tree
and the marginal densities of all the variables. The two following formulas provide general
expressions for the decomposition of a multivariate density using a D-vine and a canonical
vine [2].

D-vine: f12...n =
n∏
k=1

fk

n−1∏
j=1︸︷︷︸
trees

n−j∏
i=1︸︷︷︸
edges

ci,i+j|i+1,...,i+j−1. (5.1.1)

Canonical vine: f12...n =
n∏
k=1

fk

n−1∏
j=1︸︷︷︸
trees

n−j∏
i=1︸︷︷︸
edges

cj,j+i|1,...,j−i. (5.1.2)

15
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Figure 5.1.1: A D-vine on 5 variables.
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Figure 5.1.2: A canonical vine on 5 variables. Note: If we remove variable 5, we get the
decomposition described in (4.2.6).



5.1 D-vines and Canonical Vines 17

Both (5.1.1) and (5.1.2) are subsets of what [4] denotes as regular vines, a much more
extensive class of vines. We will only consider D-vines and canonical vines. As Figure
5.1.1 and Figure 5.1.2 illustrate, they represent different dependency structures. While the
canonical vine should be used when there is one variable that (apparently) serves as a main
variable, i.e. it interacts with all of the other variables, a D-vine is more appropriate when
there is no such variable present. In both cases T1 is organized in the way that represents
the presumed conditional structure in the most natural way. If we use the decompositions
in Figure 5.1.1 and 5.1.2, the five-dimensional density f12345 can be expressed as:

D-vine:

f12345 = c12 · c23 · c34 · c45︸ ︷︷ ︸
E1

· c13|2 · c24|3 · c34|4︸ ︷︷ ︸
E2

· c14|23 · c25|34︸ ︷︷ ︸
E3

· c15|234︸ ︷︷ ︸
E4

·
5∏
i=1

fi. (5.1.3)

Canonical vine:

f12345 = c12 · c13 · c14 · c15︸ ︷︷ ︸
E1

· c23|1 · c25|1 · c24|1︸ ︷︷ ︸
E2

· c34|12 · c35|12︸ ︷︷ ︸
E3

· c45|123︸ ︷︷ ︸
E4

·
5∏
i=1

fi. (5.1.4)

Here Ei is the set of edges in Ti, which again are nodes in Ti+1. As is seen when looking
at (5.1.4) and Figure 5.1.2, when we handle a canonical vine, we can freely choose which
variable we want to use as the root node in each tree (up to tree Tn−2, where n = #
variables). To decide the root node in Ti, i > 1, we can either generate observations form
Ti−1 and find out which copula to use in the root node in Ti, or we can calculate the
likelihood for all the remaining decompositions, and choose the structure thereafter. The
latter option is better the lower we are in the tree. If we on the other hand use a D-vine,
the whole decomposition is determined when we fixate T1. In both cases there exists n!/2
unique vines [2].
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Chapter 6

Building a Model

The procedure for sampling and performing inference on vines is not straight-forward. The
use of the h-function quickly becomes intricate when increasing the number of dimensions,
which is seen when only considering a three-dimensional distribution function in Section
6.3.

In Section 6.1 we briefly discuss how to sample from a vine, before we in Section 6.2
show how a model can be simplified by assuming variables to be conditionally independent.
The last two sections of this chapter are devoted to inference and verification of our
implementation of the algorithms described here.

The pseudo-codes presented in this section are all collected from [2].

6.1 Sampling From the Vines

We will assume that the margins of the distributions we analyze is uniform, i.e. U [0, 1].
This does not restrict our possibilities in any way; we could either perform a probability
integral transform (PIT) of the variables as discussed in [2], or in some other way transform
our variables to ensure that they are U [0, 1]. The procedure for sampling U [0, 1]-variables
is identical for both the canonical vine and the D-vine.

Algorithm 1 Sampling n dependent U [0, 1] variables from a canonical vine or D-vine.
1: Sample w1, . . . , wn independent U [0, 1]
2: x1 = w1

3: for i = 2, . . . , n do
4: xi = F−1(wi|x1, . . . , xi−1)
5: end for
6: return x1, . . . , xn

In line 4 in Algorithm 1 we must calculate F−1(wi|x1, . . . , xi−1). Here we use the
h-function defined in (4.3.3), but with different choices of the conditioning variable, vj , in
(4.3.1) for the two types of vines.

D-vine, vj = x1: F (xj |x1, . . . , xj−1) =
∂Cj,1|2,...,j−1

∂F1|2,...,j−1
. (6.1.1)

Canonical vine, vj = xj−1: F (xj |x1, . . . , xj−1) =
∂Cj,j−1|1,...,j−2

∂Fj−1|1,...,j−2
. (6.1.2)

19
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Due to this difference, the algorithms describing how to sample from the two vines are
different. To get a picture of how the h-functions are used recursively when calculating
the conditional distributions, see Section 6.3 and Appendix C.

Algorithm 2 Generates a sample x1, . . . , xn from a D-vine. Here vi,j = F (xi|x1, . . . , xj−1)
and Θj,i is the copula-parameter corresponding to the copula ci,i+j|i+1,...,i+j−1.

1: Sample w1, . . . , wn independent U [0, 1]
2: x1 = v1,1 = w1

3: x2 = v2,1 = h−1(w2, v1,1,Θ1,1)
4: v2,2 = h(v1,1, v2,1,Θ1,1)
5: for i = 3, . . . , n do
6: vi,1 = wi
7: for k = i− 1, i− 2, . . . , 2 do
8: vi,1 = h−1(vi,1, vi−1,2k−2,Θk,i−k)
9: end for

10: vi,1 = h−1(vi,1, vi−1,1,Θ1,i−1)
11: xi = vi,1
12: if i == n then
13: Stop
14: end if
15: vi,2 = h(vi−1,1, vi,1,Θ1,i−1)
16: vi,3 = h(vi,1, vi−1,1,Θ1,i−1)
17: if i > 3 then
18: for j = 2, . . . , i− 2 do
19: vi,2j = h(vi−1,2j−2, vi,2j−1,Θj,i−j)
20: vi,2j+1 = h(vi,2j−1, vi−1,2j−2,Θj,i−j)
21: end for
22: end if
23: vi,2i−2 = h(vi−1,2i−4, vi,2i−3,Θi−1,1)
24: end for

6.2 Simplifying the Model; Assuming Conditional Indepen-
dence

Since we can choose the tree-structure arbitrary, it is beneficial to include variables that
are independent, or conditionally independent if they are in tree Ti, i > 1.

Definition 6.2.1. Two random variables X and Y are conditionally independent
given an event Z if they are independent in their conditional probability distribution
given Z, i.e.

P (X ∩ Y |Z) = P (X|Z)P (Y |Z), (6.2.1)

or equivalently
P (X|Y ∩ Z) = P (X|Z). (6.2.2)

We write X ⊥ Y |Z when X is conditionally independent of Y given Z. If we were to
make a model for four variables, and we know that X1 ⊥ X3|X2, it would be natural to
use one of the vines in Figure 6.2.1. Note that we in Figure 6.2.1 (b) have used X2 as
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Algorithm 3 Generates a sample x1, . . . , xn from a canonical vine. Here vi,j =
F (xi|x1, . . . , xj−1) and Θj,i is the copula-parameter corresponding to the copula
cj,j+i|1,...,j−1.

1: Sample w1, . . . , wn independent U [0, 1]
2: x1 = v1,1 = w1

3: for i = 2, . . . , n do
4: vi,1 = wi
5: for k = i− 1, i− 2, . . . , 1 do
6: vi,1 = h−1(vi,1, vk,k,Θk,i−k)
7: end for
8: xi = vi,1
9: if i == n then

10: Stop
11: end if
12: for j = 1, . . . , i− 1 do
13: vi,j+1 = h(vi,j , vj,j ,Θj,i−j)
14: end for
15: end for
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    23

    24
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(a) D-vine (b) Canonical vine

Figure 6.2.1: A D-vine (a) and a canonical vine (b) on 4 variables, with X1 ⊥ X3|X2.
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the root node in order to be able to use the conditional independence in T2. We get the
following expressions for f1234:

D-vine:

f1234 = c12 · c23 · c34 · c13|2︸︷︷︸
=1

·c24|3 · c14|23 ·
4∏
i=1

fi︸︷︷︸
=1

= c12 · c23 · c34 · c24|3 · c14|23,

Canonical vine:

f1234 = c12 · c23 · c24 · c13|2︸︷︷︸
=1

·c14|2 · c34|12 ·
4∏
i=1

fi︸︷︷︸
=1

= c12 · c23 · c24 · c14|2 · c34|12.

Here, fi = 1, since we have assumed Xi ∼ U [0, 1]. Since X1|X2 is independent of X3|X2,
the copula C13|2(u, v) = uv, and c13|2 = ∂

∂u∂vuv = 1. In order for us to find variables having
this property, we need to analyze the data thoroughly before setting up the structure of the
vine , i.e. decomposing the multivariate distribution. It is important to emphasize that
the nodes representing conditional independent variables is not removed from the tree,
they are simply ignored (set equal to 1) when multiplying together all the pair-copulas.
This is visualized by shading the node 13|2 in Figure 6.2.1.

6.3 Sampling From a Three-Dimensional Vine

In this section we derive how to use the h-function recursively when using Algorithm 1 for
three-dimensional vines. For a three-dimensional distribution, all three decompositions
are both a D-vine and a canonical vine [2]. These are shown in figure 6.3.1.
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    23     13T1''
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3 2

1

13 23  12|3

    13

    23

Figure 6.3.1: All three D-vines (left) and canonical vines (right) on 3 variables.
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The first two samples are trivial:

x1 = w1,

x2 = F−1(w2|x1) = h−1(w2, x1,Θ11).

Recall that the parameter Θji is different for the two vines. The indices of Θ are merely
aids in the algorithms; they do not benefit the reader when interpreting the h-functions.
It is easier to look at the indices of the two other variables in h(·) when deciding which
copula Θ corresponds to. For x3 it gets a bit more intricate. If we choose vj in (4.3.1) to
be x2, we have

F (x3|x1, x2) =
∂Cx3x2|x1

(Fx3|x1
, Fx2|x1

)
∂Fx2|x1

=
∂Cx3x2|x1

(h(x3, x1,Θ12), h(x2, x1,Θ11))
∂h(x2, x1,Θ11)

= h [h(x3, x1,Θ12), h(x2, x1,Θ11),Θ21] . (6.3.1)

In (6.3.1) the indices of the Θ’s represent the two center vines in Figure 6.3.1, i.e. Θ12, Θ11

and Θ21 are parameters of c13, c12, and c23|1 respectively. This is obvious when looking
at the other two arguments of h(·) and the indices of the x’s. Recall that h−1(x, v,Θ)
is with respect to x. We want to set xi = F−1(wi|x1, . . . , xi−1), which is equivalent to
wi = F (xi|x1, . . . , xi−1). We have

w3 = F (x3|x1, x2) = h [h(x3, x1,Θ12), h(x2, x1,Θ11),Θ21]

⇒ h(x3, x1,Θ12) = h−1(w3, h(x2, x1,Θ11),Θ21)

⇒ x3 = h−1
[
h−1(w3, h(x2, x1,Θ11),Θ21), x1,Θ12

]
.

The returned values, (x1, x2, x3), would be a sample from both of the two vines in the
center of Figure 6.3.1. Examples of expressions for x4 and x5, when dealing with a four-
and/or five-dimensional vine, are given in Appendix C.

6.4 Inference

In this section we will analyze data on the form Xi = (Xi,1, Xi,2, . . . , Xi,T ), i = 1, . . . , n,
where n is the number of variables observed at T points. As mentioned in Section 6.1, we
perform the analysis on variables that are U [0, 1]. We also assume that the observations
at different points are independent over time.

In Chapter 8 we will look at financial returns which certainly are not independent over
time. This is easily solved by analyzing the residuals of a (for example) GARCH(1,1)
model.

In [2] it is emphasized that when performing inference on real data sets, the margins
are unknown, and we have to use approximations of these. The data which are being
analyzed are then only approximately independent and uniform. As a consequence, when
we maximize the likelihood, only a pseudo-likelihood estimate is achieved. When we
later on discuss the likelihood under such circumstances, we are referring to the pseudo-
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likelihood. The log-likelihoods are given by [2]

D-vine:
n−1∑
j=1

n−j∑
i=1

T∑
t=1

log
{
cj,j+1|1,...,j−1

(
F (xj,t|x1,t, . . . , xj−1,t), F (xj+i,t|x1,t, . . . , xj−1,t)

)}
, (6.4.1)

Canonical vine:
n−1∑
j=1

n−j∑
i=1

T∑
t=1

log
{
ci,i+j|i+1,...,i+j−1

(
F (xi,t|xi+1,t, . . . , xi+j−1,t), F (xi+j,t|xi+1,t, . . . , xi+j−1,t)

)}
.

(6.4.2)

The corresponding algorithms are as given in Algorithm 4 and 5 respectively.

Algorithm 4 Likelihood evaluation for a D-vine.
1: log-likelihood = 0
2: for i = 1, . . . , n do
3: v0,i = xi
4: end for
5: for i = 1, . . . , n− 1 do
6: log-likelihood = log-likelihood + L(v0,i,v0,i+1,Θ1,i)
7: end for
8: v1,1 = h(v0,1,v0,2,Θ1,1)
9: for k = 1, . . . , n− 3 do

10: v1,2k = h(v0,k+2,v0,k+1,Θ1,k+1)
11: v1,2k+1 = h(v0,k+1,v0,k+2,Θ1,k+1)
12: end for
13: v1,2n−4 = h(v0,n,v0,n−1,Θ1,n−1)
14: for j = 2, . . . , n− 1 do
15: for i = 1, . . . , n− j do
16: log-likelihood = log-likelihood + L(vj−1,2i−1,vj−1,2i,Θj,i)
17: end for
18: if j == n− 1 then
19: Stop
20: end if
21: vj,1 = h(vj−1,1,vj−1,2,Θj,1)
22: if n > 4 then
23: for i = 1, . . . , n− j − 2 do
24: vj,2i = h(vj−1,2i+2,vj−1,2i+1,Θj,i+1)
25: vj,2i+1 = h(vj−1,2i+1,vj−1,2i+2,Θj,i+1)
26: end for
27: end if
28: vj,2n−2j−2 = h(vj−1,2n−2j ,vj−1,2n−2j−1,Θj,n−j)
29: end for
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Algorithm 5 Likelihood evaluation for a canonical vine.
1: log-likelihood = 0
2: for i = 1, . . . , n do
3: v0,i = xi
4: end for
5: for j = 1, . . . , n− 1 do
6: for i = 1, . . . , n− j do
7: log-likelihood = log-likelihood + L(vj−1,1,vj−1,i+1,Θj,i)
8: end for
9: if j==n-1 then

10: Stop
11: end if
12: for i =1, . . . , n-j do
13: vj,i = h(vj−1,i+1,vj−1,1,Θj,i)
14: end for
15: end for

6.5 Verifying Code

To confirm that our implementation of Algorithm 2 through 5 is correct, we performed
the following procedure for both a canonical- and a D-vine.

1. Choose a set of parameters for the vine, Θ = {Θ11,Θ12, . . . ,Θ(n−1),1}, and the
corresponding copulas, i.e. types of copulas, C = {C11, C12, . . . , C(n−1),1}1.

2. Generate observations x1,i, . . . , xn,i, i = 1, . . . , T (T large) from the vine, using
Algorithm 2 (or 3), and calculate the empirical cdf’s in (3.1.4).

3. Find Θ̂ = arg maxΘ l(Θ) using Algorithm 4 (or 5) with F̂ (xi,j)’s as input together
with nlminb() in R.

4. Compare Θ̂ to Θ to assure that the real value of Θ approximately achieves the
highest log-likelihood value.

Note that in step 3, we must also insert the copulas we used in step 1; The copula types
together with the data are both inputs in Algorithm 4 (and 5). A procedure for finding
an initial value of Θ̂ is desirable, and in the next section, the procedure proposed by [2]
is accounted for.

6.5.1 Initializing Θ̂

The following procedure will be used to initialize the values of Θ̂.

1. Estimate the parameters in tree 1, Θ11, · · · ,Θ1(n−1), from the empirical distribution
of the observed data, {

(
F̂ (x11), . . . , F̂ (x1T )

)
, . . . ,

(
F̂ (xn1), . . . , F̂ (xnT )

)
}. Here n is

the number of variables in the model, and T the number of data from each variable.

1Recall that the indices on Θij indicates which copula we have, and that the indexing is different for
canonical vines and D-vines, see Section 6.1. For simplicity we have chosen Cij to be the copula with
parameter Θij in this section.
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2. Calculate observations from tree 2 using the estimated parameters from step 1 to-
gether with h-functions and the data, i.e. produce xT2

ij , i = 1, . . . , n−1, j = 1, . . . , T .

3. Estimate the parameters in tree 2, Θ21, · · ·Θ2(n−2), from the data calculated in step
2.

4. Calculate observations from tree 3 using the estimated parameters from step 3 to-
gether with h-functions and xT2

ij .

5. Estimate the parameters in tree 3, and continue this way until the whole tree is
covered.

Whenever we estimate parameters, we first plot the data and look for typical characteris-
tics, such as the ones in Table 3.1. The initial estimation is performed by built-in functions
in R.

6.5.2 Numerical Examples of the Verification

Example 1: A Canonical- and D-Vine on Five Variables

We generated T = {100, 1000, 5000, 10000} observations respectively from a canonical vine
and a D-vine with copulas and parameters as illustrated in Figure 6.5.1. The data were
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Figure 6.5.1: (a): The 5-dimensional canonical vine used in the verification procedure and (b):
The 5-dimensional D-vine. ′C ′ = Clayton, ′F ′ = Frank, ′G′ = Gaussian and ′T ′ = Student
(has two parameters: the correlation parameter, ρ and degrees of freedom, ν).

generated with Algorithm 2 and 3. That is, we have the data

X =


x1,1 x1,2 · · · x1,T

x2,1 x2,2 · · · x2,T

· · · · · ·
x5,1 x5,2 · · · x5,T

⇒ Û =


F̂ (x1,1) F̂ (x1,2) · · · F̂ (x1,T )
F̂ (x2,1) F̂ (x2,2) · · · F̂ (x2,T )
· · · · · ·

F̂ (x5,1) F̂ (x5,2) · · · F̂ (x5,T )

 .
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We used the built-in minimization function nlminb() [11] in R to find the set of parameters
that maximizes2 the log-likelihood values achieved by Algorithm 4 and 5, i.e.

Θ̂ = arg max
Θ

l(Θ), (6.5.1)

where l(Θ) is either the expression in (6.4.1) or (6.4.2). The initial values were obtained
by following the procedure in Section 6.5.1 on the whole data set (i.e. using 10.000
observations). The results are listed in Table 6.1 and 6.2.

Table 6.1: Estimated parameters and log-likelihood values for the canonical vine in Figure
8.1.4 (a).

Parameter. Start 100 1000 5000 10000 Real value
θ12 2.99 1.97 2.76 2.84 2.88 2.90
θ13 2.49 1.87 2.12 2.33 2.46 2.50
θ14 1.35 0.88 1.18 1.26 1.32 1.30
θ15 4.11 3.07 3.86 3.95 4.02 4.00
θ23|1 0.70 0.67 0.69 0.71 0.70 0.70
θ24|1 1.97 1.92 1.90 2.02 2.01 2.00
θ25|1 1.67 1.77 1.63 1.68 1.70 1.70
ρ34|12 0.80 0.77 0.78 0.80 0.81 0.80
ν34|12 5.52 6.03 5.59 4.60 5.21 5.00
θ35|12 1.32 1.82 1.30 1.33 1.39 1.30
θ45|123 2.79 1.74 2.67 2.70 2.74 2.90
l(Θ̂) 36689.79 324.64 3835.84 20072.07 40559.48 39745.50

Table 6.2: Estimated parameters and log-likelihood values for the D-vine in Figure 8.1.4 (b).
Parameter. Start 100 1000 5000 10000 Real value
θ12 2.88 3.23 2.46 2.98 2.84 2.90
θ23 2.46 2.41 2.00 2.45 2.50 2.50
θ34 1.32 1.40 1.21 1.26 1.34 1.30
θ45 4.02 4.23 3.96 3.95 4.05 4.00
θ13|2 0.70 0.72 0.72 0.69 0.70 0.70
θ24|3 2.01 2.08 1.95 2.06 1.93 2.00
θ35|4 1.70 1.07 1.56 1.76 1.66 1.70
ρ14|23 0.81 0.77 0.80 0.79 0.80 0.80
ν14|23 5.21 300.00 6.13 5.46 4.58 5.00
θ25|34 1.39 1.10 1.10 1.31 1.30 1.30
θ15|234 2.74 1.62 2.13 2.63 2.88 2.90
l(Θ̂) 39799.67 370.41 3786.04 20200.54 40636.02 39911.08

It is clear that the higher the number of observations, the closer Θ̂ gets to Θ. This is
also seen from the error-plot in Figure 6.5.2. As T increases, Θ̂ clearly converges to Θ,
and hence verifies our code.

2In our implementation we return the negative value of the log-likelihood.
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Figure 6.5.2: (a): |Θ − Θ̂| for the parameters in the canonical vine.(b): |Θ − Θ̂| for the
parameters in the D-vine. Note that ν14|23 is left out for the case with 100 data. This is since
it reached the maximum allowable number, and contains little information about the fit.

It is interesting to notice that the initial value is actually closer to the correct value for
some parameters, even in the case with 10.000 data. This enlightens the fact that when
we optimize the log-likelihood value of the vine, we do not get the local maximum, i.e. Θij

is not necessary the parameter(s) maximizing the likelihood for cij , but we get the global
maximum. By analyzing the error plots in Figure 6.5.2, we also see that the parameter
far down in the vines are harder to estimate accurately.

Example 2: A Decomposition Consisting of Student Copulas

In this example we verify our code for a decomposition using a D-vine consisting of student
copulas exclusively. This case is treated separately since it has two parameters for each
copula and is therefore more time consuming and somewhat difficult to estimate. The
Student distribution/copula is also a type of model/decomposition that is often used in
financial models, which we will look into in Chapter 8. Again, we estimate parameters
for data sets with different sizes to get a sense of how fast Θ̂ converges to Θ. Our initial
values were ρinitial = (ρij − 0.1) and νinitial = {3.5, 9, 10, 190, 125, 15}, where

Θ =

 Θ12 = {−0.25, 4} Θ23 = {0.47, 10} Θ34 = {−0.17, 12}
Θ13|2 = {−0.11, 200} Θ24|3 = {0.02, 130}
Θ14|23 = {0.29, 16}

 , Θij = {ρij , νij}.

When we said that it is somewhat difficult to estimate the parameters in the Student
copula, we were referring to the degrees of freedom (df). As the number of df increases,
the dependence between the variables decline [2]. We also know that as the number of
df increases, the Student distribution converges to the standard normal distribution [7].
Hence, for high values of the df, it would be natural to assume that the difference between
different models would be somewhat insignificant. For example, the difference between
choosing ν to, say, 100 rather than 300, would not make a great impact in the fitting
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procedure. The process of maximizing the log-likelihood value with respect to the df also
has a huge impact on the number of iterations performed in nlminb(). We therefore tried
to penalize the log-likelihood value when ν was large, in order to check if this would make
Θ̂ converge any faster. We chose to introduce the penalizing term

likelihood = likelihood · e−
1
2

max (ν−15,0)2 ,

or equivalently

log-likelihood = log-likelihood− 1
2

max (ν − 15, 0)2,

whenever computing the contribution to the log-likelihood from a Student copula in the
vine3. The results with and without this term are summarized in Table 6.3.

Table 6.3: Parameters returned when optimizing the log-likelihood with respect to Θ. Initial
values: ρinitial = (ρij − 0.1) and νinitial = {3.5, 9, 10, 190, 125, 15}.

ν > 15 penalized ν ∈ (2, 300]
Parameter 100 1500 5000 100 1500 5000
ρ12 -0.37 -0.20 -0.27 -0.37 -0.20 -0.27
ρ23 0.46 0.48 0.46 0.46 0.48 0.46
ρ34 -0.31 -0.15 -0.17 -0.32 -0.15 -0.17
ρ13|2 -0.27 -0.13 -0.12 -0.27 -0.13 -0.12
ρ24|3 -0.19 0.01 0.02 -0.19 0.02 0.02
ρ14|23 -0.06 0.30 0.31 0.05 0.30 0.31
ν12 2.35 3.26 4.20 2.38 3.26 4.29
ν23 2.62 7.93 9.36 2.64 7.97 9.54
ν34 15.04 5.59 9.82 300.00 5.42 10.41
ν13|2 10.77 15.09 15.86 11.29 24.63 77.29
ν24|3 15.03 15.25 16.03 300.00 283.42 300.00
ν14|23 3.65 15.14 11.42 3.38 29.92 11.08
l(Θ̂) 34.21 263.86 1311.04 35.15 266.88 1326.48

Comparing the results in Table 6.3, it is clear that in both procedures, ρ̂ij converges
to ρij , while ν̂ seems to be more difficult to fit accurate. This is also seen from the error
plot in Figure 6.5.3 where only the method without the penalizing term is plotted. We
experienced that the procedure penalizing the likelihood when ν > 15 actually performs
far more iterations than the one without the penalizing term. It would therefore seem
natural to reject this approach, and let ν vary in a larger interval, say ν ∈ (2, 300] (we
must have ν > 2 due to the expression of variance for a Student distributed variable).
Unless otherwise stated, we use the constraint ν ∈ (2, 300].

3We penalize the log-likelihood function with subtraction since nlminb() minimizes the log-likelihood.
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Figure 6.5.3: Error plot for ν and ρ without penalizing large ν’s. (a): |ρij− ρ̂ij |.(b): |νij− ν̂ij |.



Chapter 7

Complications and Practical
Problems Applying the Theory

When applying the theory discussed in the previous chapters, we run into some more or
less complicated problems. In this chapter we discuss how to cope with them. We consider
the cases in the order we run into them when using real data sets in Chapter 8; first we
look at how we decide which vine we use and what structure it has in Section 7.1. The
rest of the chapter is devoted to goodness-of-fit analysis.

7.1 Deciding the Structure of the Vine

The first thing we have to decide is whether to use a canonical vine or a D-vine and how
to order the variables. The easiest way would of course be to test all of the n! possible
structures (n!/2 for each type) and choose the one with the highest likelihood. In higher
dimensions this becomes extremely costly, and an aid to help us decide the structure in tree
1 is desirable. First, we check if there is a root variable. This can be done by calculating
the correlation coefficient, Kendall’s tau or Spearman’s rho for all of the

„
n
2

«
pairs

of variables, and see if one of the variables dominates. This can be checked by using a
table like Table 7.1 (with the desired dependence measure), and choose the variables with
highest absolute value in such a manner that all variables are used. If one of the variables
is used in all the chosen pairs, this is the root node in tree 1. This procedure also sets up
the structure for the D-vine, as described below.

Table 7.1: Example of how to choose which vine to use using dependency measures.
Case 1 Case 2
X1 X2 X3 X1 X2 X3

X4 0.3 0.76 0.54 0.80 0.76 0.67
X1 - 0.70 0.67 - 0.70 0.54
X2 - 0.45 - 0.45

In case 1 in Table 7.1, we would prefer a vine with the copulas C24, C12 and C13 in tree
1. This is a D-vine with the structure X4 ↔ X2 ↔ X1 ↔ X3 in tree 1. In case 2 however,
we cannot choose the three pairs with highest correlation. This arrangement would leave
out X3. In stead, C12 is substituted with C34, making us choose a canonical vine with

31



32 Chapter 7. Complications and Practical Problems Applying the Theory

X4 as root node in tree 1. This method works fine when investigating copulas with only
one parameter, but when dealing with for instance financial data, the copulas tend to be
Student copulas. In this case we have two parameters describing the dependency in the
copula; the degrees of freedom and the correlation parameter. We will discuss this case
when we run into it in Section 8.1.

7.2 Goodness-of-Fit

As we will see when applying the theory covered in this paper on real data in Chapter 8, it
is not always easy to decide which type of copula to use. Even though practitioners tend
to use Student copulas on financial returns, it is not necessarily the case for us when we
decompose the model into pair-copulas. As described in Section 6.4, we calculate the log-
likelihood for the whole vine when fitting parameters to the data. However, we run into a
problem when we want to compare the log-likelihood values achieved by vines consisting
of different types of copulas. For instance if we have a vine consisting merely of Student
copulas and we change one of them into a Clayton copula. The Clayton and Student
copulas are not nested in each other, and we cannot compare their log-likelihood values
directly [2].

A method for comparing the fit of copulas to data, i.e. Goodness-of-Fit (g-o-f) proce-
dures, are needed in order to decide which copulas to use in the vine. In this section we
look closer on the hypothesis

H0 : C ∈ C = {Cθ; θ ∈ Θ} vs. H1 : C /∈ C = {Cθ; θ ∈ Θ}, (7.2.1)

where Θ is the parameter space. In [3], (7.2.1) is analyzed in depth with nine different
approaches and many different choices of C. Each approach is examined with different
null hypotheses and true copulas. Hence one can find the one most suitable approach for
specific cases. The recommendations given there are followed and used in this thesis.

7.2.1 G-o-F Approaches

We focus on approaches that is found to reject Student and Clayton copulas most often
when the data does not arise form these copulas, i.e. the null hypothesis is false. We
focus on these types of approaches since the data we shall analyze in Chapter 8 is found
to fit either Student or Clayton copulas, but the distinction between them is not easily
seen from plots alone.

Approach 1: Dimension Reduction

This approach is what is called a dimension reduction approach. That is, the multivariate
problem is reduced to a univariate problem, which is preferred from a numeric perspective.
This is however not a very important issue in this thesis as we always have bivariate
copulas. This approach uses the empirical copula defined as

Ĉ(u) =
1

n+ 1

n∑
j=1

I(Zj1 ≤ u1, . . . , Zjd ≤ ud), (7.2.2)

where zj = (zj1, . . . , zjd) =
(
Rj1
n+1 , . . . ,

Rjd
n+1

)
. Rji is the rank of xji amongst (x1i, . . . , xni),

i.e. it is the same as using the empirical cdf defined in (3.1.4). The test statistic is based on
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measuring the distance between the empirical- and null hypothesis distribution functions,
i.e.

T̂1 = n

∫
[0,1]d

{
Ĉ(z)− Cθ̂(z)

}2
dĈ(z) =

n∑
j=1

{
Ĉ(zj)− Cθ̂(zj)

}2
. (7.2.3)

Here, Ĉ(z) is compared to our estimate Cθ̂(z) of Cθ. T1 is a Cramé-von Mises (CvM) statis-
tic, i.e. it is a form of minimum distance estimation [3]. This approach is recommended
in [3] when testing

H0 : C ∈ C = {CStudentθ ; θ ∈ Θ} vs. H1 : C /∈ C = {CStudentθ ; θ ∈ Θ}, (7.2.4)

but also gives good results when testing the hypothesis in (7.2.5).

Approach 2: Unbiased Estimators of Θ

This approach is only used for testing the possibility of the data arising from a Clayton
copula, i.e.

H0 : C ∈ C = {CClaytonθ ; θ ∈ Θ} vs. H1 : C /∈ C = {CClaytonθ ; θ ∈ Θ}. (7.2.5)

It is based on two unbiased estimators of θ, the dependence parameter in the Clayton
copula, see Appendix A. We have θτ , based on the relationship between Kendall’s tau and
θ described in Table 3.2, and θW , a weighted rank-based estimator.

θ̂τ =
2τ̂

1− τ̂
, (7.2.6)

θ̂W =

∑
i<j ∆ij/Wij∑

i<j(1−∆ij)/Wij
, (7.2.7)

where τ̂ = −1 + 4
∑

i<j ∆ij/(n(n − 1)), ∆ij = I{(Zi1 − Zj1)(Zi2 − Zj2)} and Wij =∑n
k=1 I{Zk1 ≤ max (Zi1, Zj1), Zk2 ≤ max (Zi2, Zj2)}. In two dimensions, the test statistic

is
T̂2 = (θ̂τ − θ̂W )2. (7.2.8)

7.2.2 Testing Procedure

To obtain P -value estimates for the tests of hypotheses, we use a parametric bootstrap
method adopted from [3]. Pseudo code for a total of nine approaches, including the two we
use, can be found in Appendix C in [12]. We have verified our implementation of approach
1 and 2 in Appendix D.

Approach 1

1 Convert the data into normalized ranks, z1, . . . , zn, i.e. use (3.1.4) on the data.

2 Estimate the parameters θ with a consistent estimator θ̂ = V̂(z1, . . . , zn).

3 Compute Ĉ(z) according to (7.2.2).

4 If there is an analytical expression for Cθ, compute T̂1 by (7.2.3) with Ĉ(z) and
Cθ̂(z). Go to step 5.
It there is no analytical expression for Cθ, choose Nb ≥ n and carry out a double
bootstrap:
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(i) Generate a random sample (x∗1, . . . ,x
∗
Nb

) from the null hypothesis copula Cθ̂
and compute the corresponding pseudo-sample (z∗1, . . . , z

∗
Nb

) using the ranks as
described in step 1.

(ii) Approximate Cθ̂ by C∗
θ̂
(u) = 1

Nb+1

∑Nb
l=1 I(z∗l ≤ u), u ∈ [0, 1]d.

(iii) Approximate (7.2.3) by T̂1 =
∑n

j=1

{
Ĉ(zj)− C∗θ̂ (zj)

}2
.

5 For some large integer K repeat the following for k = 1, . . . ,K (parametric boot-
strap).

(a) Generate a random sample (x0
1,k, . . . ,x

0
n,k) from the null hypothesis copula Cθ̂

and compute the corresponding pseudo-sample (z0
1,k, . . . , z

0
n,k) using the ranks

as described in step 1.

(b) Estimate the parameters θ0, with a consistent estimator θ̂0
k = V̂(z0

1,k, . . . , z
0
n,k).

We use MLE, but others can be used, see [3] for a discussion.

(c) Let Ĉ0
k(u) = 1

n+1

∑n
j=1 I(z0

j,k ≤ u), u ∈ [0, 1]d.

(d) If there is an analytical expression for Cθ, let T̂ 0
1,k =

∑n
j=1

{
Ĉ0
k(z0

j,k)− Cθ̂0k(z0
j,k)
}2

.
Go to step 6.
If there is no analytical expression for Cθ, choose Nb ≥ n and proceed:

(i) Generate a random sample (x0∗
1,k, . . . ,x

0∗
Nb,k

) from the null hypothesis copula
Cθ̂0k

and compute the corresponding pseudo-sample (z0∗
1,k, . . . , z

0∗
Nb,k

) using
the ranks as described in step 1.

(ii) Approximate Cθ̂0k
by C0∗

θ̂0k
(u) = 1

Nb+1

∑Nb
l=1 I(z0∗

l,k ≤ u), u ∈ [0, 1]d.

(iii) Approximate (7.2.3) by T̂ ∗1,k =
∑n

j=1

{
Ĉ0
k(z0

j,k)− C0∗
θ̂0k

(z0
j,k)
}2

.

6 An approximate P -value for approach 1 is then given by p̂ = 1
K+1

∑K
k=1 I(T̂ 0

1,k > T̂1).

Approach 2

1 Convert the data into normalized ranks, z1, . . . , zn, i.e. use (3.1.4) on the data.

2 Estimate the parameters θ with a consistent estimator θ̂ = V̂(z1, . . . , zn).

3 Estimate θ̂τ and θ̂W according to (7.2.6) and (7.2.7).

4 Compute T̂2 according to (7.2.8).

5 For some large integer K repeat the following for k = 1, . . . ,K.

(a) Generate a random sample (x0
1,k, . . . ,x

0
n,k) from the null hypothesis copula Cθ̂

and compute the corresponding pseudo-sample (z0
1,k, . . . , z

0
n,k) using the ranks

as described in step 1.

(b) Estimate θ̂0
τ,k and θ̂0

W,k according to (7.2.6) and (7.2.7).

(c) Compute T̂ 0
2,k according to (7.2.8).

6 An approximate P -value for approach 2 is then given by p̂ = 1
K+1

∑K
k=1 I(T̂ 0

2,k > T̂2).



Chapter 8

Numerical Experiments

In this chapter we analyze real data sets using the techniques described in the previous
chapters. In Section 8.1 we look at four indices on world wide stocks, while we in Section
8.2 look at financial returns on intra day level.

8.1 Fitting Bivariate Copulas to Financial Returns

We chose to examine the following four indices:

� The Oslo Stock Exchange Benchmark Index (denoted O), an investable index, which
comprises the most traded shares listed on the Oslo Stock Exchange.

� S&P 500 index (denoted S), a value weighted index of the prices of 500 large cap
common stocks actively traded in the United States.

� The FTSE 100 Index (denoted F), also called the ”footsie”, is a share index of the
100 most highly capitalized UK companies listed on the London Stock Exchange.

� Dow Jones EURO STOXX 50 (denoted E), a stock index of Eurozone stocks designed
by STOXX Ltd, a joint venture of Deutsche Boerse AG, Dow Jones & Company
and the SWX Group. According to STOXX, its goal is ”to provide a blue-chip
representation of Super sector leaders in the Eurozone [13].”

We looked at the period from 06.06.2002 to 06.06.2006, that is we have 934 points1. Figure
8.1.1 shows the log-returns for each pair of asset. The only pair that stand out is Euro 50
and Footsie, which seem to have a linear relationship. The further analysis is performed on
the empirical distribution function (3.1.4) for the standardized residuals of a GARCH(1,1)-
model on the log-returns. These are plotted in Figure 8.1.2, and it is clear that all pairs
have both lower and upper tail dependence.

We have plotted the autocorrelation of the residuals in Figure 8.1.3, and we can see
that there is little, or none, autocorrelation left. As a first approach to break down the
model describing all four indices using only pair-copulas, we fitted a bivariate Student
copula to each of the pairs. Here we used the built-in R-function fitCopula(), with
maximum likelihood, to achieve the best fit. The df and ρ for each pair are listed in Table
8.1 and 8.2.

1Due to different public holidays in the different regions, some quotes do not exist for the all indices.
Whenever one index is “missing” a quote, we remove the date in question for all four indices.
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Figure 8.1.1: Log-returns for all the pairs of indices in the period 06.06.2002-06.06.2006.

Table 8.1: The numbers of degrees of freedom for each pair of Student copula. The three
lowest values are highlighted: These are the pairs used in tree 1 in the D-vine we fitted the
data.

Oslo (O) Footsie (F) (D) S&P500 (S)
Euro 50 (E) 17.88 10.33 4.38
Oslo - 8.16 10.84
Footsie - 5.76
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Figure 8.1.2: The empirical distribution function of the residuals of the GARCH(1,1) model
on the log-returns for all the pairs of indices in the period 06.06.2002-06.06.2006.

Table 8.2: The correlation coefficient, ρ, for each pair of Student copula. The three highest
values (making a pairwise decomposition possible) are highlighted: These are the pairs used
in tree 1 in the canonical vine we fitted the data.

Oslo (O) Footsie (F) S&P500 (S)
Euro 50 (E) 0.60 0.86 0.49
Oslo - 0.59 0.29
Footsie - 0.43
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Figure 8.1.3: The autocorrelation for the four indices. The significance level for testing if the
autocorrelations are zero is set to 0.05 (the dotted line).
.
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We know that a low number of df indicates strong dependence between the variables
[2], so if we were to choose the three pairs with lowest number of df, we would fit a D-vine
with E ↔ S ↔ F ↔ O as the ordering in tree 1. If we on the other hand select the three
pairs with largest value of ρ, we would fit a canonical vine with Euro 50 as the kernel
variable in tree 1. These choices are highlighted in Table 8.1 and 8.2. We note that even
though Euro 50 and Footsie had by far the highest linear correlation, they are only linked
in the canonical vine, i.e. when we used ρ to decide the structure. Since there is nothing
ruling in favor of neither vine, we fit both a canonical and a D-vine and compare how
they preserve the ν’s and ρ’s in Table 8.1 and 8.2. Using EF as the kernel in tree 2 gave a
slightly higher log-likelihood value than the other two possibilities, i.e. ES and EO, when
fitting a canonical vine. The structure of the two vines is shown in Figure 8.1.4, and the
final parameters are listed together with the initial values in Table 8.3.

E S F O

ES SF FO

 EF|S  SO|F

  EF|S   SO|F

 EO|SF

    ES     SF     FOT1

T2

T3

S

OE

EF
ES

EO

 SF|E

  SF|E

  OF|E

 SO|EF

    EF
    ES

    EOT1

T2

T3

F

 OF|E

(a) (b)

Figure 8.1.4: (a): The structure of the D-vine fitted to the data. (b): The structure of the
canonical vine fitted to the data.

8.1.1 Verification of the Models

To check how well the two models captured the relationship between the indices, we drew
105 observations from the fitted vines, and fitted a bivariate Student copula to each of the
six possible pairs as we did in the first step in Section 8.1. We then checked how well the
df and ρ’s were preserved. The results are listed in Table 8.4 and 8.5. By comparing the
simulated values in Table 8.5 with the values obtained from the data set in Table 8.2, it
is evident that both vines preserves both the ordering and the values of ρ remarkably well
even between the pairs we did not directly model. The difference between the vines arises
when we compare the simulated df in Table 8.4 with those in Table 8.1. The canonical
vine has almost kept the ordering and to some degree the magnitude, while the D-vine
is not quite that accurate. This, together with the log-likelihood value achieved in the
previous section, speaks in favor of the canonical vine. However, for illustrative purposes,
we choose to continue our analysis on both vines.

8.1.2 Expanding and Confining the Vines

In this section we check if any of the two vines can be expanded or confined, i.e. if we can
replace some of the copulas or if can we assume some of the variables to be conditionally
independent as discussed in Section 6.2. In order to check this, we first plot the data used in
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Table 8.3: Estimated parameters and log-likelihood values for the two vines in Figure 8.1.4.
The initial values were achieved by following the procedure in Section 6.5.1.

D-vine Canonical vine
Parameter Initial value Final value Parameter Initial value Final value

ν ∈ (2, 300] ν ∈ (2, 300]
ρES 0.49 0.50 ρEF 0.86 0.86
ρSF 0.43 0.44 ρES 0.49 0.49
ρFO 0.59 0.59 ρEO 0.60 0.60
ρEF |S 0.82 0.82 ρSF |E 0.01 0.01
ρSO|F 0.04 0.03 ρOF |E 0.20 0.20
ρEO|SF 0.21 0.21 ρSO|EF -0.03 -0.03
νES 4.38 6.51 νEF 10.33 9.62
νSF 5.76 9.17 νES 4.38 4.30
νFO 8.16 9.24 νEO 17.88 16.87
νEF |S 9.15 10.45 νSF |E 77.30 77.25
νSO|F 19.19 17.71 νOF |E 9.04 9.18
νEO|SF 17.37 17.30 νSO|EF 15.98 16.25
l(Θ̂) 1010.27 1013.07 l(Θ̂) 1019.06 1019.24

Table 8.4: The number of degrees of freedom for each pair of Student copula fitted the
simulated data from the vines with parameters as in Table 8.3

D-vine Canonical vine
O F S O F S

E 10.73 8.97 6.31 16.16 9.35 4.33
O - 10.10 12.23 - 11.39 9.01
F - 9.15 - 6.06

Table 8.5: The correlation coefficient, ρ, for each pair of Student copula fitted the simulated
data from the vines with parameters as in Table 8.3

D-vine Canonical vine
O F S O F S

E 0.60 0.86 0.50 0.60 0.86 0.49
O - 0.59 0.27 - 0.60 0.28
F - 0.44 - 0.42
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the initializing procedure in the previous section, and analyze them. Note: This is usually
something we would have done before fitting Student copulas to all the pair-copulas. We
did not do this because it is often normal practice to use (multivariate) Student copulas
when fitting copulas to financial related data [14, 15]. We start by looking at the D-vine.
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Figure 8.1.5: The data used to find the initial value for the D-vine. The data is achieved by
following the procedure in Section 6.5.1.

Considering Figure 8.1.5, it seems natural to assume a Student copula for the first
four scatter plots since they all clearly have both lower and upper tail dependence. The
last two are more diffuse, and will be discussed closer here. In the fifth plot, i.e. F (S|F )
vs. F (O|F ), there does not seem to be a distinct pattern. Either that or we only have
lower tail-dependence; there seem to be a clustering of observations in the square [0, 0.2]×
[0, 0.18], while there is no obvious pattern in the upper tail. Looking at Table 3.1, this
indicates a Clayton copula. In the sixth plot, λL and λU are clearly much lower than in
the first four plots, if at all greater than 0. This may indicate that E and O are conditional
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independent of SF . The two copulas CSO|F and CEO|SF were also the two copulas with
lowest value of ρ and highest value of ν in the vine, indicating low dependence. To
summarize, we try the following modifications:

1. cSO|F = 1. Result: l(Θ̂) = 1011.21.

2. cSO|F is a Clayton copula. Result: l(Θ̂) = 1013.66, with θ̂Cl = 0.08⇒ λ̂L = 2−1/θ̂ =
1.73 · 10−4.

3. cEO|SF = 1. Result: l(Θ̂) = 991.15.

4. cSO|F = 1 and cEO|SF = 1. Result: l(Θ̂) = 989.40.

5. cSO|F is a Clayton copula and cEO|SF = 1. Result: l(Θ̂) = 991.94.

The parameter values alter slightly when doing these modifications, but we do not give
these values here since the alteration is very small. First, we compare the vines were we
have set some copulas equal to the independence copula. These vines are nested within the
Student copula, and their likelihood values can therefore be compared directly. It is clear
that the only choice that seems somewhat reasonable is to set cSO|F = 1. It is evidently
a better choice than assuming either cEO|SF = 1 or both cSO|F and cEO|SF to be the
independence copula. This is an interesting observation when considering our approach
to choose which type of vine to use in the full model in the previous section.

In Section 8.1 we discussed whether to compare ρ’s or df when linking variables in tree
1. We fitted a D-vine with the pairs of variables with lowest df in the root tree, while we
fitted a canonical vine with the pairs of variables with highest correlation coefficients in
the root tree. Both approaches aimed to choose the three pairs of variables with largest
degree of interaction. We ran into the same problem when trying to decide which variables
in the vine that could be assumed independent based on the estimated values of either ρ
or ν. In Table 8.6 we have recapitulated the information of the two copulas in question.

Table 8.6: Comparison of CSO|F and CEO|SF with regard to independence.

Copula ρ̂ ν̂ l(Θ̂)C=Π

CSO|F 0.03 17.71 1011.21
CEO|SF 0.21 17.30 991.15

Both copulas have a high number of df compared to the other copulas in the vine,
while CSO|F has a considerably lower value of ρ than CEO|SF . When comparing the
log-likelihood values, it is clear that we prefer setting CSO|F = Π rather than setting
CEO|SF = Π. This indicate that ρ is a better aid when deciding which variables that can
be assumed independent. In the end, though, we would keep the full model instead of
assuming some of the variables to be independent.

As the result in point 2 indicates, a Clayton copula might fit CSO|F better than a
Student copula since it achieves a higher likelihood value. As mentioned in Section 7.2,
we cannot compare the likelihood values directly - we need to perform tests of hypotheses.
We use approach 1 discussed in Section 7.2.1 to test the hypothesis

H0 : CSO|F is a Clayton copula with θ = 0.08

vs. H1 : CSO|F is not a Clayton copula with θ = 0.08, (8.1.1)
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and

H∗0 : CSO|F is a Student copula with ρ = 0.03 and ν = 17.71

vs. H∗1 : CSO|F is not a Student copula with ρ = 0.03 and ν = 17.71. (8.1.2)

In addition we also use approach 2 to test H0. The p-values of the tests are summarized
in Table 8.7.

Table 8.7: The estimated p-values of H0 and H∗0 . We use α = 0.05 as level of significance.

Null hypothesis Approach K Nb p̂ Conclusion
H0 1 10000 - 0.65 Keep H0

H0 2 5000 - 0.09 Keep H0

H∗0 1 10000 5000 0.63 Keep H∗0

As is seen from the estimated p-values in Table 8.7, Neither H0 nor H∗0 is rejected
at a 5% level. One could plot the degree of closeness as done in [2] to investigate the
two alternatives further, but since the canonical vine in this case seem to outperform the
D-vine regardless of the choice of CSO|F , we do not pursue the matter any further.

Canonical Vine

Analyzing Figure 8.1.6, plot 1, 2 and 3 coincide quite good with student copulas. The fifth
plot also coincide somewhat with a Student copula. The fourth and sixth plots however,
seem much more unstructured, and it seems natural to assume that both cSF |E = 1 and
cSO|FE = 1. Again, we try all combinations of the proposed improvements.

1. cSF |E = 1. Result: l(Θ̂) = 1019.06.

2. cSO|FE = 1. Result: l(Θ̂) = 1017.03.

3. cSF |E = 1 and cSO|FE = 1. Result: l(Θ̂) = 1016.89.

The conclusions are much the same as with the D-vine; some of the variables could have
been assumed conditional independent, but the full model still achieves a slightly higher
log-likelihood value. Hence, we keep the full model.

8.1.3 Final Model and Comparison with a Four-Dimensional Student
Copula

As discussed in Section 8.1.1, the canonical vine seems to maintain the dependency struc-
ture among all four variables in a better way than the D-vine, especially when considering
the degrees of freedom. In addition, the canonical vine achieved a higher log-likelihood
value than the D-vine regardless of the choice of copula for CSO|F 2. With this in mind, we
choose the canonical vine as our final model. As mentioned earlier, common practice when
fitting models to financial returns has been two fit multivariate Student copulas to the
data. As a final evaluation of our model, we compare it to a four-dimensional Student cop-
ula performing a likelihood ratio test. The estimated parameters of the four-dimensional

2Note: We cannot compare the likelihood values for the canonical vine and the D-vine with a Clayton
copula directly.
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Figure 8.1.6: The data used to fit the initial value fro the canonical vine. The data is achieved
by following the procedure in Section 6.5.1.

Student copula are summarized in Table 8.8. We notice that the values of ρij coincide
with the values in Table 8.2.

Table 8.8: Estimated parameters for the four-dimensional Student copula fitted the data.
ρEO ρEF ρES ρOF ρOS ρFS ν l(Θ̂)
0.59 0.86 0.50 0.59 0.29 0.44 9.50 1010.65

The likelihood ratio statistics is 2 · (1019.24−1010.65) = 17.18 with 12−7 = 5 degrees
of freedom. This gives a p-value of 0.0042. Hence, we can reject the four-dimensional
Student copula in favor of the canonical vine.
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8.2 Fitting Bivariate Copulas to Intra Day Financial Re-
turns

In the previous section we investigated daily quotes and fitted a model to these. In this
section we look at intra day data, that is we look at prices at which a stock has been
realized (bought and sold) for during a market day. We look at the following three stocks.

� Citibank, a major international bank, founded in 1812.

� International Business Machines Corporation (IBM), a multinational computer tech-
nology and IT consulting corporation.

� General Motors (GM), a global automaker founded in 1908 with headquarters in
Detroit, Michigan. It was one of the worlds largest automakers.

We look at the sixteen market days from Wednesday 01.09.99 to Friday 23.09.99 (Monday
06.09.99 was labor day), and we extract the prices every fifth minute from 10.00 to 16.00.
These prices are plotted in Figure 8.2.1. The market opens at 09.00 and closes at 17.00,
but big buyers tend to manipulate the prices immediately after opening or just before
closing, so we omit these periods of the day. This results in 73 quotes each day. However,
we analyze the log-returns, and we do not include the log-returns that goes over two days,
e.g. log (r1Tuesday/r73Monday

), since this also would bring in the effect of the possible large
jumps at the start or end of each market day. This effect is easily seen at the dotted red
lines in Figure 8.2.1. This leaves us with 72 returns on each day, a total of 1152 log-returns
for each stock over all sixteen days.

Our main purpose in this section is to investigate how a model on daily data develop
over a short time period. We do this by fitting models to the data in the way described
in Figure 8.2.2.

Hence, we fit nine models, named Model 1, Model 2, ... , Model 9, each based on
576 returns in which 504 is used in the previous model and 504 in the next model for all
models except Model 1 and Model 9.

8.2.1 Complications with Intra Day Data

There are mainly two drawbacks when analyzing intra day prices contra daily prices.
Firstly, the fact that stocks are purchased and sold at fixed prices during the day, i.e.
prices can only rise or fall in multiples of the tick size (1/16$) [16], cause a problem when
we try to fit a GARCH-model on the log-returns. This grid-effect is seen in the scatter
plots of the log-returns in Figure 8.2.3. The GARCH-framework is meant for continuous
data, hence the analysis with the discrete data becomes very poor. This effect is seen in
intra day data and not in the daily quotes used in the previous section due to the small
time intervals at which we collect the prices in this section. We try to imitate a continuous
distribution for the log-returns by adding noise following (8.2.1).

lri = lri + ξi, ξi ∼ N(0, σ2), σ2 = 4.50 · 10−7, (8.2.1)

where lr is the vector of the log-returns for variable i. The new log-returns are plotted in
Figure 8.2.4, and we can see that the data no longer appear as discrete at the same time
as the structure is somewhat kept.

The second factor that affect our analysis is the size of the fluctuations we have during
a market day. This is a feature that is very stock-specific. Not all stocks are exchanged
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Figure 8.2.1: Prices for which Citibank, IBM and GM were traded every fifth minute from
10.00 to 16.00 from 01.09.99 to 23.09.99. The days on the x-axis are marked in the middle of
the day, and two days are separated with a dotted red line.
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Figure 8.2.2: A graphic representation of the 9 models we fit the data.
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Figure 8.2.3: The log-returns. (a): Citibank (b): IBM (c): GM.

equally frequent, or vary as much in price, and this may lead to poor intra day models.
This is seen in the pairwise scatter plot of the log-returns in Figure 8.2.5 and in Table 8.9
where we have summarized the activity on September 1st. GM clearly does not vary much
relative to Citibank and IBM. This is an inevitable problem which we have to accept. Of
course we could have chosen more liquid stocks to avoid this problem, but by analyzing
the stocks in question, we can see how this will effect the final model.
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Figure 8.2.4: The log-returns with added noise. (a): Citibank (b): IBM (c): GM.
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Figure 8.2.5: Scatter plot of pairwise log-returns. (a): Citibank vs. GM (b): Citibank vs. IBM
(c): IBM vs. GM.
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In Figure 8.2.6 we see that there is little or no autocorrelation left in the standardized
residuals from the GARCH(1,1)-model fitted the log-returns with added noise3.

Table 8.9: Statistics for the three stocks on September 1st 1999. Note: We have rounded
prices off till two decimals even though they are traded in multiples of (1/16$).

Stock # Trades min(price) max(price) mean(price) sd(price)
Citibank 3785 43.75 45.13 44.53 0.28
IBM 4744 125.50 128.50 127.53 0.65
GM 1296 65.75 67.38 66.80 0.20
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Figure 8.2.6: The autocorrelation function for the three stocks for Model 1. (a): Citibank (b):
IBM (c): GM.

8.2.2 Fitting Vines

Scatter plots of the empirical distribution function for the residuals of the GARCH(1,1)
models fitted the log-returns are shown in Figure 8.2.7 for Model 1 and Model 9. These
two models do not have any overlapping data. It is clear from these plots that there is
some day-to-day-variation, but also that the “big picture” is kept over the sixteen days.
We assume all copulas to be Student copulas. This assumption is supported by the initial
data for Model 1, shown in Figure 8.2.8.

We tried all (n!/2) = (3!/2) = 3 possible vines4, and achieved highest log-likelihood
values with IBM as the kernel variable in tree 1 as illustrated in Figure 8.2.9. The final
values are summarized in Table 8.10, and the development of them are visualized in Figure
8.2.10, 8.2.11 and 8.2.12.

There is no obvious joint pattern in the development of the ρ’s seen in Figure 8.2.10.
We see that ρCI shows an increasing trend in the latter models, while ρIG and ρCG|I show
slightly decreasing trends. Looking at the df in Figure 8.2.11 however, all three variables
fluctuate in a more similar pattern in the latter models. Both these observations are

3Whenever we talk about the log-returns later in this section, we are referring to the log-returns with
added noise unless otherwise stated.

4Remember that for three variables, D-vines can be represented as canonical vines and vice versa, hence
we have we only have (3!/2) possible vines.
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Figure 8.2.7: Scatter plots of the empirical distribution function for the residuals of the
GARCH(1,1) models fitted the log-returns for Model 1 and Model 9.
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Figure 8.2.8: The initial data for Model 1 when assumed Student copulas for all copulas. (a):
C vs. I (b): I vs. G (c): F (C|I) vs. F (G|I), C = Citibank, I = IBM, G = GM.
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C   G I

CI IG  CG|I

    CI     IGT1

T2

Figure 8.2.9: The vine used in this model. Note: I is here a kernel node in a canonical vine
even though we have illustrated it as a D-vine.

Table 8.10: Final parameters and log-likelihood values for the nine models fitted the data.
Initial values are not accounted for here.

M1 M2 M3 M4 M5 M6 M7 M8 M9
ρCI 0.39 0.38 0.35 0.38 0.39 0.39 0.38 0.40 0.45
ρIG 0.17 0.15 0.15 0.14 0.12 0.06 0.07 0.06 0.08
ρCG|I 0.14 0.11 0.12 0.13 0.18 0.14 0.16 0.15 0.15
νCI 13.61 20.85 27.10 36.75 20.63 17.35 11.03 14.44 11.55
νIG 300.00 300.00 300.00 74.27 137.84 26.27 13.61 13.44 9.86
νCG|I 50.95 300.00 300.00 300.00 37.86 26.50 14.30 18.83 19.50
l(Θ̂) 59.70 52.83 45.96 54.49 61.91 54.36 59.17 60.94 75.39
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Figure 8.2.10: The development for the different correlations for all nine models.
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Figure 8.2.11: The development for the different df for all nine models.

verified in Table 8.11, which shows the changes in percent between neighboring models.
The lack of internal interaction between ρ and df for each of the three copulas is seen in
Figure 8.2.12.

If we only consider the correlation coefficients, the most dramatic change in the param-
eters occur when shifting from Model 5 (period: 08.09.99-17.09.99) to Model 6 (period:
09.09.99-20.09.99). If we look at the prices in Figure 8.2.1, we see that on the two days
that separates these models, the eighth and twentieth September, the intra day movements
are quite different for the three stocks. On the eighth, Citibank has a large peak in the
price in the middle of the day, IBM slightly decreases in price during the whole day and
GM has only minor fluctuations. On the twentieth we see some of the same characteristics
with Citibank, while IBM, contrary to the eighth, increases during the whole day and GM
has a downward peak in the middle of the day. These changes causes ρIG to fall with 50%
and ρCG|I with 22%. Similar characteristics in the movement of the prices can be found
to explain the other jumps in the parameter values.

Again, as when fitting Student copulas to daily quotes, the df is much more unsteady
when optimizing the vine with respect to the log-likelihood value.

8.2.3 Comparison with a Three-Dimensional Student Copula

As we did in Section 8.1.3, we compare our pairwise decomposition with a multivariate
Student copula. The parameter values with corresponding log-likelihood values are sum-
marized in Table 8.12. We have also calculated the likelihood ratio statistics and contrary
to the model on daily quotes, we fail to reject the multivariate Student copulas in all nine
models.
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Figure 8.2.12: The development for the different correlations (black lines) and degrees of
freedom (red) for all nine models.

Table 8.11: Changes in the variables between the different models in percentage.

Variable M1/M2 M2/M3 M3/M4 M4/M5 M5/M6 M6/M7 M7/M8 M8/M9
ρCI -3 -8 9 3 0 -3 5 12
ρIG -12 0 -7 -14 -50 17 -14 33
ρCG|I -21 9 8 38 -22 14 -6 0
νCI 53 30 36 -44 -16 -36 31 -20
νIG 0 0 -75 86 -81 -48 -1 -27
νCG|I 489 0 0 -87 -30 -46 32 4
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Table 8.12: Estimated parameters using ML for three-dimensional Student copulas fitted the
nine models. LR = likelihood ratio statistic. The test of hypothesis is performed with ν =
6− 4 = 2 degrees of freedom.

M1 M2 M3 M4 M5 M6 M7 M8 M9
ρCI 0.39 0.38 0.35 0.38 0.39 0.39 0.38 0.40 0.44
ρCG 0.19 0.15 0.16 0.17 0.21 0.15 0.17 0.16 0.16
ρIG 0.16 0.15 0.15 0.14 0.12 0.06 0.07 0.06 0.07
ν 35.15 79.94 79.32 55.95 33.85 22.04 12.47 14.70 11.70
l(Θ̂) 58.93 52.35 45.58 54.30 61.74 54.31 59.13 60.92 75.23
LR 1.54 0.96 0.76 0.38 0.34 0.10 0.08 0.04 0.32
p 0.46 0.62 0.68 0.83 0.84 0.95 0.96 0.98 0.85

8.2.4 Altering the Model

Since the vine in Section 8.2.2 did not lead the rejection of the three-dimensional Student
copula, we decided to alter the data set in different ways to see if we could find a decom-
posed model that would lead to the rejection of a multivariate Student copula. We tried
the following two changes.

1. We added noise with greater variance to the log-returns, i.e. we changed σ in (8.2.1).
We used σ = 4.5 · 10−6.

2. We expanded the data set with an additional stock, and examined the impact this
had in the likelihood ratio tests. We added Apple5 into our data set, and used
σ = 4.5 · 10−6 in (8.2.1).

We chose to add another stock as we suspected the poor fit in Section 8.2.2 to be
related to the degrees of freedom. That is, in the vine, we had six parameters; Three
correlation coefficients and three df-parameters. In the three-dimensional Student copula
we had four variables; three correlation coefficients and one df-parameter. Our theory
was that there is so little information in the degrees of freedom that the additional two
df-parameters in the three-dimensional vine does not make a large enough impact to reject
the three-dimensional copula in favor of the decomposed model.

By expanding the model to contain four variables, we can see the impact the additional
df-parameters have. The results are summarized in Table 8.13 and 8.14 (parameter values
are not accounted for).

By analyzing the estimated p-values in both changes, the result is clear: We cannot
reject the multivariate Student copulas in favor of the decomposed models. More discussion
about the result follows in Chapter 9.

5Apple is an American multinational corporation which designs and manufactures consumer electronics
and software products.
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Table 8.13: The effect of greater noise on the residuals. Log-likelihood values for the vine in
Figure 8.2.9 with σ = 4.5 · 10−6 in (8.2.1) and a three-dimensional Student copula on the
same data. The p-value is calculated for a likelihood ratio test with ν = 6− 4 = 2 degrees of
freedom.

Model M1 M2 M3 M4 M5 M6 M7 M8 M9
Vine 147.88 167.85 153.69 153.08 156.70 158.04 165.80 162.23 166.96
Copula 145.79 166.57 153.20 152.79 155.13 157.21 164.84 161.11 165.63
p-value 0.12 0.28 0.61 0.75 0.21 0.44 0.38 0.33 0.26

Table 8.14: The effect of adding Apple to the data. Log-likelihood values for a D-vine with
G↔ C ↔ I ↔ A in tree 1 with σ = 4.5·10−6 in (8.2.1) and a four-dimensional Student copula
on the same data. The p-value is calculated for a likelihood ratio test with ν = 12 − 7 = 5
degrees of freedom.

Model M1 M2 M3 M4 M5 M6 M7 M8 M9
Vine 68.30 50.39 46.25 61.07 64.37 50.11 66.34 75.99 96.23
Copula 67.10 49.69 46.07 60.77 63.61 49.14 65.38 74.96 95.34
p-value 0.79 0.92 1.00 0.99 0.91 0.86 0.86 0.84 0.88



Chapter 9

Evaluation of the Numerical
Experiments

In this chapter we discuss the results obtained in Section 8.1 and 8.2. Section 9.1 is devoted
to discussion and conclusions, while we in Section 9.2 propose further work that is possible
to perform with the material covered in this thesis as a basis. If possible, we recommend
direct improvements or changes in some of the procedures performed in this thesis.

9.1 Discussion and Conclusions

We divide this section into two parts; the first part is regarding both of the models in
Chapter 8, and the other is about discoveries regarding only the model on intra day data.

9.1.1 Both Models

In this thesis we have performed two main experiments. We have fitted one model on daily
quotes and one model on intra day transaction prices. Models regarding daily quotes are
starting to get well explored in the literature. One of our main sources of inspiration, the
work of Aas et al. (2007) [2], has also tested the theory on daily quotes. The conclusion in
both our experiments and in Aas et al. (2007) is evident. On daily quotes, a decomposed
model consisting of bivariate copulas only is clearly preferable to multivariate Student
copulas with a level of significance less than 0.01. However, there are still interesting
observations to discuss.

One interesting aspect regarding the two vines we fitted in Section 8.1 is how good
the initializing procedure described in Section 6.5.1 performs; Using the initial parameter
values in the four-dimensional canonical vine in Section 8.1 gives a p-value of 0.0049 for
the same likelihood ratio test performed in Section 8.1.3. This might indicate that the
optimization of the log-likelihood is redundant. However, if we on the contrary were to
use the D-vine with only Student copulas rather than the canonical vine, we would get
p-values of 1.00 and 0.79 using the initial and final parameters respectively. In both cases
the four-dimensional Student copula would be preferred, but that is not the point. The
point is that there is a much greater difference in the two p-values than in the case of the
canonical vine. One cannot know in advance how good the initial parameter estimates
are. Our conclusion is that even though the initial estimates are “good”, one still has to
perform the optimization procedure.
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In Section 6.5.2 we discussed the introduction of a penalizing function for the degrees
of freedom when optimizing the likelihood with respect to Θ. Even though we discarded
our attempt to penalize ν’s larger than 15, we have experienced some difficulties when
optimizing the likelihood. This became evident in the analysis of the intra day data where
the df varied greatly even in neighboring models. More on this topic in the next section.

One other topic discussed in Section 8.1 was which measure to use in the process of
deciding the structure in tree 1 of vines consisting of Student copulas. In Section 8.1.2 we
spoke in favor of using tables regarding ρ, since this resulted in the canonical vine that
we later found to be superior compared with the D-vine. However, we should be careful
to only use the ρ’s in this procedure since they are merely a linear correlation coefficient.
Degrees of freedom tells us something about the dependency in the tails, unquestionably
a very important feature when discussing copulas. It may also be taken into consideration
that for models with low dimensions one can fit all possible vines, an choose the one with
highest likelihood. However, with five or more variables, this becomes extremely costly.

9.1.2 Intra Day Data

We were not capable of making a decomposed model that outperformed a multivariate
vine in Section 8.2. We tried with both three- and four-dimensional models, with different
variances in the noise added to the log-returns. Neither had the desired effect. There are
several factors that can have lead to the rejection of our model. The size of the data set
can be one of them. While we on the daily quotes used 934 data points, we only used 576
for each model on the intra day data. We did not test other model sizes, so we do not
know whether this could have lead to other conclusions.

Another complication with the intra day model was of course the data itself. As
discussed in Section 8.2.1, the fact that the shares rise and fall in discrete steps leads to
poor fits using the GARCH-framework. There might be other, perhaps better, ways to
adjust the data than we did. We discuss this further in the next section. The intra day
models also seemed extra sensitive to changes in the degrees of freedom when optimizing
the likelihood with respect to Θ. This can either be linked with the data itself, or perhaps
to outliers such as the great fall we had in Model 6 on GM as discussed in Section 8.2.2.

One of the most interesting findings analyzing the intra day data (even though we
rejected our model) is the fact that we must use dynamic models. It is evident when
analyzing the parameter in both the vine and the three-dimensional Student copula that
none of the parameters stays constant in time. Even in neighboring models the changes
can be dramatic. This is clearly a subject of interest for further development.

9.2 Improvements and Further Work

Due to time limitations we have not been able to investigate all of the obtained results as
thorough as desired. In this section we list some of the subjects that we think should be
further investigated. Most of them is regarding the decomposed models on intra day data
since this, to our knowledge, is not well documented in the literature.

Direct Changes of the Intra Day Data Set

As mentioned in the previous section, larger dynamic models would be preferable. That
is, larger data sets should be used. In addition, experiments with changes in the number



9.2 Improvements and Further Work 57

of days in each model and number of variables should be performed. There can also be
performed alterations regarding the time intervals during the day. We have used 5 minute
intervals, but this can easily be altered. The interval has to be large enough so that there
is sufficiently trading in each interval to provide useful information, but at the same time
small enough to capture a short-term relationship.

We have only considered the transactions between 10.00 and 16.00 even though the
marked is open between 09.00 and 17.00. Although this is usual to do when regarding
intra day models, it could be interesting to look into models where all data is accounted
for. One can for instance divide each day into three sections; morning, noon and afternoon
and have three models for each day. Two models might be enough, if we link one days’
afternoon with the next days’ morning transactions.

Other Adjustments and Additional Work

Instead of adding noise to the log-returns as we did, it would be interesting to fit a discrete
GARCH-model to the data as discussed in Amilon (2003) [17]. Note: This may be a dead
end, but is worth looking into.

We also think that it is worth looking closer into the process of estimating the degrees
of freedom. That is, look at other possible ways to restrict the degrees of freedom or in
some way remove the instability it brings into the optimization procedure.

Finally the models should be used in further analysis such as for example calculating
Value at Risk discussed in [5]. There are many articles and books available discussing the
use of copulas in financial theory, and it would be interesting to compare the decomposed
models suggested here with the usual multivariate models on such theory as well. See for
example Cherubini, Luciano and Vecchiato’s Copula Methods in Finance [18].
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Appendix A

Classes and Families of Copulas

A.1 Archimedean Copulas

There are many different types of copulas that fall into the Archimedean class, see [6] et
al. for a thorough discussion. Three well known members are the Gumbel copula, the
Clayton copula and the Frank copula. The formulas for the densities and h-functions are
collected from [2] and [19].

Gumbel:

CGu
θ (u, v) = exp

(
−
(
(− log u)θ + (− log v)θ

)1/θ)
, 1 ≤ θ <∞,

cGu
θ (u, v) = CGu

θ (u, v) · (uv)−1 · {(− log u)θ + (− log v)θ}−2+2/θ

× (log u log v)θ−1 · {1 + (θ − 1) · ((− log u)θ + (− log v)θ)−1/θ},

hGu(u, v, θ) = CGu
θ (u, v) · 1

v
· (− log v)θ−1 · {(− log u)θ + (− log v)θ}1/θ−1,

h−1
Gu(u, v, θ) must be obtained numerically.

Clayton:

CCl
θ (u, v) = (u−θ + v−θ − 1)−1/θ, 0 < θ <∞,
cCl
θ (u, v) = (1 + θ) · (uv)−1−θ · (u−θ + v−θ − 1)−1/θ−2,

hCl(u, v, θ) = v−θ−1(u−θ + v−θ − 1)−1−1/θ,

h−1
Cl (u, v, θ) =

(
(uvθ+1)−

θ
θ+1 + 1− v−θ

)−1/θ
.

Frank:

CFr
θ (u, v) = −1

θ
log
(

1 +
(exp (−θu)− 1)(exp (−θv)− 1)

exp (−θ)− 1

)
, θ ∈ R.

cFr
θ (u, v) =

−θg1(1 + gu+v)
(gugv + g1)2

, where gy = e−θy − 1,

hFr(u, v, θ) =
gugv + gu
gugv + g1

,

h−1
Fr (u, v, θ) = −1

θ
ln
{

1 +
ug1

1 + gv(1− u)

}
.

Graphs of these copulas are shown in Figure A.1.1, A.1.2 and A.1.3 for different parameter
values. Since h−1

Gu(u, v, θ) must be obtained numerically, [2] suggest it might be better to
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fit a Clayton survival copula instead, since it possesses the same property - a heavy right
tail. The survival copula is defined in [6] as Ĉ(u, v) = u+ v− 1 +C(1−u, 1− v). We then
get

ĈCl
θ (u, v) = u+ v − 1 +

[
(1− u)−θ + (1− v)−θ − 1

]−1/θ
,

ĉCl
θ (u, v) = (1 + θ)

[
(1− u)(1− v)

]−1−θ[(1− u)−θ + (1− v)−θ − 1
]−1/θ−2

.

Note that ĉ(u, v) = c(1− u, 1− v), since

ĉ(u, v) =
∂Ĉ(u, v)
∂u∂v

=
∂

∂u∂v

[
u+ v − 1 + C(1− u, 1− v)

]
=
∂C(1− u, 1− v)

∂u∂v
= c(1− u, 1− v) · (−1) · (−1) = c(1− u, 1− v).

The h-function and its inverse are

ĥCl(u, v, θ) = 1− (1− v)−1−θ
[
(1− u)−θ + (1− v)−θ − 1

]−1/θ−1
,

ĥCl(u, v, θ)−1 = 1−
[(

(1− u)(1− v)θ+1
) −θ
θ+1 + 1− (1− v)−θ

]−1/θ
.

The following theorem states the construction of an Archimedean copula.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x[,1]

x[
,2

]

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y[,1]

y[
,2

]

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

z[,1]

z[
,2

]

(a) (b) (c)

Figure A.1.1: 1000 random variates generated from a Gumbel copula. (a): θ = 1.01 (b):
θ = 3 (c): θ = 10.

Theorem A.1.1. Archimedean copula. Let φ : [0, 1] → [0,∞] be continuous and
strictly decreasing with φ(1) = 0 and φ[−1](t) the pseudo-inverse, see [6]. Then

C(u, v) = φ[−1](φ(u) + φ(v)) (A.1.1)

is a copula if and only if φ is convex.

A copula constructed according to (A.1.1) is called an Archimedean copula and φ(t) is
known as the generator of the copula. That is, if you find a convex function φ satisfying
(A.1.1), C(u, v) is a copula. If φ(0) =∞, we say that φ is a strict generator. A thorough
list of copulas and their respective generators (with boundaries) can be found in Nelsen
(1999, pp. 116-119)[6].



A.1 Archimedean Copulas 63

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x[,1]

x[
,2

]

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y[,1]

y[
,2

]

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

z[,1]

z[
,2

]

(a) (b) (c)

Figure A.1.2: 1000 random variates generated from a Clayton copula. (a): θ = 0.2 (b): θ = 2
(c): θ = 10.
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Figure A.1.3: 1000 random variates generated from Frank a copula. (a): θ = 0.2 (b): θ = 2
(c): θ = 10.
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A.2 Gaussian Copulas

In ordinary probability theory one cannot avoid running into the normal distribution. In
copula theory, the normal distribution is encountered when discussing the so-called Gauss
copula. If Y ∼ Nd(µ,Σ), and Y’s copula is the Gauss copula, then, due to the invariance
property of copulas, so is X’s copula when X ∼ Nd(0, P ). P is the correlation matrix of
Y. Applying Definition 2.1.1, we get the Gauss copula:

CGaP (u) = P (F1(X1) ≤ u1, . . . , Fd(Xd) ≤ ud)
= P (Φ(X1) ≤ u1, . . . ,Φ(Xn) ≤ ud)
= P (X1 ≤ Φ−1(u1), . . . , Xd ≤ Φ−1(ud))

= ΦP (Φ−1(u1), . . . ,Φ−1(ud)),

where ΦP is the joint distribution function of X and Φ denotes the standard univariate
normal distribution function. The Gauss copula does not have a simple closed form, but
can, in two dimensions, be expressed by [5]

CGaρ (u, v) =
∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞

1
2π(1− ρ2)1/2

exp
{
−(u2 − 2ρuv + v2)

2(1− ρ2)

}
dudv.

The density is then given by [2]

c(u, v) =
1√

1− ρ2
exp

{
−ρ([Φ−1(u)]2 + [Φ−1(v)]2)− 2ρΦ−1(u)Φ−1(v)

2(1− ρ2)

}
.

The h-function and its inverse are

h(u, v, ρ) = Φ

(
Φ−1(u)− ρΦ−1(v)√

1− ρ2

)
,

h−1(u, v, ρ) = Φ
{

Φ−1(u)
√

1− ρ2 + ρΦ−1(v)
}
.

In Figure A.2.1 below is three scatter plots of a normal copula with three different param-
eter values.
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Figure A.2.1: 1000 random variates generated from a normal copula. (a): ρ = 0.1 (b): ρ = 0.5
(c): ρ = 0.9.
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The likelihood function in (3.1.5) becomes [5]

l(P ; Û1, . . . , Ûn) =
n∑
t=1

fP (Φ−1(Ût,1), . . . ,Φ−1(Ût,d))−
n∑
t=1

d∑
j=1

lnφ(Φ−1(Ût,j)).

When maximizing this with respect to P , the last summation gets canceled out, and the
MLE becomes

P̂ = arg max
Σ∈P

n∑
t=1

ln fΣ(Yt),

where fΣ is a joint density function for a variable X ∼ Nd(0,Σ), Yt = (Yt,1, . . . , Yt,d) =
(Φ−1(Ût,j), . . . ,Φ−1(Ût,d)) and P is the set of all possible linear correlation matrices. [5]
give procedures for both finding the exact solution of P̂ , and an estimate of it.

A.3 Student Copulas

The Student copula (often known as the Student t or just the t copula) is derived in a
similar manner as the Gauss copula. It is extracted from the multivariate t-distribution
[5], i.e

Ctν,P (u) = tν,P (t−1
ν (u1), . . . , t−dν (ud)),

where tν is the distribution function of a standard univariate t distribution with ν degrees
of freedom, expected value 0 and variance ν

ν−2 . t−1
ν is its quantile function, i.e. the inverse

of the cumulative distribution function. tν,P is the joint distribution function of the vector
X ∼ td(ν,0, P ), where P is a correlation matrix. As with the Gaussian copula, the Student
copulas do not have a simple closed form. The density and h-function are as follows [2]

c(u, v) =
Γ(ν+2

2 )/Γ(ν2 )

νπ · dt(t−1
ν (u), ν) · dt(t−1

ν (v), ν) ·
√

1− ρ2

×
{

1 +
[t−1
ν (u)]2 + [t−1

ν (v)]2 − 2ρt−1
ν (u)t−1

ν (v)
ν(1− ρ2)

}
,

h(u, v, ρ, ν) = tν+1


t−1
ν (u)− ρt−1

ν (v)√
(ν+[t−1

ν (v)]2)(1−ρ2)

ν+1

 ,

h−1(u, v, ρ, ν) = tν

t−1
ν+1(u)

√(
ν + [t−1

ν (v)]2
)

(1− ρ2)
ν + 1

+ ρt−1
ν (v)

 .

dt(·, ν) is the probability density and t−1
ν (·) is the quantile function. In Figure A.3.1 below

is six scatter plots of a Student copula with different parameter values. Each value of ρ is
plotted with two values of ν.

The likelihood function in (3.1.5) becomes [5]

l(ν, P ; Û1, . . . , Ûn) =
n∑
t=1

gν,P (t−1
ν (Ût,1), . . . , t−1

ν (Ût,d))−
n∑
t=1

d∑
j=1

ln gν(t−1
ν (Ût,j)),

where gν,P is the joint density for a variable X ∼ td(ν,0, P ), P is a linear correlation
matrix, gν is the density of a variable X ∼ t1(ν, 0, 1) and t−1

ν is the corresponding quantile
function.
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Figure A.3.1: 1000 random variates generated from a Student copula. (a): ρ = 0.1, ν = 3
(b): ρ = 0.5, ν = 3 (c): ρ = 0.9, ν = 3 (d): ρ = 0.1, ν = 15, ρ = 0.5, ν = 15, ρ = 0.9,
ν = 15.



Appendix B

Derivations

In this section we derive the h-function described in Section 4.3.

B.1 The h-function

We define C1(u, v) to be the partial derivative of C(u, v) with respect to its first component,
i.e.

C1(u, v) =
∂C(u, v)
∂u

,

and C2(u, v) is the derivative with respect to the second component. We have

F (x1|x2) =
∫ x1

−∞
f(x̃1|x2)dx̃1 =

1
f(x2)

∫ x1

−∞
f(x̃1, x2)dx̃1 =

1
f(x2)

∂F (x1, x2)
∂x2

, (B.1.1)

where the last equality is seen by observing that

∂F (x1, x2)
∂x2

=
∂

∂x2

(∫ x2

−∞

∫ x1

−∞
f(x̃1, x̃2)dx̃1dx̃2

)
=
∫ x1

−∞
f(x̃1, x2)dx̃1.

Expanding the conditioning set in (B.1.1), we get

F (x1|x2, x3) =
∫ x1

−∞
f(x̃1|x2, x3)dx̃1 =

1
f(x3|x2)

∫ x1

−∞
f(x̃1, x3|x2)dx̃1

=
1

f(x3|x2)
∂F (x1, x3|x2)

∂x3
,

where we have used the relation

∂F (x1, x3|x2)
∂x3

=
∂

∂x3

(∫ x3

−∞

∫ x1

−∞
f(x̃1, x̃3|x2)dx̃1dx̃3

)
=
∫ x1

−∞
f(x̃1, x3|x2)dx̃1.
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68 Appendix B. Derivations

Using the simplifying notations from Section 4.1, we have

i) F1|2 =
1
f2

∂F12

∂x2
=

1
f2

∂C12

∂x2
=

1
f2

∂C12

∂F2

∂F2

∂x2
=
∂C12

∂F2
= C2(F1, F2),

ii) F1|23 =
1
f3|2

∂F13|2

∂x3
=

1
f3|2

∂C13|2

∂x3
=

1
f3|2

∂C13|2

∂F3|2

∂F3|2

∂x3
= C2(F1|2, F3|2),

F3|12 =
1
f1|2

∂F13|2

∂x1
=

1
f1|2

∂C13|2

∂x1
=

1
f1|2

∂C13|2

∂F1|2

∂F1|2

∂x1
= C1(F1|2, F3|2),

and by induction, see [10]:

iii) F1|2,...,m =
∂

∂u2
C1m(F1|2,...,m−1, Fm|2,...,m−1),

where ∂
∂u2

C1m(F1|2,...,m−1, Fm|2,...,m−1) means the partial derivative with respect to the
second component.



Appendix C

Sampling From Four- and
Five-Dimensional Vines

In this section we derive the expressions for x4 and x5 for a canonical vine. Recall that the
difference between sampling from a canonical and a D-vine is the choice of vj in (4.3.1).
The indices of Θij are chosen to represent the copula it is used in for the benefit of the
reader. That is, we have not used the notations in either of the algorithms in Section 6.1.

x1 =w1,

x2 =F−1(w2|x1)

= h−1(w2, x1,Θ11),

x3 =F−1(w3|x1, x2)

= h−1
[
h−1(w3, h(x2, x1,Θ11),Θ21), x1,Θ12

]
,

x4 =F−1(w4|x1, x2, x3) =

h−1

{
h−1

[
h−1

{
w4, h

[
h(x3, x1,Θ13), h(x2, x1,Θ12),Θ23|1

]
,Θ34|12

}
, h(x2, x1,Θ12),

Θ24|1

]
, x1,Θ14

}
,

x5 =F−1(w5|x1, . . . , x4) =

h−1

(
h−1

{
h−1

[
h−1

{
w5, h

[
h
{
h(x4, x1,Θ14), h(x2, x1,Θ12),Θ24|1

}
,

h
{
h(x3, x1,Θ13), h(x2, x1,Θ12),Θ23|1

}
,Θ34|12

]
,Θ45|123

}
,

h
{
h(x3, x1,Θ13), h(x2, x1,Θ12),Θ23|1

}
,Θ35|12

]
, h(x2, x1,Θ12),Θ25|1

}
, x1,Θ15

)
.

The expressions for x4 and x5 are derived in the two next sections.

69



70 Appendix C. Sampling From Four- and Five-Dimensional Vines

C.1 Four Dimensions

w4 =F (x4|x1, x2, x3)

=
∂Cx4x3|x1x2

(Fx4|x1x2
, Fx3|x1x2

)
∂Fx3|x1x2

=
∂Cx4x3|x1x2

(
∂Cx4x2|x1 (Fx4|x1 ,Fx2|x1 )

∂Fx2|x1
,
∂Cx3x2|x1 (Fx3|x1 ,Fx2|x1 )

∂Fx2|x1

)
∂Fx3|x1x2

=h
{
h
[
h(x4, x1,Θ14), h(x2, x1,Θ12),Θ24|1

]
, h
[
h(x3, x1,Θ13), h(x2, x1,Θ12),Θ23|1

]
,

Θ34|12

}
We solve for x4:

h
[
h(x4, x1,Θ14), h(x2, x1,Θ12),Θ24|1

]
= h−1

{
w4, h

[
h(x3, x1,Θ13), h(x2, x1,Θ12),Θ23|1

]
,

Θ34|12

}
⇒ h(x4, x1,Θ14) =

h−1

[
h−1

{
w4, h

[
h(x3, x1,Θ13), h(x2, x1,Θ12),Θ23|1

]
,Θ34|12

}
, h(x2, x1,Θ12),Θ24|1

]
⇒ x4 =

h−1

{
h−1

[
h−1

{
w4, h

[
h(x3, x1,Θ13), h(x2, x1,Θ12),Θ23|1

]
,Θ34|12

}
, h(x2, x1,Θ12),Θ24|1

]
,

x1,Θ14

}
.

C.2 Five Dimensions

w5 =F (x5|x1, . . . , x4)

=
∂Cx5x4|x1x2x3

(Fx5|x1x2x3
, Fx4|x1x2x3

)
∂Fx4|x1x2x3

=
∂Cx5x4|x1x2x3

(
∂Cx5x3|x1x2 (Fx5|x1x2 ,Fx3|x1x2 )

∂Fx3|x1x2
,
∂Cx4x3|x1x2 (Fx4|x1x2 ,Fx3|x1x2 )

∂Fx3|x1x2

)
∂Fx4|x1x2x3

=∂Cx5x4|x1x2x3

(
∂Cx5x3|x1x2

(
∂Cx5x2|x1 (Fx5|x1 ,Fx2|x1 )

∂Fx2|x1
,
∂Cx3x2|x1 (Fx3|x1 ,Fx2|x1 )

∂Fx2|x1

)
∂Fx3|x1x2

,

∂Cx4x3|x1x2

(
∂Cx4x2|x1 (Fx4|x1 ,Fx2|x1 )

∂Fx2|x1
,
∂Cx3x2|x1 (Fx3|x1 ,Fx2|x1 )

∂Fx2|x1

)
∂Fx3|x1x2

)/
∂Fx4|x1x2x3
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=h

{
h

[
h
{
h(x5, x1,Θ15), h(x2, x1,Θ12),Θ25|1

}
, h
{
h(x3, x1,Θ13), h(x2, x1,Θ12),Θ23|1

}
,

Θ35|12

]
, 7h
[
h
{
h(x4, x1,Θ14), h(x2, x1,Θ12),Θ24|1

}
, h
{
h
[
x3, x1,Θ13

]
, h
[
x2, x1,Θ12

]
,

Θ23|1

}
,Θ34|12

]
,Θ45|123

}
.

We solve for x5:

h

[
h
{
h(x5, x1,Θ15), h(x2, x1,Θ12),Θ25|1

}
, h
{
h(x3, x1,Θ13), h(x2, x1,Θ12),Θ23|1

}
,Θ35|12

]
=h−1

{
w5, h

[
h
{
h(x4, x1,Θ14), h(x2, x1,Θ12),Θ24|1

}
, h
{
h(x3, x1,Θ13), h(x2, x1,Θ12),Θ23|1

}
,

Θ34|12

]
,Θ45|123

}
⇒ h

{
h(x5, x1,Θ15), h(x2, x1,Θ12),Θ25|1

}
=h−1

[
h−1

{
w5, h

[
h
{
h(x4, x1,Θ14), h(x2, x1,Θ12),Θ24|1

}
, h
{
h
[
x3, x1,Θ13

]
, h
[
x2, x1,Θ12

]
,

Θ23|1

}
,Θ34|12

]
,Θ45|123

}
, h
{
h(x3, x1,Θ13), h(x2, x1,Θ12),Θ23|1

}
,Θ35|12

]
⇒ h(x5, x1,Θ15) =

h−1

{
h−1

[
h−1

{
w5, h

[
h
{
h(x4, x1,Θ14), h(x2, x1,Θ12),Θ24|1

}
, h
{
h(x3, x1,Θ13),

h(x2, x1,Θ12),Θ23|1

}
,Θ34|12

]
,Θ45|123

}
, h
{
h(x3, x1,Θ13), h(x2, x1,Θ12),Θ23|1

}
,Θ35|12

]
,

h(x2, x1,Θ12),Θ25|1

}
⇒ x5 =

h−1

(
h−1

{
h−1

[
h−1

{
w5, h

[
h
{
h(x4, x1,Θ14), h(x2, x1,Θ12),Θ24|1

}
, h
{
h(x3, x1,Θ13),

h(x2, x1,Θ12),Θ23|1

}
,Θ34|12

]
,Θ45|123

}
, h
{
h(x3, x1,Θ13), h(x2, x1,Θ12),Θ23|1

}
,Θ35|12

]
,

h(x2, x1,Θ12),Θ25|1

}
, x1,Θ15

)
.
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Appendix D

Verifying Approach 1 and 2

In this chapter we verify the two approaches discussed in Chapter 7.2.1. We do this by
performing tests of hypotheses on data arising from a known copula. We use the two
hypotheses

H0 : C is a Clayton copula with θ = 2.00
vs. H1 : C is not a Clayton copula with θ = 2.00

and

H∗0 : C is a Student copula with ρ = 0.50 and ν = 6
vs. H∗1 : C is a not Student copula with ρ = 0.50 and ν = 6

in our verification procedure.

D.1 Results

We test H0 with approach 1 and 2, and H∗0 with approach 1. We verify the approaches
by testing an on before-hand known true null hypothesis. The test statistic (p-value) is
uniformly distributed between 0 and 1 if the null hypothesis is true [20]. Hence approx-
imately 5% of the tests should be rejected at a significance level on 0.05. The results
together with the values used on constants in each test are listed in Figure D.1.1, D.1.2
and D.1.3. We conclude that our implementation of both approaches are valid.
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Figure D.1.1: Estimated p-values when testing H0 with approach 1. The data arises from a
Clayton copula with θ = 2.00. n = 500 and K = 1000. # Hypotheses tested: 1000. % null
hypotheses rejected = 5.4.
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Figure D.1.2: Estimated p-values when testing H∗0 with approach 1. The data arises from a
Student copula with ρ = 0.50 and ν = 6. n = 100, K = 1000 and Nb = 2500. # Hypotheses
tested: 1000. % null hypotheses rejected = 4.0.
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Figure D.1.3: Estimated p-values when testing H0 with approach 2. The data arises from a
Clayton copula with θ = 2.00. n = 100 and K = 1000. # Hypotheses tested: 1000. % null
hypotheses rejected = 4.4.



Appendix E

R-code

In this chapter we present a graphic overview of our implemented R-code.

E.1 Graphic Overview

Functions/packages marked with * are built-in R-functions. An arrow imply that the
method pointed at is used in the method. The code itself with examples can be seen by
contacting H̊avard Rue or the author.

 dVine(theta, C)
 Returns a sample from the vine ref Algorithm 2.
 Input: 
 theta: vector of variables ¤ 
 C: Matrix with type of copulas ¤
 ¤ See r-file for further explenation

 h- and h ¹- functions⁻ , ref Appendix A

Figure E.1.1: Implementation of Algorithm 2

 canonicalVine(theta, C)
 Returns a sample from the vine ref Algorithm 3.
 Input: 
 theta: vector of variables ¤ 
 C: Matrix with type of copulas ¤
 ¤ See r-file for further explenation

 h- and h ¹- functions⁻ , ref Appendix A

Figure E.1.2: Implementation of Algorithm 3

75



76 Appendix E. R-code

 likelihoodD(theta,X, C)
 Returns the likelihood for a D-vine,
 ref Algorithm 5.
 Input: 
 theta: vector of variables ¤ 
 C: Matrix with type of copulas ¤
 X: Data
 ¤ See r-file for further explenation

 h- and h ¹- functions⁻ , ref Appendix A

 Standard functions from 
 the copula package* in R

Figure E.1.3: Implementation of Algorithm 4

 likelihoodCanonical(theta,X, C)
 Returns the likelihood for a canonical
 vine, ref Algorithm 5.
 Input: 
 theta: vector of variables ¤ 
 C: Matrix with type of copulas ¤
 X: Data
 ¤ See r-file for further explenation

 h- and h ¹- functions⁻ , ref Appendix A

 Standard functions from 
 The copula package* in R

Figure E.1.4: Implementation of Algorithm 5

 optimDvine(theta, data, C, lower, upper)
 Returns theta_hat for a D-vine as in  (6.5.1)
 Input: 
 theta: vector of variables ¤ 
 data: Data
 C: Matrix with type of copulas ¤
 lower: Lower values on theta
 upper: Upper values on theta
 ¤ See r-file for further explenation
 

 nlminb()*  likelihoodD()

Figure E.1.5: Implementation of the optimization of the log-likelihood of a D-vine.

 optimCvine(theta, data, C, lower, upper)
 Returns theta_hat for a can. Vine as in  (6.5.1)
 Input: 
 theta: vector of variables ¤ 
 data: Data
 C: Matrix with type of copulas ¤
 lower: Lower values on theta
 upper: Upper values on theta
 ¤ See r-file for further explenation

 nlminb()*  likelihoodD()

Figure E.1.6: Implementation of the optimization of the log-likelihood of a canonical vine.
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 approach1(x, theta, K)
 Returns the p-value of  
 H_0: x arises from a Clayton copula with theta as parameter
 vs H_1: x does not ...
 Input: 
 x: Data to be tested
 theta: copula parameter
 K: Number of bootstrap samples

 empiricalDistr(x)
 Returns the empirical distribution of x.

 cHat(x,z)
 Returns C_hat in point (4. ii) in Approach 1.
 Input:
 x: z_l* in point (4. ii)
 z: u in point (4. ii)

 Standard functions from 
 The copula package* in R:

 nlminb()*

 llClayton(theta, data)
 Returns the negative 
 log-likelihood.
 Input: 
 theta: Parameter in copula
 data: Data used

Figure E.1.7: Implementation of approach 1 in Section 7.2.1 for a Clayton copula.

 approach1NoAnal(x, theta, K, N_b)
 Returns the p-value of  
 H_0: x arises from a Student copula with theta as parameter
 vs H_1: x does not ...
 Input: 
 x: Data to be tested
 theta: copula parameter,  c(rho, nu)
 K: Number of bootstrap samples
 N_b: Number of double boostrap samples

 empiricalDistr(x)
 Returns the empirical distribution of x.

 cHat(x,z)
 Returns C_hat in point (4. ii) in Approach 1.
 Input:
 x: z_l* in point (4. ii)
 z: u in point (4. ii)

 Standard functions from 
 the copula package* in R:

 nlminb()*

 llStudent(theta, data)
 Returns the negative
 log-likelihood.
 Input: 
 theta: Parameter in copula
 data: Data used 

Figure E.1.8: Implementation of approach 1 in Section 7.2.1 for a Student copula.
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 approach2(x, theta, K)
 Returns the p-value of  
 H_0: x arises from a Student copula with theta as parameter
 vs H_1: x does not ...
 Input: 
 x: Data to be tested
 theta: copula parameter,  c(rho, nu)
 K: Number of bootstrap samples

 empiricalDistr(x)
 Returns the empirical distribution of x.||

 approach2theta(data)
 Returns thetas in (7.3.5) and (7.3.6)
 Input:
 data: Data 

 Standard functions from 
 the copula package* in R:

Figure E.1.9: Implementation of approach 2 in Section 7.2.1 for a Clayton copula.

 intraday(data)
 Returns data every fifth minute between 10-16
 Input: 
 data: Trading history for a stock ¤
 ¤ See r-file for further explenation

Figure E.1.10: Script for extracting intra day prices.
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