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Abstract

Safety instrumented systems (SISs) are of prime importance to the process industry to
avoid catastrophic consequences or even loss of human life. The dangerous situations
that any equipment may face should be analysed in order to quantify the associated risk
and to choose a design of the SIS that reduces the risk to a tolerable level.

The safe failure fraction (SFF) is a parameter defined in the standards IEC 61508
and IEC 61511, and is used to determine the need for additional channels that can
activate the safety function if a failure is present. The standards consider a high SFF as
an indicator of a safe design, and by increasing SFF, one may allow a lower redundancy
level for a SIS and therefore reduce costs. Safety engineers discuss the suitability of this
parameter, and some argue that the negative effects of safe failures on the reliability are
so significant that the parameter should not be used.

For a safety shutdown valve installed to prevent overpressure, a safe failure is defined
as a spurious closure where the source of high pressure is isolated. This thesis examines
the effects of safe failures on the reliability of such systems by using a Markov model.
According to IEC 61508 and IEC 61511 the system reliability of a safety shutdown
system is measured by the probability of failure on demand (PFD).

From the results it can be concluded that the time needed to restore the system
back to initial state after a safe failure does not have a significant effect on PFD. A long
restoration time after a safe failure in combination with a high frequency of safe failures
is negative with respect to production downtime.

The main contributor to PFD is the long run probability of being in a state where
a dangerous undetected (DU) failure is present. DU failures are normally detected by
function tests or sometimes upon demand, but they can also be revealed by a spurious
closure. This effect is based on the assumption of perfect repair of safe failures, which
means that all possible failure modes are detected and the failed items are repaired or
replaced after restoration of safe failures. The ability to reveal DU failures is clearly
dependent on the frequency of a DU failure and safe failure occurring in the same test
interval. This thesis demonstrates that safe failures only have significant effect when the
dangerous failure rate is high. Other parameters affect the PFD to a greater extent, and
the importance of exact parameter estimation is crucial and more important than the
positive effects of safe failures.

The SFF must be close to 100% to have a significant effect on the PFD, and since
it is always aimed at minimising the number of dangerous failures, the alternative is to
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add safe failures. This is probably not the intent of SFF and is negative with respect to
production downtime.

Safe failures does not justify a lower degree of redundancy. On the other hand,
the positive effects of safe failures show a satisfactory reason for adopting a longer test
interval. This is an optimisation of PFD and can reduce costs or even the frequency of
dangerous situations during start-up and shutdown.

This thesis demonstrates that the PFD is not affected by safe failures, and indicates
no reason to be in doubt about this parameter as a measure of reliability. The SFF gives
hardly any information and the choice of SIS architecture should not be based on SFF
alone. An alternative parameter that considers different means of revealing DU failures
seems to be a better choice.
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Abbreviations

CCF Common cause failure

DD Dangerous detected

DOP Delayed operation

DU Dangerous undetected

ELU External leakage of utility medium

EUC Equipment under control

FMECA Failure modes effects and criticality analysis

FSC Fail safe close

FTC Fail to close

FTO Fail to open

HFT Hardware fault tolerance

HIPPS High integrity pressure protection system

LCP Leakage in closed position

MTTR Mean time to restore

PFD Probability of failure on demand

SD Safe detected

SFF Safe failure fraction

SIF Safety instrumented function

SIL Safety integrity level

SIS Safety instrumented system

SPO Spurious operation

SU Safe undetected
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CHAPTER 1

Introduction

Background

Reliability of safety instrumented systems (SISs) is an important issue for safe plant op-
eration and SIS selection. A SIS comprises sensors, logic solvers and final elements, and
a simplified SIS is illustrated in Figure 1.1. IEC 61508 and IEC 61511 are international
standards providing a framework for design and implementation of SISs where safety
integrity is a fundamental concept. Safety integrity is, according to IEC 61508, part
5, defined as “the probability of a safety related system satisfactorily performing the
required safety functions under all the stated conditions within a stated period of time”.
Safety integrity is classified into four discrete levels (SILs) where both quantitative and
qualitative requirements must be met in order to achieve a given SIL. For SISs operating
in the low demand mode of operation, i.e., where the frequency of demands is no greater
than once a year, the probability of failure on demand (PFD) is used as a quantitative
measure [IEC 61508, IEC 61511]. Practical experience has shown that this estimate does
not cover all aspects of SIS failures and may be a too optimistic measure. Architectural
constraints have been introduced to avoid selecting the SIS design based on PFD alone.
The architectural constraints are expressed by the hardware fault tolerance (HFT) which
is the number of failures that can be tolerated before the SIS is no longer able to respond
adequately upon demand. The HFT is in turn is based on the type of component (A
or B), the safe failure fraction (SFF) and the given SIL. The SFF is the proportion of
safe failures among all failures of a SIS where a safe failure is either safe with respect to
the safety function or detected and repaired immediately after arising. The standards
assume that a high SFF indicates safe design and allow for a lower HFT if the SFF is
increased.

Today, there is no upper limit for the fraction of safe failures and safe failures must
be assumed to have a positive effect on the availability of a SIS. Some researchers claim
that the negative effects are more important and question the suitability of SFF [CCPS,
2007, Langeron et al., 2008, Lundteigen and Rausand, 2008a,b].

Itaru Yoshimura and Yoshinobu Sato have recently proposed a paper that has been
accepted for publication in IEEE Transactions on Reliability [Yoshimura and Sato, 2008].
The title of the paper is “Safety Achieved by the Safe Failure Fraction (SFF) in IEC
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Figure 1.1: Illustration of a SIS [Lundteigen and Rausand, 2008a].

61508” and it examines the effect of safe failures to reduce the possibility of dangerous
events and discusses the validity of the SFF constraints in IEC 61508. The Japanese
researchers use Markov models to analyse and quantify the effect on a selection of safety
systems, and conclude that the application of the SFF constraints to the standard should
be put on hold until they are validated. They argue that the effects of SFF on safety
are almost negligible, while the negative effects become much stronger.

No firm conclusion of the impact of safe failures has yet been drawn, and this thesis
tries to study the relationship between SFF and PFD to gain more insight into the
effects of safe failures. A master thesis written by Munkeby [2008] tries to examine these
effects, and the thesis at hand attempts to extend his work and go into details with a
specific SIS.

Objectives

The main objective of this thesis is to discuss possible effects of safe failures on system
reliability. This thesis will give insight into what has been written about the problem and
hopefully answer questions like: Will PFD change when safe failures are taken directly
into account in the calculation? Can an increased portion of safe failures be a reason for
choosing a lower degree of redundancy? Or is it possible to increase the test interval?

The main objective of this thesis is:
To evaluate the effect of safe failures on the safety integrity.

The following objectives have been the guiding principle through the work with this
thesis:

1. To identify the positive effects of safe failures on the safety unavailability

2. Incorporate the positive effects of safe failures into a Markov model for different
case studies

3. Quantify the PFD by applying realistic parameter values to the model

4. Carry out sensitivity analyses on the parameters

2



1 Introduction

Limitations
This thesis aims at evaluating the positive effect of safe failures. Negative effects as
discussed in [Langeron et al., 2008, Lundteigen and Rausand, 2008a,b] are omitted from
the analysis, but should be discussed before a final conclusion is drawn.

To clarify the analysis, a specific SIS has been analysed. Only the final element is
treated, and in the light of this specification, a detailed description of failure modes and
transitions between these are possible to examine.

This thesis focuses on the IEC 61508 approach to quantify the safety integrity, and
the scope of this work has thus been limited to only consider random hardware failures.
It follows that systematic failures are omitted in this thesis.

Some authors state that safe failures get less attention when collecting data to the
OREDA project and uncertainties in the variables will be a limitation of reliable PFD
values.

These limitations do not, however, prevent the possibility of reaching the main ob-
jective of this thesis. It is still possible to conclude whether or not safe failures have an
effect.

Structure of the thesis
The thesis is organised as follows: Chapter 2 gives a brief introduction to the reliability
theory related to safe failures and how the safety integrity should be quantified. A de-
tailed procedure for examining the positive effects of safe failures for a HIPPS system is
given in Chapter 3. The results are presented in Chapter 4 and in Chapter 5 these results
are discussed and a conclusion drawn. Finally, the theory behind Markov modelling is
included in appendix A1. It is mathematical proofs not directly necessary to understand
the implementation and it is considered reasonable to move it to the Appendix. Ap-
pendix B comprises programming code implemented to get numerical results from the
models.
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CHAPTER 2

Basic concepts and mathematical methods

Some prior knowledge about reliability analysis and mathematical methods required to
carry out such analysis is necessary when reading the following report. The reader should
be familiar with the textbook System Reliability Theory: Models, Statistical Methods,
and Applications [Rausand and Høyland, 2004] or similar publications.

The first section of this chapter gives a brief introduction to the concepts related to
SISs and reliability requirements where the focus of attention is safe failures. The last
section presents mathematical tools used to evaluate the reliability of a SIS.

2.1 Reliability theory

The theory presented in this section is mainly based on Goble and Cheddie [2005],
OLF-070 [2004], Rausand and Høyland [2004].

2.1.1 Safety instrumented systems

SIS is a physical safety system with the purpose of mitigating the risk associated with
the so-called equipment under control (EUC). OLF-070 [2004] defines EUC as “a piece
of equipment, machinery, part of an offshore installation, or even the entire installation.”
A simplified SIS is illustrated in Figure 1.1 where the final element is a safety shutdown
valve intended to stop the flow if high pressure is detected by the pressure transmitters
(PTs). A safety instrumented function (SIF) is a specific function implemented by a
SIS which task is to protect the EUC against a single, specific hazard by carrying the
system to safe state. One or more SIFs may be implemented in a SIS for a common
purpose, e.g., to protect a reactor containing flammable liquid. Two possible SIFs that
is implemented is one that protects against high temperature and another SIF that is
implemented to protect against high pressure.

IEC 61508 and IEC 61511 require that reliability targets are assigned to each SIF
that is implemented into a SIS, and the IEC standards use safety integrity level (SIL)
as a measure of reliability. Safety integrity is defined [IEC 61508] as “the probability
of a safety related system satisfactorily performing the required safety functions under
all the stated conditions within a stated period of time”. Each SIF has to fulfil a safety
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2.1 Reliability theory

integrity requirement, where SIL 1 has the lowest level of safety integrity and SIL 4 is
the most stringent.

IEC 61508 distinguishes between hardware safety integrity and systematic safety
integrity where both parts must be evaluated according to their respective requirements
in order to fulfil a specified SIL. Hardware and systematic safety integrity is defined as
[IEC 61508, Part 4] “the safety integrity of the SIS related to random hardware failures
and systematic failures”, respectively. As seen there is a close relationship between safety
integrity and failure classification.

2.1.2 Failure classification

IEC 61508 differentiates between two main categories of failure classification; classifi-
cation by cause or effect. A random hardware failure is a physical failure occurring at
random time, which is due to natural degradation mechanism in the hardware. A sys-
tematic failure is related in a deterministic way to a certain cause. The error is made
during the specification, design, operation or maintenance phase of the safety system
and this classification rule is based on the failure cause.

IEC 61508 proposes a failure classification by effect where failures are categorised as
dangerous or safe. A dangerous failure is defined as a failure having a potential to put
the safety function in a fail-to-function state. This means that the safety system is not
able to respond properly upon a demand. A safe failure, also called a non-dangerous
failure, does not put the safety system in a fail-to-function state. It can rather result
in an activation of the safety function without any demand present. Both dangerous
and safe failures can further be split into detected and undetected, characterised by its
ability or disability to be detected by on-line self-testing1, respectively. It implies that
a detected failure is revealed at the time the failure arises, while an undetected failure
discloses oneself only when the SIS is function tested or sometimes upon demand.

Common cause failures (CCF) happen when multiple components fail due to a shared
event. Repair and maintenance are often claimed to be the prime causes of CCF because
of mis-calibrating and other installation failures. A CCF can also occur when two com-
ponents are likely to be from the same manufacturer and therefore share the same design
flaw or when two components are located at the same place making them vulnerable to
the same environmental stresses. Common cause modelling is described in Section 2.2.2.

2.1.3 Safety integrity requirements

To fulfil a specified SIL, it is necessary to meet three different requirements; quantita-
tive, semi-quantitative, and qualitative. The former two are related to hardware safety
integrity which is the main topic of this thesis.

Quantitative requirements

To quantify the hardware safety integrity it is necessary to evaluate the ability of a SIF
to perform its intended safety functions upon demand. A distinction is made between
SISs operating in the low or high mode of operation. Low demand mode of operation
means that the frequency of demands for operation is no greater than one per year or
twice the test frequency. High demand mode of operation means that demands occur
more than once a year or twice the test-interval. This thesis treats a safety valve which

1The fraction of failures detected by diagnostic self-tests is called the diagnostic coverage.
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2 Basic concepts and mathematical methods

is expected not to be activated very often so it belongs to the low demand category. The
probability of a SIF failure due to random hardware failures is then calculated as the
average probability of failure on demand (PFD).

PFD is split into two contributors; PFDunknown and PFDknown. PFDunknown quan-
tifies the loss of safety due to dangerous undetected (DU) failures occurring during the
test period when it is known that the SIF is unavailable. A DU failure is the only
failure mode that can prevent the safety system to respond adequately upon demand.
PFDunknown(t) is the probability that a DU failure has occurred at, or before, time t. If
TDU denotes the time until a DU failure, then

PFDunknown(t) = Pr(TDU ≤ t) = FDU(t) = 1−RDU(t),

where RDU(t) is the survivor function with respect to DU failures, or the probability
that a DU failure does not occur in the time interval (0, τ ].

In reliability calculations it is the long run average value of PFD and not the time
dependent value that is of interest. Each test interval of length τ is supposed to be equal
in stochastic sense, hence the equation for PFD, derived from Rausand and Høyland
[2004, sec. 10.3] becomes

PFDunknown = 1
τ

∫ τ

0
PFDunknown(t)dt = 1

τ

∫ τ

0
FDU(t)dt = 1− 1

τ

∫ τ

0
RDU(t)dt. (2.1)

The following assumptions applies in the derivation of equation 2.1:

1. Testing and repair of components in the system are assumed to be perfect. 2

2. The time required to test the item is negligible.

3. The restoration times for dangerous detected (DD) and DU failures are negligible.

Under these assumptions the term safety unavailability will have the same meaning
as PFD and in order to avoid misinterpretations only the term PFD will be used through
the rest of this thesis.

Although assumption 2 and 3 may not influence the PFD calculations, the SIS may
be affected by considerable downtime. According to IEC 61508 [part 6, annex B] the
contribution from restoration of dangerous failures should be included. During restora-
tion it is known that the SIF is unavailable, and under the assumption that process
demands can occur during restoration this is a contributor to PFDknown. The number
of dangerous failures that occurs during a test interval of length τ is assumed to follow a
Poisson process with parameter λD and the mean number of dangerous failures is equal
to λDτ . PFDknown, the average duration of restoration during a test interval of length
τ , becomes

PFDknown ≈
1
τ

MTTRDλDτ = MTTRDλD (2.2)

where MTTRD is the mean time to restore a dangerous failure.
The relationship between SIL and the maximum tolerated failure probability is given

in Table 2.1. It is important to notice that PFD requirements are related to the complete
SIF which means that a specific quota are assigned to every component in Figure 1.1.

2Perfect repair means that all possible failure modes are repaired or replaced and the system is
brought back to initial state after a function test.
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2.1 Reliability theory

Table 2.1: Safety integrity levels for safety functions operating in the low demand mode of
operation

Safety integrity Probability of failure
level on demand

4 10−5 ≤ PFD ≤ 10−4

3 10−4 ≤ PFD ≤ 10−3

2 10−3 ≤ PFD ≤ 10−2

1 10−2 ≤ PFD ≤ 10−1

0 2000 4000 6000 8000

time

P
F

D

10−5

10−4

10−3

10−2

10−1

PFDavg

Figure 2.1: PFD, plotted on a logarithmic scale with base 10, during a test interval of 1 year.
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2 Basic concepts and mathematical methods

Suppose having a SIF application with PFD as presented in Figure 2.1. To get a
direct relationship between Table 2.1 and Figure 2.1, the graph is plotted on a logarithmic
scale with base 10. This is a common form of PFD(t) and the average PFD during this
test interval is equal to 8.7 · 10−3. From Table 2.1 it is clear that this value corresponds
to SIL 2. From Figure 2.1 it appears that most of the time the PFD does not reach
SIL 2. This is a problem for discussion because the average PFD seems to be a too
optimistic measure. Suppose having an unmanned platform where people arrive only
when maintenance and repair activities are necessary. These tasks are most likely to be
done during the last part of the test interval when safety integrity is lower than required.
The probability of a dangerous situation is too high and in this case the maximum value
of PFD seems to be a better choice. A negative response to this choice is the increased
economic costs of improving the SIF.

Semi-quantitative requirements

PFD does not take into account all possible failure modes and their causes, and may
lead to an optimistic value of the reliability of the system. As a solution to this problem,
IEC 61508 and IEC 61511 introduces additional requirements to avoid selecting the SIS
architecture based on PFD alone. These requirements are applied either to verify if a
given architecture corresponds to a given SIL or to specify the required architecture of a
SIF. Architectural constraints on the hardware safety integrity involve four main steps;
1) to classify the subsystem components of a SIF, 2) to calculate the SFF and HFT for
each subsystem, 3) to determine the achievable SIL of a subsystem, and 4) to merge
these measures in order to calculate the resulting SIL of the SIF.

A subsystem is, in accordance to IEC 61508, Part 2, classified as either type A
or type B. A component is classified as type A if it is possible to determine all of its
possible failure modes, the behaviour under these fault conditions and if it is possible to
find sufficient failure data from field experience. Valves and solenoids are in most cases
classified as type A components. Components that does not fulfil these requirements are
classified as type B, e.g., logic solvers. IEC 61511 uses a different classification where, in
practice, programmable electronic(PE) logic solvers are classified as type B while non-
PE-logic solvers may fulfil the criteria of type A. This thesis will consider the IEC 61508
approach as this is commonly used by most oil companies and also in OLF-070 [2004],
but more information about the difference between these two classifications are found in
the article by van Beurden and Amkreutz [2004].

SFF is the fraction of failures that can be considered as safe and comprises both safe
and DD failures. DD failures are considered safe because they are detected and repaired
immediately after arising. According to IEC 61508 and IEC 61511, SFF is calculated by
the following formula:

SFF = λS + λDD
λS + λD

= λS + λDD
λTOTAL

, (2.3)

where λS is the safe failure rate, λDD is the DD failure rate, and λDU is the DU failure
rate.

There is a great discussion among experts on what the intent of SFF really is, what
to consider as a safe failure and which DD failures to include in the calculation. The PDS
method [Hauge et al., 2006a] proposes an alternative SFF where non-critical failure rates
are excluded. This is done in order to avoid the possibility of increasing non-essential
failure rates with the intent of getting a higher SFF. CCPS [2007] makes additional
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2.2 Mathematical models

Table 2.2: Hardware safety integrity: Architectural constraints on type A safety components

Safe failure Hardware fault tolerance

fraction 0 1 2

99 - 100% SIL 3 SIL 4 SIL 4
90 - 99 % SIL 3 SIL 4 SIL 4
60 - 90 % SIL 2 SIL 3 SIL 4
0 - 60% SIL 1 SIL 2 SIL 3

constraints to the SFF by considering only DD failures that automatically lead to a safe
state. Langeron et al. [2008] argue that not all safe failures are actually positive for
safety. Human errors during repair and restoration may cause a safe failure to evolve
into a dangerous failure and people may loose confidence in the SIS if there are frequent
alarms. They conclude that a high SFF can not always be considered as an indicator of
safe design.

HFT is the second parameter related to architectural constraints. According to IEC
61508, the fault tolerance is defined as “the ability of a functional unit to continue to
perform a required function in the presence of faults and errors”. In other words, the
hardware fault tolerance measures the total number of faults tolerated before the safety
system does not function properly. The k-out-of-n structure describes a system that is
functioning if and only if at least k of the total n components are functioning, and the
HFT of a general koon system is n− k.

With reference to the introductory chapter, this thesis will consider only one specific
component, a safety valve which is of type A. The HFT table for type A components
are shown in Table 2.2.

When the SIL for each subsystem is calculated it remains to determine the resulting
SIL for the SIF on the basis of these results. IEC 61508 proposes some simple merging
rules where the achievable SIL for subsystems in parallel is equal to the subsystem
having the highest SIL plus one level while the achievable SIL for subsystems in series
is restricted by the subsystem with the lowest SIL.

Qualitative requirements

Qualitative requirements are related to systematic failures in hardware or software intro-
duced during specification, design, operation or testing. Such failures are, unlike random
hardware failures, not quantified because the events leading to them cannot easily be
predicted. IEC 61508 rather recommends techniques to avoid and control such failures
during design phase. These measures and techniques shall be implemented during the
design phase and are graded according to the given SIL requirements.

Since this thesis deals with random hardware failures, it will be a task for further
work to go in detail with systematic failures.

2.2 Mathematical models

This section provides a description of mathematical models applicable for system reli-
ability analysis and common cause modelling. The theory is derived from Ross [2003]
and Littlewood and Verrall [1973] in addition to Rausand and Høyland [2004].
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2 Basic concepts and mathematical methods

2.2.1 Markov modelling

The details behind Markov modelling are omitted in the main thesis, but can be found in
Appendix A.1. The main advantage of Markov modelling is that it makes it possible to
analyse the reliability of systems with dependent components. Detected and undetected
failure modes and possible transitions between these states are easily incorporated into a
Markov model. For systems with redundant components, the Markov diagram becomes
large and complicated and the calculation becomes computationally extensive. In these
situations it is often more efficient to use an alternative method such as fault tree,
FMECA studies, reliability block diagrams, and so on.

The safety systems considered in this thesis are supposed to fulfil the Markov prop-
erty and to have stationary transition probabilities. The first assumption is the char-
acteristic property of a Markov process and implies that the future state of the system
depends only on its present state and not its past. From the second assumption it follows
that transition probabilities are independent of long-term trends and seasonal variations.
These assumptions are mathematically expressed in Equation A.1 and A.2, respectively.

The connection between the transition probability matrix and transition rate matrix
is given by Equation A.5 and A.6. Since a Markov process is completely characterised
by its transition probability matrix it follows that specifying the transition rate matrix
does, through this connection, determine the Markov process.

The Markov model can be used to find out what happens when the process has been
running for a long time, i.e., to evaluate the limiting probabilities. This is convenient in
order to evaluate the reliability of a system expressed by PFD as described in Chapter
2.1.3. It is interpreted as the average or long-run proportion of time the process will be
in an unavailable state. The limiting probabilities form a vector, Π = [Π1,Π2, . . . ,Πr],
where Πi equals the long-run proportion of time that the process will be in state i. PFD
is computed as the sum of all Πi’s where i is a state where the safety system is not able
to respond upon demand. The procedure used to develop a Markov model and compute
limiting probabilities for a SIF is as follows:

1. Define possible states of the SIF and give them numbers from 0 up to r where r+1
is the total number of possible states.

2. Connect states with transition rates, aij ∀ i 6= j, where aij is the rate of going
from state i to j. The diagonal elements, aii ∀ i = 0, 1, . . . r, are found from
equation A.6 such that the sum of each row equals 0.

3. Utilise state transition diagram and transition rate matrix, A, where

A =


a00 a01 a02 . . . a0r
a10 a11 a12 . . . a1r
...

...
...

...
...

ar0 ar1 ar2 . . . arr

 .
4. Solve the balance equation A.17 and the normalising equation A.18, i.e., solve the

following set of equations:

ΠA = 0, (2.4)
r∑
j=0

Πj = 1. (2.5)
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2.2.2 Common cause-modelling

There is a great deal of disagreement among experts on how to define CCF’s and what
impact they have on the availability of SIS. As a consequence there exists different
models where the most commonly used method today is the β-factor model introduced
by Fleming [1974]. The model describes the correlation between independent failures
and CCF’s in a redundant system. The β-factor model is applicable when the system
consists of identically constructed redundant components. The β-factor denotes the
fraction of common cause failures among all the failures of a component, i.e.,

β = λ(c)

λ
, (2.6)

where λ(c) denotes the failure rate due to an external event whereby all the components of
the system fails. β can also be interpreted as the conditional probability that the failure
of a component will be shared by all other components of the system, i.e., Equation 2.6
can be rewritten as:

Pr(CCF|A failure has occurred) = β.

A number of methods have been proposed for the assessment of β, either by different
criteria or by sound engineering judgement.

In IEC 61508, random hardware failures are supposed to occur independently so
only systematic failures contributes to the calculation of CCF’s. Qualitatively, they
suggest a method to calculate the PFD where the contribution of CCF’s are modelled
by using the standard β-model [IEC 61508, Part 6, Annex D]. IEC 61508 states that
the model may be inadequate for a system with many redundant components. As for
systematic failures, they propose qualitative guidelines on how to reduce the possibility
of CCF’s. They recommend to diversify and separate components to achieve maximal
independence and to make staggered testing to reveal possible CCF’s before they have
had time to affect more than one component.

From definition 2.6 it can be seen that the β-factor model assumes that a certain
percentage of all failures are CCFs. Both β-models presented so far have limitations
primarily because they do not use different β’s for different voting configurations such
as 1oo1, 1oo2, 2oo3, and so on. It does not allow for the possibility that more than
one, but not all components fail due to a CCF. The PDS method [Hauge et al., 2006a]
introduces a configuration factor, CMooN , and sets the β-factor for a MooN system equals
βCMooN . Here β is the β-factor which applies for a 1oo2 voting logic.

2.2.3 Reliability block diagram

Reliability block diagrams are often applied to determine the PFD of a SIF. This section
provides a description of the application for a 1oo1 and 1oo2 system that are the systems
analysed in this thesis.

1oo1 system

A 1oo1 system can be represented by the reliability block diagram in Figure 2.2. This
system is operating successfully if it is possible to find a path from the leftmost node to
the rightmost node.
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Figure 2.2: Reliability block diagram for a 1oo1 system.

Since TDU, the time until a DU failure, is supposed to be exponentially distributed
with parameter λDU, the survivor function RDU(t) becomes

RDU(t) = P (TDU ≥ t) = e−λDUt.

The unknown PFD from individual failures is, according to equation 2.1:

PFDunknown = 1− 1
τ

∫ τ

0
e−λDUtdt

= 1− 1
λDUτ

(
1− e−λDUτ

)
≈ λDUτ

2 .

The approximation follows from the Maclaurin series expansion of the exponential func-
tion3 and it can be seen that the approximation is always conservative which is important
to ensure safe design.

PFDknown due to repair activities is calculated by using equation 2.2, i.e.,

PFDknown ≈ λDMTTRD.

The total PFD is the sum of these two contributors, i.e.,

PFDtot = PFDunknown + PFDknown ≈
λDUτ

2 + λDMTTRD. (2.7)

1oo2 system

This section looks at a 1oo2 system that can be represented by the reliability block
diagram in Figure 2.3. Common cause failures are now introduced because the different
components can fail due to a shared event. For this system there are three events that
may contribute to PFDknown, and these are:

Event 1: Loss of safety due to individual DU failures, PFD1
unknown. It can be cal-

culated by using the survivor function of the parallel structure shown in Figure 2.3

31− e−at = at− (at)2

2! + (at)3

3! + . . . ≈ at− (at)2

2! + (at)3

3! . This approximation is commonly used when
at is less than 0.1.
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Figure 2.3: Reliability block diagram for a 1oo2 system.

and becomes:

Rindividual(t) = 1− (1− e−(1−β)λ(1)
DUt)(1− e−(1−β)λ(2)

DUt)

= 1−
[
1− e−(1−β)λ(1)

DUt − e−(1−β)λ(2)
DUt + e−2(1−β)t(λ(1)

DU+λ(2)
DU)
]

= e−(1−β)λ(1)
DUt + e−(1−β)λ(2)

DUt − e−2(1−β)t(λ(1)
DU+λ(2)

DU).

Equation 2.1 for individual failures becomes

PFD1
unknown = 1−1

τ

∫ τ

0
Rindividual ≈

[(1− β)τ ]2

6

[(
λ

(1)
DU + λ

(2)
DU

)2
−
(
λ

(1)
DU

)2
−
(
λ

(2)
DU

)2
]
.

Event 2: Loss of safety due to common cause failures, PFD2
unknown. Only unde-

tected CCFs contribute to the unknown PFD, and it is necessary to treat only the
rightmost component in Figure 2.3. The failure rate due to common cause DU fail-
ures can be computed using the geometric mean [Hauge et al., 2006a, Appendix
D], i.e., λDU,CC =

√
λ

(1)
DU · λ

(2)
DU. 4 The survivor function RCC,DU(t) becomes the

same as for an individual DU failure in a 1oo1 system and PFD2
unknown becomes

similar to equation 2.7 except that the failure rate is multiplied by β, i.e.,

PFD2
unknown ≈ β

λDU,CCτ

2 ≈ β

√
λ

(1)
DU · λ

(2)
DUτ

2 .

Event 3: Loss of safety due to degraded operation. When one component has a
DD failure the system is supposed to run as a 1oo1 system, and there is a prob-
ability that the remaining component will fail DU during restoration of the other

4This is not always a good method while it does not take into account the various degrees of coupling
between the components.
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component and thus contribute to the PFD. This factor is denoted PFD3
unknown

and becomes

PFD3
unknown = (1− β)λ(1)

DDMTTRD
λ

(2)
DUτ

2 + (1− β)λ(2)
DDMTTRD

λ
(1)
DUτ

2
= (1− β)MTTRD

τ

2
(
λ

(1)
DDλ

(2)
DU + λ

(2)
DDλ

(1)
DU

)
.

The total unknown PFD can be calculated by the probability of the union of these
three events, i.e.,

PFDunknown = Pr (Event 1 ∪ Event 2 ∪ Event 3)
= Pr (A ∪ B ∪ C)
= Pr (A) + Pr (B) + Pr (C)
−Pr (A ∩ B)− Pr (A ∩ C)− Pr (B ∩ C) + Pr (A ∩ B ∩ C)

≈ PFD1
unknown + PFD2

unknown + PFD3
unknown.

This is an acceptable approximation in most cases because the probabilities of the in-
tersections are so small that they can be neglected. It is important to notice that the
approximation is always conservative which is desirable in reliability calculations.

The restoration time due to two individual DD failures are assumed negligible and
the contribution from repair activities becomes the same as for a 1oo1 system only
multiplied by a factor β.

PFDknown ≈ βλD,CCMTTRD

≈ β

√
λ

(1)
D · λ

(2)
D MTTRD.

The total PFD for a 1oo2 system becomes

PFDtotal = PFDunknown + PFDknown

≈ [(1− β)τ ]2

6

[(
λ

(1)
DU + λ

(2)
DU

)2
−
(
λ

(1)
DU

)2
−
(
λ

(2)
DU

)2
]

+β

√
λ

(1)
DU · λ

(2)
DUτ

2
+(1− β)MTTRD

τ

2
(
λ

(1)
DDλ

(2)
DU + λ

(2)
DDλ

(1)
DU

)
+β
√
λ

(1)
D · λ

(2)
D MTTRD.
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CHAPTER 3

Application

This chapter starts with a presentation of what impact safe failures may have on the
availability of a SIS. These potential effects are discussed for different models of safety
systems and their respective modelling algorithm is presented. The results are presented
in Chapter 4.

3.1 Possible effects of safe failures
There are several possible effects of safe failures, but this thesis focuses on the ones that
may have positive impact on the availability of a SIS. These are:

1. An increased portion of time spent in safe state reduces the possibility of going to
dangerous state.

2. Safe failures can be seen as a function test where DU failures are detected.

3. Safe failures can give assurance that the system functions properly and shorten the
expected time the system is unavailable due to a DU failure found by a function
test.

Consider a high integrity pressure protection system (HIPPS) that is installed to pre-
vent overpressure by isolating a low pressure rated system for a source of high pressure.
The system is also called a production shutdown system. A HIPPS that is designed and
built in accordance with IEC 61508 and IEC 61511 is an alternative to the conventional
pressure safety valve (PSV) that opens an outlet for the fluid once a set pressure is
exceeded.

This section provides an analysis of a specific final element of a HIPPS, a fail-safe-
close (FSC) valve including the actuator. If a deviation from the acceptable pressure
level is detected, the FSC valve is designed to close and thereby shut down the process.
There are several possible failure modes related to a FSC valve, but this thesis pays
attention to the ones that may be affected by a safe failure. These failure modes are
given in Table 3.1.
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3.1 Possible effects of safe failures

Table 3.1: Possible failure modes related to a FSC valve

Failure mode Abbreviation

Fail to open FTO
Delayed operation DOP
Fail to close on demand FTC
Valve leakage in closed position LCP
External leakage of utility medium ELU
Spurious operation SPO

The following assumptions applies for a FSC valve:

1. The Markov property is assumed to hold.
This means that the state of the system at the future time step, (t+1), is dependent
on the current state, (t), but not the past (t−n∆t for n = 1, 2, . . .). It follows that
the failure and restoration rates are assumed to be constant with respect to calendar
time. Constant failure rate is valid in what is called the useful life period of an
item where failures are supposed to occur randomly as opposed to the burn-in and
wear-out period where the failure rate is decreasing and increasing, respectively.
These features can be seen from the bathtub curve [Rausand and Høyland, 2004,
fig. 2.5], where the failure rate is shown as a function of time. Constant restoration
rate is a rough approximation because it is expected that the time left to restore a
failure will decrease, and not stay constant, as time goes by. Restoration rates
for the possible failures modes are defined later in this section. To simplify the
calculations, the failure rates are measured with respect to calendar time and not
to operational time.

2. The system is considered working in a low demand mode of operation.
Safety shutdown systems are not supposed to be activated more frequently than once
a year and a FSC valve falls in the low demand category.

3. The system is function tested at regular time intervals of length τ and the system
is supposed to be as good as new after each test interval. This means that all
possible failure modes are repaired or the failed item is replaced and the system is
brought back to initial state after a function test. It follows that the system has
test coverage equal to 100%.

4. The duration of a test is assumed to be so short compared to τ that it can be
neglected.

5. The failure mode SPO is denoted safe detected (SD). It follows that all SD failures
result in a spurious closure of the FSC valve given that a FTC failure is not present.
The presence of FTC failure is explained further in item 9.

6. Several failures in a system are restored simultaneously.

7. The failure mode FTO will not affect PFD since a process shutdown system already
is in safe state when the failure is detected. This failure is incorporated into SD
state.
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3 Application

8. The failure mode ELU is always supposed to result in a spurious activation and
incorporated into SD state.

9. All FTC failures are assumed to be detected by a spurious closure.
The failure mode makes the process unable to get into SD state and the system is
brought to DD state. This occurrence depends on a device installed to register that
the valve is intended to close even though this is not possible.

10. The leakage resulting from the failure mode LCP is assumed to be so small that
it can not be revealed by a spurious closure.

11. All DOP failures are assumed to be detected by a spurious closure.
This property depends on a registration of the time it takes to close the valve.

12. The failure mode DOP will not contribute to PFD since the system is brought
to safe state even if a DOP failure is present. This failure is classified as safe
undetected (SU), but since it does not result in a spurious closure it is not incor-
porated into SD state. The extra time needed to shut down the process is assumed
negligible.

3.2 1oo1 system
A 1oo1 system can be represented by the reliability block diagram in Figure 2.2. The
procedure for establishing Markov models is given in Section 2.2.1 where the first step
is to define possible states of the system. The assumptions above reduce the collection
of all possible states of a FSC valve to the ones given in Table 3.2.

Table 3.2: Possible states of a FSC valve

State Property

0 DUFTC
1 DULCP
2 DD
3 SUDOP
4 SD
5 OK

Transitions between these states and their respective transition rates are given in
Figure 3.1.
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3.2 1oo1 system

Figure 3.1: State transition diagram for a FSC valve.

The next step in the procedure is to utilise the transition rate matrix which becomes:

A =



a00 0 λSD 0 0 µDU,FTC
0 a11 0 0 0 µDU,LCP
0 0 a22 0 0 µDD
0 0 0 a33 λSD µSU,DOP
0 0 0 0 a44 µSD

λDU,FTC λDU,LCP λDD λSU,DOP λSD a55


.

The last step in the derivation of the PFD is to solve the set of equations given in
2.4 and 2.5 which becomes:

λDU,FTCΠ5 = (µDU,FTC + λSD)Π0

λDU,LCPΠ5 = µDU,LCPΠ1

λDDΠ5 = µDDΠ2 − λSDΠ0

λSU,DOPΠ5 = (µSU,DOP + λSD)Π3

λSDΠ5 = µSDΠ4 − λSDΠ3
5∑
j=0

Πj = 1.

The resulting procedure used to perform the implementation is given in Algorithm
1.

A lot of data has been collected to describe the parameters in the first step, e.g.,
Hauge et al. [2006b], OREDA [2002]. Testing is supposed to be conducted once a year,
i.e., τ = 8670 hours. The parameters k1, k2 are the percentage of all dangerous failures
that are assumed to be FTC and LCP, respectively, whereas k3 denote the percentage
of all safe failures that are DOP.
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Output: PFD values as a function of SFF
Assign values to the parameters τ, Cd, λD, k1, k2, k3,MTTRSD, and MTTRD ;1.1
λDD ← λDCd and λDU ← λD(1− Cd) ;1.2
λDU,FTC ← λDUk1 and λDU,LCP ← λDUk2;1.3
µDD ← 1

MTTRD
, µSD ← [MTTRSD]−1 and µDU,LCP ← 1

MTTRD+τ/2 ;1.4

SFF ← [SFF1, SFF2, . . . ,SFFm] ;1.5
for i← 1 to length(SFF) do1.6

λS(i) ← SFFiλD−λDD
1−SFFi ;1.7

λSU,DOP ← λS(i)k3 ;1.8
λSD ← λS(i)(1− k3) ;1.9

PFTC ←
λSDλDU,FTCτ

2

2 ;1.10

PDOP ←
λSDλSU,DOPτ

2

2 ;1.11
µDU,FTC ← 1

τ/3PFTC+τ/2(1−PFTC) ;1.12

µSU,DOP ← 1
τ/3PDOP+τ/2(1−PDOP) ;1.13

Π5
−1 ← λDU,FTC

µDU,FTC+λSD
+ λDU,LCP

µDU,LCP
+ λDD

µDD
+ λSD

µDD

λDU,FTC
µDU,FTC+λSD

+ λSU,DOP
µSU,DOP+λSD

+1.14
λSD
µSD

+ λSD
µSD

λSU,DOP
µSU,DOP+λSD

+ 1 ;

Π4 ←
(
λSD
µSD

+ λSD
µSD

λSU,DOP
µSU,DOP+λSD

)
Π5 ;1.15

Π3 ←
λSU,DOP

µSU,DOP+λSD
Π5 ;1.16

Π2 ←
(
λDD
µDD

+ λSD
µDD

λDU,FTC
µDU,FTC+λSD

)
Π5 ;1.17

Π1 ←
λDU,LCP
µDU,LCP

Π5 ;1.18

Π0 ←
λDU,FTC

µDU,FTC+λSD
Π5 ;1.19

PFDi ← Π0 + Π1 + Π2 ;1.20

end1.21
PFD ← [PFDi] ;1.22

Algorithm 1: Algorithm for estimating the PFD for a 1oo1 system
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3.2 1oo1 system

Figure 3.2: The mean behaviour of the state variable X(t) of a system.

Assumption 1 says that the process considered fulfils the Markov property. Since the
exponential distribution is the only continuous distribution that models a memoryless
process it follows that TDD, the time spent in state 2 before making a transition, is
exponentially distributed with parameter µDD. Thus the expected time spent in state
2 equals 1

µDD
. DD failures are supposed to be repaired immediately after arising, so the

expected time spent in state 2 equals the mean time to restore a DD failure, MTTRDD,
which is defined in step 1.1. This relationship is given in the first equation in step 1.4.

The restoration rate for undetected failures is not the same as for detected failures
mainly because it is not known when they actually occurred. What is known is that
they are revealed and repaired at time τ . In fact, there is a distinction between the
restoration rates for the three possible undetected failures. The failure mode FTC and
DOP can be revealed by a SD failure which becomes an issue when a SD failure occurs
prior to one of these failures within the same test interval. Because of assumption 9 and
11, the system is known to be free from FTC and DOP failures after restoration of a SD
failure and the SD failure then has the same properties as a function test.

Suppose that the probability of three or more failures occurring during a test interval
is so small that these situations can be neglected. If a DUFTC or SUDOP failure is
detected by the function test, there are two possible scenarios involving no more than
two failures in a test interval of length τ . These possible situations can be represented by
the function diagrams in Figure 3.2 where the expected state of the system is represented
by the binary variable X(t). X(t) = 0 means that a DUFTC failure is present at time t
and X(t) = 1 means that no DUFTC failure is present at time t and it follows that the
safety of the system is maintained. A DUFTC failure is used for illustrative purpose, but
a SUDOP will follow the same arguments.

The upper diagram shows the mean behaviour of the state variable X(t) when a
SD failure occurs before a DUFTC within the same test interval. The time interval is
separated in three periods of equal length, where the SD failure is, on average, supposed
to occur at time τ/3 and the DUFTC failure at time 2τ/3. The expected duration of
a DUFTC failure before it is detected is τ/3. This partition of the interval is based on
the assumption of equal failure rates, i.e., λSD = λDU,FTC. Different failure rates will
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probably change the occurrence time, but the effect is assumed to be so small that it
can be neglected.

The lower diagram shows the possibility of a DUFTC failure occurring before a SD
failure within the same test interval. Since the possibility of more than two independent
failures are assumed negligible, a SD failure cannot occur after a DUFTC failure since it
is known that the system is found in failed state at time τ . Suppose that the probability
of occurrence of a DUFTC failure is the same for all times within the test interval of
length τ . It follows that TDU,FTC is uniformly distributed on the interval (0, τ ] and it
follows that the expected duration of a DUFTC failure in this situation is τ/2.

Let TDU and TSD denote the time until a DUFTC failure and SD failure, respectively.
The average duration of a DUFTC failure, D, is calculated based on the law of total
probability and becomes:

E[D|X(τ) = 0] = E [D|X(τ) = 0, TSD < TDU,FTC < τ ] Pr [TSD < TDU,FTC < τ ]
+E [D|X(τ) = 0, TDU,FTC < TSD < τ ] [1− Pr (TSD < TDU,FTC < τ)]

= τ

3 Pr (TSD < TDU,FTC < τ) + τ

2 [1− Pr (TSD < TDU,FTC < τ)] , (3.1)

where

Pr (TSD < TDU < τ) =
∫ τ

t=0
Pr (TSD < t)fDU(t)dt

=
∫ τ

t=0
(1− e−λSDt)λDUe

−λDUtdt

= 1− e−λDUτ − λDU
λSD + λDU

(
1− e−(λSD+λDU)τ

)
≈ λSDλDUτ

2

2 .

The restoration rate from DUFTC is the reciprocal of Equation 3.1, resulting in
the equation in Step 1.12. The restoration rate from SUDOP is based on a similar
deduction and the result is expressed in Step 1.13. According to assumption 10, DULCP
failures are not detected by a spurious closure. Suppose that the occurrence time is
uniformly distributed on the interval, then the expected time spent in state 1 is equal to
MTTRD + τ

2 . The resulting restoration rate from DULCP failures is given in Step 1.4.
It becomes visible that the restoration rate from DUFTC, DULCP, and SUDOP failures

are not constant during the test period and do not satisfy the requirements for a Markov
process. The exponential distribution is still an adequate approximation for the purpose
of this thesis while it does not affect the limiting probabilities considerably.

SFF is a vector with values ranging from Cd
1, the coverage factor, to 1. λS in Step

1.7 is derived from the expression for SSF given in equation 2.3. PFD in Step 1.20 is
calculated as the proportion of time spent in dangerous state, i.e., state 0, 1, or 2.

3.3 1oo2 system
The work in the previous section is developed further to treat two identical FSC’s con-
nected in series. This system is able to respond adequately upon demand as long as one

1SFF equals Cd corresponds to λS equals 0.
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of the valves is functioning as illustrated by the reliability block diagram in Figure 2.3.
The system is supposed to have active functional redundancy which means that both
components get the same signal from the logic solver. Common cause failures are taken
into consideration since both components may fail as a direct result of a shared cause.

It is necessary to define additional requirements that are specific for a 1oo2 system.
These are:

1. The system is made up of two identical components and they are supposed to
operate in a common environment.

2. Both components respond in the same manner to a CCF. It follows that a CCF
results in either two safe failures, two DD failures or two DU failures.

3. Both components are function tested simultaneously.

4. The same β-factor is applied for DU, DD, and safe failures. This may not be a
realistic assumption, but there is little experience on the subject of application of
specific β-factors.

5. The probability of having an undetected failure in one component and a DD failure
in the other at the end of the test interval, i.e., at times nτ ; n = 1, 2, 3.., is assumed
negligible.

6. SD state is supposed to be instantaneous, i.e., µSD →∞.

7. Two independent failures cannot occur simultaneously.

8. A DD failure in one component is repaired without affecting the other component
which means that degraded operation is considered.

Possible states of a 1oo2 system is given in Table 3.3:
State 0, 1, and 2 consider the situation where both components fail due to a common

cause while state 6, 9, and 11 are due to two individual failures. This separation is
done because the restoration rates are different. Since multiple failures are restored
simultaneously, the restoration rate from state 0, 1, and 2 are equal to their respective
restoration rate computed in the previous section.

It becomes evident that the complexity of a Markov model grows rapidly by adding
redundant components. The general view of the Markov diagram becomes difficult to
grasp and for a 1oo2 system it is more easy to follow a table of all possible transactions.
These are dislayed in Table 3.4.
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Table 3.3: Possible states of a 1oo2 system

State FSC1 FSC2

0 CCSUDOP CCSUDOP
1 CCDUFTC CCDUFTC
2 CCDULCP CCDULCP

3 SUDOP DD
4 DUFTC DD
5 DULCP DD
6 SUDOP SUDOP
7 SUDOP DUFTC
8 SUDOP DULCP
9 DUFTC DUFTC
10 DUFTC DULCP
11 DULCP DULCP

12 DD DD
13 OK DD
14 SUDOP OK
15 DUFTC OK
16 DULCP OK
17 OK OK
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Table 3.4: Possible transitions a 1oo2 system

From To Transition rate Condition

17 16 2(1− β)λDU,LCP A DULCP failure occurs in one component.
15 2(1− β)λDU,FTC A DUFTC failure occurs in one component.
14 2(1− β)λSU,DOP A SUDOP failure occurs in one component.
13 βλDD A CCDD failure occurs in both components.
2 βλDU,LCP A CCDULCP failure occurs in both components.
1 βλDU,FTC A CCDUFTC failure occurs in both components.
0 βλSU,DOP A CCSUDOP failure occurs in both components.

16 17 µDU,LCP DULCP is restored.
11 (1− β)λDU,LCP A DULCP failure occurs in the faultless component.
10 (1− β)λDU,FTC A DUFTC failure occurs in the faultless component.
8 (1− β)λSU,DOP A SUDOP failure occurs in the faultless component.

15 17 µDU,FTC DUFTC is restored.
13 (1− β)λSD DUFTC is detected by a SD failure.
13 βλSD DUFTC is detected and the faultless component fail SD.
10 (1− β)λDU,LCP A DULCP failure occurs in the faultless component.
9 (1− β)λDU,FTC A DUFTC failure occurs in the faultless component.
7 (1− β)λSU,DOP A SUDOP failure occurs in the faultless component.

14 17 µSU,DOP SUDOP is restored.
17 (1− β)λSD SUDOP is detected by a SD failure. Because µSD →∞ the transition for

this component is directly to initial state and not to SD state.
17 βλSD SUDOP is detected and the faultless component fail SD due to a common

cause.
8 (1− β)λDU,LCP A DULCP failure occurs in the faultless component.
7 (1− β)λDU,FTC A DUFTC failure occurs in the faultless component.
6 (1− β)λSU,DOP A SUDOP failure occurs in the faultless component.

13 17 µDD DD failure is restored.
17 (1− β)λSD A SD failure occurs in the faultless component. Because µSD → ∞ the

transition is directly to initial state and not to SD state.
12 (1− β)λDD A DD failure occurs in the faultless component.
5 (1− β)λDU,LCP A DULCP failure occurs in the faultless component.
4 (1− β)λDU,FTC A DUFTC failure occurs in the faultless component.
3 (1− β)λSU,DOP A SUDOP failure occurs in the faultless component.

12 17 µDD DD failures are restored simultaneously.
11 17 µDU,1oo2 DULCP failures are restored simultaneously.
10 17 µDU,1oo2 DUFTC and DULCP failure are restored simultaneously.

5 (1− β)λSD DUFTC failure are revealed by a SD failure.
9 17 µDU,1oo2 DUFTC failures are restored simultaneously.

12 βλSD DUFTC failures are revealed by a common cause SD failure.
4 2(1− β)λSD One of the DUFTC failures are revealed by a SD failure.

8 17 µDU,1oo2 SUDOP and DULCP failures are restored simultaneously.
16 (1− β)λSD SUDOP is revealed by a SD failure.

7 17 µDU,1oo2 SUDOP and DUFTC failures are restored simultaneously.
15 (1− β)λSD SUDOP failure is revealed by a SD failure.
13 βλSD SUDOP and DUFTC failures are revealed by a common cause SD failure.
3 (1− β)λSD DUFTC failures is revealed by a SD failure.

6 17 µDU,1oo2 SUDOP failures are restored simultaneously.
17 βλSD SUDOP failures are revealed by a common cause SD failure. Because

µSD →∞ the transition is directly to initial state and not to SD state.
14 2(1− β)λSD One of the SUDOP failures are revealed by a SD failure. .

5 16 µDD DD failure is restored.
13 µDU,LCP DULCP is restored.

4 15 µDD DD failure is restored.
13 µDU,FTC DUFTC is restored.

3 14 µDD DD failure is restored.
13 µSU,DOP SUDOP is restored.

2 17 µDU CCDULCP failures are restored simultaneously.
1 17 µDU,FTC CCDUFTC failures are restored simultaneously.
0 17 µSU,DOP CCSUDOP failures are restored simultaneously.
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CHAPTER 4

Results

The Markov models obtained in the previous chapter are written in the programming
language R. R is commonly used for statistical computing and graphics at Industrial
Mathematics and is well suited for the tasks related to this thesis. The results are
presented in the following sections, where all models have the same basic plots. The
PFD is plotted against SFF and for illustrative purposes the positive effect on PFD by
increasing SFF one percent is plotted. The formula for calculating this percentage effect
is:

Effect =
PFDSFF[i−1] − PFDSFF[i]

PFDSFF[i−1]
. (4.1)

The chapter starts with a sensitivity analysis for the different parameters used in
reliability calculations as shown in Equations 2.7 and 2.8. The last section compares the
results obtained for the two different system configurations, 1oo1 and 1oo2.

4.1 Variation of restoration time of safe failures for a 1oo1
system

The result of running Algorithm 1 for different values of MTTRS is displayed in Figure
4.1. The figure displays a common tendency for the PFD to decrease as a function
of SFF for all values of MTTRS. The result can be explained by looking at the state
transition diagram in Figure 3.1. An increased fraction of safe failures means that there
is an increased fraction of transitions from initial state to the safe states 3 and 4. The
exposure time for transitions to dangerous state decreases and the result is a lower value
of PFD. The percentage effect on PFD by increasing SFF one percent, expressed by
Equation 4.1, is plotted in Figure 4.2. The graph shows a marginally increasing effect
from increasing MTTRS but the effect is so small that it can be considered neglectable.
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4.1 Variation of restoration time of safe failures for a 1oo1 system

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

SFF

P
F

D

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

SFF

P
F

D

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

SFF

P
F

D

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

SFF

P
F

D

2.5

2.6

2.7

2.8

2.9

3

3.1

* 10−3

MTTRS = 8hours
MTTRS = 150hours
MTTRS = 500hours
MTTRS = 1000hours

Figure 4.1: PFD for a 1oo1 system when considering the effect of restoration time.
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Figure 4.2: Percentage reduction of PFD by increasing SFF by one percent.
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Figure 4.3: Comparison of the PFD for a 1oo1 system after introducing instantaneous restora-
tion from safe state.

4.2 The effect of assuming instantaneous restoration from
safe state for a 1oo1 system

Based on the results obtained in the previous section it is interesting to see what hap-
pens when it is assumed that safe state is instantaneous, i.e., when µSD → ∞. The
restoration time from safe failure is set equal to the restoration time from dangerous
failures, i.e. MTTRS = MTTRD = 8hours. The rationale for this choice is that most
of the restoration time is not active repair of the failed component. Normal procedures
includes isolation of the item, flushing with inert gas, demolition, re installation and
so forth. These activities are not affected by the failure mode and it is reasonable to
assume equal restoration time.

The results of running Algorithm 1 are shown in Figure 4.3 and 4.4. The graphs
are almost identical, and it can be concluded that the time spent in safe state does not
affect the PFD noticeable. It follows that the restoration rate from SU state is assumed
instantaneous in the rest of the implementation.

4.3 Variation of dangerous failure rate for a 1oo1 system

The plot in Figure 4.5 shows the PFD for a 1oo1 system for different values of λD. The
PFD reduces considerable when λD reduces. From Figure 4.6 it can be seen that the
percentage effect of increasing SFF is small when λD is small. This is probably due to
the decreasing frequency of a DU failure and a safe failure occurring in the same test
interval. The results demonstrates that safe failures have significant effect only when
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4.4 Variation of β-factor for a 1oo2
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Figure 4.4: Percentage reduction of PFD by increasing SFF by one percent.

the dangerous failure rate is high.
According to Hauge et al. [2006b], OREDA [2002] the most reasonable value of the

dangerous failure rate is 10−6, so this is the value used in the rest of the implementation.

4.4 Variation of β-factor for a 1oo2

When an identical, redundant component is introduced, the safety system is run as a
1oo2 system. There is a possibility that both components fail due to a shared event,
and β determines the rate at which this scenario occur. Thus, as β increases, there is
an increased probability that an event resulting in a component failure will affect both
components and not just one of them. If this failure is dangerous, the safety function
is unavailable and will contribute to the PFD. Figure 4.7 shows that the PFD increases
as β increases. From Figure 4.8 it is seen that the percentage effect of increasing SFF
actually is reduced when β increases, the opposite of what happens to be the case for λD.
The reason for this is that the combination of high β-factor and high SFF will probably
result in an increased fraction of safe CCF. Thus the effect of revealing DU failures is
of minor importance when the frequency of a DU failure and a safe failure occurring in
the same test interval decreases.

The problem of finding a correct value of β for the safety system seems to be more
important than to incorporate the effect of safe failures. According to Hauge et al.
[2006b] the reasonable choice of β for this system is 0.02.
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Figure 4.5: Comparison of the PFD for a 1oo1 system when assuming
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Figure 4.6: Percentage reduction of PFD by increasing SFF by one percent.
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4.4 Variation of β-factor for a 1oo2
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Figure 4.7: PFD for a 1oo2 system with various β-factors.
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Figure 4.8: Comparison of the percentage reduction of PFD for various β-factors.
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Figure 4.9: Comparison of the PFD for the two different system configurations 1oo1 and 1oo2.

4.5 Comparison of PFD for 1oo1 and 1oo2 system

The simulations in this section are run for the following parameter values: µS → ∞,
MTTRS = 8 hours, λD = 10−6 and β = 0.02. The PFD for the two different system
configurations, 1oo1 and 1oo2, is plotted in Figure 4.9. It shows that there is a large
reduction in PFD when introducing a redundant component. The difference can be
explained by course of HFT. The 1oo2 configuration has HFT equals 1 while the 1oo1
system has HFT equals 0. In the redundant system both components must fail dangerous
before the system is unable to respond adequately on demand. On the other hand the
rate of safe failures is twice as big for a 1oo2 system compared to a 1oo1 system. The
percentage effect on PFD by increasing SFF is plotted in Figure 4.10 and shows that the
effect is greater for the 1oo1 configuration, especially when SFF lies between 75 and 95%
which is common values in practical analysis. Since the effect is smaller than 1% when
SFF equals 95%, safe failures does not have a significant effect on PFD calculations.

4.6 Comparison of PFD calculated by the Markov model
and normal probability calculations

Figure 4.11 shows the results obtained when applying the parameters in the previous
section for a 1oo1 system together with the numerical results obtained by applying these
parameters in Equation 2.7. Figure 4.12 is derived in a similar manner for a 1oo2 system
where the numerical result is obtained by assuming identical components in Equation
2.8. The numerical values, PFD1oo1 = 3.210−3 and PFD1oo2 = 7.610−5, correspond to
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4.6 Comparison of PFD calculated by the Markov model and normal
probability calculations
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Figure 4.10: Comparison of the percentage reduction of PFD for two different system config-
urations, 1oo1 and 1oo2.

the points on their respective graphs where SFF = 0. This is because standard PFD
calculations are done under the assumption of no influence from safe failures, or, in other
words, when assuming SFF = 0.

The figures shows that the SFF must be close to 100% to have a significant effect.
Since the fraction of dangerous failures is always kept at a minimum, the number of safe
failures must be increased to obtain a higher SFF. This is probably not the intent of
SFF and is negative with respect to production downtime.
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Figure 4.11: Comparison of the calculated PFD for a 1oo1 system by normal probability cal-
culations and Markov model.
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Figure 4.12: Comparison of the calculated PFD for a 1oo2 system by normal probability cal-
culations and Markov model.

35





CHAPTER 5

Conclusions

Safety engineers have questioned the suitability of SFF as an indicator of safe design,
where the negative effects of safe failures have achieved great importance. A literature
survey has been carried out to clarify the relationship between safe failures and SIS
reliability and to identify the positive effects of safe failures.

The application includes a detailed analysis of a safety shutdown valve and the
possible effects have been incorporated into a Markov model for two different system
configurations, 1oo1 and 1oo2.

From the results it can be concluded that the time needed to restore the system back
to initial state after a safe failure does not have a significant effect on PFD.

The main contributor to PFD is the long run probability of being in DU state. DU
failures are normally detected by function tests or sometimes upon demand, but they can
also be revealed by a spurious closure. This effect is based on the assumption of perfect
repair of safe failures, which means that all possible failure modes are detected and the
failed items are repaired or replaced after restoration of safe failures. The ability to
reveal DU failures is clearly dependent on the frequency of a DU failure and safe failure
occurring in the same test interval. This thesis demonstrates that safe failures only have
significant effect when the dangerous failure rate is high. Other parameters affect the
PFD to a greater extent, and the importance of exact parameter estimation is crucial
and more important than the positive effects of safe failures.

When redundant components are introduced, there is a possibility that both com-
ponents fail due to a shared event. These CCFs will reduce the reliability of the safety
system, and the PFD is highly dependent on the value of the β factor.

The positive effects of safe failures is not so considerable that it can justify a lower
degree of redundancy. The SFF must be close to 100% to indicate a lower SIL level,
and since the minimum number of dangerous failures always are arrived at, the alter-
native is to introduce more safe failures. This is probably not the intent of SFF and is
negative with respect to production downtime. On the other hand, the positive effects
of safe failures show a satisfactory reason for adopting a longer test interval. This is an
optimisation of PFD and can reduce costs or even the frequency of dangerous situations
during start-up and shutdown.

This thesis demonstrates that the PFD is not affected by safe failures, and indicates
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no reason to be in doubt about this parameter as a measure of reliability. The SFF gives
hardly any information and the choice of SIS architecture should not be based on SFF
alone. An alternative parameter that considers different means of revealing DU failures
seems to be a better choice.

Recommendations for further work
The models in this thesis could be developed further to also include systematic failures
or to take negative effects into consideration as well. A particular safety valve is analysed
and some effects may be valid only for this specific system. To get the entire picture
of the effects of safe failures, another systems should be analysed. Alternative methods
could be used to verify the results obtained in this thesis.

A simplification in the analysis is that the possibility of three or more failure modes
of a component during a test interval is assumed negligible. This limitation in the model
should be checked to find out whether or not several failures in the same test interval
will affect the PFD.

This thesis concluded that accurate estimation of the β-factor was crucial to obtain
reliable results. A development of the models is to apply specific β-factors for the
different failure modes. More research should be developed to find correct β-values and
to incorporate them into the model.
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APPENDIX A

Supplementary theory

A.1 Markov model
A Markov process is a continuous-time Markov chain which means that events, such as
failure modes, can occur at any point in time in contrast to Markov chains where they
take place only at discrete times. The basic assumption of a Markov process is that
the behaviour of a system is memoryless. This means that future states of a system is
characterised only by its present state and not the past. Suppose the random variable
Z(t) denotes the state of the system at time t and that the collection of all possible
states, χ, is finite, i.e χ = {0, 1, 2, ..., r}. Suppose that the state of the process at time t
is i, the Markov property says that:

P [Z(t+ s) = j |Z(t) = i, Z(u) = z(u);u < t] = P [Z(t+ s) = j|Z(t) = i] (A.1)

for all possible values z(u);u < t.
If, in addition,

P [Z(t+ s) = j|Z(t) = i] = P [Z(s) = j|Z(0) = i] , (A.2)

the Markov process is said to have stationary or homogeneous transition probabilities.
In words, this means that the probability of a transition from one state to another does
not depend on the global time but only on the time interval available for the transition
to take place.

Let Ti denote the amount of time that the Markov process stays in state i before
making a transition into a different state. Consider a Markov process that enters state
i at time 0 and suppose that we observe that the process is still in state i at time t, i.e
Ti > t. What is the probability of finding the process in state i after another s time
units, i.e what is P [Ti > t+ s|Ti > t]? Since the process have the Markov property, we
know that the probability that the process remains in state i for s more time units is
determined only by the current state i. Thus

P [Ti > t+ s|Ti > t] = P [Ti > s] (A.3)
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A.1 Markov model

for all s, t > 0. Hence Ti is memoryless, and we conclude that the random variable Ti is
exponentially distributed.1

The number of possible states in an industrial process is countable, thus finite, and
the transition probability distribution can therefore be represented by a matrix. The
(i,j) element of the transition probability matrix P, equals

Pij = P [Z(t) = j|Z(0) = i] ∀i, j ∈ χ. (A.4)

When we use Markov models to represent the construction of a safety system, it is
more common to find values for the transition rates instead of the transition probabilities.
There is a clear connection between these two parameters, given by the following formula:

aij = αiPij ∀i 6= j. (A.5)
In formula A.5, αi denotes the rate at which the process leaves state i and Pij is the

probability that it makes a transition from state i to state j. It follows that aij is the
transition rate from state i to state j and thus the (i,j) element of the transition rate
matrix A. Earlier in this section we defined Ti as the amount of time spent in state i
before making a transition, and proved that it is exponentially distributed. The rate
parameter is actually αj and it follows that the mean time spent in state i, E(Ti), is
equal to 1/αi.

Equation A.5 explains that specifying the transition rate matrix of a Markov process
determines the transition probability matrix. The transition rates can be found by
constructing a state transition diagram where circles are used to represent states and
directed arcs are used to represent transitions between the states. The diagonal elements
aii can be found by the following equation

aii = −αi = −αi
∑
j 6=i

Pij = −
∑
j 6=i

aij , (A.6)

where the first transition follows from the fact that the transition rate back to its own
state is minus the transition rate out of that state. The second transition is true because∑
j 6=i Pij = 1 2.
By using the Markov property and the law of total probability, we derive at:

Pij(t+ s) = P [Z(t+ s) = j|Z(0) = i]

=
k∑

n=0
P [Z(t+ s) = j|Z(t) = k, Z(0) = i]P [Z(t) = k|Z(0) = i]

=
k∑

n=0
P [Z(t+ s) = j|Z(t) = k]P [Z(t) = k|Z(0) = i]

=
k∑

n=0
Pkj(s)Pik(t) (A.7)

We have shown that

Pij(t+ s) =
k∑

n=0
Pkj(s)Pik(t) ∀s, t ≥ 0, (A.8)

1The exponential distribution is the only continuous distribution that models a memoryless process.
2The summation runs over all values of j except i and is a consequence of treating a continuous time

Markov chain where the probability of making a jump back to its present state, Pii, equals 0
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which is known as the Chapman Kolmogorov equation.
From equation A.8 we get that

Pij(t+ ∆t)− Pij(t) =
r∑

k=0
Pkj(∆t)Pik(t)− Pij(t)

=
r∑

k=0
Pik(∆t)Pkj(t)− Pij(t)

=
∑
k 6=i

Pik(∆t)Pkj(t) + Pii(∆t)Pij(t)− Pij(t)

=
∑
k 6=i

Pik(∆t)Pkj(t)− [1− Pii(∆t)]Pij(t) (A.9)

If we divide by ∆t and takes the limit as ∆t→ 0 we get:

lim
∆t→0

Pij(t+ ∆t)− Pij(t)
∆t = lim

∆t→0

∑
k 6=i

Pik(∆t)
∆t Pkj(t)−

1− Pii(∆t)
∆t Pij(t)

 . (A.10)

Since the summation index is finite we are able to interchange the summation and
limit, and equation A.10 can be simplified using the following equalities:

lim
∆t→0

Pij(t+ ∆t)− Pij(t)
∆t = P ′ij(t) (A.11)

Pij(∆t) = ∆tαiPij (A.12)
1− Pii(∆t) = αi∆t (A.13)

The first equation follows from the definition of a derivative. Pij(∆t),the probability
that the process goes from state i to state j in a time h, equals the rate at which the
process makes a transition when in state i multiplied by the time interval, ∆t, multiplied
by the probability of making a transition from state i to state j. The last equation can
be derived when recognizing that 1−Pii(∆t), the probability that a process in state i at
time h, equals the rate at which the process makes a transition when in state i multiplied
with ∆t.

The resulting equation is called Kolmogorov’s forward equations:

P ′ij(t) =
∑
k 6=j

aikPkj(t)− αiPij(t) =
∑
k 6=i

akjPik(t) (A.14)

In matrix term this equation may be written as

P′(t) = P(t)A. (A.15)

In many modeling situations it is interesting to know what happens with a process
that has been running for a long time, or in the probabilistic sense, to know something
about the limiting probabilities. Let Πj be the limiting probability that the Markov
process will be in state j, i.e

Πj = limt→∞Pij(t). (A.16)
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Since Pij(t) tends to a constant value when t → ∞ it implies that the derivative
must be equal to 0. As a consequence, the limiting probabilities can be drawn from the
simplified forward equation given in equation A.14:

lim
∆t→∞

P ′ij(t) = lim
∆t→∞

∑
k 6=j

aikPkj(t)− αiPij(t)

0 =
∑
k 6=j

aikΠk − αjΠj

αjΠj =
∑
k 6=j

aikΠk (A.17)

It is important to remark that the transition rate matrix, A is singular because the
sum of each row equals 0. This means that we need one extra independent equation
in the Πjťs in order to solve for the limiting probabilities. For this purpose we use the
normalization equation,

r∑
j=1

πj = 1. (A.18)

Equation A.17 has a nice interpretation as the left-hand side equals the rate at which
the process leaves state j and the right-hand side equals the rate at which the process
enters state j. As a result equation A.17 are sometimes referred to as the balance
equation while, in the long run, the rate at which transitions into state j occur equals
the rate at which transitions out of state j occur.
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APPENDIX B

R files

B.1 Variation of restoration time of safe failures
1 ###############################################################################

#
3 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 1 oo1 model −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

#−−−−−−−−−− V a r i a t i o n og MTTR_S , s a f e s t a t e i s i n c l u d e d −−−−−−−−−−−−−−−−−−−−−−−
5 #

###############################################################################
7

#−−−−−−−Parameters−−−−−−#
9 tau=24∗365

Cd=0.28
11 lambda_D=1e−6

LCP=0.35
13 FTC=0.65

DOP=0.2
15

SFF=seq (C_d , 0 . 9 9 , 0 . 0 1 )
17 MTTR_D=8

MTTR_S=c ( 8 , 5 0 , 1 5 0 , 3 0 0 , 5 0 0 , 7 5 0 , 1 0 0 0 , 2 0 0 0 , 3 0 0 0 )
19

mu_DD=1/MTTR_D
21 mu_LCP=1/ ( tau/2+MTTR_D)

lambda_DD=lambda_D∗Cd
23 lambda_DU=lambda_D∗(1−Cd)

lamLCP=lambda_DU∗LCP
25 lamFTC=lambda_DU∗FTC

27 #−−−−P r o b a b i l i t y m a t r i c e s −−−−−−−−−−#
P0=matrix ( 0 , length (SFF ) , length (MTTR_S ) )

29 P1=matrix ( 0 , length (SFF ) , length (MTTR_S ) )
PFD1oo1=matrix ( 0 , length (SFF ) , length (MTTR_S ) )

31
for ( i i n 1 : length (SFF) ) {

33 lambda_S i =(SFF [ i ] ∗ lambda_D−lambda_DD) /(1−SFF [ i ] )
lamDOP=lambda_S i ∗DOP

35 lamS=lambda_S i ∗(1−DOP)

37 P_FTC=lamS∗lamFTC∗ tau ^2/2
P_DOP=lamS∗lamDOP∗ tau ^2/2

39 mu_FTC=1/ ( tau/3∗P_FTC+tau/2∗(1−P_FTC) )
mu_DOP=1/ ( tau/3∗P_DOP+tau/2∗(1−P_DOP) )

41
for ( j i n 1 : length (MTTR_S ) ) {

43 mu_Sj=1/MTTR_S [ j ]

45 P_5=1/ (lamFTC/ (mu_FTC+lamS)+lamLCP/mu_LCP+lambda_DD/mu_DD
+lamS∗lamFTC/ (mu_DD∗ (mu_FTC+lamS))+lamDOP/ (mu_DOP+lamS )

47 +lamS/mu_Sj+lamS∗lamDOP/ (mu_Sj ∗ (mu_DOP+lamS ))+1)
P_4=(lamS/mu_Sj+lamS∗lamDOP/ (mu_Sj ∗ (mu_DOP+lamS ) ) ) ∗P_5

49 P_3=(lamDOP/ (mu_DOP+lamS ) ) ∗P_5
P_2=(lambda_DD/mu_DD+lamS∗lamFTC/ (mu_DD∗ (mu_FTC+lamS ) ) ) ∗P_5

51 P_1=(lamLCP/mu_LCP) ∗P_5
P_0=(lamFTC/ (mu_FTC+lamS ) ) ∗P_5

53
t o t=P_0+P_1+P_2+P_3+P_4+P_5

55 i f ( round ( tot , 1 0 ) !=1) print ( c ( " Sum  of  p r o b a b i l i t i e s  not  e q u a l  to  1 ! " , t o t ) )

47



B.1 Variation of restoration time of safe failures

57 P0 [ i , j ]=P_0
P1 [ i , j ]=P_1

59
PFD1oo1 [ i , j ]=P_0+P_1+P_2

61 }
}

63
print ( c ( " P o r t i o n  of  the  PFD  t h a t  c o m e s  f r o m  DU  e q u a l s : " , (sum(P0 [ , 1 ] ) +sum(P1 [ , 1 ] ) ) /sum( PFD1oo1 [ , 1 ] ) ) )

65
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

67 #−−−−−− P l o t s t h e PFD f o r a 1 oo1 system f o r d i f f e r e n t v a l u e s o f MTTR_S −−−−−−−−
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

69 ymin=min( PFD1oo1 [ , 1 ] , PFD1oo1 [ , 3 ] , PFD1oo1 [ , 5 ] , PFD1oo1 [ , 7 ] )
ymax=max( PFD1oo1 [ , 1 ] , PFD1oo1 [ , 3 ] , PFD1oo1 [ , 5 ] , PFD1oo1 [ , 7 ] )

71 x=seq ( 2 . 5 e−3 ,3.1 e−3,by=1e−4)
plot (SFF , PFD1oo1 [ , 1 ] , type=’ l ’ , col =1, ylim=c ( ymin , ymax ) , ylab=" PFD " , yaxt=" n " )

73 par (new=T)
plot (SFF , PFD1oo1 [ , 3 ] , type=’ l ’ , col =2, ylim=c ( ymin , ymax ) , ylab=" PFD " , yaxt=" n " )

75 par (new=T)
plot (SFF , PFD1oo1 [ , 5 ] , type=’ l ’ , col =3, ylim=c ( ymin , ymax ) , ylab=" PFD " , yaxt=" n " )

77 par (new=T)
plot (SFF , PFD1oo1 [ , 7 ] , type=’ l ’ , col =4, ylim=c ( ymin , ymax ) , ylab=" PFD " , yaxt=" n " )

79 axis ( 2 , at=x , l ab e ls=x∗ 10^3 , l a s =2)
mtext( "∗" ~ 10^−3 , s i d e =3, l i n e =0.2 , adj =0)

81 legend ( 0 . 3 , 0 . 0 0 2 7 , c ( expression (MTTR[ " S " ]==8∗ hours ) , expression (MTTR[ " S " ]==150∗ hours ) ,
expression (MTTR[ " S " ]==500∗ hours ) , expression (MTTR[ " S " ]==1000∗ hours ) ) , l t y =1, col=c ( 1 , 2 , 3 , 4 ) )

83 dev . copy2eps ( f i l e=" 1 oo1 . eps " )

85 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#−−−−−− P l o t s t h e p e r c e n t a g e r e d u c t i o n o f PFD by i n c r e a s i n g SFF by one p e r c e n t

87 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
e f f e c t 1=rep ( 0 , length (SFF)−1)

89 e f f e c t 2=rep ( 0 , length (SFF)−1)
e f f e c t 3=rep ( 0 , length (SFF)−1)

91 e f f e c t 4=rep ( 0 , length (SFF)−1)

93 for ( i i n 2 : length (SFF) ) {
e f f e c t 1 [ i ]=(PFD1oo1 [ i −1,1]−PFD1oo1 [ i , 1 ] ) /PFD1oo1 [ i −1 ,1]

95 e f f e c t 2 [ i ]=(PFD1oo1 [ i −1,3]−PFD1oo1 [ i , 3 ] ) /PFD1oo1 [ i −1 ,3]
e f f e c t 3 [ i ]=(PFD1oo1 [ i −1,5]−PFD1oo1 [ i , 5 ] ) /PFD1oo1 [ i −1 ,5]

97 e f f e c t 4 [ i ]=(PFD1oo1 [ i −1,7]−PFD1oo1 [ i , 7 ] ) /PFD1oo1 [ i −1 ,7]
}

99 ymin=min( e f f e c t 1 , e f f e c t 2 , e f f e c t 3 , e f f e c t 4 )
ymax=max( e f f e c t 1 , e f f e c t 2 , e f f e c t 3 , e f f e c t 4 )

101
plot (SFF , e f f e c t 1 , type=’ l ’ , col =1, ylim=c ( ymin , ymax ) , ylab=" E f f e c t  (%) " )

103 par (new=T)
plot (SFF , e f f e c t 2 , type=’ l ’ , col =2, ylim=c ( ymin , ymax ) , ylab=" E f f e c t  (%) " )

105 par (new=T)
plot (SFF , e f f e c t 3 , type=’ l ’ , col =3, ylim=c ( ymin , ymax ) , ylab=" E f f e c t  (%) " )

107 par (new=T)
plot (SFF , e f f e c t 4 , type=’ l ’ , col =4, ylim=c ( ymin , ymax ) , ylab=" E f f e c t  (%) " )

109 legend ( 0 . 3 , 0 . 0 6 , c ( expression (MTTR[ " S " ]==8∗ hours ) , expression (MTTR[ " S " ]==150∗ hours ) ,
expression (MTTR[ " S " ]==500∗ hours ) , expression (MTTR[ " S " ]==1000∗ hours ) ) , l t y =1, col=c ( 1 , 2 , 3 , 4 ) )

111 dev . copy2eps ( f i l e=" 1 o o 1 e f f e c t . eps " )
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B.2 The effect of assuming instantaneous restoration from
safe state

###############################################################################
2 #

#−−−−−−−−−−−−−−−−−−−−−−−−−− 1 oo1 HIPPS model −−−−−−−−−−−−−−−−−−−−−−−−−−
4 #−−−−−−−−−−−−−−−−−−−−− i n s t a n t a n e o u s r e s t o r a t i o n −−−−−−−−−−−−−−−

#
6 ###############################################################################

8 " - - - - - - - P a r a m e t e r s - - - - - - "
tau=24∗365

10 Cd=0.28
lambda_D=1e−6

12 LCP=0.35
FTC=0.65

14 DOP=0.2

16 SFF=seq (C_d , 0 . 9 9 , 0 . 0 1 )
MTTR_D=8

18
mu_DD=1/MTTR_D

20 mu_LCP=1/ ( tau/2+MTTR_D)
mu_S=1/MTTR_D

22 lambda_DD=lambda_D∗Cd
lambda_DU=lambda_D∗(1−Cd)

24 lamLCP=lambda_DU∗LCP
lamFTC=lambda_DU∗FTC

26
#−−−−P r o b a b i l i t y m a t r i c e s −−−−−−−−−−#

28 P0=rep ( 0 , length (SFF ) )
P1=rep ( 0 , length (SFF ) )

30 PFD1oo1_b=rep ( 0 , length (SFF ) )
OK=rep ( 0 , length (SFF ) )

32
for ( i i n 1 : length (SFF) ) {

34 lambda_S i =(SFF [ i ] ∗ lambda_D−lambda_DD) /(1−SFF [ i ] )
lamDOP=lambda_S i ∗DOP

36 lamS=lambda_S i ∗(1−DOP)

38 P_FTC=lamS∗lamFTC∗ tau ^2/2
P_DOP=lamS∗lamDOP∗ tau ^2/2

40 mu_FTC=1/ ( tau/3∗P_FTC+tau/2∗(1−P_FTC) )
mu_DOP=1/ ( tau/3∗P_DOP+tau/2∗(1−P_DOP) )

42
P_4=1/ (lamFTC/ (mu_FTC+lamS)+lamLCP/mu_LCP+lambda_DD/mu_DD

44 +lamS∗lamFTC/ (mu_DD∗ (mu_FTC+lamS))+lamDOP/ (mu_DOP+lamS )+1)
P_3=(lamDOP/ (mu_DOP+lamS ) ) ∗P_4

46 P_2=(lambda_DD/mu_DD+lamS∗lamFTC/ (mu_DD∗ (mu_FTC+lamS ) ) ) ∗P_4
P_1=(lamLCP/mu_LCP) ∗P_4

48 P_0=(lamFTC/ (mu_FTC+lamS ) ) ∗P_4

50 t o t=P_0+P_1+P_2+P_3+P_4
i f ( round ( tot , 5 ) !=1) print ( " Sum  of  p r o b a b i l i t i e s  not  e q u a l  to  1 ! " )

52
P0 [ i ]=P_0

54 P1 [ i ]=P_1

56 PFD1oo1_b [ i ]=P_0+P_1+P_2
OK[ i ]=P_4

58 }
print ( c ( " P o r t i o n  of  the  PFD  t h a t  c o m e s  f r o m  DU  e q u a l s : " , (sum(P0)+sum(P1 ) ) /sum( PFD1oo1_b ) ) )

60
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

62 #−−−−−− Compares t h e PFD when i n t r o d u c i n g i n s t a n t a n e o u s r e s t o r a t i o n −−−−−−−−
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

64 ymin=min( PFD1oo1 [ , 1 ] , PFD1oo1_b )
ymax=max( PFD1oo1 [ , 1 ] , PFD1oo1_b )

66 x=seq ( 2 . 5 e−3 ,3.1 e−3,by=1e−4)

68 plot (SFF , PFD1oo1 [ , 1 ] , type=’ l ’ , col =1, ylim=c ( ymin , ymax ) , ylab=" PFD " , yaxt=" n " )
par (new=T)

70 plot (SFF , PFD1oo1_b , type=’ l ’ , col =2, ylim=c ( ymin , ymax ) , ylab=" PFD " , yaxt=" n " )
axis ( 2 , at=x , l ab e ls=x∗ 10^3 , l a s =2)

72 mtext( "∗" ~ 10^−3 , s i d e =3, l i n e =0.2 , adj =0)
legend ( 0 . 3 , 0 . 0 0 2 7 , c ( " E f f e c t  of  r e s t o r a t i o n  t i m e  is  c o n s i d e r e d " ,

74 " E f f e c t  of  r e s t o r a t i o n  t i m e  is  i g n o r e d " ) , l t y =1, col=c ( 2 , 3 ) )
dev . copy2eps ( f i l e=" 1 oo1_sml . eps " )

76
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

78 #−−−−−− P l o t s t h e P e r c e n t a g e r e d u c t i o n o f PFD by i n c r e a s i n g SFF by one p e r c e n t
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

80 e f f e c t=rep ( 0 , length (SFF)−1)
e f f e c t_i n f=rep ( 0 , length (SFF)−1)

82 for ( i i n 2 : length (SFF) ) {
e f f e c t [ i ]=(PFD1oo1 [ i −1,1]−PFD1oo1 [ i , 1 ] ) /PFD1oo1 [ i −1 ,1]

84 e f f e c t_i n f [ i ]=(PFD1oo1_b [ i−1]−PFD1oo1_b [ i ] ) /PFD1oo1_b [ i −1]
}

86 ymin=min( e f f e c t , e f f e c t_i n f )
ymax=max( e f f e c t , e f f e c t_i n f )
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88
plot (SFF , e f f e c t , type=’ l ’ , col =1, ylim=c ( ymin , ymax ) , ylab=" E f f e c t  (%) " )

90 par (new=T)
plot (SFF , e f f e c t_i n f , type=’ l ’ , col =2, ylim=c ( ymin , ymax ) , ylab=" E f f e c t  (%) " )

92 legend ( 0 . 3 , 0 . 0 3 , c ( " E f f e c t  of  r e s t o r a t i o n  t i m e  is  c o n s i d e r e d " ,
" E f f e c t  of  r e s t o r a t i o n  t i m e  is  i g n o r e d " ) , l t y =1, col=c ( 2 , 3 ) )

94 dev . copy2eps ( f i l e=" 1 o o 1 e f f e c t_sml . eps " )
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B.3 Variation of dangerous failure rate
###############################################################################

2 #
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 1001 model −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

4 #−−−−−−−−−− V a r i a t i o n lambda_D, i n s t a n t a n e o u s r e s t o r a t i o n from s a f e s t a t e −−−−−−−−−−−−−−−−−−−−−−−
#

6 ###############################################################################

8 #−−−−−−−Parameters−−−−−−#
tau=24∗365

10 Cd=0.28
LCP=0.35

12 FTC=0.65
DOP=0.2

14
SFF=seq (C_d , 0 . 9 9 , 0 . 0 1 )

16 MTTR_D=8
lambda_D=c (1 e−6,5e−7,1e−7,5e−8)

18
mu_DD=1/MTTR_D

20 mu_LCP=1/ ( tau/2+MTTR_D)

22 #−−−−−−P r o b a b i l i t y m a t r i c e s−−−−−−−−−#
P0=matrix ( 0 , length ( lambda_D) , length (SFF ) )

24 P1=matrix ( 0 , length ( lambda_D) , length (SFF ) )
PFD1oo1_lambda=matrix ( 0 , length ( lambda_D) , length (SFF ) )

26
for ( i i n 1 : length ( lambda_D) ) {

28 lambda_DD=lambda_D[ i ] ∗Cd
lambda_DU=lambda_D[ i ] ∗(1−Cd)

30 lamLCP=lambda_DU∗LCP
lamFTC=lambda_DU∗FTC

32
for ( j i n 1 : length (SFF) ) {

34 lambda_Sj =(SFF [ j ] ∗ lambda_D[ i ]− lambda_DD) /(1−SFF [ j ] )
lamDOP=lambda_Sj ∗DOP

36 lamDOP
lamS=lambda_Sj ∗(1−DOP)

38
P_FTC=lamS∗lamFTC∗ tau ^2/2

40 P_DOP=lamS∗lamDOP∗ tau ^2/2
mu_FTC=1/ ( tau/3∗P_FTC+tau/2∗(1−P_FTC) )

42 mu_DOP=1/ ( tau/3∗P_DOP+tau/2∗(1−P_DOP) )

44 P_4=1/ (lamFTC/ (mu_FTC+lamS)+lamLCP/mu_LCP+lambda_DD/mu_DD
+lamS∗lamFTC/ (mu_DD∗ (mu_FTC+lamS))+lamDOP/ (mu_DOP+lamS )+1)

46 P_3=(lamDOP/ (mu_DOP+lamS ) ) ∗P_4
P_2=(lambda_DD/mu_DD+lamS∗lamFTC/ (mu_DD∗ (mu_FTC+lamS ) ) ) ∗P_4

48 P_1=(lamLCP/mu_LCP) ∗P_4
P_0=(lamFTC/ (mu_FTC+lamS ) ) ∗P_4

50
t o t=P_0+P_1+P_2+P_3+P_4

52 i f ( round ( tot , 5 ) !=1) print ( " Sum  of  p r o b a b i l i t i e s  not  e q u a l  to  1 ! " )

54 P0 [ i , j ]=P_0
P1 [ i , j ]=P_1

56
PFD1oo1_lambda [ i , j ]=P_0+P_1+P_2

58 }
}

60 print ( c ( " P o r t i o n  of  the  PFD  t h a t  c o m e s  f r o m  DU  e q u a l s : " , (sum(P0 [ 1 , ] ) +sum(P1 [ 1 , ] ) ) /sum( PFD1oo1_lambda [ 1 , ] ) ) )

62 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#−−−−−− P l o t s t h e PFD f o r a 1 oo1 system f o r d i f f e r e n t v a l u e s o f lambda_D −−−−−−−−

64 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ymin=min( PFD1oo1_lambda [ 1 , ] , PFD1oo1_lambda [ 2 , ] , PFD1oo1_lambda [ 3 , ] , PFD1oo1_lambda [ 4 , ] )

66 ymax=max( PFD1oo1_lambda [ 1 , ] , PFD1oo1_lambda [ 2 , ] , PFD1oo1_lambda [ 3 , ] , PFD1oo1_lambda [ 4 , ] )
x=seq ( 1 . 5 e−4 ,3.1 e−3,by=5e−4)

68 plot (SFF , PFD1oo1_lambda [ 1 , ] , type=’ l ’ , col =1, ylim=c ( ymin , ymax ) , ylab=" PFD " , yaxt=" n " )
par (new=T)

70 plot (SFF , PFD1oo1_lambda [ 2 , ] , type=’ l ’ , col =2, ylim=c ( ymin , ymax ) , ylab=" PFD " , yaxt=" n " )
par (new=T)

72 plot (SFF , PFD1oo1_lambda [ 3 , ] , type=’ l ’ , col =3, ylim=c ( ymin , ymax ) , ylab=" PFD " , yaxt=" n " )
par (new=T)

74 plot (SFF , PFD1oo1_lambda [ 4 , ] , type=’ l ’ , col =4, ylim=c ( ymin , ymax ) , ylab=" PFD " , yaxt=" n " )
axis ( 2 , at=x , l ab e ls=x∗ 10^3 , l a s =2)

76 mtext( "∗" ~ 10^−3 , s i d e =3, l i n e =0.2 , adj =0)
legend ( 0 . 3 , 0 . 0 0 2 7 5 , c ( expression ( lambda [ " D " ]==1e−6) , expression ( lambda [ " D " ]==5e−7) ,

78 expression ( lambda [ " D " ]==1e−7) , expression ( lambda [ " D " ]==5e−8)) , l t y =1, col=c ( 1 , 2 , 3 , 4 ) )
dev . copy2eps ( f i l e=" 1 o o 1 l a m b d a . eps " )

80
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

82 #−−−−−− P l o t s t h e p e r c e n t a g e r e d u c t i o n o f PFD by i n c r e a s i n g SFF by one p e r c e n t
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

84 e f f e c t 1=rep ( 0 , length (SFF)−1)
e f f e c t 2=rep ( 0 , length (SFF)−1)

86 e f f e c t 3=rep ( 0 , length (SFF)−1)
e f f e c t 4=rep ( 0 , length (SFF)−1)

88 e f f e c t 3 [ 6 8 ]

90 for ( i i n 2 : length (SFF) ) {
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e f f e c t 1 [ i ]=(PFD1oo1_lambda [ 1 , i−1]−PFD1oo1_lambda [ 1 , i ] ) /PFD1oo1_lambda [ 1 , i −1]
92 e f f e c t 2 [ i ]=(PFD1oo1_lambda [ 2 , i−1]−PFD1oo1_lambda [ 2 , i ] ) /PFD1oo1_lambda [ 2 , i −1]

e f f e c t 3 [ i ]=(PFD1oo1_lambda [ 3 , i−1]−PFD1oo1_lambda [ 3 , i ] ) /PFD1oo1_lambda [ 3 , i −1]
94 e f f e c t 4 [ i ]=(PFD1oo1_lambda [ 4 , i−1]−PFD1oo1_lambda [ 4 , i ] ) /PFD1oo1_lambda [ 4 , i −1]

}
96 ymin=min( e f f e c t 1 , e f f e c t 2 , e f f e c t 3 , e f f e c t 4 )

ymax=max( e f f e c t 1 , e f f e c t 2 , e f f e c t 3 , e f f e c t 4 )
98

plot (SFF , e f f e c t 1 , type=’ l ’ , col =1, ylim=c ( ymin , ymax ) , ylab=" E f f e c t  (%) " )
100 par (new=T)

plot (SFF , e f f e c t 2 , type=’ l ’ , col =2, ylim=c ( ymin , ymax ) , ylab=" E f f e c t  (%) " )
102 par (new=T)

plot (SFF , e f f e c t 3 , type=’ l ’ , col =3, ylim=c ( ymin , ymax ) , ylab=" E f f e c t  (%) " )
104 par (new=T)

plot (SFF , e f f e c t 4 , type=’ l ’ , col =4, ylim=c ( ymin , ymax ) , ylab=" E f f e c t  (%) " )
106 legend ( 0 . 3 , 0 . 0 3 , c ( expression ( lambda [ " D " ]==1e−6) , expression ( lambda [ " D " ]==5e−7) ,

expression ( lambda [ " D " ]==1e−7) , expression ( lambda [ " D " ]==5e−8)) , l t y =1, col=c ( 1 , 2 , 3 , 4 ) )
108 dev . copy2eps ( f i l e=" 1 o o 1 e f f e c t_l a m b d a . eps " )
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B.4 Variation of beta factor
1 ###############################################################################

#
3 #−−−−−−−−−−−−−−−−−−−−−−−− 1 oo2 HIPPS model −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

#−−−−−−−−−− V a r i a t i o n o f b e ta , i n s t a n t a n e o u s r e s t o r a t i o n from s a f e s t a t e −−−−−−
5 #

###############################################################################
7

#−−−−−−−Parameters−−−−−−#
9 tau=24∗365

Cd=0.28
11 lambda_D=1e−6

LCP=0.35
13 FTC=0.65

DOP=0.2
15

SFF=seq (C_d , 0 . 9 9 , 0 . 0 1 )
17 MTTR_D=8

MTTR_S=8
19 beta=c ( 0 . 0 1 , 0 . 0 2 , 0 . 0 5 , 0 . 1 , 0 . 2 )

21 mu_DD=1/MTTR_D
mu_LCP=1/ ( tau/ 2)

23 mu_S=1/MTTR_S
mu_1 oo2=1/ ( tau/3+MTTR_D)

25 lambda_DD=lambda_D∗Cd
lambda_DU=lambda_D∗(1−Cd)

27 lamLCP=lambda_DU∗LCP
lamFTC=lambda_DU∗FTC

29

31 #−−−−P r o b a b i l i t y m a t r i c e s−−−−−−−−#
PFD1oo2_beta=matrix ( 0 , length (SFF ) , length ( beta ) )

33 OK=matrix ( 0 , length (SFF ) , length ( beta ) )

35 for ( i i n 1 : length (SFF) ) {
lambda_S i =(SFF [ i ] ∗ lambda_D−lambda_DD) /(1−SFF [ i ] )

37 lamDOP=lambda_S i ∗DOP
lamS=lambda_S i ∗(1−DOP)

39
P_FTC=lamS∗lamFTC∗ tau ^2/2

41 P_DOP=lamS∗lamDOP∗ tau ^2/2
mu_FTC=1/ ( tau/3∗P_FTC+tau/2∗(1−P_FTC) )

43 mu_DOP=1/ ( tau/3∗P_DOP+tau/2∗(1−P_DOP) )

45 for ( j i n 1 : length ( beta ) ) {
r0=c(−mu_DOP, 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,mu_DOP)

47 r1=c(0 ,−mu_FTC, 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,mu_FTC)
r2=c (0 ,0 ,−mu_LCP, 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,mu_LCP)

49 r3=c (0 ,0 ,0 ,−(mu_DOP+mu_DD) , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,mu_DOP,mu_DD, 0 , 0 , 0 )
r4=c (0 ,0 ,0 ,0 ,−(mu_FTC+mu_DD) , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,mu_FTC, 0 ,mu_DD, 0 , 0 )

51 r5=c (0 ,0 ,0 ,0 ,0 ,−(mu_LCP+mu_DD) , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,mu_LCP, 0 , 0 ,mu_DD, 0 )
r6=c ( 0 , 0 , 0 , 0 , 0 , 0 ,−(mu_1 oo2+beta [ j ] ∗lamS+2∗(1−beta [ j ] ) ∗lamS ) , 0 , 0 ,

53 0 , 0 , 0 , 0 , 0 , 2 ∗(1−beta [ j ] ) ∗lamS , 0 , 0 ,mu_1 oo2+beta [ j ] ∗lamS )
r7=c (0 ,0 ,0 ,(1−beta [ j ] ) ∗lamS ,0 ,0 ,0 ,−(mu_1 oo2+beta [ j ] ∗lamS+2∗(1−beta [ j ] ) ∗lamS ) ,

55 0 , 0 , 0 , 0 , 0 , beta [ j ] ∗lamS ,0 ,(1−beta [ j ] ) ∗lamS , 0 ,mu_1 oo2 )
r8=c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , − (mu_1 oo2+(1−beta [ j ] ) ∗lamS ) , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

57 (1−beta [ j ] ) ∗lamS ,mu_1 oo2 )
r9=c ( 0 , 0 , 0 , 0 , 2 ∗(1−beta [ j ] ) ∗lamS , 0 , 0 , 0 , 0 ,−(mu_1 oo2+beta [ j ] ∗lamS+2∗(1−beta [ j ] ) ∗lamS ) ,

59 0 , 0 , beta [ j ] ∗lamS , 0 , 0 , 0 , 0 ,mu_1 oo2 )
r10=c (0 ,0 ,0 ,0 ,0 , (1−beta [ j ] ) ∗lamS , 0 , 0 , 0 , 0 ,−(mu_1 oo2+(1−beta [ j ] ) ∗lamS ) , 0 , 0 , 0 , 0 , 0 , 0 ,mu_1 oo2 )

61 r11=c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , −mu_1oo2 , 0 , 0 , 0 , 0 , 0 ,mu_1 oo2 )
r12=c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , −mu_DD, 0 , 0 , 0 , 0 ,mu_DD)

63
r13=c (0 ,0 ,0 ,(1−beta [ j ] ) ∗ lambda_DU∗DOP,(1−beta [ j ] ) ∗ lambda_DU∗FTC,(1−beta [ j ] ) ∗ lambda_DU∗LCP,

65 0 ,0 ,0 ,0 ,0 ,0 ,(1−beta [ j ] ) ∗ lambda_DD, 0 , 0 , 0 , 0 ,mu_DD+(1−beta [ j ] ) ∗lamS )
r14=c ( 0 , 0 , 0 , 0 , 0 , 0 , ( 1−beta [ j ] ) ∗ lambda_DU∗DOP,(1−beta [ j ] ) ∗ lambda_DU∗FTC,

67 (1−beta [ j ] ) ∗ lambda_DU∗LCP, 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,mu_DOP+lamS )
r15=c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , ( 1 −beta [ j ] ) ∗ lambda_DU∗DOP,0 ,(1−beta [ j ] ) ∗ lambda_DU∗FTC,

69 (1−beta [ j ] ) ∗ lambda_DU∗LCP, 0 , 0 , lamS , 0 , 0 , 0 ,mu_FTC)
r16=c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , ( 1 −beta [ j ] ) ∗ lambda_DU∗DOP,0 ,(1−beta [ j ] ) ∗ lambda_DU∗FTC,

71 (1−beta [ j ] ) ∗ lambda_DU∗LCP, 0 , 0 , 0 , 0 , 0 ,mu_LCP)
r17=c ( beta [ j ] ∗ lambda_DU∗DOP, beta [ j ] ∗ lambda_DU∗FTC, beta [ j ] ∗ lambda_DU∗LCP,

73 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , beta [ j ] ∗ lambda_DD, 2 ∗(1−beta [ j ] ) ∗ lambda_DU∗DOP,
2∗(1−beta [ j ] ) ∗ lambda_DU∗FTC, 2 ∗(1−beta [ j ] ) ∗ lambda_DU∗LCP, 0 )

75
r13 [14]=−sum( r13 )

77 r14 [15]=−sum( r14 )
r15 [16]=−sum( r15 )

79 r16 [17]=−sum( r16 )
r17 [18]=−sum( r17 )

81
A=matrix ( c ( r0 , r1 , r2 , r3 , r4 , r5 , r6 , r7 , r8 , r9 , r10 , r11 , r12 , r13 , r14 , r15 , r16 , r17 ) ,

83 byrow=TRUE, ncol =18 ,nrow=18)
A[ , dim(A) [ 2 ] ] = rep ( 1 ,dim(A ) [ 2 ] )

85 dP=rep ( 0 ,dim(A ) [ 2 ] )
dP [ dim(A) [ 2 ] ] = 1

87
Pi=dP%∗%solve (A)

89 length ( Pi )
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91 t o t=sum( Pi )
i f ( round ( tot , 5 ) !=1) print ( " Sum  of  p r o b a b i l i t i e s  not  e q u a l  to  1 ! " )

93
PFD1oo2_beta [ i , j ]=sum( c ( Pi [ 2 : 3 ] , Pi [ 5 : 6 ] , Pi [ 1 0 : 1 3 ] ) )

95 }
}

97 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#−−−−−− P l o t s t h e PFD f o r a 1 oo2 system f o r d i f f e r e n t v a l u e s o f b e t a −−−−−−−−−−−

99 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

101 ymin=min( PFD1oo2_beta [ , 1 ] , PFD1oo2_beta [ , 2 ] , PFD1oo2_beta [ , 3 ] , PFD1oo2_beta [ , 4 ] , PFD1oo2_beta [ , 5 ] )
ymax=max( PFD1oo2_beta [ , 1 ] , PFD1oo2_beta [ , 2 ] , PFD1oo2_beta [ , 3 ] , PFD1oo2_beta [ , 4 ] , PFD1oo2_beta [ , 5 ] )

103
x=seq ( 0 , 6 . 0 e−4,by=1.0 e−4)

105 plot (SFF , PFD1oo2_beta [ , 1 ] , type=’ l ’ , col =1, ylim=c ( ymin , ymax ) , ylab=" PFD " , yaxt=" n " )
par (new=T)

107 plot (SFF , PFD1oo2_beta [ , 2 ] , type=’ l ’ , col =2, ylim=c ( ymin , ymax ) , ylab=" PFD " , yaxt=" n " )
par (new=T)

109 plot (SFF , PFD1oo2_beta [ , 3 ] , type=’ l ’ , col =3, ylim=c ( ymin , ymax ) , ylab=" PFD " , yaxt=" n " )
par (new=T)

111 plot (SFF , PFD1oo2_beta [ , 4 ] , type=’ l ’ , col =4, ylim=c ( ymin , ymax ) , ylab=" PFD " , yaxt=" n " )
par (new=T)

113 plot (SFF , PFD1oo2_beta [ , 5 ] , type=’ l ’ , col =5, ylim=c ( ymin , ymax ) , ylab=" PFD " , yaxt=" n " )
axis ( 2 , at=x , l ab e ls=x∗ 10^4 , l a s =2)

115 mtext( "∗" ~ 10^−4 , s i d e =3, l i n e =0.2 , adj =0)

117 legend ( 0 . 3 , 0 . 0 0 0 6 , c ( expression ( beta ==0.01) , expression ( beta ==0.02) , expression ( beta ==0.05) ,
expression ( beta ==0.1) , expression ( beta ==0.2)) , l t y =1, col=seq ( 1 , length ( beta ) ) )

119 dev . copy2eps ( f i l e=" 1 oo2_b e t a . eps " )

121 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#−−−−−− P l o t s t h e p e r c e n t a g e r e d u c t i o n o f PFD f o r d i f f e r e n t v a l u e s o f b e t a

123 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
e f f e c t 1=rep ( 0 , length (SFF)−1)

125 e f f e c t 2=rep ( 0 , length (SFF)−1)
e f f e c t 3=rep ( 0 , length (SFF)−1)

127 e f f e c t 4=rep ( 0 , length (SFF)−1)
e f f e c t 5=rep ( 0 , length (SFF)−1)

129
for ( i i n 2 : length (SFF) ) {

131 e f f e c t 1 [ i ]=(PFD1oo2_beta [ i −1,1]−PFD1oo2_beta [ i , 1 ] ) /PFD1oo2_beta [ i −1 ,1]
e f f e c t 2 [ i ]=(PFD1oo2_beta [ i −1,2]−PFD1oo2_beta [ i , 2 ] ) /PFD1oo2_beta [ i −1 ,2]

133 e f f e c t 3 [ i ]=(PFD1oo2_beta [ i −1,3]−PFD1oo2_beta [ i , 3 ] ) /PFD1oo2_beta [ i −1 ,3]
e f f e c t 4 [ i ]=(PFD1oo2_beta [ i −1,4]−PFD1oo2_beta [ i , 4 ] ) /PFD1oo2_beta [ i −1 ,4]

135 e f f e c t 5 [ i ]=(PFD1oo2_beta [ i −1,5]−PFD1oo2_beta [ i , 5 ] ) /PFD1oo2_beta [ i −1 ,5]
}

137 ymin=min( e f f e c t 1 , e f f e c t 2 , e f f e c t 3 , e f f e c t 4 , e f f e c t 5 )
ymax=max( e f f e c t 1 , e f f e c t 2 , e f f e c t 3 , e f f e c t 4 , e f f e c t 5 )

139
plot (SFF , e f f e c t 1 , type=’ l ’ , col =1, ylim=c ( ymin , ymax ) , ylab=" E f f e c t  (%) " )

141 par (new=T)
plot (SFF , e f f e c t 2 , type=’ l ’ , col =2, ylim=c ( ymin , ymax ) , ylab=" E f f e c t  (%) " )

143 par (new=T)
plot (SFF , e f f e c t 3 , type=’ l ’ , col =3, ylim=c ( ymin , ymax ) , ylab=" E f f e c t  (%) " )

145 par (new=T)
plot (SFF , e f f e c t 4 , type=’ l ’ , col =4, ylim=c ( ymin , ymax ) , ylab=" E f f e c t  (%) " )

147 par (new=T)
plot (SFF , e f f e c t 5 , type=’ l ’ , col =5, ylim=c ( ymin , ymax ) , ylab=" E f f e c t  (%) " )

149 legend ( 0 . 3 , 0 . 0 1 5 , c ( expression ( beta ==0.01) , expression ( beta ==0.02) , expression ( beta ==0.05) ,
expression ( beta ==0.1) , expression ( beta ==0.2)) , l t y =1, col=seq ( 1 , length ( beta ) ) )

151 dev . copy2eps ( f i l e=" 1 o o 2 e f f e c t_b e t a . eps " )
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B.5 Comparison of PFD for 1oo1 and 1oo2 system
###############################################################################

2 #
#−−−−−−−−−−−−−−−−−−−−−−−− 1002 model −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

4 #−−−−−−−−−−−−−−−−−−−−−−−− b e t a = 0 . 0 2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#

6 ###############################################################################

8 #−−−−−−−Parameters−−−−−−#
tau=24∗365

10 Cd=0.28
lambda_D=1e−6

12 LCP=0.35
FTC=0.65

14 DOP=0.3

16 SFF=seq (C_d , 0 . 9 9 , 0 . 0 1 )
MTTR_D=8

18 MTTR_S=8
beta =0.02

20
mu_DD=1/MTTR_D

22 mu_LCP=1/ ( tau/ 2)
mu_S=1/MTTR_S

24 mu_1 oo2=1/ ( tau/3+MTTR_D)
lambda_DD=lambda_D∗Cd

26 lambda_DU=lambda_D∗(1−Cd)
lamLCP=lambda_DU∗LCP

28 lamFTC=lambda_DU∗FTC

30 #−−−−P r o b a b i l i t y m a t r i c e s−−−−−−−−−#
PFD1oo2=rep ( 0 , length (SFF ) )

32 OK=rep ( 0 , length (SFF ) )

34 for ( i i n 1 : length (SFF) ) {
lambda_S i =(SFF [ i ] ∗ lambda_D−lambda_DD) /(1−SFF [ i ] )

36 lamDOP=lambda_S i ∗DOP
lamS=lambda_S i ∗(1−DOP)

38
P_FTC=lamS∗lamFTC∗ tau ^2/2

40 P_DOP=lamS∗lamDOP∗ tau ^2/2
mu_FTC=1/ ( tau/4∗P_FTC+tau/2∗(1−P_FTC) )

42 mu_DOP=1/ ( tau/4∗P_DOP+tau/2∗(1−P_DOP) )

44 r0=c(−mu_DOP, 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,mu_DOP)
r1=c(0 ,−mu_FTC, 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,mu_FTC)

46 r2=c (0 ,0 ,−mu_LCP, 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,mu_LCP)
r3=c (0 ,0 ,0 ,−(mu_DOP+mu_DD) , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,mu_DOP,mu_DD, 0 , 0 , 0 )

48 r4=c (0 ,0 ,0 ,0 ,−(mu_FTC+mu_DD) , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,mu_FTC, 0 ,mu_DD, 0 , 0 )
r5=c (0 ,0 ,0 ,0 ,0 ,−(mu_LCP+mu_DD) , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,mu_LCP, 0 , 0 ,mu_DD, 0 )

50 r6=c ( 0 , 0 , 0 , 0 , 0 , 0 ,−(mu_1 oo2+beta∗lamS+2∗(1−beta ) ∗lamS ) , 0 , 0 , 0 , 0 , 0 ,
0 , 0 , 2 ∗(1−beta ) ∗lamS , 0 , 0 ,mu_1 oo2+beta∗lamS )

52 r7=c (0 ,0 ,0 ,(1−beta ) ∗lamS ,0 ,0 ,0 ,−(mu_1 oo2+beta∗lamS+2∗(1−beta ) ∗lamS ) ,
0 , 0 , 0 , 0 , 0 , beta∗lamS ,0 ,(1−beta ) ∗lamS , 0 ,mu_1 oo2 )

54 r8=c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , − (mu_1 oo2+(1−beta ) ∗lamS ) , 0 , 0 , 0 , 0 , 0 , 0 , 0 , ( 1 −beta ) ∗lamS ,mu_1 oo2 )
r9=c ( 0 , 0 , 0 , 0 , 2 ∗(1−beta ) ∗lamS , 0 , 0 , 0 , 0 ,−(mu_1 oo2+beta∗lamS+2∗(1−beta ) ∗lamS ) , 0 , 0 ,

56 beta∗lamS , 0 , 0 , 0 , 0 ,mu_1 oo2 )
r10=c (0 ,0 ,0 ,0 ,0 , (1−beta ) ∗lamS , 0 , 0 , 0 , 0 ,−(mu_1 oo2+(1−beta ) ∗lamS ) , 0 , 0 , 0 , 0 , 0 , 0 ,mu_1 oo2 )

58 r11=c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , −mu_1oo2 , 0 , 0 , 0 , 0 , 0 ,mu_1 oo2 )
r12=c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , −mu_DD, 0 , 0 , 0 , 0 ,mu_DD)

60
r13=c (0 ,0 ,0 ,(1−beta ) ∗ lambda_DU∗DOP,(1−beta ) ∗ lambda_DU∗FTC,(1−beta ) ∗ lambda_DU∗LCP,

62 0 ,0 ,0 ,0 ,0 ,0 , (1−beta ) ∗ lambda_DD, 0 , 0 , 0 , 0 ,mu_DD+(1−beta ) ∗lamS )
r14=c ( 0 , 0 , 0 , 0 , 0 , 0 , ( 1−beta ) ∗ lambda_DU∗DOP,(1−beta ) ∗ lambda_DU∗FTC,

64 (1−beta ) ∗ lambda_DU∗LCP, 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,mu_DOP+lamS )
r15=c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , ( 1 −beta ) ∗ lambda_DU∗DOP,0 ,(1−beta ) ∗ lambda_DU∗FTC,

66 (1−beta ) ∗ lambda_DU∗LCP, 0 , 0 , lamS , 0 , 0 , 0 ,mu_FTC)
r16=c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , ( 1 −beta ) ∗ lambda_DU∗DOP,0 ,(1−beta ) ∗ lambda_DU∗FTC,

68 (1−beta ) ∗ lambda_DU∗LCP, 0 , 0 , 0 , 0 , 0 ,mu_LCP)
r17=c ( beta∗ lambda_DU∗DOP, beta∗ lambda_DU∗FTC, beta∗ lambda_DU∗LCP, 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

70 beta∗ lambda_DD, 2 ∗(1−beta ) ∗ lambda_DU∗DOP, 2 ∗(1−beta ) ∗ lambda_DU∗FTC, 2 ∗(1−beta ) ∗ lambda_DU∗LCP, 0 )

72 r13 [14]=−sum( r13 )
r14 [15]=−sum( r14 )

74 r15 [16]=−sum( r15 )
r16 [17]=−sum( r16 )

76 r17 [18]=−sum( r17 )

78 A=matrix ( c ( r0 , r1 , r2 , r3 , r4 , r5 , r6 , r7 , r8 , r9 , r10 , r11 , r12 , r13 , r14 , r15 , r16 , r17 ) , byrow=TRUE, ncol =18 ,nrow=18)

80 A[ , dim(A) [ 2 ] ] = rep ( 1 ,dim(A ) [ 2 ] )
dP=rep ( 0 ,dim(A ) [ 2 ] )

82 dP [ dim(A) [ 2 ] ] = 1

84 Pi=dP%∗%solve (A)

86 t o t=sum( Pi )
i f ( round ( tot , 5 ) !=1) print ( " Her  er  det  en  f e i l  i  b e r e g n i n g e n  av  s t a s j o n æ r s a n n s y n l i g h e t e n e ! " )

88
PFD1oo2 [ i ]=sum( c ( Pi [ 2 : 3 ] , Pi [ 5 : 6 ] , Pi [ 1 0 : 1 3 ] ) )

90 }
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B.5 Comparison of PFD for 1oo1 and 1oo2 system

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
92 #−−−−−− Compares t h e PFD f o r a 1 oo1 and a 1 oo2 system −−−−−−−−−−−−−−−−−−−−−−−−

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
94 ymin=min( PFD1oo1 [ , 1 ] , PFD1oo2 )

ymax=max( PFD1oo1 [ , 1 ] , PFD1oo2 )
96

x=seq ( 0 , 3 . 1 e−3,by=5e−4)
98

plot (SFF , PFD1oo1 [ , 1 ] , type=’ l ’ , col =1, ylim=c ( ymin , ymax ) , ylab=" PFD " , yaxt=" n " )
100 par (new=T)

plot (SFF , PFD1oo2 , type=’ l ’ , col =2, ylim=c ( ymin , ymax ) , ylab=" PFD " , yaxt=" n " )
102 axis ( 2 , at=x , l ab e ls=x∗ 10^3 , l a s =2)

mtext( "∗" ~ 10^−3 , s i d e =3, l i n e =0.2 , adj =0)
104 legend ( 0 . 3 , 0 . 0 0 1 , c ( " 1 oo1  s y s t e m " , " 1 oo2  s y s t e m " ) , l t y =1, col=c ( 1 , 2 ) )

dev . copy2eps ( f i l e=" 1 oo2_sml . eps " )
106

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
108 #−−−−−− Compares t h e p e r c e n t a g e r e d u c t i o n o f PFD f o r a 1 oo1 and 1 oo2 system

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
110 e f f e c t 1 o o 1=rep ( 0 , length (SFF)−1)

e f f e c t 1 o o 2=rep ( 0 , length (SFF)−1)
112

for ( i i n 2 : length (SFF) ) {
114 e f f e c t 1 o o 1 [ i ]=(PFD1oo1 [ i −1,1]−PFD1oo1 [ i , 1 ] ) /PFD1oo1 [ i −1 ,1]

e f f e c t 1 o o 2 [ i ]=(PFD1oo2 [ i−1]−PFD1oo2 [ i ] ) /PFD1oo2 [ i −1]
116

}
118 ymin=min( e f f e c t 1 o o 1 , e f f e c t 1 o o 2 )

ymax=max( e f f e c t 1 o o 1 , e f f e c t 1 o o 2 )
120

plot (SFF , e f f e c t 1 o o 1 , type=’ l ’ , col =1, ylim=c ( ymin , ymax ) , ylab=" E f f e c t  (%) " )
122 par (new=T)

plot (SFF , e f f e c t 1 o o 2 , type=’ l ’ , col =2, ylim=c ( ymin , ymax ) , ylab=" E f f e c t  (%) " )
124 legend ( 0 . 3 , 0 . 0 2 5 , c ( " 1 oo1  s y s t e m " , " 1 oo2  s y s t e m " ) , l t y =1, col=c ( 1 , 2 ) )

dev . copy2eps ( f i l e=" 1 o o 2 e f f e c t_sml . eps " )
126

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
128 #−−−−−− Compares t h e PFD f o r s t a n d a r d p r o b a b i l i t y c a l c u l a t i o n s −−−−−−−−−−−−−−−

#−−−−−−−−−−−−−−−−−−−−−− and t h e Markov model −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
130 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

PFD1oo2_RBD=1/3∗((1−beta ) ∗ lambda_DU∗ tau )^2+lambda_DU∗ tau/2∗ ( beta+2∗(1−beta ) ∗ lambda_DD∗MTTR_D)+beta∗ lambda_DD∗MTTR_D
132 PFD1oo1_RBD=lambda_DU∗ tau/2+lambda_DD∗MTTR_D

134 x=seq ( 2 . 6 e−3 ,3.2 e−3,by=1e−4)
plot (SFF [ 4 0 : 7 2 ] , PFD1oo1 [ 4 0 : 7 2 , 1 ] , type=’ l ’ , col =1, ylim=c ( 2 . 6 e−3 ,3.2 e−3) , ylab=" PFD " , x lab=" SFF " , yaxt=" n " )

136 abline ( h=PFD1oo1_RBD)
axis ( 2 , at=x , l ab e ls=x∗ 10^3 , l a s =2)

138 mtext( "∗" ~ 10^−3 , s i d e =3, l i n e =0.2 , adj =0)
dev . copy2eps ( f i l e=" 1 oo1_P F D s m l . eps " )

140
x=seq ( 7 . 2 e−5 ,7.6 e−5,by=1e−6)

142 plot (SFF [ 4 0 : 7 2 ] , PFD1oo2 [ 4 0 : 7 2 ] , type=’ l ’ , col =1, ylim=c ( 7 . 2 e−5 ,7.6 e−5) , ylab=" PFD " , x lab=" SFF " , yaxt=" n " )
abline ( h=PFD1oo2_RBD)

144 axis ( 2 , at=x , l ab e ls=x∗ 10^5 , l a s =2)
mtext( "∗" ~ 10^−5 , s i d e =3, l i n e =0.2 , adj =0)

146 dev . copy2eps ( f i l e=" 1 oo2_P F D s m l . eps " )
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