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Abstract. Centers of categories capture the natural operations defined on

their objects. Homotopy coherent centers are an extension of this notion to

categories with an associated homotopy theory. These centers can also be
interpreted as Hochschild cohomology type invariants in contexts that are not

necessarily linear or stable, and we argue that they are more appropriate to
higher categorical contexts than the centers of their homotopy or derived cat-

egories. We present an obstruction theory for realizing elements in the centers

of homotopy categories, and a Bousfield–Kan type spectral sequence that com-
putes the homotopy groups. Several non-trivial classes of examples are given

as illustrations of the general theory throughout.

Introduction

Whenever we are given a small category C, we may ask for a description of
all natural operations on its objects. These are the families Φ = (Φx : x → x |x ∈
Obj(C)) of endomorphisms that are natural in the objects x, and they form a
monoid under composition. In fact, a more conceptual description of this monoid
presents it as the endomorphism monoid of the identity functor C→ C in the cat-
egory of all such functors and natural transformations. Naturality implies immedi-
ately that this monoid is always abelian. This observation is usually attributed to
Eckmann and Hilton. As a classical example, for the category of commutative rings
of characteristic p, where p is a prime number, this monoid is the free (abelian)
monoid on one generator: Frobenius. For a more recent computation with a simi-
lar outcome see [Szy]. On the other hand, if the category in question is a monoid
itself–a category with one object, then we have just given a long-winded description
of the center of this monoid, the subset of elements that commute with all of its
elements. In general, the endomorphism monoid of the identity functor is often
referred to as the center Z(C) of C, for instance by Bass [Bas68, II, §2] and Mac
Lane [Mac71, II.5, Exercise 8], and we will follow this terminology. Bernstein,
in [Ber84, 1.9], defined the center of abelian categories, but his main object of
interest was the category of smooth representations of a p-adic group.

2010 Mathematics Subject Classification. 55U40 (18G40, 18G50, 55S35).
Key words and phrases. Centers, homotopy coherence, homotopy limit problems, spectral

sequences, obstruction theory.

c©0000 (copyright holder)

1



2 MARKUS SZYMIK

In the present paper, we study a refined notion of center, the homotopy coherent
center Z(C), for categories C that admit a homotopy theory. This center is defined
directly within C rather than on the level of the homotopy category. Briefly, its
elements will determine families Φ = (Φx : x → x |x ∈ Obj(C)) of endomorphisms
in C, but it is no longer required that these are natural in the strict sense. Instead,
these elements will also come with continuously chosen homotopies Φyf ' fΦx
for all arrows f : x→ y in C and additional higher homotopies that, for instance,
show that for any other arrow g : y → z the two evident homotopies Φzgf ' gfΦx
that can now be obtained from Φf , Φg, and Φgf , are also homotopic. The actual
formulas bear very close resemblance to those used in the definition of Hochschild(–
Mitchell) cohomology [Mit72]. This suggests that the idea of deriving the notion
of the center of a category is not new, in particular in the additive context of
homological algebra and differential graded categories. There, it already appeared
in an unpublished preprint by Keller [Kel]. The ideas presented in the present
paper lead to new results in the differential graded context as well. This has been
realized in joint work with Neumann [NS], with applications to the characteristic
homomorphism from the Hochschild cohomology of a differential graded algebra,
or differential graded category, to the graded center of its derived category.

Here we will work in a non-linear and unstable context: categories enriched
in spaces. Spaces will be (fibrant) simplicial sets, so that categories enriched in
spaces will be categories enriched in (fibrant) simplicial sets or (fibrant) simplicial
categories for short. The reader unfamiliar with simplicial categories will be able
to replace them by topological categories, but even in that setting, (co)simplicial
methods are indispensable for our approach. Simplicial categories are by now a well-
established context in which to do homotopy theory, and there is even a homotopy
theory of simplicial categories themselves [Ber07]. This is relevant here because
homotopy coherent centers are invariant under the corresponding notion of weak
equivalence for simplicial categories, Dwyer–Kan equivalence (Theorem 4.1). We
also note that the present definition automatically extends to other contexts that
have an associated homotopy theory, such as Quillen model categories or quasi-
categories, by passing to the associated simplicial categories that they define.

The homotopy coherent center of any category enriched in spaces has a canon-
ical E2 multiplication (Theorem 3.1). This means, in particular, that these cen-
ters are A∞ monoids (coherently associative, i.e. have an action of an A∞ = E1

operad), and that the multiplication is homotopy commutative (because it extends
to an action of an E2 operad). This is the analogue of Eckmann–Hilton in the
present setting, and it can be proved using the methods introduced by McClure
and Smith in [MS02], [MS04a], and [MS04b] for their solution of the Deligne
conjecture.

In Section 5, we discuss the examples given by simplicial monoids and, in
particular, simplicial groups. In the latter case, the homotopy coherent centers are
related to other notions of centers studied before in homotopical group theory, see
the ICM surveys by Dwyer [Dwy98] and Grodal [Gro10]. For instance, if G is a
simplicial group, then its center consists of the fixed points under the conjugation
action, and the homotopy fixed points are equivalent to the homotopy coherent
center as defined here (Theorem 5.1). On the other hand, the homotopy center
of a p-compact group is defined as the loop space of the space of self-maps of the
classifying space based at the identity, see [MN94] and [DW95], and this is also
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equivalent to the homotopy coherent center in the case where both of them are
defined (Corollary 5.3).

Back in our general context, there is also a very naive and rigid notion Z(C) of
a center for simplicial categories C based on (strict) equalities. The relation of the
homotopy coherent center to this simplicial center takes the form of a morphism

Z(C) −→ Z(C).

The question whether such a map from a strict limit to a homotopy limit is an
equivalence (or at least some sort of completion) is called a homotopy limit problem,
following Thomason [Tho83] and Carlsson [Car87]. We will discuss this question
for the map displayed above in Section 6 where we also give an example that shows
that the situation in the present context is more complicated.

There is a canonical map Z(C)→ Z(Ho C) from the homotopy coherent center
to the center (in the ordinary sense) of its homotopy category Ho C. Because the
target is discrete, this map factors through the components:

π0Z(C) −→ Z(Ho C).

In general, this latter map will be neither surjective nor injective. Here we will
explain the difference between the homotopy coherent centers of simplicial cate-
gories C and the centers of their homotopy categories Ho C. In Section 7, using
the methods initiated by Bousfield and Kan, see [BK72] and [Bou89], we pro-
vide means to study the failure of surjectivity by developing an obstruction the-
ory (Theorem 7.5) for the realization of an element in the target by an element in
the homotopy coherent center. As for injectivity, we show that there is a spectral
sequence (Theorem 7.1) with E0,0

2 related to Z(Ho C) that not only targets the
kernel of that map but also the higher homotopy groups of the homotopy coherent
center, information that is entirely invisible from the perspective of the homotopy
category. The passage to the center of the homotopy category reappears from this
viewpoint as an edge homomorphism.

Fringed Bousfield–Kan type spectral sequences in unstable general contexts
may have a less pleasant algebraic behavior than the spectral sequences of abelian
groups that we usually meet in homological algebra. In our situation, the homotopy
commutative multiplication of the coherent centers leads to some simplification. In
an earlier version of this paper, this was illustrated by spelling out the details for
the category of groups, where the homotopy theory is induced by conjugation of
homomorphisms, so that the homotopy category is the category of representations,
and which is related to the theory of bands in the sense of Giraud [Gir71]. This
has now be developed with Meir [MS15] in the general setting of Drinfeld centers
of bicategories.

The final Section 8 deals with another class of examples of simplicial cate-
gories: simplicial groupoids. We show that the theory presented here is related to
very classical and difficult questions in (unstable) homotopy theory such as spaces
of homotopy self-equivalences. That section also includes examples of simplicial
categories where the homotopy coherent centers have higher homotopy groups, and
where the map π0Z(C)→ Z(Ho C) is not injective or not surjective.

All categories considered in this paper are small. The definitions, theorems, and
examples exposed here are the basis for the treatment of homotopy coherent centers
of large categories such as categories of simplicial diagrams, Bousfield localizations,
and categories of universal algebras with Dwyer [DS].
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1. Categories enriched in spaces and their centers

We will uses combinatorial models (based on (co)simplicial techniques) through-
out this text. If X and Y are simplicial sets, then Mor(X,Y ) will denote the set of
simplicial maps X → Y . These are the vertices in the mapping space Map(X,Y ).
The general formula for the n-simplices is Map(X,Y )n = Mor(∆n ×X,Y ).

A space will be a Kan complex, that is a fibrant simplicial set with respect to
the Kan model structure. If Y is a space in this sense, so is Map(X,Y ).

We will consider small categories C that are enriched in spaces, and we will
write

C(x, y)

for the space of maps from the object x to the object y. Of course, if we are
considering the category of spaces, we will continue to write Map(X,Y ). Categories
enriched in spaces are the fibrant simplicial categories of [Ber07].

Let C be a category enriched in spaces. For any integer n such that n > 0,
we will use Cn as our notation for the (ordinary) category of n-simplices in C. In
particular, we will call C0 the underlying category of C. There is another way to
pass from a category C enriched in spaces to an ordinary category: the homotopy
category Ho C. It has the same set of objects, but the set of morphisms x → y
in Ho C is the set π0C(x, y) of components of the mapping space C(x, y).

Simplicial centers. We can now define a strict notion of center for categories
enriched in spaces.

Definition 1.1. Let C be a category enriched in spaces. The simplicial cen-
ter Z(C) of C is the equalizer (in the category of spaces) of the two maps

(1.1)
∏
x

C(x, x) −→
∏
y,z

Map(C(y, z),C(y, z))

that are given by sending a given family Φ = (Φx) to the map f 7→ fΦy and the
map f 7→ Φzf , respectively, in the (y, z) component.

For discrete categories C, we may replace the target with∏
f : y→z

C(y, z),

but the alternative above is adapted to work in the simplicial context as well.
We can determine the set of n-simplices of the simplicial center by direct inspec-

tion.

Proposition 1.2. For every category C enriched in spaces, there are isomor-
phisms

Z(C)n ∼= Z(Cn)

that are natural in n.

In particular, the elements of the center Z(C0) of the underlying category C0

appear as the vertices of the simplicial center Z(C) of C.
The simplicial center of a category enriched in spaces is a simplicial monoid:

a simplicial submonoid of the product of the endomorphism monoids C(x, x), by
Definition 1.1.

Corollary 1.3. For every category C enriched in spaces, the simplicial cen-
ter Z(C) is a simplicial abelian monoid.
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Proof. As has been mentioned in the introduction, by Eckmann and Hilton,
the centers Z(Cn) of the discrete categories Cn are abelian. (One way to see it is
in [Kas95, XI.2.4].) Now the corollary follows from the preceding proposition. �

The following result states that the homotopy types of simplicial centers are as
simple as possible.

Corollary 1.4. For every category C enriched in spaces, the simplicial cen-
ter Z(C) is a product of Eilenberg–Mac Lane spaces.

Proof. This follows immediately from the preceding corollary and Moore’s
theorem about the homotopy types of simplicial abelian monoids, see [Moo55]. �

We remark that centers in enriched contexts have been studied before, see
Lindner’s paper [Lin80], for instance.

2. Homotopy coherent centers

The simplicial center of a category enriched in spaces has been defined, in
the preceding Section 1, as a certain limit, see also Remark 2.1 below. Now we
will define the homotopy coherent center of a category enriched in spaces as the
corresponding homotopy limit. We will start with a brief review of the cosimplicial
replacement of the homotopy end construction in this particular case, referring
to [CP97] for more general information. See also [Wei01] for the case when the
source category is discrete.

Cosimplicial replacements. Let C be a category enriched in spaces. For
any integer n > 0 we can consider the space

ΠnC =
∏

x0,...,xn

Map(C(x1, x0)× · · · ×C(xn, xn−1),C(xn, x0))

where the product runs over the (n + 1)-tuples of objects of C. If Φ is a vertex
in ΠnC, then it can be evaluated on n-tuples (f1, . . . , fn) of composable arrows

x0
f1←− x1

f2←− x2 ←− . . .←− xn−1
fn←− xn

to give Φ(f1, . . . , fn) ∈ C(xn, x0). Together with the evident structure maps, this
defines a cosimplicial space Π•C: The coface maps Πn−1C→ ΠnC are given by

(dkΦ)(f1, . . . , fn) =


f1Φ(f2, . . . , fn) k = 0

Φ(f1, . . . , fkfk+1, . . . , fn) 0 < k < n

Φ(f1, . . . , fn−1)fn k = n

for k = 0, . . . , n, and the codegeneracy maps Πn+1C→ ΠnC are given by

(skΦ)(f1, . . . , fn) = Φ(f1, . . . , fk, id, fk+1, . . . , fn)

for k = 0, . . . , n.

Remark 2.1. For n = 0 and n = 1, we obtain the source and target of (1.1),
and we recover the definition of the simplicial center Z(C) as the equalizer of the two
coboundaries Π0C→ Π1C. This equalizer is the limit lim Π•C of the cosimplicial
space Π•C.
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We note that the cosimplicial space Π•C is canonically pointed by the families
of composition maps (interpreted as identities in low dimensions).

The category of cosimplicial simplicial sets comes with a least three different
Quillen model category structures with level-wise equivalences: The most useful
one is the Reedy structure that is already implicit in [BK72]. The other two are
the projective and injective model structure on the diagram category of functors
form ∆ to simplicial sets. In the projective model structure, the fibrant objects are
the cosimplicial spaces, that is the cosimplicial simplicial sets that are level-wise
Kan complexes. So Π•C is a cosimplicial space, as has already been implicit in the
terminology used above. It is actually better:

Lemma 2.2. If C is a category enriched in spaces, the cosimplicial space Π•C
is Reedy fibrant.

Proof. This can be checked by hand: It has to be verified that certain maps

(2.1) ΠnC −→Mn−1Π•C,

for all n > 0, are fibrations. Here, the target Mn−1Π•C ⊆ (Πn−1C)n is the match-
ing space, the subspace defined by the n-tuples with consistent codegeneracies, and
the map (2.1) is also given by codegeneracies. This already implies the result,
because the codegeneracies are given by (projections and) evaluations on identities.
The latter, in turn, are induced by insertions of identity factors, which are injective,
hence cofibrations. �

Fibrancy in the injective model structure is the strongest condition. It implies
the equivalence of the homotopy limit with the actual limit, see [GJ99, VIII.2.11].
It will follow from our discussion in Section 6 that Π•C is not injectively fibrant in
general.

Homotopy coherent centers. We now come to the definition that is basic
to the rest of this text.

Definition 2.3. Let C be a category enriched in spaces. The homotopy coher-
ent center Z(C) of C is defined as the totalization

Z(C) = Tot(Π•C) ' holim Π•C

of the cosimplicial space Π•C.

We note that the indicated equivalence of the totalization with the homotopy
limit follows from Lemma 2.2 above: This is a general property of Reedy fibrant
cosimplicial spaces, see [GJ99, VIII.2.12]. It also follows that Z(C) is a space (Kan
complex) if the category C is enriched in spaces (locally Kan). See also [CP97,
Proposition 2.1] for a direct proof of a more general statement.

A vertex in the homotopy coherent center Z(C) is given by (the adjoint to) a
family Φ = (Φn |n > 0) of maps

Φn : ∆n ×C(x1, x0)× · · · ×C(xn, xn−1) −→ C(xn, x0)

indexed by all choices of n and (n + 1)-tuples x0, . . . , xn of objects that are con-
sistent with the cosimplicial structure maps. If we choose n = 0, then we obtain
a family of morphisms Φ0

x : x → x, and if we choose n = 1, then we obtain homo-
topies ∆1 ×C(y, z)→ C(y, z) between the maps f 7→ Φ0

zf and f 7→ fΦ0
y. In par-

ticular, these give homotopies Φ0
zf ' fΦ0

y that show that the homotopy classes of
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the Φ0
x define an element in the center of the homotopy category. For n > 2, the Φn

contain higher coherence information.

Remark 2.4. The center of an ordinary category is the monoid of all natural
transformations from the identity to itself, and we have here presented a homotopy
coherent generalization of this idea that is adapted to the context of categories
enriched in spaces. For later purposes, it will be useful to know that there are
similar models for spaces of coherent natural transformations between simplicial
functors F,G : C→ D as well: We build a cosimplicial space Π•(F,G) with

Πn(F,G) =
∏

x0,...,xn

Map(C(x1, x0)× · · · ×C(xn, xn−1),D(Fxn, Gx0))

in dimension n. Then N(F,G) = Tot Πn(F,G) may be considered as the space of
all coherent natural transformations F → G. Taking F = idC = G, we recover the
homotopy coherent center as Z(C) = N(idC, idC). See [CP96] and [CP97] for this
and generalizations.

3. Multiplicative structure

We will now address the algebraic structure on the homotopy coherent centers
that reflects the ‘composition’ of coherent natural transformations.

An A∞ multiplication. We have seen in Corollary 1.3 that the simplicial
center Z(C) of a category C enriched in spaces is a simplicial abelian monoid. I
know of no reason why the homotopy coherent center Z(C) should have a canonical
simplicial monoid structure as well. However it does come with a homotopy commu-
tative A∞ structure, and that is just as good for the purposes of homotopy theory.
To see this, we would like to use the criteria for operad actions on totalizations of
cosimplicial objects as presented in [MS02], [MS04a], and [MS04b].

These cited papers are written topologically, so as to be able to concatenate
paths, for instance. Still their results can be used here: Both geometric realization
and singular complex commute with finite products, and the homotopy coherent
center will turn out to be invariant under equivalences (Theorem 4.1). Therefore,
given a simplicial category C we can first check that the homotopy coherent center
of the topological category |C| has an action of a topological A∞ operad using
the results from McClure and Smith. Then we infer that the homotopy coherent
center of the simplicial category Sing(|C|) has an action of a simplicial A∞ operad.
Since Sing(|C|) is equivalent to C, this proves our claim.

With these technicalities out of the way, we need to find strictly associative
and unital pairings

m = mp,q : ΠpC×ΠpC −→ Πp+qC

that satisfy

dkm(Φ,Ψ) =

{
m(dkΦ,Ψ) k 6 p

m(Φ, dk−pΨ) k > p

m(dp+1Φ,Ψ) = m(Φ, d0Ψ)

skm(Φ,Ψ) =

{
m(skΦ,Ψ) k < p

m(Φ, sk−pΨ) k > p
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in order to deduce that Z(C) = Tot(Π•C) is an A∞ monoid [MS04b, Section 3].
The reader may check that

mp,q(Φ,Ψ)(f1, . . . , fp, fp+1, . . . , fp+q) = Φ(f1, . . . , fp)Ψ(fp+1, . . . , fp+q)

satisfies these conditions in our case.

Homotopy commutativity. As suggested by the observation of Eckmann
and Hilton, we will now proceed to see that the homotopy coherent center not
only has an A∞ = E1 structure, but in fact is automatically commutative up to
homotopy in the sense that this structure can be enhanced to an E2 structure.

Theorem 3.1. For every category C enriched in spaces, the homotopy coherent
center Z(C) comes with an E2-multiplication; it is a homotopy commutative A∞
monoid.

Proof. Again, we use the work of McClure and Smith cited above, with similar
provisos concerning topological versus simplicial categories. Accordingly, we need
to turn Π•C into a (non-symmetric) operad with an associative multiplication with
unit [MS04b, Section 10].

For the operad structure, it suffices to give the insertion maps

◦i : ΠnC×ΠjC −→ Πn+j−1C,

and we do so by defining

(Φ ◦i Ψ)(f1, . . . , fn+j−1) = Φ(f1, . . . , fi−1,Ψ(fi, . . . , fi+j−1), fi+j , . . . , fn+j−1).

The additional structure of an associative multiplication with unit boils down to
a pair of vertices µ ∈ Π2C and ε ∈ Π0C. These have to be chosen such that the
two conditions µ(µ, id) = µ(id, µ) and µ(ε, id) = id = µ(id, ε) are satisfied. In our
case, we can define ε to be the family (idx) of identity morphisms idx : x → x,
and µ to be the family of composition maps C(x1, x0)×C(x2, x1)→ C(x2, x0)
that send (f1, f2) to f1f2.

Again, it is straightforward to verify that these maps satisfy the required con-
ditions. �

Corollary 3.2. For every category C enriched in spaces, the set π0Z(C) of
components of the homotopy coherent center Z(C) is a commutative monoid.

Remark 3.3. In the additive context of homological algebra and differential
graded categories, the idea of deriving the notion of the center of a category has
already appeared in an unpublished preprint by Keller [Kel]. In the same context,
Tamarkin [Tam07] considers a subspace of a more general many objects Hochschild
object. Batanin and Markl [BM12] obtain the classical Hochschild complex of
a differential graded category as a special case of a more general construction.
See [KT05] for another non-linear version of Deligne’s conjecture in a different
setting. In the linear context, a version for differential graded categories was proven
by Tamarkin [Tam07]. Recently, Batanin and Markl [BM15] gave a proof of a
more general statement which is applicable, in particular, to topologically enriched
categories.
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4. Functoriality and equivalences

In general, a simplicial functor F : C→ D between categories C and D enriched
in spaces does not induce a morphisms between the centers, in neither direction.
This is already clear for discrete monoids. However, centers do allow for some
functoriality, and this will be discussed in the present section. The main result
will be the invariance of the homotopy coherent center under weak equivalences of
simplicial categories as defined by Dwyer and Kan in [DK80, 2.4]. Before we do
so, let us discuss a different situation that also arises sufficiently often.

Quotients. There is always a morphism

Z(C)→ Z(Ho C),

defined by sending a coherent family Φ = (Φn) to the homotopy class [Φ0]. (We use
the homotopies Φ1 to show that this is well-defined.) The target of the morphism
is discrete, and this map factors to give the second map

π0Z(C) −→ Z(Ho C)

displayed in the introduction.
More generally, using functorial Postnikov approximations for spaces, which

are simplicial functors Pn : S→ S that preserve products, we may also consider the
Postnikov approximations C→ PnC of the categories enriched in spaces C. The
homotopy category is the special case n = 0, i.e. P0C = Ho C.

We obtain maps Z(C)→ Z(PnC) and more generally Z(PmC)→ Z(PnC) for
all m > n. We will later see that Z(PnC) is n-truncated, but it will not be the n-
truncation of Z(C) in general. For instance, in the case n = 0, the purpose of the
obstruction theory that will be developed in Section 7 is to explain the (potential)
failure of the map π0Z(C)→ Z(Ho C) to be a bijection.

Equivalences. Recall from [DK80, 2.4] that a simplicial functor F : C→ D
between simplicial categories is called a weak equivalence if the following two con-
ditions are satisfied: First, the induced functor HoF : Ho C→ Ho D between the
homotopy categories has to be an equivalence of (ordinary) categories, and second,
for each pair of objects x, y of C, the induced map C(x, y)→ D(Fx, Fy) has to
be a weak equivalence of spaces. Two simplicial categories are weakly equivalent if
there exists a (finite) zig-zag of weak equivalences between them.

Theorem 4.1. Weakly equivalent categories enriched in spaces have weakly
equivalent homotopy coherent centers.

Proof. Let C and D be weakly equivalent categories enriched in spaces. It will
be sufficient to deal with the case in which we have a weak equivalence F : C→ D
between them, and to produce a zig-zag of weak equivalences between their homo-
topy coherent centers.

As an intermediate step, we can use the space N(F, F ) of homotopy coherent
natural transformations from the functor F to itself as explained in Remark 2.4.
For any simplicial functor F : C → D, pre- and post-composition with F induces
maps

Z(C)
F∗ // N(F, F ) Z(D)

F∗
oo
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that are compatible with the multiplications.
If F : C → D is a weak equivalence, then so are F∗ and F ∗, and the result

follows. �

5. Monoids and groups

To illustrate the two different notions of centers that we have defined for cat-
egories enriched in spaces so far, simplicial centers and homotopy coherent cen-
ters, let us study these in the case where the category enriched in spaces has
just one object, so that it is a simplicial monoid M whose underlying simplicial
set is a Kan complex. This happens, for instance, if M is a simplicial group, or
if M = Map(X,X) for a Kan complex X.

From Section 1, we recall that the simplicial center Z(M) is a simplicial abelian
monoid with n-simplices Z(M)n = Z(Mn), and its homotopy type is determined by
its homotopy groups since it is a product of Eilenberg–Mac Lane spaces.

Let us now inspect the homotopy coherent center Z(M). The definition from
Section 2 gives

Z(M) = Tot(Π•M).

By inspection, the cosimplicial space Π•M = Map(M•,M) is obtained by mapping
the bar construction M• = B•(M) into M . The bar construction B•(M) is the
simplicial space with Bn(M) = Mn, faces are given by multiplication in M , except
for the first and last one, which omit the corresponding entries, and degeneracies
are given by inserting the identity.

The vertices of Z(M) are the coherent families of maps

∆n −→ Map(Mn,M),

or equivalently

zn : Mn −→ Map(∆n,M)

by adjunction. (Note the different meanings of the superscript: Mn is the n-th
cartesian power, whereas in ∆n the n indicates the dimension.) A vertex in the
homotopy coherent center Z(M) therefore gives for n = 0 an element z = z0 in M ,
and for n = 1 and each element m ∈M a path

z1(m) : mz −→ zm

in M , and for n = 2 it gives for each pair of elements m,n in M a 2-simplex z2(m,n)
inM that gives a homotopy between the two potentially different pathsmnz → zmn
which are z1(m · n) and (z1(m) · n) ◦ (m · z1(n)).

mzn
z1(m)·n

��
mnz

m·z1(n)
>>

z1(m·n)
// zwn

This should give an idea of the data encoded in the homotopy coherent center in
the case of simplicial monoids.

We will now specialize a bit more in order to relate our definitions to another
branch of contemporary topology: homotopical group theory.



HOMOTOPY COHERENT CENTERS VERSUS CENTERS OF HOMOTOPY CATEGORIES 11

Simplicial groups. In contrast to the general monoid, the elements in a
group G all have inverses, so that we have a conjugation action of G on itself.
The fixed points of this action form the center Z(G) of G in the traditional sense.

This suggests that the homotopy fixed point space of the conjugation action
of G on itself is another natural candidate for the notion of a homotopy coherent
center. It can be defined as the space

MapG(EG,Ad(G))

of equivariant maps from a free resolution EG→ ? of the universal G-fixed point ?
to Ad(G). The following result shows that the homotopy coherent center in our
sense agrees with this concept, when the latter is defined.

Theorem 5.1. For every simplicial group G, there is an equivalence

Z(G) ' MapG(EG,Ad(G))

of its homotopy coherent center with the homotopy fixed point space of the conju-
gation action of G on itself.

Proof. This follows from the induction-restriction-adjunction associated to
the diagonal

G −→ Gop ×G, g 7−→ (g−1, g).

Namely, we have

G ∼= ind(?),

where G is the G-biset with the action of G by multiplication from the right and
from the left, as well as

Ad(G) ∼= res(G).

Using this, we can write

MapG(EG,Ad(G)) ∼= Hom(B(?,G,G), res(G))

∼= Hom(ind B(?,G,G), G)

∼= Hom(B(ind(?), G,G), G)

∼= Hom(B(G,G,G), G).

Since the G-space G, thought of as a functor from G to G-spaces, is full and faithful,
this is isomorphic to

Hom(B(G,G, IdG), IdG) = Z(G),

as was to be shown. �

We note that the equivalence in the theorem allows us to model the naturally
given map Z(G)→ Z(G) as the inclusion of the fixed points into the homotopy
fixed points.

The following (folklore) result gives another presentation of the homotopy fixed
point space of the conjugation action of G on itself, and hence also of the homotopy
coherent center of G.

Proposition 5.2. For every simplicial group G, there is an equivalence

MapG(EG,Ad(G)) ' Ω(Map(BG,BG), id)

with the space of loops in the space of self-maps of BG which are based at the
identity.
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Proof. The space MapG(EG,Ad(G)) can be identified with the space of sec-
tions of the Borel construction bundle

EG×G Ad(G) −→ BG,

and the space Ω(Map(BG,BG), id) can be identified with the space of sections of
the free loop space evaluation bundle

ΛBG −→ BG.

In remains to note that there is an equivalence

EG×G Ad(G) ' ΛBG

of spaces over BG. See the original sources [Goo85], [BF86], or [BHM93]. �

Corollary 5.3. For every simplicial group G, there is an equivalence

Z(G) ' Ω(Map(BG,BG), id)

of its homotopy coherent center with the space of loops in the space of self-maps
of BG which are based at the identity.

The right hand side of this equivalence is used as a definition for the homotopy
center of p-compact groups by Dwyer and Wilkerson [DW95].

A still more general formula for the homotopy coherent center of a simplicial
groupoid will be given later, see Proposition 8.2.

6. The homotopy limit problem

It is clear from our description of the simplicial center and the homotopy coher-
ent center as a limit and as a homotopy limit, respectively, that there is a natural
map

(6.1) Z(C) −→ Z(C).

The question whether this map is an equivalence, or how far off it is, can be com-
pared with the difficult homotopy limit problem, see Thomason [Tho83] and Carls-
son [Car87].

The two notions of center agree for discrete categories.

Proposition 6.1. For every discrete category C, the arrow (6.1) is an equiv-
alence; the domain is discrete.

Of course, this results applies, in particular, to discrete monoids, discrete
groups, and discrete groupoids.

We are now in a position to use the different descriptions of the homotopy
coherent center of a simplicial group G given in Section 5 in order to discuss the
homotopy limit map Z(G)→ Z(G) in various other special cases. Here is another
case that can be dealt with.

Proposition 6.2. Let A be a simplicial abelian group. If A is an Eilenberg–
Mac Lane space or if A has the homotopy type of an abelian compact Lie group,
then the arrow Z(A)→ Z(A) is an equivalence.
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Proof. We have to show that the natural map A = Map(?,A)→ Map(BA,A)
is an equivalence. This follows in the first case from Thom’s determination [Tho56]
of the homotopy type of the mapping space into an Eilenberg–Mac Lane space. The
second case follows from the same result and the fact that A is a product of a finite
group with a torus. �

We will revisit the first case of the preceding result in Example 8.6 from a
different perspective.

The consequence of Proposition 6.2 does not hold for all simplicial abelian
groups in general, even though they are known to be products of Eilenberg–Mac
Lane spaces by Moore’s theorem [Moo55].

Example 6.3. Let us consider the (abelian) group A of all complex line bun-
dles over the circle. Up to homotopy (or isomorphism), there is only one. This
immediately gives

π0Z(A) = π0A = 0.

But as a space (and as a group), this can be modeled as

A = Map(S1,CP∞) ' S1 × CP∞.

Therefore

π0Z(A) ∼= π1(Map(BA,BA), id) ∼= Z.

This shows that the behavior of the map Z(A)→ Z(A) can be rather unpredictable
on components in general.

This example shows that the homotopy limit map (6.1) need not be an equiv-
alence, not even after passage to classifying spaces and on homology with finite
coefficients. This may be compared to the following result.

Theorem 6.4. ([DW95, Theorem 1.4]) Let G be connected compact Lie group.
Then the natural map

BZ(G) −→ BZ(G)

induces an isomorphism on homology with finite coefficients.

Earlier results in this direction had been obtained in [JMO92, Theorem 3] in
the case when G is simple, and in [DM87] when G = SU(2).

7. Spectral sequences and obstructions

In this section we answer the question about the kernel and image of the map

π0Z(C) −→ Z(Ho C),

by means of spectral sequences and obstruction theory, respectively.
A ubiquitous problem when discussing realization questions is the potential

emptiness of realization spaces. This is irrelevant here, since the (homotopy coher-
ent) center is always nonempty. Moreover, its set of components has the structure of
an abelian monoid. This leads to a simplification of another difficulty that we often
encounter when computing homotopy groups of spaces by means of such spectral
sequences: the lack of (abelian) group structures on π0 and π1.
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Spectral sequences. If C is a category enriched in spaces, then its homo-
topy coherent center Z(C) has been defined as the totalization of the cosimplicial
space Π•C. This is pointed and fibrant, see Lemma 2.2. Bousfield and Kan,
see [BK72] and [Bou89] as well as the textbook [GJ99, VIII.1], have shown that
there is always a spectral sequence for the totalization of such a cosimplicial space.

Theorem 7.1. For every category C enriched in spaces, there exists a fringed
spectral sequence with target πt−sZ(C) and

Es,t2 = πsπtΠ
•C

for t > s > 0. In particular,
E0,0

2 6 Z(Ho C)

is a submonoid of the center of its homotopy category.

Proof. Only the last statement requires proof. The E1 term is given as

Es,t1 = NsπtΠ
•C.

In particular, the 0-line is
E0,t

1 = πtΠ
0C

with differential given by the difference between the two coface operators d0 and d1.
This gives

E0,t
2 = π0πtΠ

•C.

For t = 0, we have

E0,0
1 =

∏
x

π0C(x, x),

and this consists of the families Φ of homotopy classes Φx : x → x. These lie in
the equalizer π0π0Π•C if fΦx and Φyf are homotopic for all f : x → y in C, and
these homotopies can be chosen continuously in f . In particular, the family Φ is
in the center Z(Ho C) of the homotopy category Ho C, where continuity in f is not
required. �

Remark 7.2. As the proof has shown, the difference between E0,0
2 and the

center of the homotopy category is owed by the fact that the maps

π0 Map(C(y, z),C(y, z)) −→ Map(π0C(y, z), π0C(y, z))

need not be injective.

Compared with the general spectral sequence of Bousfield–Kan type, the spec-
tral sequences in Theorem 7.1 have a relatively well-behaved left lower corner. The
monoidal structure on Π•C leads to abelian group structures from the E1 term on,
with the possible exception of E0,0

r . In that spot, our spectral sequence starts with

E0,0
1 =

∏
x

π0C(x, x),

which–in the most general case that we consider–is just a monoid. But, the struc-
ture E0,0

2
∼= Z(Ho C) on the next term is already an abelian monoid. This is as good

as we may hope for in the context of centers.
The manner of convergence of Bousfield–Kan type spectral sequences is often

a delicate issue, and we do not have to add anything to the original results here.
See again [BK72], [Bou89, §4], and [GJ99, VI.2]. We would only like to point
out the following result for truncated situations.
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Proposition 7.3. If C is a category enriched in spaces such that all of its
mapping spaces C(x, y) are n-truncated for an n that is independent of the objects x
and y, then the spectral sequence of Theorem 7.1 converges completely to its target.

This proposition applies, in particular, to categories enriched in spaces that
arise form categories enriched in groupoids (n = 1).

Before we turn towards the obstruction theory that always comes with a fringed
Bousfield–Kan type spectral sequence, let us briefly collect the different types of
truncations for homotopy coherent centers that we have considered so far. For
all s > 0 and n = t− s > 0 there are maps

Z(C) // PnZ(C) // Z(PnC)

Tot(Π•C) // Tots(Π
•C)

and from the position of the corresponding regions in our spectral sequence it is
clear that we cannot expect these to be equivalences in general.

Obstructions. The fringed spectral sequence of Theorem 7.1 comes with an
obstruction theory that allows the investigation of the edge homomorphism

π0Z(C) −→ Z(Ho C),

in particular of its image. Note that the range of that map contains the E0,0
2

term of the spectral sequence, whereas the domain belongs to the target of that
spectral sequence. Therefore, we can start our discussion with an element of the
abelian monoid π0 Tot1(Π•C) 6 Z(Ho C) and ask whether or not we can lift it
to π0 Tots(Π

•C) for a given s. We will be able to do this for every s if and only if
the given element lifts to π0 Tot(Π•C) = π0Z(C).

Since this is by now standard, we will only sketch how the general obstruction
theory applies to our specific context and refer to [Bou89, §5 and §10] and [GJ99,
VIII.4] for details.

First of all the representatives of the classes in π0 Tots(Π
•C) can be fairly

explicitly described. They are given by (s+ 1)-tuples (Φ0, . . . ,Φs) of simplices

Φp : ∆p −→ ΠpC

that are compatible with the coface and codegeneracy maps whenever these are
defined. The maps (Φ0, . . . ,Φs) 7→ (Φ0, . . . ,Φs−1) and (Φ0, . . . ,Φs) 7→ Φs induce
the upper left of the following two pullback squares.

Tots(Π
•C) //

��

Map(∆s,ΠsC)

f

��
Tots−1(Π•C) // P //

��

Map(∆s,Ms−1Π•C)

��
Map(∂∆s,ΠsC) // Map(∂∆s,Ms−1Π•C)

The map f is the fibration determined by the fibrant cosimplicial space Π•C. Thus,
in order to produce a lift of an element in π0 Tots(Π

•C), we have to find a lift of
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its image in the pullback

P = Map(∂∆s,ΠsC)×Map(∂∆s,Ms−1Π•C) Map(∆s,Ms−1Π•C)

as illustrated in the following diagram.

∂∆s //

��

ΠsC

��
∆s //

99

Ms−1Π•C

The element in πs−1(ΠsC) represented by ∂∆s → ΠsC is an obstruction to the
existence of such a lift. In fact, this obstruction lives on the E1 term, more precisely
in Es,s−1

1 . It turns out that we can pass to the E2 term to obtain a well-defined

obstruction in Es,s−1
2 to the liftability of the restriction in π0 Tots−1(Π•C) of our

element in π0 Tots(Π
•C) to π0 Tots+1(Π•C).

Remark 7.4. A little extra care has to be taken when there are fundamental
groups involved. It is common to assume that Whitehead products vanish in the
spaces involved in Π•C, or at least that the fundamental groupoids act trivially
on all fundamental groups. Both hypotheses are satisfied in the linear case, when
the mapping spaces are simplicial abelian groups, or in the stable case, when the
mapping spaces are infinite loop spaces.

The following result summarizes the situation.

Theorem 7.5. Let C be a category enriched in spaces that satisfies a hypothesis
on the fundamental groups as in Remark 7.4 above. Then any element in the center

Z(Ho C) = Tot1(Π•C)

of the homotopy category can be lifted to an element in the homotopy coherent center

Z(C) = Tot(Π•C)

if and only of if it lies in E0,0
2 6 Z(Ho C) and the obstruction classes in

Es,s−1
2 = πsπs−1Π•C

vanish for all s > 2.

We note that the obstruction classes certainly vanish if the obstruction groups
are all trivial. This happens, of course, in the case when C is homotopically discrete.

8. Groupoids and spaces

In this last section, we will discuss another class of examples of categories
enriched in spaces: simplicial groupoids. By definition, a simplicial groupoid G
is a simplicial category such that the categories Gn of n-simplices are groupoids.
For instance, simplicial groups, as discussed already in Section 5, are simplicial
groupoids. Here, we are interested mainly in the case where there are many objects.
Let us start by reviewing the discrete case first.
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Fundamental groupoids. If X is a space, its fundamental groupoid Π1X is
a (discrete) groupoid, and up to equivalence, every discrete groupoid has this form:
Take X to be its classifying space.

Proposition 8.1. For every space X, the center of the fundamental groupoid
splits as a product

Z(Π1X) ∼=
∏

[x]∈π0X

Z(π1(X,x))

of centers of its fundamental groups over a set of representatives of its path com-
ponents.

Proof. This is certainly true for path connected spaces X, since in that case
the fundamental groupoid is equivalent to the fundamental group of any of its
points. The general case follows from the compatibility of centers with disjoint
unions. �

After this review of the discrete case, let us now move on to simplicial groupoids.

Path groupoids. While the fundamental groupoid Π1X of a space X is use-
ful for many purposes, the passage to homotopy classes that attends it is a rather
drastic simplification of the situation. It is preferable to work with the path
groupoid GX of X that has been introduced by Dwyer and Kan in [DK84]. It is
a simplicial groupoid that can be thought of as a simplicially enriched refinement
of the fundamental groupoid of the space X. In fact, in the cited paper it is shown
that the homotopy theory of simplicial groupoids is equivalent to the homotopy the-
ory of spaces. More precisely, inverse equivalences are given by the pair of adjoint
functors G 7→ BG, the classifying space, and X 7→ GX. Consequently, we may
expect the centers of simplicial groupoids to be related to the classical homotopy
theory of spaces, and as we will see in the examples below, this turns out to be
true.

The homotopy category of GX is the fundamental groupoid Π1X of X, so that
the formula

Π1X = Ho(GX),

relates the two incarnations of the fundamental groupoid idea.
The center of the fundamental groupoid of X has been described in Propo-

sition 8.1, and we can now ask for the homotopy coherent center Z(GX) of the
Dwyer–Kan path groupoid of X, and the relation between the two.

We have seen that the homotopy coherent center in general has an E2 structure
by Theorem 3.1. A fortiori, it is an E1 = A∞ monoid. For simplicial groupoids,
it will turn out to be group-like by Corollary 8.3 below. Therefore, by Stasheff’s
recognition theorem [Sta63] (as improved by May [May74]), it must be equivalent
to the loop space of some (classifying) space. In fact, using the E2 structure, that
space will have its own delooping as well. The reader may wonder what these spaces
are, and the following results will answer this question.

Proposition 8.2. For every simplicial groupoid G, we have

Z(G) ' Ω(Map(BG,BG), id).

Proof. Similarly to the preceding proposition, this follows from Corollary 5.3
and the compatibility of centers with disjoint unions. �
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The center of any groupoid is always an abelian group rather than just an
abelian monoid. This is far from obvious in the homotopy coherent setting, but the
following result affirms that it still holds true.

Corollary 8.3. For every simplicial groupoid G, the abelian monoid π0Z(G)
is an abelian group.

Proof. Proposition 8.2 allows us to identify π0Z(G) with a fundamental group
of a space. �

If X is a Kan complex, then it is known that the mapping space Map(X,X)
already models the derived mapping space, and it is also a Kan complex. Since
there is an equivalence X ' BGX, the proposition above has also the following
corollary.

Corollary 8.4. For every Kan complex X, we have

Z(GX) ' Ω(Map(X,X), id).

The description of spaces such as Ω(Map(X,X), id) is a classical subject of (un-
stable) homotopy theory. We will now discuss more specific classes of examples in
order to demonstrate the complexity of the matter.

Specific classes of spaces. Given a space X, we have the canonical homo-
morphism

(8.1) π0Z(GX) −→ Z(Π1X).

This is the edge homomorphism of our obstruction theory spectral sequence in
Section 7, and we can discuss the problem whether or not this map (8.1) is injective
or surjective here. We will see that neither has to be the case.

Example 8.5. As the simplest case, let us consider a space that comes to us as
a classifying space X = BΓ = K(Γ, 1) for a discrete group Γ. In this case, we should
not expect any higher homotopy structure, and indeed, the space Ω(Map(X,X), id)
is homotopically discrete, with

Z(GX) ' π0Z(GX) ∼= Z(Γ),

the center of the fundamental group.

In order to encounter higher homotopy structure, we may generalize this exam-
ple in at least two ways: Replace X = BΓ = K(Γ, 1) with an Eilenberg–Mac Lane
space K(A,n) for any abelian group A and any n > 2. Or, replace the aspherical
circle BZ = K(Z, 1) = S1 by a sphere Sn of dimension n > 2. These will be our
next two classes of examples.

Example 8.6. Let X = K(A,n) be an Eilenberg–Mac Lane space of type (A,n)
for an abelian group A and an integer n > 2. Then the homotopy type of the space
of self-maps is

Map(K(A,n),K(A,n)) ' Hom(A,A)×K(A,n),

see [Tho56] for the original argument and [May67, 25.2] for the simplicial version.
Since the space Ω(Map(X,X), id) of loops based at the identity depends only on
the component of the identity, we therefore obtain an equivalence

Z(GK(A,n)) ' ΩK(A,n) ' K(A,n− 1).



HOMOTOPY COHERENT CENTERS VERSUS CENTERS OF HOMOTOPY CATEGORIES 19

This means that the abelian group π0Z(GK(A,n)) is trivial. (In particular, it is
isomorphic to Z(Π1K(A,n)) which is also trivial.) But, we see that the center
can have arbitrary higher homotopy groups. This information will already be lost
when we pass from the center Z(GX) to its group π0Z(GX) of components, let
alone Z(Π1X).

Example 8.7. Let X = Sn be an n-dimensional sphere, n > 2. The homotopy
groups of the homotopy coherent center Z(GSn) can be computed from the fibration
sequence

ΩnSn −→ Map(Sn,Sn) −→ Sn.

Let us first consider the stable case n > 3. In that case, in order to compute π0,
we note that the boundary operator 0 = π2Sn → πn+1Sn has to be zero, so
that π0Z(GSn) is the stable 1-stem Z/2. The computation of the higher homo-
topy groups involves the boundary operator

πkSn −→ πk+(n−1)S
n.

This is the Whitehead product with the identity ιn of Sn. In particular, the first
potentially nonzero contribution is given by the Whitehead square of the identity,
and that element figures prominently in the Hopf invariant one problem: the White-
head square [ιn, ιn] is zero if and only if there is an element of Hopf invariant one
in π2n+1(Sn+1), and this is very rarely the case (by [Ada60]: only if n = 3, 7 in our
range). And, the divisibility of the class [ιn, ιn] is related to the (strong) Kervaire
invariant one problem, see [BJM83]. In the meta-stable case n = 2, in order to
compute π0Z(GS2), the boundary operator Z ∼= π2(S2)→ π3(S2) ∼= Z hits [ι2, ι2]
which is divisible by 2 but not by 4, so that π0Z(GS2) ∼= Z/2 also in this case.
Indeed, for S2, the entire homotopy type of the identity component of the mapping
space is known, see [Han83] and [Han90]. The result is

Map(S2,S2)id ' SO(3)× Ω̃2
0S2,

where Ω̃2
0S2 is the universal cover of a component of the double loop space of the 2-

sphere; it does not matter which component. The existence of such a homotopy
equivalence also implies that the abelian group π0Z(GS2) has order 2, of course.

Example 8.7 shows that the map (8.1) need not be injective, and surjectivity
of (8.1) can also fail in this context. In fact, the image has been studied from a
different point of view in [Got65], and is commonly called the Gottlieb subgroup of
the fundamental group. It can be as complicated as algebraically possible: If Γ is a
discrete group, and G is a subgroup of its center, then there is a connected space X
and an isomorphism Γ ∼= π1(X) such that this isomorphism sends G isomorphically
to the Gottlieb subgroup of X, see [Var74].
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