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ABSTRACT8

Computation of the reliability of large technical systems is usually a very di�cult problem for9

realistic systems, and it is generally not possible to calculate the exact reliability. There are many10

techniques for approximate calculations, but they are often complicated and di�cult to implement.11

In this paper the development of a new method based on Monte Carlo simulation for e�cient12

calculation of system reliability is described. Standard Monte Carlo simulation forms a simple and13

robust alternative for calculating system reliability. If one can generate large samples, the law of14

large numbers ensures that the estimated reliability will be accurate as well. This may, however,15

be a very time consuming operation. The new method introduces a parametrized system that16

corresponds to the given system for a specific parameter value. By using regularity of the system17

reliability as a function of the introduced parameter, the system reliability for our original system18

can be predicted accurately from relatively small samples.19

INTRODUCTION20

Standard Monte Carlo simulation often forms a simple and robust alternative for estimating the21

reliability of mechanical systems. One of the problems with the standard method is, however, its22

slow convergence. The standard Monte Carlo method normally needs large samples to get accurate23
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results for highly reliable systems, and this is a time and memory consuming operation. (Huseby24

et al. 2004) used conditional Monte Carlo methods to provide estimates of system reliability. In25

this paper a Monte Carlo simulation method is introduced that allows the investigation of system26

reliability via a parametrized cascade of systems. This allows the use of reduced sample size27

for reliability estimation by exploiting the regularity of the parametrized simulation results as a28

function of the parameter. To estimate the reliability of the original system, an extrapolation29

technique based on a least squares error optimization between the simulation results and parametric30

curves that represent the reliability of the parametrized system. The result is an e�cient way to31

determine system reliability, both for dependent and independent systems.32

SYSTEM RELIABILITY33

Reliability Block Diagram34

It is noted that the standard ISO 8402 defines reliability as35

• The ability of an item to perform a required function, under given environmental and36

operational conditions and for a stated period of time.37

In this paper the notation used in (Rausand and Hoyland 2004) is followed, and the term "item"38

denotes any component, subsystem, or system that can be considered as an entity. A function39

may be a single function or a combination of functions that is necessary to provide a specified40

service. By using a reliability block diagram, deterministic models of structural relationships may41

be established. When the components are in series, all of the components need to function for the42

system to be functioning. When all the components are in parallel, however, it is su�cient that one43

component functions for the system to be functioning. A way to combine components in series and44

parallel is to establish k-out-of-s systems (Birolini 2004; Rausand and Hoyland 2004). For these45

systems, k out of the s components in the system need to function for the system to be functioning.46

In Figure 1, a structure with 9 components is given. This structure has two k-out-of-s sub-systems,47

both with k = 2 and s = 3. These are combined in series with three other components.48
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Structure Function49

Given a system consisting of s components where each component has two distinguishable

states, one functioning and one failed state. The state of component i, i = 1, 2, ..., s is defined by

x

i

=

8>>><>>>:
1 if component i is functioning

0 if component i is in a failed state

The state of the system can be described by the function

�(x) = �(x1, x2, ..., xs

),

where x = (x1, x2, ..., xs

) is called the state vector and

�(x) =
8>>><>>>:

1 if the system is functioning

0 if the system is in a failed state

�(x) is called the structure f unction of the system.50

Since it cannot be predicted with certainty whether or not a component will be in a failed51

state after t time units, random variables are introduced for the components of the state vector by52

X1(t), X2(t), . . . , X
s

(t). The corresponding random state vector will be denoted by53

X(t) =
�
X1(t), X2(t), . . . , X

s

(t)
�
, (1)54

and the corresponding structure function is �(X(t)). With this state vector, the following probabil-

ities are defined:

p

i

(t) = Pr(X

i

(t) = 1) for i = 1, 2, . . . , s ; (2)

p

S

(t) = Pr(�(X(t)) = 1), (3)

where p

i

(t) is the probability that component i will be functioning at time t and p

S

(t) is the55
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probability that the system will be functioning at time t.56

Cascading Failures57

Cascading failures are multiple failures initiated by a failure of one component, referred to as a58

"domino e�ect" by (Rausand and Hoyland 2004). These failures may occur when components share59

a common load, and failure of one component increases the load on the remaining components.60

When the cascading failures are implemented, the probability of failure for the di�erent components61

are dependent on the time, t. The stochastic variable that determines the state of component i is62

represented by63

X

i

(t, x�i

) :

8>>>>>>>>>>><>>>>>>>>>>>:

Pr(X

i

(t, x�i

) = 1)

= p

i

(t, x�i

) = 1 � 10�zi (t,x�i )

Pr(X

i

(t, x�i

) = 0)

= 1 � p

i

(t, x�i

) = 10�zi (t,x�i ) .

(4)64

The vector x�i

= (x1, . . . , xi�1, xi+1, . . . , xs

) represents the state vector without the i

0
th entry.65

The system reliability is given as p

S

(t) = E(�(X(t)), and the probability of failure for the66

system is defined as p

F

(t) = 1 � p

S

(t).67

Two ways of constructing a realistic time dependent probability of failure p

i

(t, x�i

) will be68

implemented. By modelling cascading failures, previous behaviour will a�ect the probability to69

fail forward in time. To construct such systems in a good way, a repair interval or a condition that70

forces the repair of the components back to their initial state is needed. Otherwise, the system71

would end up failing every time when it is run n ! 1 times. So the scenario in this paper is72

systems for which p

F

(t) would be the long run proportion of time when the system is in a failed73

state.74

The di�erent systems with cascading failures comply with the following:75

• If one component fails, it is removed from the system until the system fails or all components76

are repaired77
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• If one component fails, the probability of other components to fail increases78

The two steps in the procedure are combined for the di�erent components in a way that represent79

realistic systems.80

Markov Chains81

Some of the dependent systems may be represented by Markov chains. Let the stochastic

process Y

n

, n = 0, 1, 2, . . . represent the di�erent states the system is in at di�erent times, t = n.

If Y

n

= i, then the system is in state i. For the Markov chain to be valid, there must be a fixed

probability P

i j

that the system will go from state i to state j in the next time step. This is expressed

in (Ross 2010) as

Pr (Y
n+1 = j |Y

n

= i,Y
n�1 = i

n�1, . . . ,Y0 = i0)

= Pr (Y
n+1 = j |Y

n

= i) = P

i j

(5)

for all states i0, i1, . . . , in�1, i, j and n � 0.82

The transition probabilities in a Markov chain is conveniently represented in matrix form. The83

matrix of one step transition probabilities for a Markov chain with S states is given in Equation (6)84

P =

2666666666666664

P

SS

P

S(S�1) . . . P

S0

P(S�1)S

P(S�1)(S�1) . . . P(S�1)0
...

...
...

...

P0S

P0(S�1) . . . P00

3777777777777775

(6)85

Figure 2 may serve to illustrate the flow of transiitons, with associated transition probabilities,86

that can occur between the S states of the Markov chain.87

The matrix in Equation (6) can be used to calculate the limiting probabilities of the Markov88

chain (Ross 2010). Let P

(n)
i j

denote the n-step transition probabilities. Then the following theorem89

applies.90

Theorem [Limiting Probabilities] For an irreducible ergodic Markov chain lim
n!1 P

(n)
i j

exists
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and is independent of i. Furthermore, letting

⇡
j

= lim
n!1 P

(n)
i j

, j � 0

then ⇡
j

is the unique nonnegative solution of

⇡
j

=

1X

i=0
⇡

i

P

i j

, j � 0,

1X

j=0
⇡

j

= 1

If we have systems of components defined as a Markov chain, the limiting probabilities can be91

used to find the long run probability of failure for the system. This is done by adding ⇡
j

for the j92

states where the system is not functioning.93

To find the limiting probabilities of the states, the conditions in the Theorem and Equation (5)94

needs to be satisfied. This means that the Markov chain needs to be aperiodic, all states needs95

to communicate with each other with fixed transition probabilities, and if starting in state i, the96

expected time until the process returns to state i should be finite. If the necessary conditions are97

satisfied, the long run probability of failure in the system would be p

F

= ⇡0.98

ENHANCED MONTE CARLO99

Sample Estimates100

By applying the Monte Carlo method on the system reliability p

S

from Equation (3), an estimator101

of p

S

for N trials is obtained,102

p̂

SN

=
1
N

NX

j=1
�(x

j

), (7)103

where p̂

SN

is the estimator of p

S

obtained with N trials. x

j

are independent replicas of the state104

vector defined in Equation (1), and � is the structure function of the system. By the Law of Large105
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Numbers, the estimator p̂

SN

is unbiased. The variance of the estimator is estimated by106

�̂2
N

=
1

N � 1

 1
N

NX

j=1
�(x

j

)2 � p̂

S

2
N

�
, (8)107

which can be simplified to108

�̂2
N

=
p̂

SN

(1 � p̂

SN

)
N � 1

. (9)109

Approximate confidence intervals of the estimator can be defined by applying the Central Limit110

Theorem (Weiss 2006), which yields111

CI = [p̂
SN

� z↵�̂N

, p̂
SN

+ z↵�̂N

], (10)112

where z↵ is found from the tables in (Weiss 2006). ↵ = 2.5% provides a 95% confidence interval

CI95 = [p̂
SN

� 1.96�̂
N

, p̂
SN

+ 1.96�̂
N

] (11)

With �̂
N

from Equation (9), it is seen that the convergence rate of the estimator is O(1/
p

N ).113

Parametrization114

Since Monte Carlo simulation has a slow convergence rate, a parametrization of the stochastic115

variables defined in Equation (4) will be introduced. The idea behind the parametrization is to116

investigate the system for di�erent failure probabilities. We want to increase the failure probabilities117

for each component in order to take advantage of the robustness of the standard Monte Carlo method.118

When the failure rate increases, we need fewer simulations to get a descent result from Monte Carlo119

simulations. The goal is that it should be possible to fit a curve to the simulation results obtained for120

increased failure rates, and by extrapolation draw conclusions about the original system reliability.121
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The parametrization of the stochastic variable, X

i,� (t, x�i

), for cascading failures becomes122

X

i,� (t, x�i

) :

8>>>>>>>>>>><>>>>>>>>>>>:

Pr(X

i,� (t, x�i

) = 1)

= p

i,� (t, x�i

) = 1 � 10��zi (t,x�i )

Pr(X

i,� (t, x�i

) = 0)

= 1 � p

i,� (t, x�i

) = 10��zi (t,x�i ) .

(12)123

where 0 < �  1.124

By inserting � = 1 in Equation (12), it follows that X

i,�=1(t, x�i

) = X

i

(t, x�i

), which is the same125

stochastic variable as was defined in equation (4) for the initial system. When � goes to zero the126

following limit is obtained,127

X

i,�!0(t, x�i

) :

8>>>>>>>>>>><>>>>>>>>>>>:

Pr(X

i,�!0(t, x�i

) = 1)

= 1 � 10�0·zi (t,x�i ) = 0

Pr(X

i,�!0(t, x�i

) = 0)

= 10�0·zi (t, x�i ) = 1

(13)128

The results from simulations of a parametrized system is shown in Figure 3. The system is a129

dependent system with cascading failures of a 2-out-of-3 system as defined in the section on130

Example Systems below, cf. Figure 4. It is the first example system discussed in the next section.131

Since the range of the estimated probability of failure, p̂

FN

(�), is from 0.1 to 10�5, a logarithmic132

y-axis is used to present the results. The original system is obtained for � = 1, and the behavior133

of the log(p̂
FN

(�)) is remarkably close to linear, which, of course, would be the expected behavior134

for a single component. The estimates of p̂

FN

(�) were calculated for a sample of size N = 108
135

for each �. By decreasing the sample size to N = 105, the number of failures when � ! 1 will136

basically be 0, but good estimates will be obtained for p̂

FN

(�) for the smaller values of �. These137

good estimates will be used to predict how the system will behave for the values of � with typically138

no observed failures.139

When results are obtained for a given system for the di�erent values of � in the parametrization,140
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a curve will be fitted to these results in order to obtain the probability of failure for the non-141

parametrized system. To do this curve fitting, m = 10 simulations of size n are performed for each142

value of �, so the total sample size is N = mn. This is carried out for a suitably chosen range of143

�-values, �1, . . . , �l

. The mean of the 10 estimated failure probabilities over the range of �-values144

constitute the data that enter the curve fitting by using minimization of least squares. The following145

family of functions will be used to represent the fitted curve:146

p̃

F

(�) = 10�a(b+�)c+d, (14)147

where p̃

F

(�) denotes the fitted probability of failure, and a, b, c and d are parameters in R. The148

least squares optimization of parameter fitting is achieved as follows:149

min
a,b,c,d

lX

i=1
w(�

i

)
� � a(b + �

i

)c + d � log10(p̂

FN

(�
i

))
�2, (15)150

where w(�
i

) is a weight factor that reflects the level of uncertainty of the estimate p̂

FN

(�
i

). The151

minimization procedure chosen for the problems discussed here is based on the trust region method152

(Forst and Ho�mann 2010).153

One way to represent the weights is by the inverse logarithmic di�erence of the endpoints of154

a specified confidence interval of p

F

(�) for the di�erent �s. By constructing a 95 % confidence155

interval, the following approximate representation is obtained.156

CI±(�) = p̂

FN

(�)(1 ± 1.96 CV (�)), (16)157

where the coe�cient of variation of our Bernoulli trials may be written as158

CV (�) =

s
1 � p̂

FN

(�)
(N � 1) p̂

FN

(�)
, (17)159
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Then the weights can be defined as160

w(�) =
1

�
log10(CI+(�)) � log10(CI�(�))

�2 , (18)161

This choice of weight factors is convenient, but somewhat arbitrary. However, it has proven to be162

a suitable choice for the class of problems in this paper. In (Naess et al. 2013) it is shown that the163

least squares optimization can be expressed as a weighted linear regression. Then the best choice164

of weight factor will be the inverse of the empirical variance for each value of � (Montgomery165

et al. 2001). Notice that the e�ect of introducing the weight factors is the following: The higher166

the accuracy of the estimated failure probability p̂

FN

(�), the more emphasis is put on this point in167

the optimization. The practical consequence and importance of this can be seen in Figures 5, 6 and168

8. If equal weight had been given to all points in these plots, the fitted curves would clearly miss169

the target value.170

EXAMPLE SYSTEMS171

Cascading Failures of 2-out-of-3 Systems172

Consider the 2-out-of-3 system in Figure 4. Let the components be defined by the stochastic173

variable in Equation (4). The system can represent a case where the components each share a174

common load. When one of the components fail, the other components need to take a larger share175

of the load.176

The system is functioning when 2 components are functioning. When the first components in the177

system fail, the probability to fail for the two other components increase with 50%. The component178

that failed remains failed until it gets repaired. In the implemented system, the components only get179

repaired when the system has failed. That is, when 2 or 3 of the components are not functioning.180

The one step transition probability matrix P introduced in Equation (6) is established, and the
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long run probability of failure can be calculated. It is obtained that

p

F

⇡ ⇡0 =
q

q + 2
3
, (19)

where q denotes the common one step failure probability for all components. With q = 1�p = 10�7,181

it is found at p

F

⇡ 1.50 · 10�7. The results obtained by the proposed enhanced Monte Carlo182

simulation technique with a total sample size of N = 105 is shown in Figure 5. The relative error183

(p̃

F

(1) � target value)/target value is 0.012.184

Cascading Failures of two 2-out-of-3 Systems and Three Independent Components in Series.185

This system is of the same form as Figure 1, where the 2-out-of-3 subsystems are identical to the

2-out-of-3 system defined in Figure 4. The other three components in the system act independently.

This system is also possible to monitor by Markov chains, to get an analytical solution for the

probability to fail, p

F

. Let p4, p5 and p9 be the reliability for the three independent components in

series, 4,5 and 9. The long run probability of system failure, p

F

, for this system can be expressed

by

p

F

= 1 � (1 � ⇡0)1(1 � ⇡0)2(p4)(p5)(p9), (20)

where (1 � ⇡0)1 is the reliability of the first 2-out-of-3 subsystem and (1 � ⇡0)2 the reliability of186

the second. With q = 10�7, it is found that p

F

⇡ 3.30 · 10�7. The results obtained by the proposed187

enhanced Monte Carlo simulation technique with a total sample size of N = 105 is shown in188

Figure 6. The relative error is �0.052.189

Cascading Failures with Repair Interval Combined in Series190

The reliability block diagram for this system is shown in Figure 7. The single components, 3 and191

6 are independent, but the other four components are implemented with dependencies. When one192

of the dependent components fail, it is taken out of the system until it is repaired. The dependent193

components 1 and 2 are repaired simultaneously when both fail, and when at least one of the two194
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components have been functioning for n = 1/q runs, where q denotes the common one step failure195

probability for these two components. The dependent components 4 and 5 are only repaired when196

both of them have failed. For the numerical calculations, the one step failure probability q = 10�7
197

for all dependent components, while q = 10�6 for the independent components. No analytical198

solution is available for this example, so a massive sample of size N = 1011 was used to establish199

the long run failure probability of the system. It was found that p

F

⇡ 2.085 · 10�6. The results200

obtained by the proposed enhanced Monte Carlo simulation technique with a total sample size of201

N = 105 is shown in Figure 8. The relative error here is �0.048.202

CONCLUSIONS203

The preliminary results presented in this paper indicate that it is possible to estimate the204

probability of failure e�ciently and accurately by using Monte Carlo simulations combined with205

the proposed parametrized systems. The sample size can then be reduced substantially, e.g. from206

108 with standard Monte Carlo simulation to 105 with the proposed method, and still achieve results207

with the same precision. The parametrization would seem to work well for a wide range of model208

types beyond the simple models presented here. In fact, the authors believe that the complexity209

and size of the system has only a minor influence on the e�ciency and accuracy of the proposed210

method.211
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Fig. 1. Structure with 9 components combined in parallel and series.
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Fig. 2. Markov chain of a system with S states. P

i j

denotes the fixed probability defined in Equation
(5)
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Fig. 3. Simulated probability failure, p̂

FN

(�), as a function of �. Simulations are done with
N = 108 for the model with cascading failures of a 2-out-of-3 system. The common one step
failure probability is q = 10�5 for each component. The original system is obtained for � = 1.
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Fig. 4. k-out-of-s system with k = 2 and s = 3.
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Fig. 6. Cascading failures of 2-out-of-3 system and three independent components in series.
Logarithmic plot of the fit of the simulated probability failure, p̃

F

(�). Original model is obtained
for � = 1, and the target value is marked by an asterisk.
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Fig. 7. Structure with 6 components combined in parallel and series.
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Fig. 8. Cascading failures with repair interval combined in series. Logarithmic plot of the fit of
the simulated probability failure, p̃

F

(�). Original model is obtained for � = 1, and the target value
is marked by an asterisk.

22 Naess, September 20, 2017


