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Abstract 
The construction of a three-span suspension bridge with two floating pylons is currently being 
considered for crossing the 5-km-wide and 550-m-deep Bjørnafjorden in Norway. The bridge design 
represents a novel concept that requires a detailed dynamic analysis to improve the current 
understanding of its dynamic behavior. Geometric nonlinearities in the cables and mooring system and 
nonlinearities in the load models are of particular interest; in addition, the relative influence of the 
buffeting wind forces and the first- and second-order wave excitation forces were carefully studied. 
The response predictions were obtained using state-of-the-art time domain methods. 
Keywords: suspension bridge; floating pylon; wind load; wave load 

1. Introduction 
The Norwegian Public Roads Administration is administering a project—Ferry free coastal route 
E39—which aims to eliminate all ferries along the coastal highway E39 in Norway. One of the straits, 
Bjørnafjorden, is up to 5 km wide and 0.5 km deep, calling for a significant extension of current 
bridge technology. A three-span suspension bridge with two floating pylons, a combination of 
offshore and bridge technology, is a new concept for crossing wide and deep fjords [1, 2]. The bridge 
represents an entirely new design, requiring a detailed analysis of its dynamic behavior. Time domain 
methods are commonly applied when nonlinearities must be considered, as it is challenging to include 
such nonlinearities in a frequency domain analysis. Thus, assessing the influence of nonlinearities in 
the model is of particular interest to determine whether the calculations must be performed in the time 
domain or if the faster frequency domain methods are sufficient.  
Modeling the motion-induced forces is a major challenge in the time domain simulations of the 
dynamic response, as they are dependent on the motion history. It is convenient to model the self-
excited force in the time domain based on quasi-steady theory [3] and use coefficients from static wind 
tunnel experiments because the coefficients in quasi-steady theory are not dependent on the frequency; 
however, it can be challenging to accurately model the self-excited forces using quasi-steady theory, 
which has resulted in a number of suggestions for improvements [4, 5]. The fluid memory effect can 
be considered by transfer functions in the frequency domain or by convolution integrals in the time 
domain. The self-excited forces for bridge decks are commonly modeled in the frequency domain 
using flutter derivatives, as proposed by Scanlan and coworkers [6]. The flutter derivatives represent 
an empirical generalization of the analytical expressions of the self-excited forces for airfoils (i.e., 
Theodorsen’s function) [7]. The Wagner function [8, 9] is the time domain counterpart to 
Theodorsen’s function, and this work has also been generalized for bridge applications. Time domain 
simulations of self-excited forces for bridge applications commonly start with an empirical expression 
for the transfer function in the frequency domain or the indicial functions in the time domain. The 
challenge is to fit the various models to the experimental data of the aerodynamic derivatives. The 
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most common approach is perhaps the use of rational functions, also known as Roger’s approximation 
[10]. The majority of the aforementioned studies were either limited by simplified systems using still-
air modes as generalized coordinates or detailed studies of the performance of the methodology 
considering a bridge deck section model. In bridge design, it is necessary to include self-excited forces 
in a finite element analysis of the entire bridge. Borri et al. [11] expressed the self-excited forces in the 
time domain by indicial functions and implemented the methodology in the finite element code 
FEMAS. Salvatori and Spinelli [12] also simulated the self-excited forces by convolution integrals 
using indicial functions, developed a finite element program capable of handling simplified bridge 
models, and analyzed the effects of structural nonlinearities and wind coherence. Chen et al. [13, 14] 
used a state-space model to simulate the fluid memory effect, which can be more computationally 
efficient than solving the convolution integrals. Additionally, nonlinear effects were carefully studied 
in a flutter and buffeting analysis in the time domain. Øiseth et al. [15] also applied a state-space 
model of a simple beam with properties similar to a long-span bridge, and state variables were 
included as additional degrees of freedom in each node of a beam element. 
The hydrodynamic radiation forces are similar to the aerodynamic self-excited forces in that they also 
depend on the motion history. The most convenient approach is to replace the frequency-dependent 
added mass and damping by constant coefficients, which are chosen at a dominating frequency, for 
instance, the peak frequency of the wave or the natural frequency of the structural system. However, 
this simple method cannot provide accurate results in the analysis of the structures’ transient response 
under a single frequency excitation or the steady-state response under multiple frequency excitations 
[16]. Cummins’ equation is widely used for time domain simulations of structures interacting with 
water to consider the frequency-dependent characteristics [17]. This equation is a vector integro-
differential equation that involves convolution terms that account for the fluid memory effect and has 
been applied by many researchers [18, 19]. However, it is time consuming to solve the convolution 
integrals during a dynamic analysis [15, 20], and replacing the convolution integral with a state-space 
model is an attractive alternative. Taghipour et al. [20] verified that the same accuracy as obtained by 
solving Cummins equation directly can be obtained by replacing the convolution integral with a state-
space model, and the calculations are approximately eight times faster. They also validated the 
methodology by comparing their results to experimental data for a flexible barge [21]. The state-space 
modal has also been used by many researchers in different areas [22, 23].  
As outlined above, state space models are commonly used in the modeling of both hydrodynamic and 
aerodynamic self-excited forces. However, there are few studies on the performance of the 
methodology for modeling the dynamic behavior of structures subjected to both wind and wave 
actions. Thus, this paper provides a brief introduction to the state space modeling of self-excited 
aerodynamic and radiation forces; a description of the inclusion of state space models in a finite 
element model of a three-span suspension bridge with two floating pylons is provided. Studies on the 
dynamic behavior of the bridge consider first- and second-order wave excitations as well as the mean 
wind and linear and nonlinear buffeting forces. The influence of the nonlinear effects on the models is 
also carefully studied in order to present some general trends of what is important to include in the 
modelling of this novel bridge concept. 

2. Dynamic response of a suspension bridge with floating 
pylons 
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Fig. 1 Three-span suspension bridge with two floating pylons. Illustrated by Arne Jørgen Myhre, Statens 
vegvesen 

Fig. 1 shows a three-span suspension bridge with two floating pylons crossing Bjørnafjorden in 
Norway. The main cables are supported by two fixed pylons at each end of the bridge and two floating 
pylons in the middle of the bridge. The bottom part of the floating pylon is similar to tension leg 
platforms moored by four groups of tethers, providing a high stiffness in heave, pitch and roll. The 
water depth is 550 m and 450 m at the left and right floating pylons, respectively. To assess the 
dynamic behavior of the bridge, it is necessary to consider wind loading on the girder and pylons as 
well as wave loads on the floating pylons. The equation of motion can be written as 
 (1) (2 )(t) ( ) ( ) ( ) (t) (t) (t) (t) (t)

HydroAero

s s s h mean Buff se WA WA Radt t ±+ + + = + + + + −
FF

M u C u K K u F F F F F F 
))))))))())))))(

.  (1) 

Here, sM , sC  and sK  symbolize the still-air mass, damping and stiffness matrix, respectively, and u 
represents the degrees of freedom of the finite element model. FAero represents the wind actions, which 
consist of a time-invariant component meanF  due to the mean wind velocity, a dynamic component BuffF  
due to turbulence in the wind field and self-excited forces seF  generated by the motion of the girder. 
FHydro represents the wave actions, which consist of the radiation forces RadF  induced by the motion of 
the submerged part of the pylons, the hydrostatic restoring stiffness hK , and the first- and second-
order wave excitation forces, (1)

WAF  and (2 )
WA

±F . Viscous drag damping forces on the submerged part of 
the floating pylons have not been considered since the aerodynamic damping is significant in the low 
frequency range where the hydrodynamic potential damping is close to zero. Possible excitations due 
to vortex shedding are out of the scope of this study, but are relevant for the design of the bridge girder, 
hangers and tethers. Possible vortex induced motions of the pylons might also be of relevance. We will 
describe the methods used to model the wind and wave forces in this chapter, with a particular focus 
on modeling the motion-induced forces in an efficient manner in the time domain to reduce the 
computational effort required. 

2.1 Efficient modeling of motion-induced forces 
2.1.1 Radiation forces 
When a floating structure oscillates in waves or still water, it generates outgoing waves, resulting in 
oscillating fluid pressures on the surface of the body [24]. The integrated hydrodynamic pressures give 
rise to radiation forces, which are defined as follows for a single-frequency motion:  
 ( ) ( )Rad h hω ω= +F M u C u    (2) 
Here, ( )h ωM  and ( )h ωC  represents the frequency-dependent added mass and potential damping 
matrices, respectively. When the oscillation frequency tends to infinity, the damping converges to zero, 
whereas the added mass becomes constant and frequency independent, as shown in Fig. 2. 

 
( ) ( ) ( )

( ) ( ) ( ) ( )
h h h

h h h h

ω ω
ω ω ω

= + ∞
= + ∞ =

M m M
C c C c

  (3) 

 
Fig. 2 Typical frequency-dependent added mass and damping coefficients 
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The frequency-dependent added mass and damping are commonly obtained via potential theory, as 
discussed in the next chapters. The radiation force Radz , which only accounts for the frequency-
dependent terms ( )h ωm  and ( )h ωc , can be expressed in the frequency domain as 
 ( ) ( ) ( )

Rad
ω ω ω=z uG H G    (4) 

Here, ( )ωH  is the hydrodynamic transfer function, ( ) ( ) ( )h hiω ω ω ω= +H m c , and ( )
Rad

ωzG  and ( )ωuG 

represent the Fourier transform of the radiation force and the velocity of the rigid body. By applying 
the inverse Fourier transform to Eq. (4), the forces can be expressed in the time domain as follows:  
 (t) (t ) ( )Rad dt t t

∞

−∞
= −∫z h u   (5) 

Here, (t)h  is the inverse Fourier transform of ( )ωH . Eq. (5) consists of 6 6× =36 convolution integrals, 
and it is time consuming to solve the convolution integrals during a dynamic analysis, as noted by 
several authors [15, 20]. Replacing convolution integrals with state-space models is an efficient 
alternative. In this chapter, for brevity, we will only consider the convolution integral contributing to 
the radiation force in the i-direction due to motion in the j-direction, ( ) (t) ( ) ( )dRad

ij ij jz h t ut t t
∞

−∞
= −∫  , as 

the other integrals are handled in the same manner.  
For a stable linear dynamic system, the relationship between the input (t)ju  and the output ( ) (t)Rad

ijz  
can be characterized by an ordinary differential equation (ODE) with high-order derivatives [20]: 

 

( ) 1 ( ) ( )
( )

1 1 01

1

1 1 01

(t) (t) (t)
(t)

(t) (t) (t)
(t)

n Rad n Rad Rad
ij ij ij Rad

n ijn n

m m
j j j

m m jm m

d z d z dz
q q q z

dt dt dt
d u d u du

p p p p u
dt dt dt

−

− −

−

− −

+ + + +

= + + + +



  


  (6) 

The transfer function of the system can be obtained by taking the Laplace transform 

 

( )

1
1 1 0

1
1 1 0

( ) ( ) ( )

( )

Rad
ij ij j

m m
m m

ij n n
n

Z s H s U s

p s p s p s pH s
s q s q s q

−
−

−
−

′=

+ + + +′ =
+ + + +







  (7) 

Here, ( ) ( )Rad
ijZ s  and ( )jU s  are the Laplace transforms of ( ) (t)Rad

ijz  and (t)ju , and ( )ijH s′  is the transfer 
function. The relation between the transfer function in the Fourier and Laplace formations is

i( ) ( )ij s ijH s Hω ω=′ = . The degree of the polynomial in the denominator is often taken as one order higher 
than that of the polynomial in the numerator, 1n m= + . By choosing a proper order and applying the 
inverse Laplace transform, the relation between the output (radiation force) and input (velocity) in Eq. 
(6) can be expressed as a state space model, which has been previously described in detail [20]: 

 { }
(H) (H)

( ) (H)

(t) (t) (t)
, 1,2, ,6

(t) (t)
c c j

Rad
ij c

u
i j

z

 = + ∈
=

X D X E

Q X

 
   (8) 

where  
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2 2(H) (H) (H)

3

2

1 1

(t) 0 0 0 0 0
(t) 1 0 0 0 0

0 1 0 0 0
(t) , ,

0
0 0 0 0
0 0 0 1 1(t)

T

c c c

n

n n n

q pX
q pX
q p

p
q

X q p
−

− −

−       
      −       
      −

= = = =      
      
      −
      

−          

X D E Q

3

3

3

    
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3

，  

X , (H)
cD , (H)

cE  and (H)
cQ  are different among each of the 36 state space models and can be determined 

by curve fitting the expression presented in Eq. (7) to the transfer functions defined by added mass and 
damping coefficients. Considering all degrees of freedom and the frequency-independent term, the 
radiation forces can be written as 
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  (9) 

 
2.1.2 Aerodynamic self-excited forces 
Similar to the radiation forces, the aerodynamic self-excited forces 

T

y zq q qq =  q  can be expressed 
as follows: 
 ( ) ( )ae aeK K= +q C u K u   (10) 

 
Fig. 3 Aerodynamic forces acting on the bridge section considered in this study  

The positive direction of the displacement u  and the forces q  are displayed in Fig. 3. The 
aerodynamic damping matrix, ( )ae KC , and the aerodynamic stiffness matrix, ( )ae KK , contain 18 
aerodynamic derivatives, *

nP , *
nH  and *

nA , { }1,2,...,6n∈ ,which are cross-sectional properties that are 
functions of the reduced frequency of motion ( ) /K B Vω= . 
 

 

* * * * * *
1 5 2 4 6 3

* * * 2 2 * * *
5 1 2 6 4 3

* * 2 * * * 2 *
5 1 2 6 4 3

1 1,
2 2ae ae

P P BP P P BP

VKB H H BH V K H H BH

BA BA B A BA BA B A

ρ ρ

   
   

= =   
   
   

C K    

Here, V represents the mean wind velocity, ρ is the air density, B is the width of the girder, and ω
refers to the oscillation frequency of the bridge deck. The aerodynamic derivatives are commonly 
determined by wind tunnel tests [25]. Eq. (10) is only valid for a single-frequency harmonic motion, 
but the model can be extended to any periodic or aperiodic motion through Fourier integral 
representation: 

 
( ) ( ( ) ( )) ( )

( ) ( )
q ae ae u

u

iω ω ω ω ω

ω ω

= +

=

G C K G

F G
  (11) 

Here, ( )q ωG  and ( )u ωG  are the Fourier transforms of self-excited forces and displacements, 
respectively. By applying the inverse Fourier transform to Eq. (11), the self-excited forces in the time 
domain can be expressed as a convolution integral as follows: 

(t) (t ) ( )dt t t
∞

−∞
= −∫q f u  

Here, f(t) and u(t) are the inverse Fourier transforms of ( )ωF  and ( )u ωG , respectively. The 
aerodynamic derivatives are only available at discrete reduced frequencies. A rational function [13-15, 
26], as expressed in Eq. (12), is widely used to curve fit the scattered experimental data of 
aerodynamic derivatives and calculate the integration in the equation above.  

 
3

2
1 2 3

1

1 /( ) ( )
2 /

N

l
l l

i B i B VV
V i B V d
ω ωω ρ

ω

−

+
=

= + +
+∑F a a a   (12) 

The unknowns a1, a2, al+3 and dl in the rational function can be obtained by a least squares fit to the 
experimental data of the aerodynamic derivatives.  
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Similar to modeling radiation forces, the transfer function presented above can be expressed as a state 
space model. Integration of the distributed self-excited forces by applying the principle of virtual work 
and introducing the state space model yields the following expression for the nodal forces [15, 27]: 

 
1 2

( ) ( )

( )

(t) (t) (t)

(t) (t) (t)

(t) (t)

se se
ae ae

c c
ae

se c

 = + +


= +
 =

F A u A u z

X D X E u

z Q X



    (13) 

where 
2 2

1 1 2 20 0

1 ( )

1( ) ( )
4 5

1 2 3
3

1 1( ) ( ) ; ( ) ( ) ;
2 2

[ ] ;
;                    [ ] ;   .

[ ]

L LT T

ae T
c

ae ae
c c N

T
N

N

BV y y dy V y y dy
V

d
dV

B
d

ρ ρ

−
−

= =

 
= 

 = = ⋅⋅⋅
 

= ⋅⋅⋅ 
 

∫ ∫A N a N A N a N

I
E I I I

I
D Q A A A

X x x x
I

3



 

Here, 2
3 30

1 ( ) ( )
2

L T
l lV y y dyρ+ += ∫A N a N  and ( / )(t )(t) ( )dl

t d V Bl
l

d V e
B

t t t− −

−∞
= − ∫x u u . The matrix N(y) includes 

the shape functions, and L refers to the length of the beam element.  
 
2.1.3 Implementation in ABAQUS 
The equation of motion for the combined structure and flow system is obtained when Eqs. (9) and (13) 
are introduced into Eq. (1): 

(1) (2 )
2 1

( ) ( )

( ) ( )

(
1

( ( )) (t) ( ) ( ) ( ) ( ) (t) (t) (t) (t) (t)

(t) :

(t) (t) (t)

(t) (t)
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(t)

s h s s h se Rad Mean Buff WA WA
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ae ae

c c
se ae
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R
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z

±+ ∞ + − + + − − + = + + +

= +

=

=

M M u C A u K K A u z z F F F F
z

X D X E u

z Q X
z

z
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 
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i ijj

c c j
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ij c

z z

z z

u

z

=










   
 =

 = +
 =

∑
X D X E

Q X



 

 (14) 

The motion-induced hydrodynamic and aerodynamic forces are modeled using similar state space 
models.  

 (t) (t) (t)
(t) (t)

c c

c

 = +


=

X D X E u
z Q X

    (15) 

As shown above, the velocity of the structure is the input of the model, whereas a vector of the 
motion-induced forces is the output of the model. X  represents the aerodynamic or hydrodynamic 
state variables. These variables must be included when solving the equation of motion for the 
combined structure and flow system. The starting point is to transform the continuous first-order linear 
inhomogeneous differential equation presented in Eq. (15) to a discrete form [28].  

 1 1[(1 ) ]k k k k k

k k

γ γ+ += + + − +
 =

X DX Eu G u u
z QX

  
  (16) 

Here, c te ∆= ∆∆ , 1( ) c c
−= −E D I D E , 1( )c c t−= − ∆G ∆ E E  and c=Q Q .  

Algorithm 1 illustrates how the state variables are updated at each time step in the dynamic analysis by 
defining a user element. The elements are modeled on top of the nodes of ordinary beam elements 
such that it is not necessary to involve the mass, damping and stiffness terms related to the structure. A 
first-order hold assumption is introduced for the discretization of velocity; otherwise, G will be zero. 
Under the first-order hold assumption, a much larger time step is allowed in the numerical integration 
of the equation of motion than can be used based on the zero-order hold assumption [27]. However, 
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the assumption makes the state-space model more complicated because the state variables are 
dependent on acceleration in the current time step. Therefore, it is necessary to reorganize Eq. (16) and 
introduce a new variable 1 1 1(1 )k k k kγ− − −= + + −X DX Eu G u    such that kX  depends only on the motion in 
the previous time step and the term kγG u  can be added directly into the mass matrix of the system. 

( )h ∞M , 2A  and 1A  are constant matrices and can be conveniently modeled by defining them as the 
mass, damping and stiffness of the user element, respectively. 

Algorithm 1. Simulation of the self-excited force by the user element in ABAQUS 
Step (1): ABAQUS supplies current estimates of ku , ku  and ku  

Step (2): Load 1k−X , 1k−u  and 1k−u  from the last time step (the initial value of X :
0 =X 0 ) and 

calculate the state vector 1k−X  

                    1 1 1k k kγ− − −= +X X G u   
Step (3): Calculate the residual force and Jacobian matrix 
               k user k user k user k k= + + +R M u C u K u QX   

                2

1
user user usert t

γ
β β

= + +
∆ ∆

J M C K  

where userM , userC , and userK  are the mass, damping and stiffness, respectively, of the user element: 
                              user γ= −M QG , 2user = −C A , 1user = −K A       for the aerodynamic user element 
                              ( )user h γ= ∞ −M M QG , 0user =C , 0user =K   for the hydrodynamic user element 

                      kX  depends only on the motion in step k-1: 

                             1 1 1(1 )k k k kγ− − −= + + −X DX Eu G u    
                     β  and γ  are the two parameters in Newmark’s method 
Step (4): ABAQUS calculates new values for ku , ku  and ku  and performs equilibrium iterations until  
the results converge. 
Step (5): Save kX , ku  and ku  in ABAQUS as solution-dependent variables 
Step (6): Return to (1) for new time step or stop 

2.2 Buffeting forces 
2.2.1 Simulation of the wind velocities 
The wind field is simulated using Monte Carlo analysis [29, 30]. The density of the air is assumed to 
be 1.25ρ = kg/m3, and the cross-spectral densities of the horizontal along-wind velocity u and vertical 
components w at points i and j are assumed to be given as follows: 

 

2 2

5/3 5/3

5/3

7/3

40.58 3.18 ( ) ( )40.58( , , , ) exp( )
(1 9.74 / ) (1 9.74 / )

0.82( , ) exp( )
(1 0.79 / )

2.23( , ) exp( )
(1 1.67 / )

j ji i
uu

i i j j i j

ww

uw

V z x zV zS x z z
z V z V V V

Vz xS x
z V V

Vz xS x
z V V

κ wκw
ww

κ ww
w
κ ww

w

+

+

+

∆ + ∆
∆ ∆ = −

+ + +

∆
∆ = −

+
∆

∆ = −
+

  (17) 

where κ  is the roughness coefficient at the site, which is assumed to be 0.0031; zi and zj are the 
heights above the ground at the two points; and x∆  and z∆  are the lateral and vertical distances, 
respectively, between the two points considered. 
The vertical curvature of the girder is neglected by using the height at the middle of the bridge as the 
reference for the wind load of the girder. It is further assumed that only the along-wind turbulence 
component u provides wind loading on the pylons and that the vertical mean wind velocity profile is 
given by 
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Here, refV  and ( )V h  are the mean wind velocity at the reference point and at height h, respectively, 
and α  is related to the surface roughness. The wind velocities on the girder and pylons are simulated 
independently, neglecting a possible correlation. This assumption is clearly an approximation in the 
areas near the connection between the pylons and girder; however, previous results [31] indicate that 
the approximation is well within the overall uncertainty of the model considering that wind tunnel 
tests of the pylons are also currently unavailable.  
 
2.2.2 Linear and nonlinear wind forces 
The mean and buffeting forces due to the mean and turbulent wind are calculated using quasi-steady 
theory [32] when the aerodynamic admittance is neglected. Assuming that the fluctuating flow 
components, ( , )u x t  and ( , )w x t , and the structural velocity are small compared to the mean wind 
velocity V, the linearized wind-induced forces can be defined as 
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Here, D is the height of the girder. DC , LC  and MC  are the mean values of the drag, lift and torsional 
moment force coefficients, respectively, and DC′ , LC′  and MC′  are their derivatives with respect to the 
angle of attack. 
At the peaks of the turbulent wind velocities, the higher-order terms can significantly contribute to the 
wind loading and can thus significantly contribute to the load effects in certain situations. The 
buffeting forces are modeled using the following expression to investigate the influence of the 
nonlinear terms. 
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2.3 Wave excitation forces 
The hydrodynamic actions consist of hydrostatic forces, radiation forces and wave excitation forces 
[33]. The hydrostatic forces are frequency independent and modeled as springs in the finite element 
model of the structure, whereas the radiation forces are modeled using state space models, as 
presented in chapter 2.1. The wave excitation forces related to the fluctuating pressure on the 
submerged surface of the pylons are caused by incident waves assuming that the structure is fixed. As 
noted above, the fluid-structure interaction effects are commonly modeled using potential theory; in 
this paper, we will consider second-order difference and sum frequency forces as well as first-order 
forces. Higher-order models exist but are outside the scope of this paper.  
2.3.1 First-order wave excitation forces 
The first-order forces are always larger than the second-order forces and are defined by a transfer 
function that can be obtained by potential theory. The amplitude of the first-order wave forces is 
proportional to the wave amplitude. In irregular waves, the first-order forces can be obtained by 
summing the contributions from all of the frequency components and directions using the following 
well-known expression [34]: 
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Here, (1) ( , )ω θT  is the first-order transfer function and represents the force generated by a unit 
amplitude regular wave with frequency ω  propagating from the directionθ . The wave amplitude and 
wave number are denoted by η  and k, respectively; for small-amplitude waves, the wave number is 
related to the frequency and water depth h by the dispersion relation, 2 tanh( )gk khω = . { }0 2mnε π∈ 2  is 
a uniformly distributed random phase angle. ( , )Sη ω θ  represents the wave spectrum and is a function 
of both the wave frequency and direction. 
 ( , )= ( ) ( , )S S Dη ω θ ω ω θ   (22) 
Here, ( )S ω  is the unidirectional wave spectral density and ( , )D ω θ  is the directional distribution. The 
directional distribution for locally wind-generated sea is commonly approximated as frequency 
independent. Little information regarding the wave conditions at the site is currently available, making 
the one parameter Pierson-Moskowitz spectrum [35] a tempting choice. Meanwhile, cos-2s 
distribution [36] is applied to represent the wave direction distribution in this study. 
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where sH is significant wave height and s is a parameter which determines the concentration of the 
direction distribution of the wave energy. 
2.3.2 Difference frequency forces 
The natural frequencies of the low-order modes of the bridge are well below the energy content in the 
wave spectra such that these modes will not be excited by first-order excitation forces. However, the 
difference frequency forces can cause wave excitations in this frequency range. For short-crested 
waves, the different frequency forces can be written as follows [37-39]: 

 ( ) t ( )(2 ) (2 )

1 1 1 1

Re ( , , , ) k j kh jl
N N N N

i i
WA jl kh j k l h

l h j k
e eω ω e ehh  ω ω θθ  − −− −

= = = =

= ∑∑∑∑F T   (24) 

where (2 )−T  contains the in-phase and out-of-phase components of the full quadratic transfer function, 
icT  and isT , respectively, and represents the forces induced by the interaction of a unit-amplitude 

wave associated with frequency jω  and direction lθ  and a unit-amplitude wave associated with 
frequency kω and direction hθ . If the direction interaction effects are ignored, i.e., the terms where 

l hθθ ≠ , the difference frequency forces can be written as 

 ( ) t ( )(2 ) (2 )
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Re ( , , ) k j kl jl
N N N

i i
WA jl kl j k l

l j k
e eω ω e eη η ω ω θ − −− −

= = =

= ∑∑∑F T   (25) 

This will reduce the computational effort significantly, as fewer quadratic transfer functions are 
required. The mean drift force is included in the equation above and can be found by setting k jω ω= : 

 
1 1
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2.3.3 Sum frequency forces 
The sum frequency forces introduce excitation at higher frequencies compared to the first-order 
excitation forces and may be important for the heave, pitch and roll motions of the pylons. If the 
directional interactions are ignored, the time series of summed frequency forces can be written as 
follows [39]. 

 ( ) t ( )(2 ) (2 )

1 1 1

Re ( , , ) k j kl jl
N N N

i i
WA jl kl j k l

l j k
e eω ω e eη η ω ω θ + ++ +

= = =

= ∑∑∑F T   (27) 
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3. Numerical simulations 
A comprehensive finite element model of the bridge, as displayed in Fig. 4, is used in the dynamic 
analysis. Each of the main girder spans has a length of 1385 m and the pylons are 198 m high and have 
a draft of 65 m.  The bending stiffness of the girder for horizontal, vertical and torsional deflections 
are 12 23.22 10 Nm⋅ , 11 22.04 10 Nm⋅ , and 11 21.99 10 Nm⋅  respectively. The main cable and hanger have a 
cross section area of 0.333 and 0.032 m2, respectively. More details about the finite element model of 
the bridge are presented in [40]. The girder, main cable, tethers, hangers and pylons are modeled by 
beam elements. The aerodynamic self-excited and hydrodynamic radiation forces are simulated by 
implementing a user element in ABAQUS. The user element is developed as a one-node element and 
is included in the nodes of the girder and a reference point on each of the floating pylons; the user 
elements are illustrated by the red markers in Fig. 4. The added mass, potential damping and first- and 
second-order transfer functions for the wave excitation forces are obtained using potential theory. Fig. 
5 shows the hydrodynamic panel model of the submerged part of the pylon and the free water surface. 
The panel model of the free water surface is only required when calculating the full quadratic transfer 
functions based on the near-field formulation [38]. The side span on the right hand side of the Artist’s 
view in Fig. 1 has not been included in the modeling. 

 
Fig. 4 Finite element model of the three-span suspension bridge with two floating pylons 

 
Fig. 5 One quarter of the panel model of the submerged part of the pylon and the water surface in WADAM 
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3.1 Estimation of the parameters in the state space models 
3.1.1 Potential added mass and damping 
The potential added mass and damping at discrete frequencies are obtained by linear potential theory 
using the software WADAM [41]. The numerical results for selected components of the added mass 
and potential damping are displayed in Fig. 6. The rational function presented in Eq.(6) is used to 
curve fit the data. The unknowns 1 0 1 0[ , , , , , ]T

n np p q q− −=θ    can be obtained by regression in the 
frequency domain: 

 
2(H)
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(i , )
j l l ij l

l j l

U H Z

U

ω ω ω

ω

−
= ∑

θ θ
θ

θ




  (28) 

This method has been implemented in a MATLAB toolbox, FDI_Toolbox_v1.2, by Perez and Fossen 
[42], which is applied in this study. A high-order polynomial of the transfer functions must be applied, 
as there are many fluctuations in the numerical results for the added mass and damping. Fig. 6 shows 
that the models fit the data well. 

Fig. 6 Selected added mass and damping coefficients. The order of the transfer functions n is given in the figures. 

3.1.2 Aerodynamic derivatives 
The self-excited forces are modeled by fitting rational functions to the transfer function defined in 
terms of the aerodynamic derivatives. The accuracy of the numerical simulations depends on the 
quality of the curve fit of the expressions presented in Eq.(12) to the experimental data of the 
aerodynamic derivatives. The self-excited forces must be captured precisely throughout the reduced 
frequency range, particularly in the range corresponding to the natural frequencies of the system. 
Experimental aerodynamic derivative data [43] from forced vibrations tests of the cross section of 
Hardanger Bridge are represented by circles and triangles in Fig. 7, and the solid lines are curve fits 
defined by the rational functions introduced in Eq. (12). As shown in Fig. 7, the curve fits match well 
with the experimental data. We have applied the shape of the girder of the Hardanger Bridge in this 
study since wind tunnel tests are available for this section. 

3.2 Simulation of the wind and wave loads 
Eqs. (17)-(27) are used to generate the wind and wave forces acting on the pylons and girder. The 
surface roughness related parameter α  in Eq.(18) is assumed to be 0.12 [31]. The fluctuating wind 
velocities have been simulated at 151 points along the girder and 40 points along the pylons, with cut-
off frequencies of 60uω =  rad/s and ω∆ =0.001 rad/s, respectively. Rather small difference of the 
response statistics is observed when applying more points along the girder, which infers that 151 
points can represent the wind field very well. The following force coefficients of the girder were  
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Fig. 7 Curve fits of the 18 aerodynamic derivatives obtained by forced vibration tests 

 
Fig. 8 (a) Wind force in the y-direction over one span length (1,385 m). (b), (c) and (d) show the first-order, 
second-order difference and sum frequency wave excitation forces in the y-direction on one floating pylon, 
respectively. 

obtained from wind tunnel experiments [44]: DC =0.70, DC′ =0, LC =-0.25, LC′ =2.4, MC =0.01 and MC′
=0.74. The wave amplitude of the first- and second-order wave excitation force transfer functions, 

(1)
waveT  and (2 )

wave
±T ,  are calculated by WADAM. The time series of the buffeting wind force and the first- 

and second-order wave excitation forces in the y-direction are shown in Fig. 8; here, a mean wind 
velocity of 35 m/s and significant wave height of 4.88 m are applied. The average estimated spectral  
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Fig. 9 Auto spectral density of the wind and wave forces presented in Fig. 8. Dashed lines are the target spectral 
densities, whereas each solid line represents the average spectral density for 10 realizations. 

density of 10 realizations is compared to the target spectral density in Fig. 9 to verify that the time 
domain simulations correspond to the target spectral densities.  
The magnitude of the wind force and second-order difference force is very small compared to the 
others, but they are dominant in the frequency range of 0 to 0.3 rad/s. The natural frequencies of the 
first ten modes and first three torsional modes considering the mean wind force at V=35 m/s and the 
added mass as the frequency goes to infinity are listed in Table 1. The first three natural modes of the 
structure have frequencies in this range, making the forces important for the dynamic behavior of the 
system. The first-order wave excitation forces are dominant in the frequency range of 0.3 to 1.2 rad/s, 
which may excite several higher modes of the girder. The second-order sum force is in the range of 1.7 
to 3 rad/s, which can be important for modes where the pylons move in heave, pitch and roll. 

Table 1 Natural frequency for the first ten modes and the first three torsional modes. H, V and T refer to 
horizontal, vertical and torsional vibration modes, respectively. 

Mode no. Natural frequency (rad/s) Type 
1 0.0724 H 
2 0.0968 H 
3 0.186 V 
4 0.307 H 
5 0.317 H 
6 0.359 H 
7 0.464 H 
8 0.518 H&V 
9 0.563 V 

10 0.643 H 
51 1.845 T 
52 1.868 T 
54 2.001 T 

3.3 Computational efficiency and validation 
The time domain methodology outlined in this paper should provide the same response as a multimode 
frequency domain analysis if the system is linear and a sufficient number of modes are included in the 
model. The time domain simulations should be verified by comparing the response statistics with 
results from a frequency domain analysis. Multimode theory is briefly introduced in the appendix. 
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Fig. 10 Standard deviations of the displacement along the girder in the lateral, vertical and torsional directions. (a) 
lateral displacement, (b) vertical displacement, (c) torsional displacement. The red dashed line --- represents the 
standard deviation of each realization, the solid red line ―is the average of the 5 realizations, and the solid blue 
line― is the frequency domain results. 

The wind-induced dynamic responses of the floating suspension bridge are calculated using the time 
and frequency domain approaches; here, a mean wind velocity of 35 m/s and significant wave height 
of 4.88 m are implemented. Turbulent wind forces acting on the pylon and nonlinear effects are not 
considered in the validation step. The standard deviation of the displacement along the girder for five 
1-h time domain simulations is compared to the frequency domain results in Fig. 10. The responses in 
the y-direction in the time domain simulations are scattered due to the large first natural period. A 
longer time domain simulation may be more appropriate in this analysis. However, there is still good 
agreement between the mean response values along the entire girder.  
The variance of the pylon displacement obtained from the time series is compared to the frequency 
domain results in Table 2. The discrepancy is large for several cases, such as cases 1 and 5 for the 
sway response and case 1 for the heave motion. However, the mean values correspond well. Thus, the 
time domain simulations capture the dynamic behavior accurately. 
In addition to the accuracy, computation efficiency is another important criterion to evaluate a new 
numerical methodology. To test the efficiency of the presented time domain methodology, we 
compared the computational time with and without the user elements in ABAQUS. The frequency 
dependency of the motion induced hydrodynamic and aerodynamic forces are thus neglected when the 
user elements are not applied. The finite element model consists of 1311 beam elements, 300 user 
elements to simulate the aerodynamic self-excited forces and 20 user elements for radiation force. 
Simulations were run on a computer with 2.6 GHz CPU. The average computational time required is 
8.01 and 7.08 hours, respectively. Including the user elements only require 13% more computational 
time when simulating the frequency-dependent forces based on the presented time domain 
methodology. 

3.4 Nonlinear effects 
Geometric nonlinearity and nonlinear buffeting forces are considered in the numerical simulation of 
the suspension bridge subjected to mean and turbulent wind forces, and first- and second-order wave 
excitation forces. The results are compared to the linear analysis results to study the nonlinear effects 
on the section forces in the girder and tethers.  
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Table 2 Comparison of the time and frequency domain results of the standard deviation of the displacement 
response at the center of gravity of pylon #2 

Multi-Mode Method 
 yσ  (m) zσ  (x10-3 m) 

xθ
σ  (x10-3 rad) 

yθ
σ  (x10-3 rad) 

 1.61 4.53 1.03 1.21 
Time Domain Method 

Realization yσ  Difference zσ  Difference xθ
σ  Difference yθ

σ  Difference 
1 2.16 33.9% 6.09 34.3% 0.944 -8.63% 1.13 -8.68% 
2 1.77 9.7% 4.50 10.1% 0.907 -12.2% 1.15 -7.8% 
3 1.45 -9.84% 4.13 -8.79% 0.966 -6.5% 1.26 9.11% 
4 2.00 24.4% 5.65 24.7% 0.961 -6.99% 1.17 0.17% 
5 1.12 -30.5% 3.26 -28.0% 1.09 5.41% 1.20 -0.3% 

Mean Value 1.70 5.53% 4.83 6.47% 0.973 -5.78% 1.18 -1.5% 

Table 3 Standard deviation of the axial force in the tethers at the four corners of pylon #2 

 Corner 1 Corner 2 Corner 3 Corner 4 
Linear 10.87 10.11 10.40 10.93 

Geometric nonlinearity 10.73 9.99 10.27 10.82 
Geometric nonlinearity and 
nonlinear buffeting forces 10.86 10.18 10.47 10.94 

The results are presented in Table 3. For the tethers, geometric nonlinearities and nonlinear buffeting 
forces make very few differences in the standard deviation of the tension force compared to the linear 
case, respectively. Nonlinear effects appear to be insignificant for these components of the bridge. Fig. 
11 shows the section moment along the girder for the linearized and nonlinear systems. Geometric 
nonlinearities have a minor influence, whereas the nonlinear buffeting forces result in higher standard 
deviations for vertical bending and torsional moment at the middle of each span, respectively. 
However, the difference due to nonlinear buffeting forces is smaller for the highest section moment on 
the girder near the pylons. 

3.5 Wind and wave contributions to the response of the bridge  
In this section, different load combinations are considered to compare the relative influence of wind 
forces and first-order and second-order wave excitation forces. The load effects are calculated 
considering (i) only wind loads, (ii) wind loads and first-order wave excitation forces, and (iii) wind 
loads and first- and second-order wave excitation forces.  
3.5.1 Pylons 
Fig. 12 shows the auto spectral density of the sway, heave and roll motions of the pylon and the axial 
force in the tethers in one realization. The same time series are used in the cases of different load 
combinations. The low-frequency response is dominated by wind force, as the wind force is 
considerably larger in magnitude compared to the second-order difference frequency force (Fig. 9). 
Surprisingly, the second-order sum frequency force makes only a minimal difference to the response 
of the floating pylon and the axial force in the tethers in this case.  
There are 2 peaks in the spectral density of the heave response at the same position of sway motion, as 
shown in Figs. 12(a) and (b), indicating that the heave motion is dominated by the coupling effect with 
sway. Fig. 12(c) shows that the roll motion is comprised of 2 components: one is produced by the 
coupling effect with wind-induced sway motion, and another is induced directly by the first-order 
wave force. In Fig. 12(d), the peaks on the power spectral density of the tether force are in good 
agreement with roll motion, which means that the tether force is mainly induced by roll motion instead 
of heave. Therefore, both wind and wave contribute to the axial force in the tethers; this is also 
observed in Table 4, showing similar contributions from wind and wave to the tether force under this 
environmental condition.  
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Fig. 11 Standard deviations of the section moment along the girder in the linearized and nonlinear system. (a) 
bending moment due to horizontal deflections; (b) bending moment due to vertical deflections; (c) torsional 
moment. The black solid line ― represents the results in the linearized system; the dashed red line -- represents 
the results when considering geometric nonlinearities; and the blue dashed line -- represents the results 
considering both geometric nonlinearities and nonlinear buffeting forces. 

 
Fig. 12 Auto spectral density of the sway, heave and roll motion of pylon 2# and axial force in the tethers: (a) 
sway, (b) heave, (c) roll, (d) tether axial force. The black solid line ― represents the results when there are only 
wind loads, the dashed red line --- represents the results when considering both wind loads and first-order wave 
excitation forces, and the blue solid line ― represents the results considering wind loads and first- and second-
order wave excitation force. 

Table 4 Standard deviation of the axial force in the tethers at the corners of pylon #2: (i) only wind loads, (ii) 
wind loads and first-order wave excitation forces, (iii) wind loads and first- and second-order wave excitation 

forces 
Axial force in the tethers Corner 1 Corner 2 Corner 3 Corner 4 

Case i (MN) 5.11 4.90 5.06 5.00 
Case ii (MN) 10.81 10.13 10.41 10.90 
Case iii (MN) 10.86 10.19 10.48 10.94 
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Fig. 13 (a) Displacement along the girder in the lateral, vertical and torsional directions; (b) auto spectral density 
of the displacement in the lateral, vertical and torsional directions. The line style and color representation are the 
same as in Fig. 12.  

  

 
Fig. 14 Bending moments due to horizontal and vertical deflections and torsional moments along the girder. The 
line style and color representation are the same as in Fig. 12.  

3.5.2 Girder 
The standard deviations of the horizontal, vertical and torsional motions of the girder along with the 
corresponding auto spectral densities are presented in Fig. 13; the standard deviations of the 
corresponding section moments are presented in Fig. 14. The dynamic displacement response of the 
girder in the y-direction is mainly caused by the wind loading, and the effects from the first- and 
second-order wave forces are insignificant. However, the first-order wave excitation forces contribute 
significantly to the standard deviation of the bending moment due to horizontal deflections because the 
wave force can excite higher-order lateral natural modes, as can be observed in Fig. 13(b); higher 
modes yield higher curvature, which again provides high moments even if the response is small. The 
second-order wave excitation force has a minimal influence on the standard deviation of both the 
displacement response and section moments. 
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In the vertical direction, both the displacements and section moments are dominated by wind loading. 
No high-order modes are excited by the first- and second-order sum frequency forces, whereas high-
order modes are observed in the spectral density of displacement for the torsional response. The 
amplitude of the high-mode response is larger than that in the y-displacement. However, in this high 
order mode, the girder deforms in all 3 directions, and torsional deformation is still a first-order mode 
shape. Therefore, the wave force contribution to the torsional moment is minimal compared to the 
contribution of the wave force to the bending moment. 

3.6 Environmental parameter analysis  
The variations in the standard deviation of the response of the bridge considering different significant 
wave heights and mean wind velocities are shown in Fig. 15. Considering only wind or waves, the 
load effects clearly increase with increases in the significant wave height and mean wind velocity. 
Conversely, the trends for combinations of both wind and waves are more complex, which can be seen 
for the bending moment due to horizontal deflections in the girder in Fig. 15. The standard deviation 
of the bending moment at high significant wave heights decreases as the mean wind velocity increases. 
This relationship is due to the self-excited aerodynamic forces changing the damping and stiffness of 
the system; in this case, the bending moment is reduced because the total damping for the horizontal 
motion increases. Similar trends are seen for the other load effects, which make it complicated to 
select the most severe combinations of the parameters for characterizing the environmental conditions.  

 
Fig. 15 Bending moments due to horizontal and vertical deflections and torsional moments in the most critical 
position of the girder and axial force in the tether under different wind velocities and wave heights. 

4. Conclusions 
This paper presents a study of the dynamic behavior of a three-span suspension bridge with two 
floating pylons subjected to wind and wave loads. The dynamic responses have been calculated in the 
time domain to study the influence of nonlinear effects and different load combinations on the model 
and to present some general trends of what it is important to include in the modelling of such a 
structure. Particular focus was placed on the efficient simulation of the aerodynamic self-excited 
forces and the hydrodynamic radiation forces using state space models. 
 
The dynamic responses of a linearized model, i.e., the displacement of the girder and pylon, have been 
used to verify the presented time-domain methodology by comparing the obtained response statistics 
to the frequency domain results. The results illustrate that the time domain methodology accurately 
captures the dynamic behavior of the structure, as the time and frequency domain results are in good 
agreement. The computational efficiency is evaluated by comparing the time required in the cases with 
and without considering frequency-dependent forces. The former case takes 13% more computational 
time, which infers that the state-space model based time domain method is efficient. 
 
The presented time domain method is then applied to the analysis of the nonlinear effects and the 
influence of wind and wave actions. It shows that geometric nonlinearities and second-order wave 
force have only a minimal influence for the particular case considered. However, only the one 
parameter Pierson-Moskowitz spectrum has been applied in this study, and the influence of the 
second-order wave loads should be further investigated considering several wave height and peak 
period combinations. A screening of combinations of significant wave heights and mean wind 
velocities illustrates that the section moment increases monotonically with the wave height. However, 
the trend is more complex for increasing mean wind velocities, as the properties of the system are 
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altered due to the aerodynamic self-excited forces; the complexities make it challenging to select the 
combinations of the environmental parameters to be used in the design of the components of the 
structure. 
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Appendix: Multi-mode theory 
This appendix outlines the frequency domain calculation of the dynamic response of the three-span 
suspension bridge with two floating pylons. The steps are illustrated in Fig. A1, and a brief 
explanation is given below. 
Structural modal analysis 

1.  The beams in the FE model define the structural system matrices sM  and sK . Additionally, 
the frequency-independent added mass ( )h ∞M , the hydrostatic stiffness hK , and the time-
invariant mean wind force and mean drift force meanF  and WAF , respectively, are included in 
the finite element model. The modes ϕ  and frequencies ω  are calculated, and the system is 
transformed to generalized coordinates. 0M , 0C , and 0K  denote the generalized mass, 
damping and stiffness matrices, respectively.  

  
Aerodynamics 

2. The aerodynamic damping and stiffness matrices in modal coordinates, aeC  and aeK , 
respectively, are calculated using the mode shapes obtained in step 1 [5].  

3. qB  contains the force coefficients of the girder and ( , , , )v x z z ω+ ∆ ∆S  represents the cross 
spectral densities matrix of the turbulent velocity components of the wind field at two points, 
as illustrated in Eq. (17). BuffS is the generalized buffeting force spectrum[5]. 

 
Hydrodynamics 

4. hm and hc  are the frequency-dependent hydrodynamic added mass and damping, respectively. 
As in step two, these matrices must be transformed to generalized coordinates, hM  and hC .  

5. (1) ( , )ω θT represents the transfer function for the first-order wave excitation forces, which is 
equal for both floating pylons, (1) (1)

1 2( , ) ( , )ω θ ω θ=T T . Here, subindices 1 and 2 refer to the first 
and second pylons, respectively. ( , )

ij
Sη ω θ  is the auto or cross-spectral density of the water 

elevation at the position of the pylons.  

( , ) ( , ) exp( i ( cos sin ))
ij

S S x y
gη η

ω ω
ω θ ω θθθ  = − ∆ + ∆  

pS  contains the cross-spectral densities of the first-order wave excitation forces acting on the 
two floating pylons and is transformed into generalized coordinates pS [45]. 

6. (2 )
1 2 1 2( , , , )ω ω θθ ±T  is the full quadratic transfer functions for the second-order sum and 

difference frequency force, as discussed in Chapters 2.3.2 and 2.3.3. The cross-spectral 
densities of the second-order wave forces of the two floating pylons have not been considered 
( 2 0( )

ijp i j± = ≠S ). The derivation of 2
iip
±S  is provided in [37]. 2

p
±S  represents the second-order 

wave excitation force spectrum in generalized coordinates.  
 
Response calculation 

7. The total generalized system matrices are established by summing the contribution from the 
structure, the aerodynamics and the hydrodynamics. These matrices are used to establish the 
generalized transfer function ( )ωH . 

8. The cross-spectral density matrix is calculated in generalized coordinates ( )u ωS . 
9. The response is transformed from generalized to physical degrees of freedom ( , )u xωS . 
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Fig. A.1 Theory of the multimode method.  
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