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Abstract: Current is a key ocean-environmental factor and exhibits strong non-stationary random 24 

characteristics. The complexities of current modeling present significant challenges for deep sea oil 25 

exploitation. The multiyear return period extreme current model is one of the key factors for the 26 

reliable design of marine structures. Recently, due to limitations of design specifications and 27 

guidelines, improved methods to predict extreme values for the South China Sea based on prototype 28 

monitoring are required. In contrast to the traditional extreme value analytical method, the newly 29 

developed Average Conditional Exceedance Rate (ACER) method is robust and shows good 30 

accuracy for estimations of ocean environmental loading. The method offers good reliability for 31 

short-term prototype monitoring data. This study performs multiyear return period extreme value 32 

prediction of the current profile based on prototype monitoring data collected in the Liuhua (LH11-1) 33 

oil field that was recorded by an in-situ monitoring system. The 1-year and 10-year return period 34 

current velocity design indexes were obtained using the ACER method. The present current velocity 35 

profiles of multi-year return periods were compared with two design current load indexes of two 36 

floating platforms in Liuhua area. The consistency with comparison to TLP platform design indexes 37 

shows that the ACER method provides the accuracy and flexibility of the results needed in the 38 

construction of current load models in the South China Sea. These results could provide the basis and 39 

reference for the design of offshore structure.  40 

Keywords：South China Sea; current; profile characteristic; prototype monitoring; ACER; 41 

extreme prediction 42 



 

 

1. Introduction 43 

Although the South China Sea is rich in oil and gas resources with great exploration value, 44 

development of the deep-water fields is faced with significant challenges and uncertainty due to 45 

difficult observation and prediction of main environmental loads like wind, wave, and current. The 46 

ocean current has become a major load factor in the structural design of offshore oil and gas 47 

exploitation equipment, especially for use in deep-water regions. There are several influences of 48 

ocean current on offshore engineering structures. First, a large drag force will be generated on the 49 

structure under the effect of high-velocity current, causing strong resistance for towing and 50 

positioning. This can cause the tension in the anchoring and riser system of the platform to exceed 51 

acceptable limits. Second, VIV (Vortex Induced Vibration) of pipes will be generated in addition to 52 

the interaction of drag force, when the ocean current flows through the middle part of the riser. This 53 

long-term VIV will bring about fatigue failure to the riser. For these reasons, a study of the current 54 

distribution is critical to solve the load problem in the design of offshore engineering structure in the 55 

deep sea. 56 

Many recent studies (He et al., 2012; Liu et al., 2002; Yang et al., 2013) have been performed to 57 

analyze ocean currents in the South China Sea. Numerous studies based on meteorological 58 

observations and ocean hydrological telemetering have been conducted with a main focus on the 59 

description of the regularity of observation results. However, extensive studies of the loading 60 

targeted for engineering applications are still in their preliminary stage. In general, prediction and 61 

analysis of current velocity of multiyear return periods are important to understand current loading 62 

for offshore engineering structures. To predict potential extreme values, extreme value theory and 63 

curve-fitting methods are usually adopted to determine the long-term distribution of offshore loads. 64 



 

 

Then, an appropriate theoretical frequency curve can be determined by coordinate transformation and 65 

then extended to obtain the extreme value for multiyear return periods (Ma, 2006; Wang, 2005). 66 

Carollo et al. (2005) utilized GEV (Generalized Extreme Value) distribution and GPD (Generalized 67 

Pareto Distribution) to negotiate the vertical structure of current extreme values in the Faroe Bank 68 

channel and compared these methods to the FOAM (Forecasting Ocean Assimilation Model) 69 

numerical model. Jonathan et al. studied multivariate extreme value problems of ocean engineering 70 

including ocean current profile and wave height (Jonathan et al., 2010, 2012; Ewans and Jonathan, 71 

2014) based on the model of multivariate conditional extreme value proposed by Heffernan and 72 

Tawn (2004). Dong (2009) adopted the Pearson Type Ⅲ distribution to calculate the extreme values 73 

of wind-driven currents at Bohai Gulf and determined the final extreme value distribution of currents 74 

with tide vectors. Ge et al. (2009) used a 3-parameter Weibull extreme value distribution based on 75 

numerical simulation and data assimilation to calculate the return values of wind, waves, and current 76 

in four representative deep-water areas of the South China Sea. These estimation methods of extreme 77 

values are empirical models, like experience frequency and Pearson type Ⅲ  methods, or models 78 

based on extreme value theory, like Gumbel, Weibull, and the POT model (Chen, 1991). The latter is 79 

derived from the extreme value theory with a theoretical basis, and is widely used to determine the 80 

major distribution form of extreme values of ocean variables. And these methods are mostly based on 81 

asymptotic theory (Smith, 2002), where extreme value samples are assumed to comply with a 82 

particular form of asymptotic distribution. However, the distribution of samples is hard to predict in 83 

advance, and the applicability of the above prediction methods should be further improved. Recently, 84 

researchers have paid attention to the analysis of the interlayer inherent correlation of current profiles 85 

(Forristall and Cooper, 1997; Lima et al., 2009).  But due to the difficulties such as modal losses, 86 



 

 

linear assumptions, the research achievements are still limited. Prediction using current profile 87 

models by considering inherent correlation is still in the preliminary stage. The authors are studying 88 

the regularities of current distributions and the interlayer inherent correlation, and results from this 89 

work will be published in the future. 90 

To overcome the indicated defects of traditional asymptotic extreme value prediction methods, 91 

Naess and Gaidai (2009) proposed a more flexible extreme value analysis method, the Average 92 

Conditional Exceedance Rate (ACER) method, which does not depend on traditional asymptotic 93 

extreme value theory. This method can adopt the forms of asymptotic distribution indirectly and 94 

maintain the asymptotic characteristics of the original data samples. This increases the accuracy of 95 

the prediction and reaches the asymptotic consistency of traditional extreme value theory. The ACER 96 

method was based on the average conditional exceedance rate function, or the mean upcrossing rate 97 

function in earlier time. In 2008, Naess and Gaidai utilized the mean upcrossing rate function to 98 

perform numerical simulation on the extreme value response of the dynamical system through Monte 99 

Carlo simulation with verification of universality and robustness of the method, greatly reducing 100 

calculation time. Next, they improved the original method using revised ARE functions to be 101 

applicable to a generalized time series and even a non-stationary random process (Naess and Gaidai, 102 

2009). The random responses of narrow-band and dual peak spectra were utilized to carry out 103 

numerical verification of the ACER method, and the results indicated the reliability and accuracy of 104 

the ACER method (Naess et al., 2007, 2009, 2010). Karpa and Naess (2013) conducted extreme 105 

value predictions of wind speed samples from three observation stations in Coastal Norway through 106 

the ACER method and compared the results with results obtained from traditional Gumbel and POT 107 



 

 

methods. The comparison showed that the ACER method provided better accuracy, stability, and 108 

insensitivity to anomalous points. 109 

The design of offshore engineering equipment in China has always adopted API and DNV design 110 

criteria due to the lack of long-time prototype measured data. The specification of DNV NO. 30.5 111 

has been adopted as the design basis of ocean environment loads (Veritas, 2000; NDRC, 2004). The 112 

specification provides a mechanical description of environmental conditions and environmental loads. 113 

However, the current load was presented as a general formula of drag force, unlike the more detailed 114 

descriptions of the wind and wave loads. Thus, the current load design basis and computational 115 

method has not yet been demonstrated clearly. The spatial distributions in existing specifications 116 

were obtained from beach and coastal areas. Due to the lack of applicability for the deep-water 117 

environment, it is insufficient to serve as an actual reference basis to define the current load for 118 

offshore engineering design. At the same time, current load models including international 119 

specifications were obtained based on data analysis of other sea regions. However, the applicability 120 

of these models must be verified due to the complexity of the South China Sea. Overall, it is essential 121 

to study current loads based on prototype data measured in the South China Sea. To address this need, 122 

the goal of this study was to investigate current loads at the LH 11-1 sea region based on the 123 

prototype monitoring system built by “NanHaiTiaoZhan" FPS and the ACER extreme value analysis 124 

method. In this paper, an ACER based extreme value prediction method was applied to predict the 125 

extreme current, and two design indexes are subsequently verified. The achievements of the current 126 

model for multiyear return periods can provide significant guidance for load selection and 127 

application in offshore engineering design, especially in the South China Sea. 128 



 

 

2. Prototype monitoring of offshore engineering structure 129 

Theoretical analysis, numerical simulation, and model testing are the main research methods 130 

applied to the design of offshore equipment structures. However, integral analysis of the structure of 131 

large offshore platform systems containing a variety of complex substructures cannot be conducted 132 

with full dependence on the theoretical analysis, derivation, and calculation. The inevitable 133 

simplifications of the structure may distort the analysis results. Numerical simulations include model 134 

approximation, linearization, decoupling calculation, and other processes of simplification that can 135 

produce large errors. Model testing is an essential aspect of offshore engineering equipment design, 136 

but there are limits due to complex real sea conditions. Limited by the size of the testing pool, 137 

truncation and scale effects are inevitable in the test. Designed to overcome the above defects of 138 

traditional methods, the prototype monitoring method aims to obtain the actual load and structural 139 

dynamic response through prototype testing under real sea conditions. Structural analysis based on 140 

data from prototype monitoring should be more reliable. Unfortunately, without enough data from 141 

prototype testing, only limited specifications and guides could be applied to offshore structural 142 

design in the South China Sea. For example, related specifications (NDRC, 2004) indicate that the 143 

following formula can be employed to calculate the gradient of current velocity if there is no 144 

available current data for a shallow ocean area (water depth less than 150 m). 145 

 .                            (1) 146 

where, is the current velocity of the tide, is the velocity of the wind-driven current, is the 147 

depth from the ocean bottom, and is the water depth. However, the computation of Eq. (1) is 148 

complex, especially when it is generally difficult to obtain actual values of or . Additionally, the 149 
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formula is only valid for the estimation of currents in shallow water, but not the actual current load 150 

distribution in deep water or a complex sea region. Therefore, it has become increasingly important 151 

to analyze the current model using prototype monitoring.  152 

2.1 The prototype monitoring system of the “NanHaiTiaoZhan" FPS (NHTZ 153 

FPS) 154 

The NHTZ FPS is a semi-submersible drilling platform serving the LH11-1 oil field (Fig. 1 and 155 

Fig. 2) in the South China Sea. It has a weight of 16735 tons, total length of 90 meters, molded 156 

breadth of 75 meters, molded depth of 40 meters, and total height of 110 meters. In this region of the 157 

LH11-1 oil field, the water depths range from 260 m to 300 m (Qu et al., 2013). 158 

 159 

Fig. 1 LH11-1 geographical position 160 



 

 

  

Fig. 2 LH11-1 oil-gas field exploration mode and the semi-submersible platform of the NHTZ FPS 

 
A prototype monitoring system has been designed, implemented, and installed on NHTZ FPS, to 161 

measure comprehensive environmental loads and structural dynamic response (Du et al., 2016; Wu et 162 

al., 2013; Yuan, 2013). Prototype data can be used for guidance in structural design, safety 163 

assessment, and platform operation. The prototype monitoring system (as shown in Fig. 3) is mainly 164 

composed of a power supply system, a network system, an environmental collection system, and a 165 

response collection system. This system can collect environmental and structural response data using 166 

an individual power supply system even under extreme weather, like a typhoon. In this study, 167 

long-term prototype monitoring data were utilized for ocean current analysis. 168 



 

 

 169 

Fig. 3 The prototype monitoring system of the NHTZ FPS 170 

2.2 Overview of prototype monitoring scheme of the ocean current 171 

The NHTZ FPS is located in deep water in the LH 11-1 oilfield, and here typhoons and harsh sea 172 

states are frequent. Directly affected by the northeast monsoon and offshore forcing (Kuroshio 173 

intrusion), this sea area has strong wind, high waves, and fast current, part of the severest dynamic 174 

environment in the South China Sea (He et al., 2009). Two ADCP (Acoustic Doppler Current Profile) 175 

current gauges (Fig. 4) are deployed in the prototype monitoring system to measure the full current 176 

profile (including velocity and direction) in the surface and the deep-water, respectively. The current 177 

directions are defined clockwise from North. The surface current gauge was installed at depths 178 

between 15 and 20 m. The measuring range was divided into 12 layers along the water depth with an 179 

interval of 1 m and a sampling rate of 10 minutes. The deep-water current gauge was installed at 180 



 

 

depths between 20 and 25 m. The measuring range (water depth about 150 m) was divided into 14 181 

layers with an interval of 7 m and a sampling rate of 10 minutes. In this study, data measured from 182 

Jun. 3rd 2013 to Jul. 2nd 2015 were used to generate current profile analysis and predict the extreme 183 

values of multiyear return periods based on the ACER method. Fig. 5 shows characteristic data of the 184 

partial currents in the prototype monitoring procedure.  185 

 186 

Fig. 4 Current gauges both on the surface and deep water measurement 187 

 188 

Fig. 5 Current data in the prototype monitoring system 189 



 

 

3. Multiyear return period values and the ACER method 190 

3.1 Sea condition in multiyear return period 191 

The load condition of extreme offshore environments of a multiyear return period must be 192 

seriously considered in the design of an offshore engineering structure. Various structural failures are 193 

easy to trigger in such an extreme environment. Statistically, the multiyear return period value 194 

describes the average level of probability that the value can occur during the corresponding return 195 

period, and the return period is the average time interval in which a certain event occurs repeatedly. 196 

Estimation of the corresponding extreme sea conditions of a return period can be done when the 197 

distribution of the extreme values is known. 198 

Assuming that the maximum value of a certain ocean environment factor during one year is , 199 

its distribution function can be represented as , 200 

 . (2) 201 

where,  is a particular threshold value of the ocean environment factor;  is the probability of 202 

the event ; and  is the probability density function of the distribution . In general, the 203 

corresponding return period in years of is defined as 204 

  .                     (3) 205 

The extreme value distribution  and the return period  possess the following relationship: 206 

                  ,                     (4) 207 

where  corresponds to the extreme value level exceeded on the average once every T years. 208 
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3.2 Characteristics and advantages of the ACER method 210 

The ACER method is a recently developed approach to analyze and predict extreme values. 211 

Naess et al. (2007, 2008, 2009, and 2010) conducted numerical verifications to validate the method 212 

for many extreme value responses of dynamic systems. The simulation results showed that the 213 

ACER method can be utilized for more accurate estimation of the extreme value distribution of 214 

sample data compared with traditional extreme value methods. When combined with the 215 

recommended extrapolation algorithm, the extrapolated results of the ACER method are insensitive 216 

to abnormal values and become more robust. Additionally, application of the procedure is simple and 217 

user-friendly. ACER is an effective diagnostic tool to evaluate the degree of correlation of time 218 

series data by the calculation and analysis of different ACER functions. Without requirements about 219 

independent data, the ACER method possesses universal applicability and can be used for extreme 220 

value analysis of time series for multiple random processes. The ACER method has been extended to 221 

practical applications for the prediction of extreme values of ocean environment variables like wind 222 

speed (Karpa and Naess, 2013), wave heights (Naess and Karpa, 2015) and sea water levels in 223 

coastal areas (Skjong et al., 2013). The successful applications of the ACER method suggest that the 224 

use of this system to analyze and predict current extreme values will be of great reference value. 225 

3.3 Basic principle of the ACER method 226 

   The ACER method focuses on the relationship between the average conditional exceedance rate 227 

(or ACER functions) of a time series and a given threshold value . In this way, the study of extreme 228 

value distributions can be skillfully converted into research on ACER functions. 229 

   The ACER function is defined as follows (Naess and Gaidai, 2010):  230 

h

( )ke h



 

 

                              (5) 231 

where, is the total number of samples in a given time series ; , a constant 232 

less than , means that each sample point in the time series is assumed to depend only on the 233 

previous k-1 sample points; is the conditional 234 

probability of the event when the th sample point  exceeds the given threshold  while the 235 

previous sample points  do not exceed this threshold. The event can be called 236 

a conditional exceedance event. Then, represents the mathematical expectation of the 237 

frequency of occurrence of the event, i.e. the expectation of conditional exceedances. In general, 238 

equals the average number of conditional exceedances. 239 

As described by Naess and Gaidai (2009), the ACER function and the extreme value 240 

distribution possess the following relationship derived by the method called “Cascade of 241 

conditioning approximations”. 242 

           ,                (6) 243 

where,  is noted as extreme value,  an appropriate value of k. For the kth-order cascade of 244 

conditioning approximations, the right side of the equation (6) will converge to the correct extreme 245 

value distribution when is large enough. For the cascade of approximations to have practical 246 

significance, it should be verified that the property k = kc << N is indeed satisfied for the data 247 

analyzed. The appropriate k to choose to account for dependence in the time series will be clearly 248 

revealed by the plot of the estimated ACER functions that will be presented in section 4.2.1. Since 249 

the focus is on the extreme levels, any function that provides correct estimates of the extreme 250 

distribution function at the extreme levels can be used. Therefore, the study of the extreme value 251 

distribution can be converted to direct analysis of the tail ( , is the truncation point or the tail 252 

1( ) ( ), 1, 2,....
1

N

k kj
j k

k
N k

e h a h
=

= =
- + å

N 1 2( , , ..., )j NX X X X k

N

1 1( ) ( | ,..., )kj j j j kProb X X Xa h h h h- - += > £ £

j jX h

( 1)k - 1 1( ,..., )j j kX X- - +

( )
N

kj
j k
a h

=
å

( ) ( 1)k N ke h × - +

( )F h

( ) ( ) ( )( ) extremeexp 1 , ( , )k cF N k k kh e h h h» - - + ® ®

extremeh ck

k N£

1h h³ 1h



 

 

marker) of the ACER functions. Naess and Gaidai (2009) gave the following specific mathematical 253 

form for its truncated distribution: 254 

             .                   (7) 255 

where and  are constants. The current conditions for a multiyear return period can be 256 

calculated using the ACER functions when the above parameters have been determined. The 257 

following revised ACER functions are adopted in the actual calculation to perform empirical 258 

estimation considering a non-stationary random process, cf. Karpa and Naess (2013). The revised 259 

ACER function is presented as: 260 

.                                261 

 (8) 262 

where, is the indicator function of conditional exceedance event, meaning that when a 263 

conditional exceedance event occurs.  denotes the expectation operator. For more than one 264 

sample of time series, the empirical estimation is as follows: 265 

                     (9) 266 

where, the total amount of samples is represented as ; each sub-sample is represented as ;  is 267 

realizations in each sub-sample corresponding to , representing whether the th point is 268 

exceeding ; the value of  is also obtained as 1 or 0; and  is the ACER function obtained 269 

by the empirical estimation. After empirical estimation,  needs to be fitted by (7), which can 270 

be transformed into a linear regression problem by coordinate transformation to obtain a solution by 271 
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application of the constrained Levenberg-Marquardt least squares optimization method. The main 272 

algorithm of the optimization process is as follows.  273 

The objective function is 274 

 .                (10) 275 

where the weight factor and ;  and  276 

correspond to the upper and the lower limits of the confidence interval for , and they are 277 

expressed as follows: 278 

 , (11)  279 

in which is the standard deviation of  and  is the corresponding 280 

quantile of the student’s t-distribution with R-1 degrees of freedom.  281 

In case only one realization is available, the way to estimate a confidence interval is to assume 282 

that the number of conditional exceedances follows the Poisson distribution, which 283 

asymptotically is Gaussian distribution. Therefore, an approximate confidence interval of , and 284 

also , can be written as (Karpa and Naess, 2013) 285 

 . (12) 286 

where ν is the corresponding quantile of the Gaussian distribution. Then, the procedure of the 287 

parameter optimizing algorithm can be presented as: 288 

                  (13) 289 

( ) ( ) ( )( )2'

1
, , , log log

n
c

kobj i i i
i

F a b c q w q a be h h
=

= - + -å

'

1
/ n

i i jj
w w w

=
= å ( ) ( ) 2

log logi i iw CI CIh h
-+ -= -é ùë û CI + CI -

( )ˆke h

( ) ( ) ( ) /k kCI s Rh e h t h± = ± ×

ˆks ˆ ( )ke h 1((1 0.95) / 2, 1)t Rt -= - -

( ) ( 1)k N ke h × - +

ˆ ( )ke h

( )ke h

ˆ ˆ( ) ( )(1 / ( 1) ( ))k kCI N kh e h n e h± = ± - +

( )
( )

{ }
{ } ( ) [ ]{ }4

1

, , , min,

log 0, 1,..., ,

, , , ,

, , , | , , 0, ; 0, .

obj

c
i

F a b c q

q a b i n

a b c q S

S a b c q a c q b

h

h

®ì
ï
ï - - £ =ï
í

Îï
ï = Î Î +¥ Îïî



 

 

The inequality constraint in the above formula is because  is 290 

satisfied in the empirical estimation of the ACER functions. Thus,  291 

and . 292 

That is, the left side of the inequality should be less than or equal to 0 and  is the restricted 293 

domain where the four constants ( , ) will be determined.  294 

By the previous discussion, we can see that the original time series can be directly analyzed 295 

through the ACER method. In this way, the complex process and the problem of insufficient samples 296 

due to extraction of extreme value samples from the original (for example short-term period) 297 

measured data can be avoided for the non-narrow-band random process. For the actual application, 298 

empirical estimations should first be conducted on ACER functions for different k values by (5) or 299 

(9). Among these empirical estimations, simply select one of them to perform the optimal fitting of 300 

the curve (7). The details are discussed in section 4.2.1. Then, the tail marker  needs to be 301 

determined to carry out optimal fitting of the curve to obtain ACER functions by combining Eq. (10) 302 

with Eq. (13). Finally, the extreme value of multiyear return periods of the ocean current can be 303 

deduced using ACER functions as shown by Eq. (6), which describes the relationship of the 304 

distribution of extreme values and ACER functions. Moreover, an optimal confidence interval will be 305 

significant for quantifying the uncertainty on ACER function. For estimation of the optimal 306 

confidence interval, the empirical confidence band from measurement data is first reanchored to the 307 

fitted optimal curve. Then the optimal curve fitting procedure is applied to the reanchored confidence 308 

band to determine a final optimal confidence interval band. The confidence interval of the predicted 309 

return value can therefore be obtained from the extrapolated optimal confidence interval band. This 310 

procedure seems to give confidence intervals that are consistent in length but slightly shifted 311 
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compared with the results obtained by a non-parametric bootstrapping method (Karpa and Naess, 312 

2013).  313 

4. Profile distribution analysis and prediction of the extreme value of the 314 

prototype monitoring current  315 

4.1 Distribution of current profile 316 

The prototype monitoring system of NHTZ FPS acquires the long-term current profile data by 317 

ADCP gauges for the LH11-1 sea area. Here, current profile data measured in the deep water were 318 

selected for analysis and prediction of the extreme value to avoid the effects of waves on surface 319 

current. 320 

In general, the analysis of extreme values of wind, current, and other factors ignore the effect of 321 

direction. For example, current direction is neglected when analyzing the reliable design of a riser, 322 

such as VIV. Similarly, current direction is not considered in this paper. For further research in the 323 

future, related published work (e.g. Robinson and Tawn 1997, Jonathan et al. 2012) can provide  324 

significant support and references. Figure 6 presents several representative velocity profile 325 

distributions from prototype measurements. It can be seen that the current velocity profile is complex, 326 

exhibiting different spatial shapes in different periods. The trend is not obvious at times, although the 327 

upper current velocity is larger than the lower one in most cases. It should be noted that the current 328 

velocity of the middle-depth profile (8 to 10 layers, 86 to 100 meters) is obviously lower than that of 329 

the upper and bottom layers (Figure 6 c), during some periods of our observation. In this case, the 330 

current velocity profile decreases initially and then increases with increased water depth with a long 331 

duration. 332 



 

 

 333 

Fig.6a 334 

 335 

Fig.6b 336 

 337 

Fig.6c 338 

Fig. 6 Distribution of typical profile current velocity 339 

Figure 7 shows the spatial distribution of the mean value of each layer of the velocity profile. 340 

Two vertical axes of coordinates are used to show the current layer of the mean profile with its 341 

corresponding depth. The 95% confidence interval is obtained by a nonparametric bootstrap method 342 



 

 

with a sample size of 10000. Assuming that the mean value follows the normal distribution, the 343 

estimated confidence interval can be expressed by the following formula: 344 

  (14) 345 

where  denotes the estimated mean velocity and  denotes the standard deviation of the mean 346 

velocity. As shown in Fig.7, the mean profile and attached 95% confidence interval are marked with 347 

solid and dashed lines respectively. 348 

Similarly, the small current velocity distribution behavior can also be detected in some parts of 349 

the middle-lower layers (marks indicated with red dashed lines). The overall spatial distribution of 350 

the mean velocity value displays a shear flow characteristic. The mean values of the upper and lower 351 

layers changed slightly with depth. The mean velocity value of middle layer changed obviously with 352 

increased depth and a large gradient. 353 

 354 

Fig. 7 Mean values of current velocity profile 355 
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4.2 Prediction of the extreme value of current profile based on the ACER method 356 

4.2.1 Empirical estimates of ACER functions for different water depths 357 

Similar to kth-order Markov approximation, the k value at each sample point is assumed to rely 358 

only on the previous k-1 sample points. Hence, the determination of the k value in the ACER 359 

function depends on the inherent dependence of sample points in the original time series. The 360 

dependence can be clearly revealed by the plot of the estimated ACER functions. Taking the first 361 

layer of current data as an example, the plot of the empirically estimated ACER functions for k from 362 

1 to 10 is presented in Fig.8. In order to facilitate the observation, Fig. 8 has been split into two 363 

subgraphs. Fig 8(a) aims to demonstrate the difference of the ACER functions. Fig 8(b) focuses on 364 

the zoom effects with η ≥ 0.8 to explore the convergence of the tail ACER functions. The different 365 

values of k, corresponding to different ACER functions, represents the kth-order extreme value 366 

distribution approximation in Eq. (6). The k value should be increased until the ACER functions have 367 

converged, at least in the tail. As indicated in section 3.3, the right side of the Eq. (6) will converge to 368 

the extreme value distribution when is large enough. For our data, there is a clear indication 369 

that the ACER functions show asymptotic convergence in the tail. In this case, with as an 370 

example, the sample points can be assumed to be conditional on the previous k-1 sample points in 371 

extreme value analysis. In other words, the sample data used in the traditional POT method can be 372 

regarded as statistically independent when the sampling interval is more than . On the other hand, 373 

the ACER method does not require independent data. That is, all the data are processed, and there is 374 

no need for initial declustering of the data. The ACER function of , which extract the extreme 375 

value samples inherent, is enough and appropriate for further extreme analysis. Therefore, consistent 376 

extreme value analysis can be performed if the selected ACER function satisfy the asymptotic 377 

convergence condition. The ACER functions plot can help to reveal the dependence structure of the 378 
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current velocity in the time domain and can be regarded as a diagnostic tool to determine the value of 379 

k for consistent extreme value estimation. 380 

As shown in Figure 8, ACER functions can be regarded as showing asymptotic convergence in 381 

the tail at least when .The corresponding time interval (with a 382 

sampling interval ), thus the time series of current velocity show significant dependence 383 

of the 6 sample points in a one hour increment. When the sampling time interval exceeds 1 h, the 384 

sample data for the extreme value analysis can be considered independent. Here, the empirically 385 

estimated ACER function (as shown in Fig. 9) of k=8 is selected for the optimal curve fitting 386 

analysis. 387 

 388 

 

a. ACER functions with k from 1 to 10 b. Tail ACER functions at η≥0.8 

Fig. 8 Empirical estimation of ACER functions for different k values 
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4.2.2 Determination of the optimal curve fitting parameters 389 

The ACER function exhibits a decreasing trend with the increase of . However, there will be a 390 

spurious peak in the non-stationary process when  is small. In general, ACER function focus more 391 

on the distribution behavior of the tail, so that the peak value should be neglected while selecting the 392 

truncated point (Tail Marker, i.e. ). On the other hand, overly large   will cause insufficient 393 

tail data available for subsequent optimal fitting. Hence, we advise that    should be slightly 394 

larger than the corresponding value of the peak. Moreover, it has been observed that the predicted 395 

return value is not very sensitive to the choice of   (Naess and Gaidai, 2009). 396 

Considering the fewer data points when  is big, there may be considerable uncertainty with 397 

low data reliability. The tail uncertainty  can be measured by the relative confidence band width 398 

(Naess and Gaidai, 2009) according to Eq. (11) or (12). Eq. (12) is adopted here when only one 399 

realization of measured current is available. For high levels of  in the tail, an approximate 95% 400 

confidence interval of , and also , can be written as 401 

 . (15) 402 

Then,  can be defined by the relative confidence band width as 403 

             .                (16) 404 

Quality control of the tail data (marked in dashed box of Fig. 9) can be realized by adjusting . For 405 

 more than a certain value such as 0.6, corresponding tail data will be filtered out as outliers. This 406 

processing effects can differ for different data types. In the practical work,  provides 407 

a limited control effect for the quality of the data under some conditions in the current velocity data 408 

process. Another pre-processing was conducted as follows in the tail part of the data before the 409 

calculation and processing described above. As shown in Fig. 10, the amount of tail data that should 410 

be prepared for pre-processing can be identified by the histogram and approximate probability 411 
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density curve. The tail data for which the probability density approaches zero will be removed. The 412 

one in a thousand upper quantile in the tail was selected as the criterion where the probability density 413 

functions of measured current velocity is assumed close to zero. Because a current velocity 414 

exceeding this criterion indicates a rare event in statistics and will be highly uncertain. As shown in 415 

Fig.10, that is 0.97, which is the one in a thousand upper quantile. And prototype monitoring data 416 

larger than the corresponding value were first removed and then the quality control of the tail data 417 

could be realized sequentially by .  418 

Once quality control is finished, the optimal curve fitting described in Eq. (13) can work quite 419 

well by the Levenberg-Marquardt least-squares optimization method combined with the objective 420 

function in Eq. (10). The extreme value of multiyear return periods of the ocean current can be 421 

extrapolated based on an assumed tail behavior of the ACER function curve obtained from optimal 422 

curve fitting.  423 

 424 

Fig. 9 Control of truncated points and uncertainty δ 425 
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Fig. 10 Histogram auxiliary adjusting the uncertainty δ 427 
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4.2.3 Calculation of multi-year return period interval and comparisons of environmental 429 

design indexes 430 

After optimal fitting of the curve, extrapolated predictions were conducted by the fitted curve on 431 

the recurrence interval of 1-year and 10-year for current profile in the LH11-1 sea area. The 432 

predictions with corresponding confidence intervals of current velocity for the 1st, 7th, and 14th 433 

layer for the 1-year return period are presented in Fig. 11-13. The optimal curve and confidence 434 

interval band are represented by a solid line and two dashed lines respectively. Though there are a 435 

few points in the tail part whose ACER function values are relatively small, those points with large 436 

uncertainties cannot determine the overall trend of the curve because the weighted least square 437 

method was adopted in the optimal fitting. In this way, we can find that the ACER algorithm tries to 438 

perform optimal fitting of ACER functions using a sufficient amount of data of relatively high 439 

precision to obtain reliable results. According to the calculation results shown in Fig. 11-13, the 440 

predicted current velocity results of the 1-year return period at the 1st, 7th and 14th layer are 1.22 441 

m/s, 1.1 m/s, and 0.965 m/s, respectively. 442 



 

 

 443 

Fig. 11 Prediction value of current velocity of the 1st layer of the 1-year return period 444 

 445 

Fig. 12 Prediction value of current velocity of the 7th layer of the 1-year return period 446 



 

 

 447 

Fig. 13 Prediction value of current velocity of the 14th layer of 1-year return period 448 

Prediction results (as shown in Fig. 14a, please see Table 1 for the detailed data) for multiyear 449 

return periods of the overall velocity profile indicates that the extreme value of current velocity under 450 

the given return period is similar to the hypothesized situation, where the current velocity is close to 451 

the shear flow. The overall trend of current velocity of the multiyear return period decreases as the 452 

depth increases, but the distribution curve is partially complex and zigzag. As a result, when the 453 

depth does not change greatly, the current velocity in the upper layer may be smaller than that of the 454 

lower layer.  455 

At present, there are only a few floating platforms in South China Sea. The ocean environmental 456 

design indexes are different depending on the time of the design, even in the same sea area. 457 

Especially for early platform design, it is difficult to obtain the accurate ocean environmental design 458 

criteria without the effective in-situ monitoring data in the South China Sea. 459 



 

 

Two current design indexes are selected to demonstrate the accuracy and feasibility of the ACER 460 

method in predicting the multi-year return values. Fig.14b and Fig.14c give the comparison of 461 

current profiles between the predicted results and the design indexes of two floating platforms both 462 

in same Liuhua sea area. Among the design indexes, “FPS” corresponds to a semisubmersible 463 

platform which design in 1980s, and “TLP” corresponds to a new design platform with sufficient 464 

ocean observational data. 465 

 Observing Fig. 14b and Fig. 14c (please see Table 2 and 3 for detailed data), the initial design 466 

index for FPS exhibited a large span of the velocity in depth. The profile of current velocity was 467 

simplified to such an extent that the current velocity of the initial design index in deep water was 468 

excessively underestimated with a large descending gradient observed in the 50 ~ 100 m depth layer 469 

for 1-year return values and 65~110m for 10-year return values. On the other hand, the variation of 470 

current velocity in the TLP design index is relatively smooth with depth, and is much closer to the 471 

predicted results. In spite of the fact that both design indexes of the upper layer for the 10-year return 472 

period were larger than the predicted values shown in Fig. 14c, the vast majority of the indexes for 473 

the TLP were located in the confidence band of predictions.  474 

In conclusion, the difference between the two design indexes indicates that the early research on 475 

the extreme environmental conditions of the sea area was indeed not sufficient. Meanwhile, 476 

prototype monitoring technology has become an effective technical methodology. Predicted results 477 

via monitoring data and ACER show the consistency with the current design index of the TLP 478 

platform. Moreover，the present results in this paper reveal a more prominent advantage than the 479 

existing research on extreme current in the South China Sea. Firstly, the monitoring data is more 480 

reliable than the others which were mainly based on the numerical model or approximate estimation 481 



 

 

by wind field and tide. Secondly, in terms of extreme value prediction method, the ACER method 482 

avoids artificial aspects of data sampling for the extreme value analysis and shows robustness and 483 

weak sensitivity to abnormal values. With the accumulation of monitoring data, the predicted results 484 

will continually refine and optimize the current design parameters. 485 

 486 

   

a. Return values by ACER method 
b. Return value comparison in 

one-year  

c. Return value comparison in 10 

years 

Fig. 14 Current profile distributions of return values for multiyear return period and 487 

comparison of ocean environmental design index in Liuhua sea area 488 
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Table 1 Predictions of current profile for multi-year return periods  491 

Depth/m 
Predictions of velocity for multi-year return periods（m/s） 

1 Year 10 Year 
Return values 95% CI Return values 95% CI 

30 1.22 (1.16,1.27) 1.38 (1.29,1.43) 
37 1.16 (1.10,1.21) 1.31 (1.22,1.37) 
44 1.23 (1.16,1.27) 1.41 (1.31,1.47) 
51 1.16 (1.10,1.21) 1.30 (1.22,1.36) 
58 1.15 (1.10,1.20) 1.28 (1.23,1.36) 
65 1.19 (1.10,1.25) 1.39 (1.26,1.46) 
72 1.10 (1.02,1.15) 1.28 (1.17,1.35) 
79 1.12 (1.03,1.17) 1.33 (1.21,1.41) 
86 1.06 (0.97,1.11) 1.25 (1.13,1.32) 
93 0.98 (0.90,1.03) 1.14 (1.03,1.20) 
100 1.03 (0.94,1.08) 1.21 (1.07,1.27) 
107 1.02 (0.89,1.07) 1.19 (0.99,1.26) 
114 1.02 (0.90,1.07) 1.19 (1.01,1.26) 
121 0.96 (0.89,1.01) 1.11 (1.02,1.17) 

 492 

Table 2 Design guides of current loads for SEMI FPS in Liuhua sea area 493 

return period 

/Year 
One Ten 

current profile D V D V 

D=Depth (From 

sea level，m), 

V=Velocity(m/s) 

0 1.30 0 1.83 

25 1.12 32 1.60 

50 0.94 65 1.37 

100 0.30 110 0.30 

305 0.30 305 0.30 
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Table 3 Design guides of current loads for TLP platform in Liuhua sea area 496 

return period 

/Year 
One Ten 

current profile D V D V 

D=Depth (From 

sea level，m), 

V=Velocity(m/s) 

0 1.46 0 1.73 

23 1.30 23 1.57 

68 1.00 68 1.27 

113 0.86 113 1.05 

159 

… 

0.76 

… 

159 

… 

0.91 

… 

5. Conclusions 497 

Profile analysis and prediction of extreme values of currents in the LH11-1 sea area were carried 498 

out based on actual data obtained by the prototype monitoring system of the NHTZ PFS. The main 499 

conclusions are presented as follows: 500 

1) The measured velocity profile was relatively complex, presenting different forms and spatial 501 

shapes in different time periods with the main space shapes of shear flow. The current velocity in the 502 

middle layer was obviously less than that of other layers during some specific time periods; 503 

2) For the mean current velocity profile, affected by small flow velocity of the middle layer as 504 

described above, it’s difficult especially in the middle-lower layer to produce a complete shape of 505 

shear flow. And the middle layer showed an obvious trend of changes, where the current velocity 506 

decreased with depth with a large gradient. 507 



 

 

3) The current velocity extreme profile in multiyear return periods was predicted with the 508 

ACER method. The results for one-year and decade return periods were obtained. To some extent, 509 

the spatial shapes were more or less similar for the extreme velocity profile and the mean profile. 510 

Overall, the upper current was stronger than the lower one, with partially tortuous profile shapes.  511 

4) The comparison of predicted results with two design indexes showed that the current 512 

velocity determined by the existing design indexes of FPS has a large span of value varying with 513 

depth. The design index for FPS should be updated for practical engineering application. The design 514 

index for TLP is consistent with the predicted results by the ACER method.  515 

 The main purpose of this paper was to perform design verification in the LH11-1 area of the 516 

South China Sea, and aimed to provide beneficial guidance for load analysis, structural design, and 517 

production operation, based on the prototype measured data. To do this, a few typical space shapes 518 

and characteristics of the measured current profile were first analyzed. Then, a more accurate 519 

estimate for extreme current has been tried using the latest ACER extreme value analysis method. 520 

However, this present research is only a preliminary application of the measured data, and more 521 

extensive research and analysis approaches are still required. For example, the current univariate 522 

ACER method, like the other univariate extreme value methods, does not consider correlation 523 

between current layers, and how to consider the relevance of layered current to optimize existing 524 

results will be an important focus of future research. 525 

In recent studies, some scholars have first applied a reduced dimensions method such as 526 

empirical orthogonal function to compress the data and reduce the variables before further analysis. 527 

In a future study, such kind of approaches will be incorporated with a multivariate extreme value 528 

methododology for an optimal design current profile of the South China Sea. Simultaneously, a 529 



 

 

directional consideration will be introduced to determine the extreme characteristics of the current. 530 

Finally, combining spatial correlation and direction considerations, we hope to provide a current 531 

design criterion that is a fully three-dimensional design surface, rather than only the 2D profile 532 

generated by most research efforts. Thus, all the current extremal characteristics will be presented in 533 

3D space. At present, part of the periodic work has been completed, and more results and details will 534 

be presented in future work. Overall, all the work aims at improving the problem of insufficient 535 

current specifications and the lack of effective reference data for engineering efforts in the South 536 

China Sea. 537 
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