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Problem Description

Let V be a finite dimensional k-space for a field k, and let V1, V2

and V3 be subspaces of V . The system (V ;V1, V2, V3) is said to be
decomposable if there exists non-trivial subspaces U and W of V such
that V = U qW , and Vi = (Vi∩U)q (Vi∩W ) for i = 1, 2, 3. It is not
difficult to show that if the system (V ;V1, V2, V3) is indecomposable,
then dimk V ≤ 2 and that there are essentially only 9 such systems
which are indecomposable.

The 4 subspace problem is the well known problem of classifying all
indecomposable systems when one increases the number of subspaces
from 3 to 4 in the description above.

The aim of this project is to give a complete solution of the 4 subspace
problem.





Abstract

We present a complete solution to the 4 subspace problem in the
generality of an algebraically closed field. We do this by means of
Auslander-Reiten theory and give the Auslander-Reiten quiver of the
extended D4 Dynkin diagram. We also give a geometric interpretation
when two configurations of four lines through the origin in the plane
are equivalent.
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Introduction

The objective of this thesis is to solve the four subspace problem for an alge-
braically closed field. We give a solution to this by use of Auslander-Reiten
theory.

Given a field k and a finite dimensional vector space V0 over k, and let V1,
V2, V3 and V4 be subspaces of V0. We say that this configuration is decom-
posable if there exists non-trivial U0,W0 ⊂ V0 such that U0 q W0 = V0 and
Vi = (U0 ∩ Vi) q (W0 ∩ Vi) for 1 ≤ i ≤ 4. If there are no such decomposition,
then the configuration is said to be indecomposable. The classification of all the
indecomposable configurations is the four subspace problem.

In [MZ] the four subspace problem is solved by the use of representations of
partially ordered sets, however it was already solved in the 1970’s by joint work
of Gelfand and Ponomarev for an algebraically closed field. Later Nazarova gave
a solution for an arbitrary field.

Chapter 1 deals with basic representation theory of quivers and the Coxeter
functors.

In chapter 2 we go through the Auslander-Reiten theory. Introducing impor-
tant notions and language

Chapter 3 deals with what can be said as the focal point of this thesis, namely
the four subspace problem. Section 3.1 gives a brief introduction to representa-
tions of partially ordered sets. Section 3.2 deals with the four subspace problem
in the language of Auslander-Reiten theory. We give a complete classification of
the indecomposable representations of the extended D4 Dynkin diagram.

The examples that are given will be framed in the following way

Example

clearly showing the start and the end of the example. At the end of proofs there
will appear a � to indicate that the proof is finished. Statements without proof
may also append this symbol, indicating the end of the statement.

v





Chapter 1

Representations and Coxeter

Functors

The aim of this chapter is to give an introduction to the representations theory of
path algebras. While the first section goes through the rudimentary definitions
and notation in connection with path algebras, the last section focuses on the
Coxeter functors and their properties given in [BGP].

1.1 Preliminaries

Let Q = (Q0, Q1) be a oriented multi graph, with Q0 the set of vertices and
Q1 the set of edges. We call Q a quiver, furthermore, if Q0 and Q1 are both
finite, then we say that Q is a finite quiver. We call an edge in Q1 an arrow.
Let s, e : Q1

//Q0 be functions defined by s(α) = i if α ∈ Q1 is an arrow that
starts in vertex i ∈ Q0, and e(α) = j if α ∈ Q1 is an arrow that ends in vertex
j. A path in Q is a composition of arrows that make sense, i.e. p is an path if
p = αr · · ·α2α1, with s(αi+1) = e(αi) for 1 ≤ i < r, moreover let s(p) = s(α1)
and e(p) = e(αr). Also, for each i ∈ Q0 define ei as the trivial path from vertex
i to i, and s(ei) = e(ei) = i. A nontrivial path p is said to be an oriented
cycle if s(p) = e(p), and an arrow α is called a loop if s(α) = e(α). A quiver is
called acyclic if it contains no oriented cycles. Now given a path p, we denote by
l(p) the length of the path p, defined the following way, if p = αr · · ·α2α1, with
αi 6= ej for i, j, then l(p) = r, and let l(ei) = 0 for i ∈ Q0.

Let k be a field. Given a finite quiver Q, we denote by kQ the vector space
of all k-linear combinations of paths in Q, i.e. taking the paths of Q as basis.
Furthermore, we may make this into a k-algebra by defining multiplication of

1



2 CHAPTER 1. REPRESENTATIONS AND COXETER FUNCTORS

two paths α and β as follows

βα =


βα , if α and β are non-trivial and e(α) = s(β)

β , if α = es(β)

α , if β = ee(α)

0 , otherwise

extending this bi-linearly to the whole kQ gives the desired multiplication. We
call the given algebra the path algebra of Q over k. Note that kQ is finite
dimensional if, and only if, Q contains no oriented cycles. Also notice that 1Λ =
e1 + · · ·+ en where Q0 = {1, ldots, n}.

An admissible relation ρ on the quiver Q is a k-linear combination of paths
ρ = a1p1 + · · ·+anpn with ai ∈ k and s(p1) = · · · = s(pn) and e(p1) = · · · = e(pn)
and with l(pi) ≥ 2 for i = 1, . . . , n. If we include paths of length 1 as a relation,
then we might as well have removed the arrow corresponding to that relation from
our quiver. If ρ is a set of relations on Q over k then the pair (Q, ρ) is the quiver
with relations, and the associated path algebra is then k(Q, ρ) = kQ/〈ρ〉, and
〈ρ〉 is the ideal in kQ generated by the set of relations ρ. If we denote by J ⊂ kQ
the ideal generated by the arrows, i.e. the paths of length 1, we have that 〈ρ〉 ⊆ J2.

A representation of a quiver Q = (Q0, Q1) over a field k is a pair (V, f)
such that V is a set of vector spaces V = {Vi} for i ∈ Q0 and f is a collection of
k-linear transformations fα for α ∈ Q1 such that fα : Vi //Vj for i = s(α) and
j = e(α). A morphism of two representations h : (V, f) //(V ′, f ′) is a Q0-tuple
of linear maps hi : Vi //V ′i , i ∈ Q0, which makes the following diagram commute

Vs(α)
fα //

hi
��

Ve(α)

hj
��

V ′s(α)

f ′α // V ′e(α)

for each α ∈ Q1. This will give a structure of a category on these representations.
We will denote by Rep Q the category of (finite dimensional) representations
of Q over k. If we have a quiver with relations (Q, ρ), then a representation of
(Q, ρ) is an representation of Q with the extra condition that for every relation
σ ∈ 〈ρ〉 we have that fσ = 0, where fσ is the k-linear combination of compositions
of fα corresponding to the α’s in σ. That is, if σ = a1p1 + · · · + anpn, then
fσ = a1fp1 + · · · + anfpn where fpi = fαri · · · fαi1 where pi = αri · · ·αi1 , for
1 ≤ i ≤ n.

Example 1

Let Q be the quiver 1 α //2
β //3 δ //4, ρ = {δβα} and let k be a field. Let
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U = (U, f), V = (V, g) and W = (W,h) be the following representations

0

��
k

1��
k

1��
k

k

0��
k

1��
k

1��
k

k

��
0

��
0

��
0

respectively, where 1 is the identity on k, i.e. 1 = 1k, and the maps that are
omitted are the zero map, because that is the only map there is between these
spaces. Now let T : U //V be given by T1 = 0 and Ti = 1, i = 2, 3, 4, and let
S : V //W be given by S1 = 1 and S2 = S3 = S4 = 0. The reader is left to
check that S and T are in fact morphisms in Rep Q.

We will say that a morphism is a monomorphism/epimorphism in Rep Q

if each hi : Vi //V ′i is a monomorphism/epimorphism. An isomorphism in
Rep Q is a morphism that is a monomorphism and epimorphism. Furthermore,
we say that U = (U, g) is a sub representation of V = (V, f) in Rep Q, and
write U ⊆ V , if for all i ∈ Q0 we have Ui ⊆ Vi as vector spaces, and for all
α ∈ Q1, and we have that gα = fα|Us(α)

. Given a sub representation (U, g) of
(V, f) we can construct the factor representation of (V, f) by taking the factor
vector space at each vertex and taking the maps induced by f , that is, (W,h) is
the factor representation with Wi = Vi/Ui for i ∈ Q0 and hα is the linear map
such that the following diagram commutes for all α ∈ Q1

Us(α)

gα

��

// Vs(α)

ps(α) //

fα
��

Ws(α)

hα
��

Ue(α) // Ve(α)

pe(α) //We(α)

where pi : Vi //Wi is the canonical projection. The sum of two representa-
tions (U, g) and (U ′, g′) is the representation (V, f) where Vi = Ui

∐
U ′i and

fα =
(
g 0
0 g′

)
, and we write (V, f) = (U, g)

∐
(U ′, g′). We say that a representa-

tion is indecomposable if (V, f) = (U, g)
∐

(U ′, g′) implies that (U, g) = 0 or
(U ′, g′) = 0, where (U, g) = 0 means that U(i) = 0 for all i ∈ Q0. A simple
representation is a representation different from the zero representation with no
proper sub representations. Obviously, the simple representations are indecom-
posable. Given a quiver Q = (Q0, Q1) and k a field, then for each i ∈ Q0 we
have that the representations Si = (V, f) are simple, where Vt = 0 for t 6= i and
Vi = k, and f = 0, meaning that all linear maps are the zero maps. We give
some examples.
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Example 2

If Q and k are as in the above example, and U ,V and W as before, then we
have that U is a sub representation of V , W is a factor representation of V .
Furthermore, W is the simple corresponding to vertex 1. Even more so, U and
W are indecomposable, while V = U qW .

Another way of viewing representations of a quiver Q is in a functorial way.
LetQ be the category whose objects are the vertices ofQ, in other words obj(Q) =
Q0 and for i, j ∈ Q0 the set HomQ(i, j) is the set of paths in Q starting at i and
ending at j. Suppose α ∈ HomQ(i, j) and β ∈ HomQ(j,m) then βα is a path
from i to m by concatenation. Notice that ei ∈ HomQ(i, i) is the identity on i.
By vec (k) we mean the category of finite dimensional k-vector spaces and with
Homvec (k)(V,W ) the set of linear transformations from V to W . Then Rep Q is
naturally isomorphic with the category of functors from Q to vec (k), denoted by
vec (k)Q. Note that in this category the objects are functors from Q to vec (k)
and the morphisms are the natural transformations between the functors.

We give another and probably a bit more interesting example.

Example 3

Let k be an algebraically closed field and let Q : 1
α //
β
//2. Let Rµ be the repre-

sentation given by k
µ //
1
//k and let Tλ be the representation given by k2

Jλ //
I
//k2

with I the 2 × 2 identity matrix over k and Jλ =

(
λ 1
0 λ

)
, the Jordan block of

size 2 corresponding to λ, here µ, λ ∈ k. We claim that Homk(Rµ, Tλ) = (0) if
µ 6= λ, and if µ = λ then Homk(Rµ, Tλ) ' k. We have to have the following
commutative diagram

k

µ

��
1

��

(x y)t // k2

Jλ
��

I
��

k
(u v)t

// k2

This yields the following equations

I(x y)t = (u v)t1

Jλ(x y)t = (u v)tµ

These two equations give that (x y)t is an eigenvector for Jλ and µ is the cor-
responding eigenvalue for Jλ. Now Jλ has only λ as eigenvalue with algebraic
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multiplicity 2 and geometric multiplicity 1. The eigenspace corresponding to λ
has as basis (1 0)t. Thus Homk(Rλ, Tλ) ' k and Homk(Rµ, Tλ) = (0) if µ 6= λ.

This algebra is called the Kronecker algebra and is very important in represen-
tation theory. This algebra is of infinite representation type, meaning that there
is infinitely many isomorphism classes of indecomposable modules, and in some
sense the smallest algebra of infinite representation type.

Above we said that we are always able to find simple representations of a
given quiver, and for some quiver these are all the simple representations. How-
ever, there are some quivers for which we are able to find infinitely many simple
representations. We illustrate with an example.

Example 4

Let k be a field and let Q be the quiver •α << βbb . Let Vn be the following
representation knA 88 Atff , where

A =


0 0 . . . 0 0
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0


Now choose any nonzero x ∈ kn, i.e. for some 1 ≤ i ≤ n, xi 6= 0 where
x = (x1, . . . , xn)t. Then e1 = (At)i−1x = (xi, . . . , xn, 0, . . . , 0)t. Now let S =
{e1, . . . , en}, where ej = Aj−1e1. We easily see that S is k-linearly independent
and thus is a basis for kn. This shows that any nonzero vector x generates the
whole representation. Or equivalently, there is no subspace of kn that is invariant
under A and At. This proves that Vn is a simple representation for any positive
n.

Throughout this thesis we will mainly be concerned with quivers without oriented
cycles, nevertheless, quivers with cycles give many interesting examples. The di-
mension vector of a representation V over a quiver Q = (Q0, Q1) is a |Q0|-tuple
over Z, with i’th entry dimk Vi, that is (dimk V1, . . . ,dimk V|Q0|) and we write
dimV for this element in Z|Q0|.

We have already shown how to get an algebra structure over a field k given
a quiver Q = (Q0, Q1), namely take as basis the paths in the quiver. If we
now consider the finitely dimensional modules over this path algebra we get a
category, and it turns out that this category is equivalent to the category of finite
dimensional representations. We summarize in the following Theorem.
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Theorem 1
Let k be a field and let Q be a finite quiver. Then there is an equivalence of

categories between Rep Q and mod kQ, where mod kQ is the category of finite

dimensional left kQ-modules. �

What this result tells us is that we can think of our representations as modules
and vice versa. This result is quite essential throughout this text, and the reader
should be aware of that it will be used without any effort or concern to mentioning
it. We will here give an algorithm that takes a representation and gives a module
and vice versa, however, for a proof of this the reader is referred to [ARS, sec.
III.1]. Given a finite quiverQ = (Q0, Q1) and a field k. If (V, f) is a representation
of Q over k, then let M =

∐
i∈Q0

Vi. Let m ∈ M , that is m(i) = vi ∈ Vi for
i ∈ Q0, and for each α ∈ Q1 we have fα : Vs(α)

//Ve(α) , we then define α ·m as

(αm)(i) =

{
fα(vs(α)) , if i = e(α)

0 , otherwise

Thus, if α : i //j , then αm is zero for all indices except for index j where it takes
the value fα(vi). The reader may check that this gives a kQ-module structure
on M . On the other hand, if M is in mod kQ, and since 1kQ = e1 + · · · + en,
where ei is a trivial path at vertex i, we have that M =

∐
eiM as vector spaces

over k. Let α : i //j be an arrow, then we have that α(eiM) = ej(αM) which
is a subspace of ejM , this is really coming from the fact that α = ejαei. Let
fα : eiM //ejM be given by fα(eim) = ejαei(eim) = ejαeim ∈ ejM . Thus, if
V = {eiM}i∈Q0 and f = {fα}α∈Q1 , then (V, f) is in Rep Q. Since we may view a
Λ-module as an representation, we see that dimM = (dimk e1M, . . . , dimk enM)
is in accordance with the dimension vector of a representation, where Q0 =
{1, . . . , n}. Moreover dimM = (dimk HomΛ(Λe1,M), . . . ,dimk HomΛ(Λen,M)),
since HomΛ(Λe,M) ' eM for any idempotent e ∈ Λ through the identification
f � //f(e) = ef(e) with f ∈ HomΛ(Λe,M).

Let R be a commutative ring. Recall that Λ is an R-algebra if there is a ring
homomorphism ϕ : R −→ Λ such that Im ϕ ⊆ Z(Λ), where Z(Λ) denotes the
center of Λ. If R is a commutative artinian ring, then we say that Λ is an artin
(R-)algebra if Λ is finitely generated as a R-module.

We say that a ring Λ is left hereditary if the left ideals in Λ are all projec-
tive. This is in fact equivalent to that submodules of projective Λ-modules are
projective.

1.2 The Coxeter Functors

Let Q = (Q0, Q1) be a quiver and let k be a field. We now want to introduce
the Coxeter functor and the partial Coxeter functors, but before that we have
to introduce some notation. For a vertex i ∈ Q0 we denote by ξ(i) = {α ∈
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Q1 | s(α) = i or e(α) = i}, i.e. all arrows starting or ending in the vertex i. We
call a vertex i ∈ Q0 a sink, or (+)-accessible, if for each α ∈ ξ(i) we have that
s(α) 6= i, in other words, there is no arrow going out of vertex i. Similarly, we
define a source as a vertex i ∈ Q0 such that for all α ∈ ξ(i), e(α) 6= i, meaning
that there is no arrow in Q ending in the vertex i, we often also call a source for
(−)-accessible. For i in Q we get another quiver ciQ which has the same vertices
as Q. However, we reverse all the arrows either starting or ending in vertex i.
That is, for each α : i //j and β : h //i in Q we get α′ : j //i and β′ : i //h

in ciQ, respectively.

s(α1) α1

''OOOOOO
... i

s(αn) αn

77oooooo

e(β1)

j

βn 77oooooo

β1
''OOOOOO ...

e(βn)

sink source

Let Q be a quiver and let V = (V, f) be in Rep Q. For a sink i in Q and
a representation (V, f) of Q we define the left partial Coxeter functor from
Rep Q to Rep ciQ by S+

i (V, f) = (U, g) where

Uj =

{
Vj ; j 6= i

W ; otherwise

where W is the kernel of the map L :
∐
α∈ξ(i) Vs(α) //Vi with L(v) =

∑
fj(vj).

We then have the following diagram

0 //W //

lβ %%JJJJJJJJJJJ
∐
α∈ξ(i) Vs(α)

πs(β)

��

L // Vi

Vs(β)

For each β ∈ ξ(i) we get a map lβ : W //Vs(β) , where lβ is the composition of
the inclusion of W into

∐
α∈ξ(i) Vs(α) and the canonical projection onto Vs(β). We

then set

gα =

{
fα ; α /∈ ξ(i)
lα ; otherwise

Notice that the arrows going into vertex i have now been reversed, i.e. we have a
representation of c+

i Q and that vertex i is now a source with respect to c+
i Q. If

we have a morphism h : (V, f) −→ (V ′, f ′) we get the following diagram

0 //W //

h̃

��

∐
α∈ξ(i) Vs(α)∐

α∈ξ(i) hs(α)

��

// Vi

hi
��

0 //W ′ //
∐
α∈ξ(i) V

′
s(α)

// V ′i



8 CHAPTER 1. REPRESENTATIONS AND COXETER FUNCTORS

where h̃ is the restriction of (hs(α))α∈ξ(i) to W . So C+
i (h)i = h̃ and C+

i (h)j = hj
otherwise is a map in Rep ciQ. We have that C+

i : Rep Q // Rep ciQ is a
functor. That is, we get a representation U = (U, g) over the quiver ciQ and for
each map h : (V, f) //(V ′, f ′) we get a map C+

i (h) : C+
i (V, f) //C+

i (V ′, f ′),
which satisfy the requirement to be a functor.

Example 5

Let Q : 1 α //2
β //3 4

γoo , k a field, and let C+
3 : Rep Q // Rep c3Q be

the left partial Coxeter functor for the sink at 3. Let V is the representa-

tion k
1 //k

1 //k k
1oo , U the representation k //0 //k k

1oo and T

the representation 0 //0 //k 0oo , then C+
3 (V ), C+

3 (U) and C+
3 (T ) are

the following representations k
1 //k

−1oo k k
1 // , k //0 oo 0 k// and

0 //0 oo 0 0// respectively.

Let us spice up the quiver some and revisit the Kronecker.

Example 6

Given a field k, let Q be the quiver 1
α //
β
//2 and let V be the following represen-

tation k
λ //
1
//k . Vertex 2 is a sink so we may apply C+

2 to V , which gives the

following representation: k k
−λ
oo

1oo . Now vertex 1 is a sink with respect to c2Q.

We then may apply C+
1 to C+

2 (V ) which yields the representation k
λ //
1
//k . That

is, V = C+
1 C

+
2 (V ). This is no coincidence as we will see later.

Almost identically, for a source i in Q and a representation (V, f) we define the
right partial Coxeter functor from C−i : Rep Q // Rep ciQ by C−i (V, f) =
(U, g)

Uj =

{
Vj ; j 6= i

W ; otherwise

where W = Coker M and M : Vi //
∐
α∈ξ(i) Ve(α) with M(v) = (fα(v))α∈ξ(i),

and

gα =

{
fα ; α /∈ ξ(i)
mα ; otherwise

where mα : Ve(α)
//W is obtained by first taking the natural inclusion from

Ve(α) to
∐
α∈ξ(i) Ve(α) and then passing to W through the natural projection
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∐
α∈ξ(i) Ve(α) //W . In other words, we have the following commuting diagram

Ve(β)

ιe(β)

��

mβ

%%JJJJJJJJJJJ

Vi
M //

∐
α∈ξ(i) Ve(α) //W // 0

Now given a morphism h : (V, f) //(V ′, f ′) we have the following commutative
diagram

Vi
M //

hi
��

∐
α∈ξ(i) Ve(α) //

∐
α∈ξ(i) hs(α)

��

W //

h̄

��

0

V ′i
M ′ //

∐
α∈ξ(i) V

′
e(α)

//W ′ // 0

Thus we get that C−i (h)j = hj for j 6= i and C−i (h)i = h̄, with h̄ uniquely
determined by the property of co-kernels. This shows that C−i is indeed a functor.

Notice that if vertex i is a sink inQ then it is a source with respect to the orien-
tation in c+

i Q. Hence, we may look at the composition C−i C
+
i : Rep Q // Rep Q .

We now want to compare the representation V to the representation C−i C
+
i (V ).

We construct a morphism1 τ i : C−i C
+
i (V ) //V by τ ij = IdVj for i 6= j and for

τ ii we note that we have the exact sequence 0 //C+
i (V )i

M //
∐
α∈ξ(i) Vs(α)

L //Vi ,
that is Ker L = Im M . Let τ ii : C−i C

+
i (V )i //Vi be the unique map that makes

the following diagram commute.

0 // C+
i (V )i

M //
∐
α∈ξ(i) Vs(α)

π // C−i C
+
i (V )i

τ ii
��

// 0

0 // C+
i (V )i //

∐
α∈ξ(i) Vs(α)

L // Vi

The uniqueness is guaranteed by the property of co-kernels. By the Snake lemma
we instantaneously achieve that τ ii is mono which in turn yields that τ i is mono.
Thus we are able to construct the factor representation V/ Im τ i. It is easy to
see that dimk(V/ Im τ i)j = 0 when j 6= i, i.e. V/ Im τ i is concentrated at vertex
i. We also note that we have the following split exact sequence

0 // C−i C
+
i (V )i // Vi // Vi/ Im τ i // 0

due to the fact that V/ Im τ i is concentrated at vertex i we are always able to
find a morphism V/ Im τ i //Vi such that the above sequence splits. In other
words Vi ' C−i C

+
i (V )i

∐
Vi/ Im τ i. Now if V = C−i (W ) for some W in Rep ciQ,

we see that the map L in the above diagram is onto making τ i an isomorphism.
1We really should write τ iV , since this morphism depends on the representation V . However,

we will omit the V purposefully so the notation does not get too complicated.
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This is seen by observing that Im τ ii = Im L since π is onto by definition and
L = τ iiπ.

Similarly we define2 σj : V //C+
j C
−
j (V ) by σji = IdC+

j C
−
j (V )i

for i 6= j and

let σjj be the unique map which makes the following diagram commute

Vj
M //

σjj
��

∐
α∈ξ(j) Vs(α) // C−j (V )j // 0

0 // C+
j C
−
j (V )j

ι //
∐
α∈ξ(j) Vs(α)

L // C−j (V )j // 0

Notice that the maps M and L in general are not the same as the maps in the pre-
vious diagram, however for convenience and readability we stick to this notation.

Analogously, we have the exact sequence Vj
M //
∐
α∈ξ(j) Vs(α)

L //C+
j (V )j //0

and the property of kernels that ensures the unique map in the above diagram.
We see that if M is one-to-one, it follows that σjj is an isomorphism. This follows
from Snake Lemma. Here, too, we have immediate consequences as above, how-
ever we leave the proof to the reader as an exercise and summarize our finding
in a proposition.

Proposition 2
Let the notation be as above.

(a) For a sink i we have C+
i (V

∐
V ′) = C+

i (V )
∐
C+
i (V ′). Equally, we have

that C−i (V
∐
V ′) = C−i (V )

∐
C−i (V ′) for a source i.

(b) τ i and σj are mono and epi respectively.

(c) If τ i is an isomorphism then the dimension of the vector spaces C+
i (V )p are

given by

dimk C
+
i (V )p = dimk Vp for p 6= i

dimk C
+
i (V )i = −dimk Vi +

∑
α∈ξ(i)

dimk Vs(α). (1.1)

If σj is an isomorphism then the dimension of the vector spaces C−j (V )q
are given by

dimk C
−
j (V )q = dimk Vq for q 6= j

dimk C
−
j (V )j = −dimk Vj +

∑
β∈ξ(j)

dimk Ve(β). (1.2)

(d) The sub representation Ker σj is such that (Ker σj)q = 0 for q 6= j. The

factor representation V/ Im τ i is such that (V/ Im τ i)p = 0 for p 6= j.

2Here, too, we are sloppy with the notation, and omit the index V .
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(e) If the map L is epi then τ i is an isomorphism. Similarly, if the map M is

mono then σj is an isomorphism.

(f) V ' C−i C
+
i (V )

∐
V/ Im τ i. Analogously, V ' C+

j C
−
j (V )

∐
Ker σj . �

Note that if the representation V = C+
j (W ) for some representation W ∈

Rep Qcj , then the map L is onto and thus V ' C+
j C
−
j (V ). Analogously, if

V = C−i (W ), where W is a representation of ciQ, then the map M is mono, and
hence we have V ' C−i C

+
i (V ). We give an example.

Example 7

Let k be a field and let Q be the following quiver

1
α

������� β

��=====

2

δ ��===== 3
γ�������

4

Let now V be the representation

k2

(0 1)

������� I

  AAAAA

k

(1 0)t ��>>>>> k2

I~~}}}}}

k2

where I is the two by two identity matrix. Then C+
4 (V ) is the representation

k2

(0 1)

������� I

  AAAAA

k k2

k
1

__?????
(−1 0)t

>>}}}}}

We can now apply C−4 to the above representation, which in turn yields

k2

(0 1)

������� I

  AAAAA

k

(1 0)t ��>>>>> k2

I~~}}}}}

k2

In other words, V = C−4 C
+
4 (V ).
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One of the nicest properties of the partial Coxeter functors are the ones we
give in the next theorem.

Theorem 3
Let Q = (Q0, Q1) be a quiver, and let V in Rep Q be an indecomposable repre-

sentation.

(a) If i ∈ Q0 is a sink, then two scenarios are possible, either V ' Si, the simple

corresponding to vertex i, and C+
i (V ) = 0 or C+

i (V ) is indecomposable with

C−i C
+
i (V ) = V and the dimension of the spaces C+

i (V )p are given by (1.1).

(b) If j ∈ Q0 is a source, then either V ' Sj , the simple corresponding to

vertex j, and C−j (V ) = 0 or C−j (V ) is indecomposable with C+
j C
−
j (V ) = V

and the dimension of the spaces C−j (V )q are given by (1.2).

Proof. We only prove (a), (b) is shown in a similar fashion. From Proposition 2
part (f) we have that V ' C−i C

+
i (V )

∐
V/ Im τ i. Now if V is indecomposable

then V must coincide with one of them. If V = V/ Im τ i we get that Vp = 0
for p 6= i, and since V is indecomposable we must have V ' Si. On the other
hand, if V = C−i C

+
i (V ), then τ i is an isomorphism and we have Proposition

2 part (c). We now show that W = C+
i (V ) is indecomposable. Assume that

W = W1
∐
W2. We the apply C−i and get V = C−i (W1)

∐
C−i (W2). V still being

indecomposable, we arrive at, say, C−i (W2) = 0. Then by Proposition 2 part (e)
that σi : W //C+

i C
−
i (W ) is an isomorphism, however σi(W2) ⊆ C+

i C
−
i (W2) =

0. Thus we see that W2 = 0. �

We now generalize the notion of a sink and a source. We say that a sequence
of vertices i1, i2, . . . , in is (+)-accessible with respect to Q if vertex i1 is (+)-
accessible with respect to Q, and vertex i2 is (+)-accessible with respect to ci1Q,
and i3 is (+)-accessible with respect to ci2ci1Q, and so on. In a similar way we
define a (−)-accessible sequence. Now, inductively, we get a generalization of
Theorem 3.

Corollary 4
For a (+)-accessible sequence i1, i2, . . . , in in Q = (Q0, Q1).

(a) C−i1C
−
i2
. . . C−ir−1

(Sir) is either 0 or indecomposable, for 1 ≤ r ≤ n (here Sir
is in Rep cir−1 . . . ci1Q).

(b) If V in Rep Q is indecomposable, and C+
in
. . . C+

i2
C+
i1

(V ) = 0. Then V '
C−i1C

−
i2
. . . C−ir−1

(Sir), for some 1 ≤ r ≤ n. �

We now come to the meat and bones of these functors and why they are so
important to us. The next result shows that knowing the indecomposable objects
of an acyclic quiver you know the indecomposable objects of any other given
orientation of that quiver. But before we indulge into this we introduce a slightly
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different notation for a quiver. Here it will be advantageous to think of our
quivers as the underlying graph Γ, that is the set of vertices and non-oriented
edges, and the orientation of the quiver, denoted by Ω. We write Q = (Γ,Ω).

Theorem 5
Let Q be a quiver with acyclic underlying graph, and let Ω and Ω′ be two orien-

tations of Q.

(a) There exists a sequence of vertices i1, i2, . . . , in which is (+)-accessible with

respect to Ω such that Ω′ = cin . . . ci1Ω

(b) Let M , M ′ be the set of isomorphism classes of indecomposable repre-

sentations of (Γ,Ω) and (Γ,Ω′) respectively, and let M̄ ⊆ M be of the

form C−i1C
−
i2
. . . C−ir−1

(Sir) for 1 ≤ r ≤ n, and M̄ ′ ⊆ M ′ be of the form

C+
ir−1

. . . C+
i2
C+
i1

(Sir) for 1 ≤ r ≤ n. Then the functor C+
in
. . . C+

i2
C+
i1

gives a

one-to-one correspondence between M − M̄ and M ′ − M̄ ′

Proof. (a). It is enough to consider the case where Ω and Ω′ differ only in one
arrow, say α. If we then remove the edge α we get two disjoint connected com-
ponents. Let Q′ be the component containing the vertex e(α) with respect to
the orientation Ω. In Q′ we are able to find an ordering of vertices i1 < . . . < in
such that e(β) < s(β) for all β in Q′. Such an ordering always exists since Q′ is
acyclic. Note now that i1 is (+)-accessible with respect to Ω, i2 is (+)-accessible
with respect to ci1Ω, etc. Thus the sequence i1, . . . , in is (+)-accessible. Also
every arrow in Q′ is reversed twice, and the arrow α in Q is reversed once, that
is Ω′ = cin . . . ci1Ω.

(b). This is shown using (a) and corollary 4. �

A numbering i1, . . . , in of the vertices of a quiver Q is called suitable, if
e(α) < s(α) for all α ∈ Q1. If Q is acyclic, then such an numbering always
exists. We are usually interested in different combinations of the partial Coxeter
functors which is a endofunctor, so we introduce some notation. For a acyclic
quiver Q, we let Φ+ = C+

in
. . . C+

i1
and Φ− = C−i1 . . . C

−
in

, where i1, . . . , in is a
suitable numbering of the vertices of Q. These functors we call the Coxeter
functors. We state some related consequences.

Theorem 6
In the above setting, we have that the sequence i1, . . . , in is (+)-accessible and

in, . . . , i1 is (−)-accessible. Furthermore, Φ+,Φ− : Rep Q // Rep Q . Also, the

Φ+ and Φ− are independent of the choice in a suitable numbering of the vertices

of Q. �

We come to the last definition in this section. For an acyclic quiver Q we say
that a representation V is regular if V ' (Φ−)m(Φ+)mV ' (Φ+)m(Φ−)mV for
all m ≥ 0. If (Φ+)mV = 0 ((Φ−)mV = 0) for some m ∈ N, we say that V is
(+)-irregular ((−)-irregular, respectively).
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Theorem 7
Let Q be an acyclic quiver. Then each indecomposable representation of Q is

either regular or irregular. �



Chapter 2

Auslander-Reiten Theory

This chapter is dedicated to, as the chapter caption suggests, Auslander-Reiten
theory. We shall go through some basic concepts of AR-theory, such as almost
split and irreducible maps, Coxeter transformation and almost split sequences.
Topping off with the AR-quiver of an artin algebra. This chapter is based upon
the work of [ARS] and [ASS]. The biggest hurdle in this chapter was to give a
classification of minimal almost split maps in terms of irreducible maps without
going by the existence of minimal maps.

2.1 The Dual and the Transpose.

This section is devoted to two important functors in representation theory, the
transpose and the dual of the transpose. We will here introduce these notions,
and go through some elementary and some non-trivial properties of them. In this
section, Λ will be an artinian algebra over a commutative artin ring k, that is
we have a ring homomorphism ϕ : k −→ Λ with Im ϕ ⊆ Z(Λ) and Λ is finitely
generated as a R-module, where Z(Λ) is the center of Λ. Recall Krull-Schmidt
Theorem for finitely generated Λ-modules. It says that given two decomposition
of a Λ-module M into indecomposables, then these decomposition differ only by
permutation of the summands up to isomorphism. Hence for M in mod Λ we
have an unique (up to isomorphism) decomposition M = MP qM ′, where MP

has no nonzero projective summands and M ′ is projective. Denote by P(Λ) the
full sub category of mod Λ consisting of projective modules from mod Λ. Recall
that (−)∗ = HomΛ(−,Λ): P(Λ) //P(Λop) is a duality.

Given a minimal projective presentation P1
f //P0

p //X //0 of X in mod Λ,
i.e. p : P0

//X and f : P1
// Ker p are projective covers, we define the trans-

pose of X, TrX = Coker f∗. That is, P ∗0
f∗ //P ∗1

// TrX //0 is exact. We state

15
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some immediate consequences of this definition.

Proposition 8
All modules are in mod Λ

(a) TrX = 0 if and only if X is projective.

(b) P ∗0
f∗ //P ∗1

q // TrX //0 is a minimal projective presentation of TrX when-

ever P1
f //P0

p //X //0 is a minimal projective presentation of a nonpro-

jective module X.

(c) Tr(
∐n
i=1Xi) '

∐n
i=1 TrXi , when n is finite.

(d) Tr TrX ' XP for all X.

(e) If X and Y have no nonzero projective direct summands, then TrX ' TrY
if and only if X ' Y .

Proof. (d) and (e) will follow from the other parts of the proposition.

(a) If X is projective, then 0 0 //X //X //0 is the minimal projective pre-

sentation of X, which yields X∗ 0∗ //0 // TrX //0, so TrX = 0. If TrX = 0 then

P ∗0
f∗ //P ∗1

//0 is a split epimorphism, it then follows that 0 //P1
//P0

//X //0
is split exact, and the claim follows.

(b) If X is non-projective, then TrX 6= 0. Clearly P ∗0
//P ∗1

// TrX //0 is
a projective presentation of TrX in mod Λop. Assume that this is not min-
imal. This means that we have a non-trivial decomposition P ∗0 = Q0 q Q′0
and P ∗1 = Q1 q Q′1 with q′ : Q′0 //Q′1 an isomorphism. And the above se-

quence is isomorphic to Q0 qQ′0
qqq′//Q1 qQ′1 // TrX //0. This then yields

Q∗1
q∗ //Q∗0

//X //0 when we apply (−)∗. We arrive at a contradiction, since
this then violates the minimality of the projective presentation of X.

(c) This is a direct consequence of (−)∗ being a duality and the universal
property of Coker . �

Tr will not usually define a functor between module categories in general, in order
for it to be a functor we need to move to stable categories modulo projectives.
We will denote by P(A,B) the R-submodule of HomΛ(A,B) which consist of
all morphisms f : A //B which factor through a projective, i.e. there is a pro-
jective in mod Λ, say P , such that f = hg for some morphisms g : A //P

and h : P //B . We then define HomΛ(A,B) = HomΛ(A,B)/P(A,B). Fur-
thermore, we will denote the category of finitely generated Λ-modules modulo
projectives by mod Λ, which objects are exactly the objects of mod Λ and mor-
phisms are the factors HomΛ(A,B). For a proof of the next statement the reader
is referred to [ARS, IV.1].
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Proposition 9
The functor Tr: mod Λ //mod Λop is an equivalence of categories. �

Since R is artin, we only have finitely many isomorphism classes of simple R-
modules, say S1, . . . , Sn. Let I =

∐
I(Si), where Si //I(Si) is the injective en-

velope. Then the contravariant functor HomR(−, I) : mod R // mod R is a du-
ality, which then induces a duality D = HomR(−, I) : mod Λ // mod Λop . Sup-
pose Λ = kQ, where k is a field and Q is an acyclic quiver. Then this duality re-
duces to D = Homk(−, k). If (V, T ) is a representation of a quiver Γ, then D(V, T )
is the representation of the opposite quiver, Γop, with (D(V ))i = D(Vi) = V ∗i
the usual dual space of a vector space, and for Tα : Vi //Vj in (V, T ) we have
D(Tα) : D(Vj) //D(Vi) given by D(Tα)(g)(v) = g(Tαv) for g ∈ D(Vj) and
v ∈ Vi. Especially, this means that if Pi and Ii are the projective and injec-
tive representations corresponding to vertex i, we have D (P ∗i ) ' Ii.

Example 8

If we are in the case of the Kronecker algebra, and given the representation

k
1 //
t
//k , then D(V1) ' D(V2) ' k and D(1) = 1 and D(t) = t by an appropriate

choice of basis. Thus the dual representation is then k k
t

oo
1oo .

We might now be interested in knowing what happens on mod Λ under the
action of D. If f ∈P(A,B), that is

P
g

  @@@@@

A

h
??~~~~~ f // B

is commutative for some projective P . Since D is a duality we get the following
commutative diagram

D(P )
D(h)

$$IIIIII

D(B)

D(g) ::tttttt D(f) // D(A)

with D(P ) injective in mod Λop. Thus if f : A //B factors through a projec-
tive, D(f) : D(B) //D(A) factors through an injective. We are then tempted
to introduce the stable category modulo injectives. Let A and B be in mod Λ
and let I (A,B) ⊆ HomΛ(A,B) be the R-submodule consisting of all morphism
which factor through an injective, that is all morphisms f : A //B which for
some g : A //I and h : I //B and I injective in mod Λ are such that f = hg.
We will usually denote the factor module HomΛ(A,B)/I (A,B) by HomΛ(A,B).
We will then write mod Λ when referring to the stable category modulo injectives,
that is the category consisting of the same objects as mod Λ but the hom-sets



18 CHAPTER 2. AUSLANDER-REITEN THEORY

are the factor modules HomΛ(A,B) for Λ-modules A and B. From the obser-
vation above we see that the duality D : mod Λ −→ mod Λ induces a duality
D : mod Λ −→ mod Λ. Combining this fact with Proposition 9 results in the
following proposition.

Proposition 10
The compositions DTr : mod Λ //mod Λ and TrD : mod Λ //mod Λ are in-

verse equivalences of categories. �

We now give some basic properties of DTr following Proposition 8.

Proposition 11
(a) If P1

f //P0
//X //0 is a minimal projective presentation of an indecom-

posable non-projective Λ-module X, then 0 //DTrX
g //D (P ∗0 )

D (f∗)// is a

minimal injective copresentation, in other words g : DTrX //D(P ∗0 ) and

the induced morphism h : Coker g //D(P ∗1 ) are injective envelopes.

(b) (D I0)∗ //(D I1)∗ // TrDX //0 is a minimal projective presentation of

TrDX whenever 0 //X //I0
//I1 is a minimal injective copresentation

of a noninjective module X.

(c) DTr (
∐
i∈I Xi) '

∐
i∈I DTrXi where I is finite and all Xi’s are in mod Λ.

(d) DTrX = 0 if and only if X is projective.

(e) DTrX has no nonzero injective direct summands for all X in mod Λ.

(f) For all X in mod Λ, (TrD )DTrX ' XP .

(g) If X and Y have no nonzero projective direct summands, then DTrX '
DTrY if and only if X ' Y . �

Recall that a ringR is left hereditary if all left ideals ofR are projective. There is
a homological characterization of a left hereditary ring R, namely l. gl. dimR ≤ 1.
In fact this is equivalent to submodules of projective R-modules again being
projective. Since we say modules for left modules, we only say hereditary when
we mean left hereditary.

Another important connection to note is that if Λ is in addition hereditary and
for X and Y in mod Λ with X,Y with no nonzero projective direct summands,
then P(X,Y ) = 0. This can be seen the following way. Let f ∈P(X,Y ), then
there is some projective P in mod Λ and h : X //P and g : P //Y such that
f = gh. Now this implies h : X // Im f ⊆ P is a split epimorphism, in other
words X ' Im h q Z, with Im h projective. This yields Im h = 0 and f = 0. In
view of this we denote by modP Λ the full subcategory of mod Λ in which the
objects are the objects X in mod Λ with X ' XP , that is all objects with no



2.1. THE DUAL AND THE TRANSPOSE. 19

nonzero projective direct summands. The assertion above then yields a useful
property calculation wise for DTr .

Proposition 12
Let Λ be a hereditary artin algebra. Then there is an equivalence of categories

between modP Λ and mod Λ. �

Notice that when Λ is hereditary, then the minimal projective presentation of
M ∈ modP Λ is of the following form 0 //P1

//P0
//M //0. We then apply

HomΛ(−,Λ) on the sequence above, this then yields the following exact sequence
0 //M∗ //P ∗0

//P ∗1
// Ext1

Λ(M,Λ) //0. By the universal property of Coker
we see that ExtΛ(−,Λ): mod Λ //mod Λop and Tr (−) : mod Λ //mod Λop are
isomorphic as functors, and therefore DExt1

Λ(−,Λ) ' DTr (−) from mod Λ to
mod Λ. Hence we have proved the following Proposition.

Proposition 13
Let Λ be a hereditary artin algebra. There is a functorial isomorphism between

ExtΛ(−,Λ): mod Λ −→ mod Λop and Tr (−) : mod Λ −→ mod Λop, and follow-

ingly DExt1
Λ(−,Λ): mod Λ −→ mod Λ and DTr (−) : mod Λ −→ mod Λ. �

We now turn our attention to studying some important modules that show
up related to the functors DTr and TrD . Let Λ be a hereditary artin algebra,
we say that a Λ-module Q is preprojective if there is a nonnegative integer such
that (DTr )nQ is projective. Furthermore, Q is indecomposable preprojec-
tive if Q is indecomposable. Dually, we define a Λ-module J to be preinjective
if (TrD )mJ is injective for some nonnegative integer m. We say that J is in-
decomposable preinjective if it is indecomposable and preinjective. If an
indecomposable module is neither preprojective nor preinjective, then we call it
regular. An easy observation to make is that Q is preprojective if and only if
(DTr )nQ = 0 for some n. Dually, J is preinjective if and only if (TrD )mJ = 0,
where m ≥ 0

We now give a complete characterization of finitely generated indecomposable
preprojectives (preinjectives) for a hereditary artin algebra.

Proposition 14
Let Λ be an hereditary artin algebra. Q is an indecomposable preprojective Λ-

module if and only if there is an indecomposable projective Λ-module, P , such

that Q ' (TrD )mP for some m ≥ 0.

Proof. If Q ' (TrD )mP then it is preprojective by definition, and indecom-
posable since the functor DTr is additive. Conversely, if Q is indecompos-
able projective this is trivial. Assume Q non-projective indecomposable pre-
projective. Then there exists an indecomposable projective P 6= 0 and some
m ∈ N such that P ' (DTr )mQ. Applying the TrD functor m times gives us
(TrD )mP ' (TrD )m(DTr )mQ ' Q. As desired. �
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The dual of this proposition follows by a small observation, namely

Lemma 15
If Λ is an artin algebra, then (TrD )nDX ' D(DTr )nX for all X in mod Λ.

Proof. We prove this by induction on n. For n = 1 this is trivially true since
D2 ' 1 as functors. Assume that it holds for n = k, k ≥ 1.

(TrD )k+1DX = TrD (TrD )kDX ' (TrD )D(DTr )kX

' D(DTr )(DTr )kX = D(DTr )k+1X

which concludes the proof. �

Hence we get the dual result of Proposition 14.

Proposition 16
Let Λ be as above. J is a indecomposable preinjective Λ-module if and only if

there is a indecomposable injective Λ-module, I, such that J ' (DTr )nI for

some n ≥ 0. �

The functors Φ+ : Rep Q // Rep Q andDTr : Rep Q // Rep Q have many
similar features, and one may ask oneself when does these functors coincide, if
they do at all? The next proposition gives an answer to this.

Proposition 17
Let Q be a tree and k a field. The functors Φ+, DTr : Rep Q // Rep Q coincide.

Similarly, Φ− : Rep Q // Rep Q and TrD : Rep Q // Rep Q coincide. �

This of course means that the terms (+)-irregular and preprojective also coincide
for trees. Similarly, we have that (−)-irregular and preinjective coincide.

In closing we are going to go through Auslander’s defect formula which is
an important result in the representation theory of algebras, especially in con-
nection with almost split sequences which we will go through in Section 2.2.
First we need to define what we mean by the defect of an exact sequence. Let
δ : 0 //A //B //C //0 be an exact sequence, we then define the covariant
defect of δ∗ : mod Λ // Ab through the exactness of the following sequence

0 // HomΛ(C,−) // HomΛ(B,−) // HomΛ(A,−) //δ∗(−) //0

and similarly the contravariant defect δ∗:

0 // HomΛ(−, A) // HomΛ(−, B) // HomΛ(−, C) //δ∗(−) //0

Theorem 18 (Auslander’s defect formula)
Let δ : 0 //A

f //B
g //C //0 be exact in mod Λ, and let X ∈ mod Λ. Then there

is an isomorphism D δ∗(X) ' δ∗(DTrX) which is functorial in δ and X.
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Proof. Let P1
//P0

//X //0 be a minimal projective presentation of X. We
then get P ∗0 //P ∗1

// TrX //0. If we now apply −�Λ Y for any Y ∈ mod Λ.

P ∗0 �Λ Y //

α0 '��

P ∗1 �Λ Y //

α1 '��

TrX �Λ Y // 0

0 // HomΛ(P0, Y ) // HomΛ(P0, Y ) // HomΛ(P0, Y ) // TrX �Λ Y // 0

Where the isomorphisms αi : HomΛ(Pi,Λ) �Λ Y // HomΛ(Pi, Y ) are given on a
generator h ⊗ y by αi(h ⊗ y)(p) = h(p) · y, for all y ∈ Y , h ∈ HomΛ(Pi,Λ) and
p ∈ Pi for i = 0, 1. A routine calculation shows that this isomorphisms is natural.
Now consider the following diagram

0

��

0

��

0

��
0 // HomΛ(X,A) //

��

HomΛ(P0, A) //

��

HomΛ(P1, A) //

��

TrX �Λ A //

1⊗f
��

0

0 // HomΛ(X,B) //

��

HomΛ(P0, B) //

��

HomΛ(P1, B) //

��

TrX �Λ B //

1⊗g
��

0

0 // HomΛ(X,C) //

��

HomΛ(P0, C) //

��

HomΛ(P1, C) //

��

TrX �Λ C //

��

0

δ∗(X)

��

0 0 0

0

By the Snake lemma we see that Ker (1 ⊗ f) ' δ∗(X). Applying D (−) to the
right most column in the above diagram yields the following exact sequence

0 //D (TrX �Λ C) //D (TrX �Λ B) //D (TrX �Λ A) //D δ∗(X) //0

Recall that D (TrX�Λ Y ) = HomR(TrX�Λ Y, I) ' HomΛ(Y,HomR(TrX, I)) =
HomΛ(Y,DTrX). Hence we have that the above sequence is isomorphic to the
sequence

0 // HomΛ(C,DTrX) // HomΛ(B,DTrX) // HomΛ(A,DTrX) //δ∗(DTrX) //0

and the claim follows. �

This result has a powerful corollary

Corollary 19
Given the exact sequence δ : 0 //A

f //B
g //C //0 and X in mod Λ. The fol-

lowing are equivalent

(a) For all s : X //C there exists a t : X //B such that s = gt.

(b) For all s′ : A //DTrX there exists a t′ : B //DTrX such that s′ = t′f .

Proof. This follows from the fact that (a) is equivalent to δ∗(X) = 0, and (b) is
the same as δ∗(DTrX) = 0. �
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2.2 Almost Split Sequences

Closely related to the functors DTr and TrD are the almost split sequences,
which on the literature is often abbreviated to a.s.s. . Let

η : 0 // A
g // B

f // C // 0

be an exact sequence, which is not split. We say that η is almost split if the end
terms A and C are indecomposable and for every non-isomorphism h : X //C

with X indecomposable there exists a s : X //B such that h = fs. The connec-
tion with DTr and the almost split sequences is through the end terms, namely
if η is an almost split sequence then A ' DTrC, meaning that the end terms
determine each other.

For a ring Λ, recall that a Λ-homomorphism f : M //N is a split epimor-
phism if there exists a Λ-homomorphism g : N //M such that 1N = fg.

N

1N
g

~~||||||||

M
f // N

Dually we call a Λ-homomorphism f : M //N for a split monomorphism if
there exists a Λ-homomorphism g : N //M such that 1M = gf .

M

1M

f // N

g
~~||||||||

M

One can easily see that if f : M //N is a split epimorphism then N is isomorphic
to a direct summand in M . If f is a split monomorphism then M is isomorphic
to a direct summand in N . Also note that if f is an isomorphisms then it is both
a split epi- and monomorphism.

Let Λ be an artin algebra, and let A, B, C, M and N be in mod Λ. We call
a Λ-homomorphism f : B //C right minimal if every h ∈ EndΛB such that

B
f

  @@@@@@@

h
��
B

f // C

commutes, is an automorphism. A Λ-homomorphism f : B //C is called right
almost split if f is not a split epimorphism and if for every h : M //C which is
not a split epimorphism there exist a g : M //B such that the following triangle
commutes

M

h
��

g

~~}}}}}}}}

B
f // C
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If f : B //C is right almost split and right minimal we say that f is right
minimal almost split. We also have the dual of these statements, namely we
call a Λ-homomorphism g : A //B for left minimal if every h ∈ EndΛB such
that

A

g
��@@@@@@@

g // B

h
��
B

commutes, is an automorphism. A Λ-homomorphism g : A //B is called left
almost split if g is not a split monomorphism and if for every h : A //N which
is not a split monomorphism there exist a g : B //N such that the following
triangle commutes

A
g //

h
��

B

h~~}}}}}}}

N

If g : A //B is left almost split and left minimal we say that g is left minimal
almost split. We immediately see that left minimal is the dual of right minimal,
and right almost split is the dual of left almost split.

Let us give an example of a right almost split map.

Example 9

Let Λ be an artin algebra, r ⊂ Λ the Jacobson radical and let P be non-simple in-
decomposable projective. By Nakayama’s lemma we have that rP ⊂ P is a proper
submodule, thus the inclusion map i : rP //P is not a split epimorphism. Given
h : X //P which is not a split epimorphism we must have Im h ⊆ rP . This fol-
lows from the fact that rP is the unique maximal submodule of P . This then
shows that h factors through rP . If P is simple, then rP = 0. Let h : X //P .
Since P is simple we have that Im h = 0 or Im h = P , if h is not a split epi-
morphism, then h = 0 and it factors trivially through rP . In any case we have
that rP //P is a right almost split map. Since rP //P is a monomorphism it
is right minimal. That is, rP //P is minimal right almost split when P is an
indecomposable projective.

Dually, we see that the canonical projection I //I/ soc I is minimal left
almost split.

Let f : B //C be a right almost split map for some B,C ∈ mod Λ. Then

B qX
( f 0 ) //C is also right almost split for any X ∈ mod Λ. This is rather unfor-

tunate, however by means of minimal maps we are able to get rid of superfluous
direct summands and in some sense making the maps unique up to isomorphism.
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Proposition 20
Let Λ be an artin algebra.

(a) Given C in mod Λ, if f : B //C is minimal right almost split, then f is

uniquely determined up to isomorphism.

(b) Given A in mod Λ, if g : A //B is minimal left almost split, then g is

unique up to isomorphism.

Proof. We only prove (a), (b) is proven similarly. Let f : B //C and f ′ : B′ //C

be minimal right almost split maps.

B
f

  AAAAAAAA

g

��
B′

f ′ //

h
��

C

B

f

>>}}}}}}}}

Since f is not a split epimorphism and f ′ is right almost split we get g : B //B′

such that f = f ′g. Similarly, since f ′ is not a split epimorphism and f is right
almost split we get h : B′ //B such that f ′ = fh. This then yields f = f(hg) and
f ′ = f ′(gh), and hence hg and gh are isomorphisms, since f and f ′ are both right
minimal. This yields that g is an isomorphism, because gh isomorphism implies
that g is an epimorphism, and hg isomorphism implies that g is a monomorphism.
�

An intrinsic property of the almost split maps is that for a left almost split
map the domain is indecomposable and for a right almost split map the codomain
is indecomposable.

Lemma 21
Let A, B and C be in mod Λ

(a) If f : B //C is right almost split, then C is indecomposable. Moreover, if

in addition C is non-projective then f is an epimorphism.

(b) If g : A //B is left almost split, then A is indecomposable. Moreover, if

in addition A is non-injective then g is a monomorphism.

Proof. Here too, we only prove (a), (b) follows by duality. Suppose C = C1 q C2

with Ci 6= 0 for i = 1, 2. Let ui : C //Ci denote the corresponding inclusion
maps for i = 1, 2. Since C has a non-trivial decomposition, ui is not a split
epimorphism for i = 1, 2. Thus there exists hi : Ci //B such that ui = fhi
for i = 1, 2. This yields a contradiction since we get the following commutative
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triangle
C

(h1 h2 )

~~~~~~~~~

B
f // C

Thus C must be indecomposable. Assume that C is indecomposable non-projective,
and let p : P //C be the projective cover. Since C is non-projective, p is not a
split epimorphism, thus p factors through f .

P

~~~~~~~~~
p

��
B

f // C

Since f is last in a composition which is an epimorphism, f itself must be an
epimorphism. �

There is an important characterization of the almost split maps, which makes
it somewhat easier to determine whether a map is almost split or not.

Proposition 22
(a) Let g : A //B be a homomorphism in mod Λ. The following are equiva-

lent:

(i) g is left almost split.

(ii) g is not a split monomorphism, A is indecomposable and if Y is in-

decomposable and Y 6' A, then for every s : A //Y there exists a

h : B //Y such that the following triangle commutes

A

s

��

g // B

h~~~~~~~~~

Y

(b) Let f : B //C be a homomorphism in mod Λ. The following are equiva-

lent:

(i) f is right almost split.

(ii) f is not a split epimorphism, C is indecomposable and if X is in-

decomposable and X 6' C, then for every t : X //C there exists a

h : X //B such that the following triangle commutes

X
h

~~}}}}}}}
t
��

B
f // C
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Proof. Notice that we only need to prove one of the to equivalence, since the other
one follows by duality.

(b): If f : B //C is right almost split, then by definition f is not a split
epimorphism, and by Lemma 21 we have that C is indecomposable. Let X 6' C

be indecomposable. If t : X //C is a split epimorphism, then C is a direct
summand in X, thus X ' C which is impossible. Thus every such t factors
through f .

Now we prove the converse. Let t : Y //C be a homomorphism which is not a
split epimorphism. Suppose that Y =

∐n
i=1 Yi with Yi indecomposable for 1 ≤ i ≤

n. Then non of the compositions Yi
qi //Y

t //C are split epimorphisms, otherwise
g would be a split epimorphism. So if we can lift all these compositions to B, t will
factor through f . Hence we can restrict to the case where Y is indecomposable.
If Y 6' C, then by assumption t factors through f . Suppose that Y ' C. Since
t : Y //C is not a split epimorphism, t cannot be an epimorphism, otherwise t
would be an isomorphism by a length argument. Hence Im t ( C. Let Im t =∐m
i=1Xi, where Xi is indecomposable. Then the inclusion Xi

// Im t //C is
not a split epimorphism, since l(Xi) < l(C). So Xi

//C factors through f , and
therefore Im t //C factors through f, which ultimately means that t factors
through f , this finishes the proof. �

We now come to a powerful proposition which ties almost split maps to the
functors DTr and TrD .

Proposition 23
(a) Let g : A //B be a minimal left almost split morphism andA non-injective.

Then the exact sequence 0 //A
g //B

f // Coker g //0 has the following

properties

(i) Coker g ' TrDA.

(ii) f is minimal right almost split.

(b) Let f : B //C be a minimal right almost split morphism with C non-

projective. Then the exact sequence 0 // Ker f
g //B

f //C //0 has the

following properties

(i) Ker f ' DTrC.

(ii) g is minimal left almost split. �

In order to prove this we will need the following lemma.
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Lemma 24
Let

0 // A
g //

r

��

B
f //

s

��

C //

t
��

0

0 // A
g // B

f // C // 0

be a commutative diagram with exact, non split rows.

(a) If A is indecomposable and t is an isomorphism, then r and s are isomor-

phisms. In particular, if t = 1C then f is right minimal.

(b) If C is indecomposable and r is an isomorphism, then s and t are isomor-

phisms. In particular, if r = 1A then g is left minimal.

Proof. (a) Without loss of generality we may suppose that t = 1C . If r is not an
isomorphism, it has to be nilpotent since EndΛA is local. Therefore there exists
n ∈ N so that rn = 0. Thus sng = grn = 0, and hence sn factors through the
cokernel of g, C, that is there exists a unique h : C //B such that hf = sn.
Since f = tnf = fsn, we get fhf = f . This means that hf = 1C since f is an

epimorphism which shows that 0 //A
g //B

f //C //0 is a split exact sequence.
This is impossible, and thus r is an isomorphism.

(a) follows by duality. �

With this lemma in place we move on to the proposition.
Proof of Proposition 23. Let f : B //C be a minimal right almost split map
with C not projective. We then have the following exact sequence

η : 0 // Ker f
g // B

f // C // 0

Suppose that Ker f has a non-trivial decomposition into indecomposable Λ-
modules, i.e. Ker f = K1 q · · · qKn with K1, . . . ,Kn 6= 0. The sequence above
is not split exact, since this will mean that f is a split epimorphism and this
will violate the fact that f is right almost split. Hence g : Ker f //B is not a
split monomorphism. This means that there is some 1 ≤ i ≤ n such that the
projection map p = pi : Ker f //Ki does not factor through g. Hence we get
the following commutative pushout diagram

0 // Ker f
g //

p

��

B
f //

t

��

C // 0

0 // Ki
// E

h // C // 0

We must have that h is not a split epimorphism, otherwise the lower sequence
would be split exact and pi would factor through B. Thus we get the following



28 CHAPTER 2. AUSLANDER-REITEN THEORY

commutative diagram

0 // Ker f
g //

p

��

B
f //

t

��

C // 0

0 // Ki
//

q

��

E
h //

s

��

C // 0

0 // Ker f
g // B

f // C // 0

Where s comes from the fact that f is right almost split and h is not a split
epimorphism. The map q can be found such that every square commutes. Since
f is right minimal we get that st is an automorphism and consequently qp, too,
is an automorphism. This in turn implies that p is a monomorphism, since p was
the canonical projection it also is an epimorphism, thus it is an isomorphism.
Thus Ker f must be indecomposable.

We now want to show that g is left almost split. Note that η is not split exact,
hence Ker f cannot be injective. Let Y be an indecomposable Λ-module. If Y is
injective then Y 6' Ker f and all maps t : Ker f //Y extend to B. On the other
hand if Y is not injective and not isomorphic to DTrC we have that TrDY is
not isomorphic to C. Since f is right almost split every t′ : TrDY //C factors
through f . By Corollary 19 we get that every map t : Ker f //Y extends to
B. Thus we see that if Ker f 6' DTrC then η is split exact, this is impossible.
Therefore we must have that Ker f ' DTrC and by Proposition 22 we have
that g is left almost split. That g is left minimal follows from the fact that C is
indecomposable, and f not being a split epimorphism. �

A Λ-homomorphism f : A //B is said to be irreducible if f is not a split
monomorphism nor a split epimorphism, and if the following triangle commutes

A
f //

t   AAAAAAAA B

M

s

>>}}}}}}}}

for some t : A //M and s : M //B , then t is a split monomorphism or s is a
split epimorphism. It is easily seen that this notion is self dual.

Let f : B //C be irreducible in mod Λ. We then have the following commu-
tative triangle

B
f //

t ""EEEEEEEE C

B/Ker f
s

<<zzzzzzzz

Since f is irreducible we must have that t is a split monomorphism or that
s is a split epimorphism. However, if t is a split monomorphism then f is a
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monomorphism. On the other hand, if s is a split epimorphism then f is a
epimorphism. Suppose that there is some h ∈ EndΛC such that f = hf . Since
f is not a split monomorphism, we get that h is a split epimorphism, and thus h
is an automorphism since C has finite length. In a similar fashion one can show
that f is right minimal. We collect our findings in the following Lemma.

Lemma 25
Let f : B //C be irreducible in mod Λ.

(a) f is either a monomorphism or an epimorphism.

(b) f is both left minimal and right minimal. �

Lemma 26
Let η : 0 //A

g //B
f //C //0 be an exact sequence in mod Λ

(a) The map g : A //B is irreducible if and only if, η is nonsplit, and for every

homomorphism h : M //C there exists s : M //B such that h = fs or

t : B //M such that f = ht.

(b) The map f : B //C is irreducible if and only if, for every homomorphism

h : M //C there exists s : M //B such that h = fs or t : B //M such

that f = ht.

Proof. (a): Suppose g is irreducible. Then η is not split exact since g is not a split
monomorphism. Let h : M //C , and consider the following pullback diagram

0 // A
g′ // E

f ′ //

h′

��

M //

h
��

0

0 // A
g // B

f // C // 0

Since g is irreducible we must have either that g′ is a split monomorphism or
that h′ is a split epimorphism. If g′ is a split monomorphism then there exists
a homomorphism f ′′ : M //E such that f ′f ′′ = 1M . We then get that h =
h(f ′f ′′) = (hf ′)f ′′ = f(h′f ′′), that is s = h′f ′′. On the other hand if h′ is a split
epimorphism, then there exists h′′ : B //E such that h′h′′ = 1B, which yields
f = f(h′h′′) = (fh′)h′′ = h(f ′h′′), and thus we have t = f ′h′′.

Now suppose that η is non-split and that for every homomorphism h : M //C

there exists s : M //B such that h = fs or t : B //M such that f = ht. Since
η is not split, we get that g is not a split epimorphism nor a split monomorphism.
Suppose that we have the following factorization of g

A
g //

g′   AAAAAAAA B

M
h′

>>}}}}}}}}
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Since g is a monomorphism we must have that g′ also is a monomorphism. We
then get the following commutative diagram

0

��

0

��
Ker h′

h′′

��

Ker h′

��
0 // A

g′ //M
f ′ //

h′

��

Coker g′ //

h
��stt

0

0 // A
g // B

f
//

��

t
66

C //

��

0

0 0

If there exists a t : B // Coker g′ as above, then f(h′− tf ′) = 0, and hence there
exists a t′ : M //A such that h′ = tf ′ + gt′. This then yields that t′g′ = 1A
since g = h′g′ = tf ′g′ + gt′g′ = gt′g′. In other words g′ is a split monomorphism.
Conversely, if there exists a s : Coker g′ //B as above, then h is an epimorphism,
then so is h′ by Snake lemma. Similarly as above h′′ is a split monomorphism, and
followingly h′ is a split epimorphism. Thus we have shown that g is irreducible.

(b) follows by similar arguments as in (a). �

This Lemma has an important corollary.

Corollary 27
(a) If g : A //B is an irreducible monomorphism, then EndΛ Coker g is local,

in particular Coker g is indecomposable.

(b) If f : B //C is an irreducible epimorphism, then EndΛ Ker f is local, in

particular Ker f is indecomposable.

Proof. The proof of (b) is done in a similar fashion as the proof of (a), so we only
give a proof for (a). Let C = Coker g with f : B //C . We then have the exact

non-split sequence η : 0 //A
g //B

f //C //0. Applying the functor HomΛ(C,−)
to the above sequence we get the following exact sequence of EndΛ(C)op-modules

0 // HomΛ(C,A) // HomΛ(C,B)
HomΛ(C,f) //

))SSSSSSSSS
EndΛ(C)

Im HomΛ(C, f)

55lllllllll

Therefor we get that Im HomΛ(C, f) ⊆ EndΛ(C) is a right ideal. If h ∈ EndΛ(C)
is a non-isomorphism, then h is not an epimorphism. By Lemma 26 we must have
that there is some s : C //B such that h = fs or some map t : B //C such that
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f = ht. If we are in the latter case, then we arrive at h being an epimorphism,
this then cannot be the case. Therefor there is some s : C //B such that h = fs,
that is h ∈ Im HomΛ(C, f). This means that the non-isomorphism in EndΛ(C)
are a sub set of Im HomΛ(C, f). If h ∈ EndΛ(C) is an isomorphism such that
h ∈ Im HomΛ(C, f), then η is split exact. Therefore Im HomΛ(C, f) is precisely
the non-isomorphisms of EndΛ(C). We now want to show that Im HomΛ(C, f) ⊆
EndΛ(C) is an ideal. Let h ∈ Im HomΛ(C, f) and h′ ∈ EndΛ(C). We have that
l(Im h′h) ≤ l(Im h) < l(C), since h is not an isomorphism and Im h′h is a factor
of Im h. Thus h′h is not an isomorphism and therefore h′h ∈ Im HomΛ(C, f).
Since the non-units of EndΛ(C) form an ideal, EndΛ(C) is a local ring, this in
turn yields that C is indecomposable. �

We shall see that there is an characterization of the irreducible maps through
the minimal left and right almost split maps.

Theorem 28
(a) Let g : A //B be minimal left almost split.

(i) Then g is irreducible.

(ii) Furthermore, a homomorphism g′ : A //B′ is irreducible if and only

if B′ 6= 0 and there exists a homomorphism g′′ : A //B′ such that(
g′

g′′

)
: A //B′ qB′′ is a minimal left almost split morphism with

B ' B′ qB′′.

(b) Let f : B //C be minimal right almost split.

(i) Then f is irreducible.

(ii) Furthermore, a homomorphism f ′ : B′ //C is irreducible if and only

if B′ 6= 0 and there exists a homomorphism f ′′ : B′′ //C such that

( f ′ f ′′ ) : B′ qB′′ //C is a minimal right almost split morphism with

B ' B′ qB′′.

Proof. (a): Suppose that g : A //B is a minimal left almost split map. By
definition, g is not a split monomorphism, and by Lemma 21 we have that A is
indecomposable, and therefore g is not an isomorphism, thus g cannot be a split
epimorphism either. Assume that g = st for some t : A //M and s : M //B .
If t is a split monomorphism then we are done, therefore suppose that t is not a
split monomorphism. Since g is left almost split there exists a h : B //M such
that t = hg. Thus g = st = shg, since g is left minimal sh is an isomorphism,
and so s is a split epimorphism. This then proves that g is irreducible.

Let g′ : A //B′ be an irreducible morphism. We must have B′ 6= 0. More-
over, g′ is not a split monomorphism, so there exists a h : B //B′ such that the
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following diagram commutes

A
g //

g′   AAAAAAA B

h
��
B′

Since g′ is irreducible and g is left almost split, we get that h is a split epimor-
phism. Thus B′ is a direct summand in B, that is B ' B′qB′′ where B′′ = Ker h.
Hence we have that there is a map h′ : B //B′′ such that

(
h
h′
)

: B //B′ qB′′

is an isomorphism. Consequently, we get that
(
h
h′
)
g =

(
g′

h′g

)
: A //B′ qB′′

is minimal left almost split. Next assume that
( g
g′
)

: A //B′ qB′′ is minimal
left almost split with B ' B′ q B′′. Suppose that g = st for some t : A //N

and s : N //B′ with t not a split monomorphism. We now get that there exists
( p q ) : B′ qB′′ //N such that s = ( p q )

( g
g′
)
, because

( g
g′
)

is left almost split.
Whence we have the following commutative diagram

A( g
g′
)

xxqqqqqqqqqqq (
t
g′
)

��

( g
g′
)
&&MMMMMMMMMMM

B′ qB′′( p q
0 1B′′

)// N qB′′(
s 0
0 1B′′

)// B′ qB′′

Thus we see that
( sp sq

0 1B′′

)
is an automorphism by the minimality of

( g
g′
)
. So we

see that s is a split epimorphism since sp is an automorphism. This proves that
g is irreducible. The proof of (b) follows from (a) by duality. �

We are now finally able to define almost split sequences. Let η be the follow-

ing short exact sequence 0 //A
g //B

f //C //0. If g is minimal left almost split
and g minimal right almost split then η is called an almost split sequence.
From our preceding observations we must have that the end terms are indecom-
posable. Moreover, η is non-split since g is not a split monomorphism, or f is a
split epimorphism. We therefore see that A cannot be injective, and also B not
projective.

Now we come to the pièce de résistance, the characterization of almost split
sequences.

Theorem 29
Let η : 0 //A

g //B
f //C //0 be a short exact sequence. The following are equiv-

alent:

(a) η is almost split.

(b) g is minimal left almost split.

(c) f is minimal right almost split.
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(d) C is indecomposable and g is left almost split.

(e) A is indecomposable and f is right almost split.

(f) C ' TrDA and g is left almost split.

(g) A ' DTrC and f is right almost split.

(h) A and C are indecomposable, and f and g are irreducible.

Proof. By definition we have that (a) implies (b) and (c). From Proposition 23
we see that we also have the converse. Lemma 21 and Proposition 23 proves (b)
implies (d), and (c) implies (e). By Lemma 24 we get that (d) implies (b), and (d)
implies (c). From Proposition 23 and Lemma 24 we see that (d) implies (f), and
(e) implies (g). The converse follows from Lemma 21. That (a) implies (h) comes
from Lemma 21 and Theorem 28. We are now left with only one implication
to finish the proof, namely that (h) implies (e). Suppose that h : X //C with
X indecomposable and X 6' C. Then by Lemma 26 we have that there is
s : X //B such that h = fs, and then we are done, or there is a t : B //X so
that f = ht. In the latter case we must have that t is a split monomorphism,
since f is irreducible and X 6' C. Since X is indecomposable, we must have that
t is an isomorphism, and then h = ft−1, and hence f is right almost split by
Proposition 22. This completes the proof. �

Having established some basic properties of the almost split sequences, we
now need to show their existence.

Theorem 30
Let Λ be an artin algebra, and let A,C ∈ mod Λ

(a) If C is an indecomposable non-projective Λ-module, then there is an almost

split sequence 0 //A
g //B

f //C //0 .

(b) If A is an indecomposable non-injective Λ-module, then there is an almost

split sequence 0 //A
g //B

f //C //0 .

Proof. (a) We will show that there is an exact sequence 0 //DTrC //B
f //C //0

where f is right almost split. Since C is indecomposable and not projective, we
have TrD (DTrC) ' TrD 2 TrC ' Tr2C ' C. If DTrC is injective, then
D (DTrC) ' TrC is projective, and Tr2C = 0, which is impossible. Thus
we know that Ext1

Λ(−, DTrC) 6= 0. That is, there is a V ∈ mod Λ so that

η′ : 0 //DTrC
g′ //E′

f ′ //V //0 is not split exact. Notice that if every morphism
C //V factors through f ′ : B //V , then every morphism DTrC //DTrC
factors through g′ : DTrC //B by Corollary 19. This would mean that g′ is a
split monomorphism, contradicting the assumption that η′ is non-split.
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Now let Γ = EndΛ(C)op, then we have the following exact sequence of Γ-
modules

HomΛ(C,B)
HomΛ(C,f ′)// HomΛ(C, V ) // Coker HomΛ(C, f ′) // 0

where Coker HomΛ(C, f ′) 6= 0. Therefore we may find a morphism h : C //V

whose image in Coker HomΛ(C, f ′) generates a simple Γ-module. Now consider
the pullback diagram

η = p′(h) : 0 // DTrC
g // B

��

f // C

h

��

// 0

η′ : 0 // DTrC
g′ // E

f ′ // V // 0

We shall now show that η is an almost split sequence. Clearly η is not split
exact, otherwise h would factor through f ′, which would mean that h = 0 in
Coker HomΛ(C, f ′). We now show that f is right almost split. Let s : X //C

be a map which is not a split epimorphism. By taking the pullback of η along s
we have the following diagram

η · s : 0 // DTrC
g′′ // Y

��

f ′′ // X

s

��

// 0

η : 0 // DTrC
g // B

f // C // 0

We see that s factors through f ⇔ η·s is split exact⇔ every t′ : DTrC //DTrC
factors through g′′. By Corollary 19 this is the same as every t : C //X factors
through f ′′ in η · s. Let t : C //X , we shall now show that t factors through f ′′.
Consider the following commutative diagram:

η′′ = η(st) : 0 // DTrC // Y ′

��

// C //

t

��

0

η · s : 0 // DTrC
g′′ // Y

��

f ′′ // X

s

��

// 0

η = η′ · h : 0 // DTrC
g // B

��

f // C //

h

��

0

η′ : 0 // DTrC
g′ // E

f ′ // C // 0

Since EndΛ(C) is a local ring and st ∈ EndΛ(C)op is not an isomorphism, we
must have that st ∈ rad EndΛ(C)op = rad Γ. Then η′′ = η(st) = p(h)(st) =
(st) · p(h) ∈ (st) ·S = 0, where S is the simple Γ-module generated by p(h). This
means that η′′ is split exact, which means that t factors through f ′′ (for all t),
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and thus s factors through f , and f is right almost split. Hence η is an almost
split sequence by Theorem 29 part (g).

(b) follows from the fact that 0 //A //B //C //0 is almost split if and only
if 0 //DC //DB //DA //0 is almost split. �

The next proposition asserts that these sequences are determined by their end
terms.

Proposition 31
Let 0 //A

g //B
f //C //0 and 0 //A′

g′ //B′
f ′ //C ′ //0 be almost split sequences.

The following are equivalent:

(a) The two sequences are isomorphic.

(b) A ' A′.

(c) C ' C ′

Proof. (b) ⇔ (c) follows from the fact that DTrC ' A and DTrC ′ ' A′.
(c) ⇒ (a): Suppose that h : C //C ′ is an isomorphism. It then follows

that hf : B //C ′ is minimal right almost split, since f is minimal right almost
split. By Proposition 20 we get that there is an isomorphism h′ : B //B′ such
that hf = f ′h′ since f ′ : B′ //C ′ is minimal right almost split. The opposite
implication is obvious. �

As we shall see, the almost split sequences tie the irreducible maps going out
from a module to the irreducible maps going into it.

Proposition 32
(a) Let C be an indecomposable non-projective module in mod Λ. There ex-

ists an irreducible morphism f : M //C if and only if there exists an irre-

ducible morphism g : DTrC //M .

(b) Let A be an indecomposable non-injective module in mod Λ. There exists

an irreducible morphism g : A //N if and only if there exists an irreducible

morphism f : N // TrDA .

Proof. (a): Suppose f : M //C is irreducible. Theorem 28 says that there is
a f ′ : M ′ //C such that ( f f ′ ) : M qM ′ //C is minimal right almost split.
Since C is not projective, thus ( f f ′ ) is an epimorphism. Let A = Ker ( f f ′ ),
then the following sequence is almost split by Theorem 29

0 // A

( g
g′
)
//M qM ′

( f f ′ )// C // 0

Here g : A //M is irreducible, and A ' DTrC. Note that an irreducible map
composed with an isomorphism is still irreducible. The converse statement is
proved similarly.
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(b) follows by duality. �

We end this section with a proposition which, in some cases, makes it easy to
verify whether a short exact sequence is almost split or not.

Proposition 33
Let C be an indecomposable module with EndΛ(C) a division ring. Then the

following are equivalent for a short exact sequence η : 0 //DTrC //B //C //0 .

(a) η is almost split.

(b) η does not split.

(c) B 6' DTrC q C. �

The dual statement also holds, namely:

Proposition 34
Let C be an indecomposable module with EndΛ(A) a division ring. Then the fol-

lowing are equivalent for a short exact sequence η : 0 //A //B // TrDA //0 .

(a) η is almost split.

(b) η does not split.

(c) B 6' Aq TrDA. �

2.3 The Coxeter Transformation

Let us start with introducing the Grothendieck group of an artin algebra Λ.
Let F be the free abelian group with basis the isomorphism classes of finitely
generated Λ-modules. We denote the isomorphism class of a module M ∈ mod Λ
by [M ]. Furthermore, let K be the subgroup of F generated by elements of the
form [M ] − [L] − [N ] whenever 0 //L //M //N //0 is exact in mod Λ. Let
K0(mod Λ) = F/K be the Grothendieck group of Λ. We first show that K0 =
K0(mod Λ) is free. Let [S1], . . . , [Sn] be a complete list of isomorphism classes of
simple Λ-modules, and let G = 〈[S1], . . . , [Sn]〉, that is the subgroup generated
by the isomorphism classes of the simple Λ-modules. We define ϕ : G −→ K0 by
ϕ([Si]) = [Si]. We now want to give a homomorphism going the other direction,
however, first note that given a module M in mod Λ and a composition series
0 = M0 ⊂ M1 ⊂ · · · ⊂ Mr−1 ⊂ Mr = M of M , meaning that Mi+1/Mi is a
simple Λ-module, we have the exact sequence 0 //Mi−1

//Mi
//Mi/Mi−1

//0,
and consequently we get [M ] = [Mr/Mr−1] + [Mr−1] = · · · =

∑r
i=1[Mi/Mi−1] =∑n

i=1mSi [Si], where mSi is the number of times Si occurs in the composition
series of M . Hence define ψ : K0 −→ G by ψ([M ]) =

∑n
i=1mSi [Si]. Obviously,
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ψϕ = 1G and ϕψ = 1K0 , so G = K0. We have now shown that K0 is a free
abelian group of rank n, and hence we are essentially dealing with Zn.

If we require that Λ is of finite global dimension we get that the isomorphism
classes of indecomposable projective Λ-modules generate K0. Let Pi be the pro-
jective cover of Si in {S1, . . . , Sn} as above. Then P1, . . . , Pn are non-isomorphic
indecomposable projective Λ-modules. We want to show that {[P1], . . . , [Pn]} is
a basis for K0. Since K0 has rank m, then we only need to show that K0 is gener-
ated by {[P1], . . . , [Pn]}. Since Λ has finite global dimension, there is a finite pro-
jective resolution of a simple Λ-module S, 0 //Qt // . . . //Q1

//Q0
//S //0.

Thus, [S] =
∑t

i=0(−1)i[Qi], where each Qi '
∐
j Pj , and the claim follows.

The dual is also true, i.e. the injective envelopes of the isomorphism classes of
simples generate K0, this realization is achieved by similar arguments as above.
Inspired by the above, we define the Coxeter transformation ΦΛ : K0 −→ K0

by ΦΛ([Pi]) = −[Ii]. This is obviously an isomorphism, since it takes a basis to
another basis. Moreover, since Ii ' DP ∗i , we see that ΦΛ[Pi] = −[DP ∗i ].

Suppose P1
p1 //P0

//M //0 is a minimal projective presentation of M , a non

projective module in mod Λ. This means that 0 // Ker p1
//P1

p1 //P0
//M //0

is exact. Thus [M ] − [Ker p1] = [P0] − [P1] in K0. We now use the Coxeter
transformation and get ΦΛ[M ] − ΦΛ[Ker p1] = [DP ∗1 ] − [DP ∗0 ]. We also have
the exact sequence 0 //DTrM //DP ∗1

//DP ∗0
//DM∗ //0, and thus we get

[DM∗]− [DTrM ] = [DP ∗0 ]− [DP ∗1 ] = ΦΛ[Ker p1]−ΦΛ[M ]. By duality we im-

mediately see that if 0 //N //E0
i1 //E1 is a minimal injective copresentation of

a non injective Λ-module N , then Φ−1
Λ [Coker i1]−Φ−1

Λ [N ] = [(DN)∗]− [TrDN ].
We have just proven the following Lemma.

Lemma 35
(a) Let M be a non-projective module and let P1

p1 //P0
//M //0 be a minimal

projective presentation of M . Then

[DTrM ] = ΦΛ[M ] + [DM∗]− ΦΛ[Ker p1]

(b) Let N be a non-injective module in mod Λ and 0 //N //E0
i1 //E1 a min-

imal injective copresentation of N . Then

[TrDN ] = Φ−1
Λ [N ] + [(DN)∗]− Φ−1

Λ [Coker i1]

�

Recall that a ringR is left hereditary if all left ideals ofR are projective. There is a
homological characterization of a left hereditary ring R, namely l. gl.dimR ≤ 1.
In fact this is equivalent to submodules of projective R-modules again being
projective. In some sense the Coxeter transformation simplifies for hereditary
algebras. We fix the basis B = {[S1], . . . , [Sn]} for K = K0(mod Λ). We call
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a nonzero element x in K0 positive if all its coordinates with respect to B

are nonnegative. Similarly, we say that a nonzero x ∈ K0 is negative if all
its coordinates with respect to B are non-positive. The two above notions are
equivalent to x = [M ] or x = −[M ] for a module M ∈ mod Λ.

Proposition 36
Let Λ be a hereditary artin algebra and let ΦΛ be the Coxeter transformation.

(a) ΦΛ[M ] = [D Ext1
Λ(M,Λ)]− [DM∗] for all X in mod Λ.

(b) If M is an indecomposable non-projective, then ΦΛ[M ] = [DTrM ].

(c) Suppose M is indecomposable. Then M is projective if and only if ΦΛ[M ]
is negative.

(d) ΦΛ[M ] is either positive or negative, where M is an indecomposable Λ-

module.

(e) Φ−1
Λ [M ] = [Ext1

Λop(DM,Λ)]− [(DM)∗] for all M in mod Λ.

(f) If M is non injective indecomposable Λ-module, then Φ−1
Λ [M ] = [TrDM ].

(g) Let M be indecomposable. Then M is injective if and only if Φ−1
Λ [M ] is

negative.

(h) If M ∈ mod Λ indecomposable. Then Φ−1
Λ [M ] is either positive or negative.

Proof. Clearly the parts (e), (f), (g) and (h) will follow by duality once we have
proved the first part.

(a) Let P1
//P0

//M //0 be a minimal projective presentation of M . We
have seen in Proposition 35 that ΦΛ[M ] = [DTrM ] − [DM∗] + ΦΛ[Ker p1].
Since Λ is hereditary, Ker P1

//P0 = 0. If M ∈ mod Λ then the claim follows by
Proposition 13. We only need to show the claim for a projective module, since
everything commutes with respect to finite direct sums. If M is projective, then
the claim is trivially true since DTrM = 0 and ΦΛ[M ] = −[DM∗].

(b) LetM be an indecomposable nonprojective Λ-module, and let f : M //Λ.
Since Im f ⊆ Λ is a submodule we have that Im f is a projective summand of
M , however M is indecomposable. Then, by Lemma 35 we get [DTrM ] =
ΦΛ[M ]− ΦΛ[Ker p1], however since Λ hereditary, Ker p1 = 0.

(c) If M is projective, then ΦΛ[M ] is trivially negative by definition. If ΦΛ[M ]
is negative then M is trivially projective by (b).

(d) This follows by (c). �

Some easy made observations follow from this proposition, we give them in
the following corollary.



2.3. THE COXETER TRANSFORMATION 39

Corollary 37
Let M and N be indecomposable Λ-modules for a hereditary artin algebra. If ΦΛ

is the Coxeter transformation and [M ] = [N ] in K0, then the following is true:

(a) M is projective if and only if N is projective.

(b) If M is projective, then M ' N .

(c) M is preprojective if and only if Φn
Λ[M ] is negative for some n ∈ N.

(d) If M is preprojective, then M ' N .

(e) M is injective if and only if N is injective.

(f) If M is injective, then M ' N .

(g) M is preinjective if and only if Φ−mΛ [M ] is negative for some m ∈ N.

(h) If M is preinjective, then M ' N .

Proof. (a) If M and N are indecomposable, then by (c) in the previous proposition
we get that M is an indecomposable projective module if and only if ΦΛ[M ] is
negative, since ΦΛ[M ] = ΦΛ[N ] we get that M is projective if and only if N is
projective.

(b) Let M be projective and let [N ] = [M ], then by (a) we get that N is pro-
jective. Since [N ] = [M ] there is a nonzero map from M to N , say f : M //N .
Since Λ is hereditary we get that M ' Im f q Ker f , now since M is inde-
composable and f nonzero, we get that Ker f = 0. Hence M ' N , since
0 //M //N //N/ Im f //0 and [N/ Im f ] = 0.

(c) If M is indecomposable, we know that M is preprojective if and only if
(DTr )mM is projective for some nonnegativem, then by the previous proposition
we get that this is equivalent to Φn

Λ[M ] being negative for some natural number
n.

(d) For M and N indecomposable with [M ] = [N ] and let M be preprojective.
By (c) we know that Φn

Λ[M ] = Φn
Λ[N ] is negative with n ∈ N. Let n be the small-

est such number, then [(DTr )n−1M ] = Φn−1
Λ [M ] = Φn−1

Λ [N ] = [(DTr )n−1N ] is
positive. Thus (DTr )n−1M and (DTr )n−1N are indecomposable projective and
by (b) are isomorphic. Thus M ' N . The rest are just dual statements of the
ones proven and follow trivially. �

In the case of a path algebra there is another important matrix which is closely
related to the Coxeter transformation. Let λ = kQ be the path algebra over the
field k given the finite quiver Q = (Q0, Q1). Let e1, . . . , en be the trivial paths in
Λ. Denote by CΛ the Cartan matrix of Λ, where

CΛ =
(

dim Λe1 . . . dim Λen
)
.



40 CHAPTER 2. AUSLANDER-REITEN THEORY

It is well known that detCΛ = ±1. Before we give the relationship between the
Cartan matrix and the Coxeter transformation, we define a bilinear form. For a
hereditary artinR-algebra Λ, denote by 〈−,−〉Λ : K0(mod Λ)×K0(mod Λ) //Z
the homological bilinear form given by

〈M,N〉Λ = lR(HomΛ(M,N))− lR(Ext1
Λ(M,N)).

Proposition 38
Let Q be a finite quiver and let k be a field. Let Λ = kQ. By identifying

K0(mod Λ) with Zn, the following holds

(a) ΦΛ = −CtΛC
−1
Λ .

(b) 〈M,N〉Λ = [M ]t(C−1
Λ )t[N ].

(c) 〈M,N〉Λ = −〈M,ΦΛN〉Λ = 〈ΦΛM,ΦΛN〉Λ. �

2.4 Auslander-Reiten Quiver

Here we define the Auslander-Reiten quiver of an artin algebra, and go through
some properties and results concerning the AR-quiver (short for Auslander-Reiten
quiver).

Let Λ be an artin algebra. We define the Auslander-Reiten quiver of
mod Λ, ΓΛ, in the following way. The vertices of the AR-quiver are the isomor-
phism classes of indecomposable, [M ], in mod Λ. If [M ] and [N ] are vertices,
then there is an arrow [M ] // [N ] if and only if there is an irreducible morphism

M //N in mod Λ. Moreover, the arrows in ΓΛ have valuation [M ]
(a,b) // [N ] if

Ma qX //N is minimal right almost split with M not a direct summand in
X, and M //N b q Y is minimal left almost split with N not a direct summand
in Y . We call [P ] a projective vertex if P is projective, similarly we call [I] an
injective vertex if I is injective.

Note that ΓΛ cannot have loops, if it did then there would be an irreducible
morphism from, say N to N . We know that the irreducible maps are either
monomorphisms or epimorphisms. Because l(N) < ∞, it must be an isomor-
phism. This is not possible since this would imply that an irreducible map is a
split monomorphism.

Let [M ]
(a,b) // [N ] be an arrow in ΓΛ, and let N be non-projective. We then

have that 0 //DTrN //Ma qX //N //0 is an almost split sequence. In par-
ticular DTrN //Ma qX is minimal left almost split. Thus we see that we

have [DTrN ]
( ,a) // [M ] . One can show that the missing valuation is in fact b.
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This means that if N is non-projective, and [M ]
(a,b) // [N ] is an arrow in ΓΛ, then

ΓΛ contains the arrow [DTrN ]
(b,a) // [M ] .

The Auslander-Reiten quiver has an intrinsic structure, given by DTr . For
[N ] ∈ (ΓΛ)0 not projective, define the Auslander-Reiten translate, τ [N ],
as [DTrN ]. This gives a bijective correspondence between the non-projective
vertices with the non-injective vertices. The inverse bijection τ−1 is given by
TrD . Suppose that

0 // DTrN //
t∐
i=1

Mai
i

// N // 0

is an almost split sequence, with N non-projective and Mi indecomposable and
pairwise nonisomorphic. Thus in ΓΛ we get the following picture:

[M1]
(a1,b1)

""EEEEE

[DTrN ]

(b1,a1) 99ssssss

(bt,at) %%KKKKKK

...

...
[N ]

[Mt]
(at,bt)

<<yyyyy

where the horizontal dotted line indicates that this is an almost split sequence.
In fact the Auslander-Reiten quiver is in fact a translation quiver. We like to
mention here that if Λ is an algebra over an algebraically closed field, then the
valuations in the Auslander-Reiten quiver are always of the form (n, n) for some
n ∈ N. This means that they valuation is really not necessary in these situations.

Let Γ = (Γ0,Γ1) be a valued quiver, which is locally finite, that is each
vertex has finitely many arrows coming in and going out. For a vertex x ∈
Γ0 denote by x− the set of immediate predecessors of x, that is {y ∈ Γ0 |
there exists y //x in Γ1}. Similarly we define the set of immediate successors
of x, x+ = {y ∈ Γ0 | there exists x //y in Γ1}. Let τ : U //Γ0 be an injective
map, for some U ⊆ Γ0, τ is called the translation of Γ. We call the pair (Γ, τ)
for a translation quiver if:

(i) Γ has no multiple arrows or loops.

(ii) For each x ∈ Γ0 where τ(x) is defined, then x− = τ(x)+.

(iii) If x
(a,b) //y is in Γ and τ(y) is defined, then τ(y)

(b,a) //x is in Γ.

If in addition

(iv) If for each x ∈ Γ0 such that τ(x) is defined, x− is non-empty.
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Then we say that (Γ, τ) is a proper translation quiver. For a translation quiver
(Γ, τ) we say that a vertex x ∈ Γ0 is projective if τ(x) is not defined. If x ∈ Γ0

is such that x 6= τ(z) for any z ∈ U ⊆ Γ0, then we say that x is injective.
Two indecomposable Λ-modules M and N are said to be related by an irre-

ducible morphisms if there is an irreducible morphism f : A //B . This relation
will generate an equivalence relation on the indecomposable Λ-modules. We call
an equivalence class under the equivalence relation a component. Then M and
N are in the same component if and only if there is an n ∈ N so that either there is
an irreducible map fi : Xi

//Xi+1 or there is an irreducible map gi : Xi+1
//Xi

for each 0 ≤ i < n, with X0 = A and Xn = B. It is well known that the algebra is
of finite type if and only if there is a finite component in ΓΛ. Furthermore, com-
ponents that only contain preprojective, preinjective or regular indecomposable
modules are called preprojective, preinjective or regular components respectively.
Usually there are many components of the same type, that is either preprojec-
tive, preinjective or regular. Nonetheless, it can be shown that there is only one
preprojective component when the algebra is an indecomposable hereditary artin
algebra.

Let ∆ = (∆0,∆1) be a valued quiver without loops, define Z∆ as the following

translation quiver, let the vertices of Z∆ be the tuple (n, d) ∈ Z×∆. If α : x
(a,b) //y

is an arrow in ∆, then αn : (n, x)
(a,b) //(n, y) and σ(αn) : (n− 1, y)

(b,a) //(n, x) are
arrows in Z∆ for all n ∈ Z. Moreover, for every (n, x) ∈ (Z∆)0 we define the
translation τ(n, x) = (n − 1, x). We denote by Z∆ the translation quiver of ∆.
Let N ∆ denote the subtranslation quiver of Z∆ with vertices (n, x) where n ∈ N
and x ∈ ∆0.

The next proposition states that for some quivers we are able to determine
the shape of the preprojective component of the path algebra over some field.

Proposition 39
Let Q be a connected quiver, without cycles and multiple arrows and let k be a

field. Then there is an injective translation quiver morphism of the preprojective

component of Λ to NQop. �

Let M be an indecomposable non-projective module, then denote by αM

the number of indecomposable summands in the middle term of the almost split
sequence ending in M . We now specialize to the case of Λ being a hereditary
artin algebra. The next result states that the middle term in an almost split
sequence ending in a regular module has at most two summands.

Proposition 40
Let Λ be a hereditary artin algebra and M an indecomposable regular module in

mod Λ. Then α(M) ≤ 2. �
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We now come to the structure Theorem of the regular components for hereditary
artin algebras of infinite representation type.

Theorem 41
Let Λ be a hereditary artin algebra of infinite representation type and let C be

a regular component of ΓΛ. Then the following is true.

(a) In C there exists an infinite chain of irreducible monomorphisms

C0
f0 // C1

f1 // . . .
fn−1// Cn

fn //// . . . such that α(C0) = 1 and α(Ci) = 2 for

i ≥ 1.

(b) For each n ∈ Z and i ∈ N, there is an almost split sequence

0 //DTr n+1Ci //DTr n+1Ci+1 qDTr nCi−1
//DTr nCi //0 , where

C−1 = 0.

(c) The set {DTr nCi|n ∈ Z, i ∈ N} constitutes a complete set of indecompos-

able modules in C up to isomorphism.

(d) If h : DTr nCi+1
//DTr n−1Ci is any irreducible morphism, then Ker h '

DTr nC0.

(e) If DTr nCi ' Ci for some n ∈ Z and i ∈ N, then DTr nCj ' Cj for all

j ∈ N.

(f) The translation quiver C is isomorphic to ZA∞/〈τn〉 where n is the smallest

positive integer with DTr nC0 ' C0. �

If we were to interpret this geometrically we see that the shape of the regular
component(s) of the Auslander-Reiten quiver looks like figure 2.1.
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Figure 2.1: The regular components of the Auslander-Reiten quiver of an hered-
itary artin algebra.
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If DTr nC0 ' C0 for some n ∈ Z, then DTr nCi ' Ci for all i ≥ 0 and we
obtain what is called a stable tube. If n is the smallest positive integer for which
DTr nCi ' Ci, then we say that the tube has rank n.

We end this chapter with an example.

Example 10

Let Λ = k( 1 // 2 // 3 ). The Auslander-Reiten quiver of mod Λ is then

[P1]

!!DDDDD

[P2]

<<yyyyy

""EEEEE
[I2]

!!CCCCC

[P3]

<<yyyyy
[S2]

==zzzzz
[I1]

Where Pi are the indecomposable projective corresponding to vertex i, and Ij
the indecomposable injective corresponding to vertex j, and S2 is the simple at
vertex 2.



Chapter 3

The Four Subspace Problem

The four subspace problem is easily formulated and a student taking a basic
course in linear algebra is fully equipped to understand the problem. However,
after some initial consideration one begins to see the complexity of it.

The four subspace problem can be formulated in the following fashion: Given
a field k and a finite dimensional vector space V0 over k, and let V1, V2, V3

and V4 be subspaces of V0. We call the quintuplet V = (V0;V1, V2, V3, V4) for
a quadruple. We say that a quadruple is decomposable if there exists non-
trivial U0,W0 ⊂ V0 such that U0 q W0 = V0 and Vi = (U0 ∩ Vi) q (W0 ∩ Vi)
for 1 ≤ i ≤ 4, and we write V = U q W . If no such decomposition exists,
then we say that the quadruple is indecomposable. Moreover, two quadruples,
(V0;V1, V2, V3, V4) and (V ′0 ;V ′1 , V

′
2 , V

′
3 , V

′
4), are said to be isomorphic if there is

a vector space isomorphism ϕ : V0
//V ′0 , such that the subspace structure is

invariant under ϕ, that is ϕ(Vi) = V ′i for 1 ≤ i ≤ 4.
The problem was first solved in the case of an algebraically closed field k by

Gelfand and Ponomarev. Later Nazarova closed the gap when she considered an
arbitrary field k. Most recent contributions can be found in [MZ].

3.1 Representations of Partially Ordered Sets

Representations of partially ordered sets come in as the first attempt to fully
cope with the four subspace problem. We are here going to go briefly through
the concepts presented in this theory.

Recall that a Hasse diagram of a finite partially ordered set M, is a rep-
resentations of M as a directed graph in which elements of M is represented as
vertices and there is a directed edge from x to y if y ≤ x in M. However, usually
we drop the direction of an edge, and place the x above y when y ≤ x in M.

45
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Furthermore, we may omit any edges that is covered by the transitivity of the
relation since they carry redundant information, i.e. if z ≤ y ≤ x in M, then we
identify the edge corresponding to z ≤ x with the composition z ≤ y and y ≤ x.

Example 11

Let M be the positive divisors of 20 and let the relation be a ≤ b if a divides b.
This yields the following Hasse diagram:

20

~~~~~~

4 10

~~~~~~

2

@@@@@@ 5

1

Let M = (n1, . . . , nm) be the partially ordered set given by the following Hasse
diagram

x11 xm1

... · · · ...

x1n1 xmnm

We say that a finite partially ordered set M has width d if there are d elements
in M which are incomparable. In Example 11, we clearly see that the width is 2.
The partially ordered set (n1, . . . , nd) has width d.

Let M be a finite partially ordered set. A representation of M over a field k is
a finite dimensional vector space V0 and a collection of subsets of V0, V = (V0;Vi |
i ∈ M) such that for each i, j ∈ M with i ≤ j then Vi ⊆ Vj . Associated with
a representation V of a finite partially ordered set M is its dimension vector,
dimV = (d0, d1, . . . , dm), where m = |M| and d0 = dimk V0 and di = dimVi/V i,
where V i =

∑
j<i Vj for all i ∈M.

Furthermore, we define the matrix presentation of V as the matrix

M =
(
M1 . . . Mm

)
where Mi is a d0 × di-matrix with columns consisting of coordinate vectors of a
basis in Vi/V i with respect to a chosen basis of V0. Moreover, we define some
operations on the matrix M . In addition to elementary row operations, we allow
elementary column operations inside each block Mi, and also we allow to add mul-
tiple of columns in block Mi to block Mj if i < j in M. If one matrix presentation
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can be transformed into another matrix presentation with the above mentioned
operations, then we say that they are equivalent. Naturally, two representations
U and V of M are isomorphic if and only if the corresponding matrices MU and
MV are equivalent.

We say that a finite partially ordered set is of finite (infinite) type if there is
a finite (infinite) number of indecomposable representations.

The four subspace problem comes in as in a natural way in this connec-
tion. Let M = (1, 1, 1, 1), that is the set of four non-comparable points, then
a representation of M is, given a finite dimensional k-space V0, the tuple V =
(V0;V1, V2, V3, V4), which of course is a quadruple. Thus one sees that the four
subspace problem is in fact the classification of the indecomposable representa-
tions of M. One quickly sees that this gets quite cumbersome as one tries to
approach the problem in this manner, nonetheless a complete analysis of the four
subspace problem as representations of partially ordered sets can be found in
[MZ].

It was shown already in [AV] that every finite partially ordered set of width
greater then or equal to 4 is of infinite type, this of course means that (1, 1, 1, 1)
is of infinite type, thus it was early known that the four subspace problem was
of infinite type. A more general analysis of the representation type of partially
ordered sets can be found in [Kle2, Kle1].

3.2 As Representations of Quivers

In this section we will consider the four subspace problem as a classification
problem with respect to indecomposable modules over a path algebra. As we saw
in Theorem 1, this is the same as classifying the indecomposable representation
of the corresponding quiver.

Throughout this section k is an algebraically closed field, i.e. every algebraic
equation has a solution in the field. Furthermore, Q will denote the quiver

2
β
��

1 α // 5 3δoo

4
γ
OO

and let Λ = kQ. Now given a quadruple U = (U0;U1, U2, U3, U4) with matrix
form as follows

M =
(
M1 M2 M3 M4

)
where dimk Ui = ni for 1 ≤ i ≤ 4 and M has n rows, is represented by the
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following representation
kn2

M2
��

kn1
M1 // kn kn3

M3oo

kn4

M4

OO

Thus we see that every quadruple is contained in Rep Q. Notice, however, that
not every representation of Q is a quadruple. For instance the following repre-
sentation

0

��
k3

( 1 1 0
0 0 1 )
// k2 0oo

0

OO

is not, as it is presented here, a quadruple. Nonetheless, any representation can
be transformed such that it corresponds to a quadruple. Given a representation

kn2

f2
��

kn1
f1 // kn kn3

f3oo

kn4

f4

OO

by considering the subspaces Im fi ⊆ kn yields the following representation

Im f2

��
Im f1

// kn Im f3
oo

Im f2

OO

which is an quadruple.
We will fix some auxiliary notation here. Let Pi = Λei be the indecomposable

projective representation corresponding to vertex i, dually we denote by Ij =
ejΛ the indecomposable injective at vertex j, and lastly let Si be the simple
concentrated at vertex i, see Table 3.1.

We clearly see that the Coxeter and inverse Coxeter transformation are given
by the following matrices

ΦΛ =


0 1 1 1 −1

1 0 1 1 −1

1 1 0 1 −1

1 1 1 0 −1

1 1 1 1 −1

 , Φ−1
Λ =


−1 0 0 0 1

0 −1 0 0 1

0 0 −1 0 1

0 0 0 −1 1

−1 −1 −1 −1 3
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Projective indecomposable
0

��
k

1 // k 0oo

0

OO

k
1��

0 // k 0oo

0

OO

0

��
0 // k k

1oo

0

OO

0

��
0 // k 0oo

k

1
OO

0

��
0 // k 0oo

0

OO

P1 P2 P3 P4 P5 = S5

Injective indecomposable
0

��
k // 0 0oo

0

OO

k

��
0 // 0 0oo

0

OO

0

��
0 // 0 koo

0

OO

0

��
0 // 0 0oo

k

OO

k
1��

k
1 // k k

1oo

k

1
OO

I1 = S1 I2 = S2 I3 = S3 I4 = S4 I5

Table 3.1: The indecomposable projective and injective representations of Q.

Also CΛ, the Cartan matrix of Λ, is

CΛ =

(
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
1 1 1 1 1

)
.

When we now move on to the indecomposable preprojective and preinjective
representations we will have to study powers of the Coxeter transformation. Here
we split the problem in even and odd powers of the matrices.

Lemma 42
The powers of the Coxeter and inverse Coxeter transformation are given by the

following matrices

Φ2n+1
Λ =


n n+1 n+1 n+1 −(2n+1)
n+1 n n+1 n+1 −(2n+1)
n+1 n+1 n n+1 −(2n+1)
n+1 n+1 n+1 n −(2n+1)
2n+1 2n+1 2n+1 2n+1 −(4n+1)

 , Φ2n
Λ =

 n+1 n n n −2n
n n+1 n n −2n
n n n+1 n −2n
n n n n+1 −2n
2n 2n 2n 2n −(4n−1)


for n ∈ Z in the odd case, and n ∈ Z \ {0} in the even case.

Proof. This clearly follows from the fact that ΦΛΦ2n
Λ = Φ2n+1

Λ , ΦΛΦ2n+1
Λ =

Φ2(n+1)
Λ , Φ−1

Λ Φ2n
Λ = Φ2n−1

Λ and Φ−1
Λ Φ2n+1

Λ = Φ2n
Λ for any n ∈ Z. �

As an immidiate consequence we get the following.

Corollary 43
For 1 ≤ i, j ≤ 4

(a) [TrD 2nPi] = (n+ 1)[Si] +
∑
j 6=i,5

n[Sj ] + (2n+ 1)[S5]

[TrD 2n+1Pi] = n[Si] +
∑
j 6=i,5

(n+ 1)[Sj ] + (2n+ 2)[S5], for n ≥ 0.
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(b) [DTr 2mIj ] = (m+ 1)[Sj ] +
∑
i 6=j,5

m[Si] + 2m[S5]

[DTr 2m+1Ij ] = m[Sj ] +
∑
i 6=j,5

(m+ 1)[Si] + (2m+ 1)[S5], for m ≥ 0.

Moreover, for the projective and injective at vertex 5 we have

(c) [TrD nP5] =
∑
j 6=5

n[Sj ] + (2n+ 1)[S5], where n ≥ 0,

(d) [DTrmI5] =
∑
i 6=5

(m+ 1)[Si] + (2m+ 1)[S5], where m ≥ 0, �

We are now able to describe the preprojective and preinjective component of
the AR-quiver of Rep Q. From Corollary 43, we clearly see that the preprojective
component continues indefinitely to the right, and vice versa, the preinjective
component continues backwards to the left indefinitely. This is illustrated in
figure 3.1 and 3.2.

[P1]

��8888888888888
[TrDP1]

��??????????????
[TrD 2P1]

��;;;;;;;;;;;;;;;

[P2]

%%JJJJJJJ [TrDP2]

''OOOOOOOO
[TrD 2P2]

&&MMMMMMMMM

[P5]

FF������������

==zzzzz

!!DDDDD

��2
22222222222

[TrDP5]

??��������������

77ooooooo

''OOOOOOO

��>>>>>>>>>>>>>>
[TrD 2P5]

>>}}}}}}}}}}}}}}

77nnnnnnn

''PPPPPPP

  AAAAAAAAAAAAAA
. . .

[P3]

99ttttttt
[TrDP3]

77oooooooo
[TrD 2P3]

88qqqqqqqqq

[P4]

CC�������������
[TrDP4]

??��������������
[TrD 2P4]

AA���������������

Figure 3.1: The preprojective component of the AR-quiver of Λ.

. . .

��:::::::::::::: [DTr 2I1]

��>>>>>>>>>>>>>>
[DTr I1]

��7777777777777
[I1]

. . .

%%LLLLLLLL [DTr 2I2]

''NNNNNNN
[DTr I2]

$$IIIIIII
[I2]

[DTr 2I5]

>>}}}}}}}}}}}}}}}

66nnnnnnnn

((PPPPPPPP

  AAAAAAAAAAAAAAA
[DTr I5]

@@��������������

88ppppppp

&&NNNNNNN

��==============
[I5]

FF

==|||||

!!BBBBB

��1
11111111111

. . .

99rrrrrrrr
[DTr 2I3]

77ppppppp
[DTr I3]

::uuuuuuu
[I3]

. . .

BB��������������
[DTr 2I4]

@@��������������
[DTr I4]

CC�������������
[I4]

Figure 3.2: The preinjective component of the AR-quiver of Λ.
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Already here we can say that Λ is not of finite representation type, since that
means that every module is preprojective and preinjective.

Throughout the remainder of this section let M be the module corresponding
to the representation

k

f2
��

k
f1 // k2 k

f3oo

k

f4

OO

where fi = (ai bi)t with ai, bi ∈ k, and (ai, bi) 6= (0, 0), 1 ≤ i ≤ 4. Furthermore,
denote by αij the determinant of

(
ai aj
bi bj

)
where 1 ≤ i, j ≤ 4. Note that αij = 0

is equivalent to Im fi = Im fj . Hence, αij = 0 is transitive, i.e. if αij = 0 and
αjm = 0, then αim = 0, hence we may only define αij for 1 ≤ i < j ≤ 4. Thus
we see that if αij = 0 for four pairs of indices, then αij = 0 for all indices. We
therefore get the decomposition

k

f2
��

k

1
��

0

��
k

f1 // k2 k
f3oo ' k

1 // Im f1 k
1oo q 0 // k 0oo

k

f4

OO

k

1

OO

0

OO

That isM ' I5qS5. Now if αij = 0 for exactly three pairs of indices, then we have
that three of the spaces Im fi coincide, say, for i = r, s, t, and Im fq ∩ Im fi =
0 for i = r, s, t and q is the last index. Without loss of generality we may
assume that (r, s, t) = (2, 3, 4) and q = 1. We then have the split exact sequence
0 //P1

//M //DTrS1
//0.

We now come to the interesting part, namely, when αij = 0 for exactly two
pairs (i, j) and (p, q). By transitivity we see that {i, j} ∩ {p, q} = ∅. Let Nij

be the representation given by one dimensional spaces at vertex i, j and 5, with
identity as morphisms. This then gives a decomposition of M ' Nij q Npq,
with EndΛ(Nij) ' k. Now a minimal projective presentation of Nij is given by

0 //P5
−·(βi βj)// Pi q Pj //Nij

//0, where βi : i −→ 5 in Q. If we now apply
HomΛ(−,Λ) to the sequence above we get

P ∗i q P ∗j
(βi βj)·−// P ∗5 // TrNij // 0

Dualizing we arrive at DTrNij ' Npq, where {i, j} and{p, q} are disjoint. This
we can see if we for illustration purpose set (i, j) = (1, 3). Then we are in

the situation P ∗1 q P ∗3
(α δ)·−// P ∗5 , and TrN13 = P ∗5 /〈α, δ〉 ' DN24. Hence,
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DTrN13 ' N24. Moreover, Φ+(Nij) = Φ−(Nij) = Npq. We demonstrate by
showing this for N13.

0

��
N13 = k

1 // k k
1oo

0

OO
� C

+
5 //___

0

k k
1oo

OO

−1 //

��

k

0

�C
+
1 C

+
2 C

+
3 C

+
4 //______

k
1��

0 // k 0 = N24
oo

k

1
OO

So we have that Φ+(Nij) = Npq. Similarly one sees that Φ−(Nij) = Npq, and
thus Nij is regular.

Let αij = 0 for exactly one pair. Then we are in fact looking at the represen-
tation

k

f2
��

k
f1 // k2 k

f3oo

since the missing linear map coincides with one of the remaining ones, and the
three spaces Im f1, Im f2 and Im f3 are different, meaning that Im fi∩Im fj = 0
for i 6= j. Let us have a closer inspection of the endomorphisms of M .

k

λ2

��

f2
��

kλ1 99
f1 // k2

(
a b
c d

)GG
k λ3ee

f3oo

The requirement of commutativity yields the following equations(
a b

c d

)
f1 = λ1f1 (3.1a)(

a b

c d

)
f2 = λ2f2 (3.1b)(

a b

c d

)
f3 = λ3f3 (3.1c)

Since the images of the maps fi are all different we have that {fi, fj} are linearly
independent when i 6= j. Thus, λ1 = λ2, λ1 = λ3 or λ2 = λ3, since a n×n-matrix
has at most n distinct eigenvalues. If λ1 = λ2, then {f1, f2} is a basis for the
eigenspace corresponding to λ1. Hence, f3 lies in the eigenspace corresponding
to λ1. In other words, λ1 = λ2 = λ3. A similar argument in the cases λ1 = λ3

and λ2 = λ3 yields λ1 = λ2 = λ3. We then have that
(
a b
c d

)
=
(
λ 0
0 λ

)
. Meaning
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that by a change of basis we can reduce the matrix A to the matrix Iλ. Hence
the equations (3.1) reduce to

(
λ 0
0 λ

)
fi = λfi

for 1 ≤ i ≤ 3. Hence, the endomorphism is given by a parameter λ ∈ k, that is
Endλ(M) ' k. We have now shown that M is indecomposable if αij = 0 for just
one pair (i, j). We may also note that if fi = (ai bi)t, a change in basis reduces
the above representation to

k
(0 1)t

��
k

(1 0)t// k2 k
(1 1)too

This can be achieved in the following manner. Let B =
( a1 a2 a3
b1 b2 b3

)
, then a change

in basis at each of the one dimensional spaces is equivalent to multiplying the
corresponding column with a non-zero scalar. A change in basis in the two dimen-
sional space preserving the linear maps is equivalent to performing elementary
row operations on the matrix B. Since (ai, bi) 6= (0, 0), we may without loss of
generality, assume a1 6= 0, then we may choose a1 as generator for k, and B

reduces then to
(

1 a2 a3

b′1 b2 b3

)
and b′1 = a−1

1 b1. Getting rid of b′1 yields
(

1 a2 a3

0 b′2 b′3

)
,

where b′i = bi − b′1ai, i = 1, 2. Because the fi’s are pairwise linearly independent
for i = 1, 2, 3 it follows that B has full rank, meaning that (b′2, b

′
3) 6= (0, 0). Since

det
( a1 a2
b1 b2

)
6= 0 we know that det

(
1 a2

0 b′2

)
6= 0, that is b′2 6= 0. Thus choose b′2 as

basis for k, this corresponds to multiplying the second column with (b′2)−1. That
is, the matrix reduces to

(
1 0 a′3
0 1 b′3

)
, where a′3 = a3− a′2b′3 and a′2 = (b′2)−1a2. Now

neither a′3 = 0 nor b′3 = 0, if it were so, then Im f1 = Im f3 or Im f3 = Im f1,
since if b′3 = 0 gives that b3 = a−1

1 b1a3, then f1(a−1
1 a3) = f3. And if a′3 = 0,

i.e. a3 = a′2b
′
3, this the then leads to Im (b3f2 − a2b

′
1f3) = Im f3, which results

in {f2, f3} being linearly dependent. Thus we can reduce further by multiplying
with (a′3)−1 in the last column, and we get

(
1 0 1
0 1 µ

)
. Multiplying the first row

with µ and then multiplying with µ−1 in first and third column yields ( 1 0 1
0 1 1 ).

We started out by assuming a1 6= 0, this may not be the case. If this indeed is
not the case, then b1 need to be different from zero, and hence we may swap the
rows in the matrix B. This will lead to the same reduced matrix as we got above.
We have seen that b′3 6= 0, and a similar argument forces b′2 6= 0. This means
that there is just one representation, up to isomorphism, with αij = 0. Let Mij

denote this representation up to isomorphism. Clearly, Nij is a sub representa-
tion of Mij . Since αij = 0, there are x, y 6= 0 in k, such that fix = fjy, hence,
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let h : Nij −→Mij by

hn =


x , n = i

y , n = j

fi , n = 5

0 , otherwise

Let Npq be the representation such that {i, j}∩{p, q} = ∅, then we have the exact
sequence 0 //Nij

//Mij
//Npq

//0, which is non-split. Since EndΛ(Npq) ' k we
see that the sequence is in fact almost split. Let us see what the Coxeter functors
give in this case. Let us say we have that α12 = 0. As we saw above we may
reduce the representation such that the representation looks like

k
( 1 0 )t

��
k

( 1 0 )t// k2 k
( 0 1 )too

k

( 1 1 )t
OO

If we now apply C+
5 we see that we need to look at the kernel of the map

L = ( 1 1 0 1
0 0 1 1 ) : k4 //k2 . In other words find the nullspace of L. Let A =(

1 −1 0 0
−1 0 −1 1

)t, and one easily sees that LA = 0. Hence, C+
5 (M12) is the following

representation

k
(−1 0 )
OO

k
( 1 −1 )oo k2 k

( 0 −1 )//

k

( 0 1 )
��

Now continuing with the rest of the left partial Coxeter functors we get

k
( 0 1 )t

��
k

( 1 1 )t// k2 k
( 1 0 )too

k

( 1 0 )t
OO

that is Φ+(M12) = M34. One can show that Φ+(Mij) = Φ−(Mij) = Mpq, where
i, j, p, q are as above, that is disjoint subsets of cardinality 2 of the set {1, 2, 3, 4}.
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Lastly, the case αij 6= 0 for all 1 ≤ i, j ≤ 4. First, note that the representation
M is isomorphic to a representation of the form

k
( 0 1 )t

��
k

( 1 0 )t// k2 k
( 1 1 )too

k

( 1 λ )t
OO

Meaning that the vector spaces at vertices 1 to 4 are identified up to permutation.
This is obtained by a change in basis analogously to what we did in the case
αij = 0 for one pair (i, j), that is the matrix

( a1 a2 a3 a4
b1 b2 b3 b4

)
reduces to a matrix

of the form
(

1 0 1 1
0 1 1 λ

)
, with λ 6= 0, 1. We baptize this representation as Mλ, for

λ ∈ k \ {0, 1}. If we now examine the endomorphisms of Mλ we see that we get
the equations (

a b

c d

)(
1
0

)
=

(
1
0

)
x(

a b

c d

)(
0
1

)
=

(
0
1

)
y(

a b

c d

)(
1
1

)
=

(
1
1

)
z(

a b

c d

)(
1
λ

)
=

(
1
λ

)
w

One can easily see that a = d = x = y = z = w and b = c = 0. Hence,
EndΛ(Mλ) ' k and Mλ is indecomposable. Clearly HomΛ(Mλ,Mµ) = 0 when
λ 6= µ.

We have the minimal projective presentation of M is

0 // P5 q P5

−·
(
α β −γ 0
α λβ 0 −δ

)
// P1 q P2 q P3 q P4

// Mλ
// 0

where n � −·x //n · x . Passing to the transpose we get

P ∗1 q P ∗2 q P ∗3 q P ∗4

(
α β −γ 0
α λβ 0 −δ

)
·−
// P ∗5 q P ∗5 // TrMλ

// 0

That is TrMλ = P ∗5 q P ∗5 /〈( αα ) ,
(
β
λβ

)
, ( γ0 ) ,

(
0
δ

)
〉. A routine calculation shows
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that this corresponds to the representation

k
( 0 1 )
OO

k
( 1 0 )oo k2 k

( 1 1 )//

k

( 1 λ )
��

Hence we have that DTrMλ ' Mλ. Here, too, the Coxeter functors yield no
surprise, namely Φ+(Mλ) ' Φ−(Mλ) ' Mλ. We gather our findings and state
some new ones in the following proposition.

Proposition 44
Notation as above. For {i, j}, {p, q} ⊂ {1, 2, 3, 4}, and λ, µ ∈ k \ {0, 1}.

(a) HomΛ(Nij , Npq) =

{
0 ; if |{i, j} ∩ {p, q}| ≤ 1.

k ; otherwise.

(b) HomΛ(Mij ,Mpq) =

{
0 ; if |{i, j} ∩ {p, q}| = 1.

k ; otherwise.

(c) HomΛ(Mλ,Mµ) =

{
k ; if λ = µ.

0 ; otherwise.

(d) HomΛ(Nij ,Mpq) =

{
k ; if (i, j) = (p, q).

0 ; otherwise.

(e) HomΛ(Mij , Npq) =

{
k ; if {i, j} ∩ {p, q} = ∅.
0 ; otherwise.

(f) HomΛ(Nij ,Mλ) = HomΛ(Mλ, Nij) = HomΛ(Mij ,Mλ) = HomΛ(Mλ,Mij) =
0.

(g) dimk Ext1
Λ(Nij , Npq) =

{
1 ; if {i, j} ∩ {p, q} = ∅.
0 ; otherwise.

(h) dimk Ext1
Λ(Mij ,Mpq) =

{
0 ; if |{i, j} ∩ {p, q}| = 1.

1 ; otherwise.

(i) dimk Ext1
Λ(Mλ,Mµ) =

{
1 ; if λ = µ.

0 ; otherwise.
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(j) dimk Ext1
Λ(Nij ,Mpq) =

{
1 ; if (i, j) = (p, q).

0 ; otherwise.

(k) dimk Ext1
Λ(Mij , Npq) =

{
1 ; if {i, j} ∩ {p, q} = ∅.
0 ; otherwise.

(l) Ext1
Λ(Nij ,Mλ) = Ext1

Λ(Mλ, Nij) = Ext1
Λ(Mij ,Mλ) = Ext1

Λ(Mλ,Mij) = 0.

(m) DTr 2Nij ' Nij and DTr 2Mij 'Mij . Moreover DTrMλ 'Mλ.

Proof. (a), (b), (c),(d),(e) and (f) are simple calculations. What remains to be
proven is (g), (h), (i), (j), (k) and (l), however we only give a proof of (g),
since the other ones are done in a similar fashion. We start with a projec-
tive resolution of Nij , since Λ is hereditary we get the short exact sequence
0 //P5

//Pi q Pj //Nij
//0. Applying HomΛ(−, Npq) yields the following long

exact sequence

0 // HomΛ(Nij , Npq) // HomΛ(Pi q Pj , Npq) // HomΛ(P5, Npq) //

// Ext1
Λ(Nij , Npq) // Ext1

Λ(Pi q Pj , Npq) // . . .

Here the fifth term vanishes. Since dimk HomΛ(P5, Npq) = 1 for any p and q, and
since dimk HomΛ(Pi, Npq) = 1 if i = p or i = q and zero otherwise, the claim
follows. �

This reveals very much about the shape of the regular component. Since
DTr 2Nij ' Nij , we know that the regular component containing Ni,j will be a
tube of rank 2, that is we identify some vertices. From above we have that there
is an almost split sequence 0 //Nij

//Mij
//Npq

//0, where {i, j} ∩ {pq} = ∅.
This means that the component containing Nij will also contain Npq. Since Mij

is indecomposable, the component will also contain Mij . If we identify the ver-
tices that get translated to them selves, we see that the regular component of Nij

looks like the picture we have drawn in figure 3.4(a). Notice that there is no inde-
composable regular module with length less than 3, because the indecomposable
of length 1 are the simple Λ-modules, which are either projective or injective,
and the indecomposable projective modules corresponding to vertex 1 ≤ i ≤ 4
cover the indecomposable modules of length 2. Accordingly, it is easily seen that
1Nij ' Nij and 2Nij ' Mij in figure 3.4(a). What we see is that there will be
three tubes of this kind, one for each partition of {1, 2, 3, 4} into two disjoint sets.

Furthermore, since for each λ ∈ k \ {0, 1}, we have DTrMλ ' Mλ and
Ext1

Λ(Mλ,Mλ) 6= 0, the regular component containing Mλ is a tube of rank 1.
This is what we have drawn in figure 3.4(b) we have an indecomposable Λ-module
Mλ which gives a tube of rank 1. It can be shown that 1Mλ 'Mλ.
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(a) Three exceptional tubes of rank 2, one for each partition
of {1, 2, 3, 4} into two disjoint sets.
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(b) One stable tube of rank 1 for
each λ ∈ k \ {0, 1}.

Figure 3.4: The regular components of the AR-quiver of Λ.

We can immediately read off the dimension vectors of the modules in the
components in figure 3.4. Namely, for m ≥ 1, in figure 3.4(a) when n = 2m − 1
we have

dim nNij(t) =


m , t = i, j.

2m− 1 , t = 5.

m− 1 , otherwise.

If n = 2m, then we have

dim nNij(t) =

{
2m , t = 5.

m , otherwise.

In figure 3.4(b) we have

dim nMλ(t) =

{
2n , t = 5.

n , otherwise.

We now want to show that every indecomposable regular module is in one of these
components, nonetheless we need some further observations about the hom-sets
before we are able to do so.

Proposition 45
Notation as above. For n,m ∈ N, {i, j}, {p, q} ⊂ {1, 2, 3, 4} and λ, µ ∈ k \ {0, 1},
we have the following:
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(a) If |{i, j} ∩ {p, q}| = 1, then HomΛ(nNij ,
mNpq) = Ext1

Λ(nNij ,
mNpq) = 0.

(b) HomΛ(nNij ,
mMλ) = HomΛ(nMλ,

mNpq) = Ext1
Λ(nNij ,

mMλ) =
Ext1

Λ(nMλ,
mNpq) = 0.

(c) dimk HomΛ(Nij ,
nNpq) =

{
1 , (p, q) = (i, j).

0 , otherwise.

(d) dimk ExtΛ(nNij , Npq) =

{
1 , {p, q} ∩ {i, j} = ∅.
0 , otherwise.

(e) HomΛ(nMλ,
mMµ) = Ext1

Λ(nMλ,
mMµ) = 0 when λ 6= µ.

(f) dimk HomΛ(nMλ, Nλ) = HomΛ(Mλ,
nNλ) = 1.

(g) dimk ExtΛ(nMλ, Nλ) = ExtΛ(Mλ,
nNλ) = 1.

Proof. We only give a proof for (a)From figure 3.4 we see that we have the fol-
lowing almost split sequences

0 //nNij
//n−1Npq q n+1Nij

//nNpq
//0 (3.2)

0 //nMλ
//n−1Mλ q n+1Mλ

//nMλ
//0 (3.3)

for n ≥ 1 with 0Nij = 0Mλ = 0. These sequences yield the following long exact
sequences

0 // HomΛ(−, nNij) // HomΛ(−, n−1Npq q n+1Nij) // HomΛ(−, nNpq) //

// Ext1
Λ(−, nNij) // Ext1

Λ(−, n−1Npq q n+1Nij) // Ext1
Λ(−, nNpq) //0

(3.4)

0 // HomΛ(−, nMλ) // HomΛ(−, n−1Mλ q n+1Mλ) // HomΛ(−, nMλ) //

// Ext1
Λ(−, nMλ) // Ext1

Λ(−, n−1Mλ q n+1Mλ) // Ext1
Λ(−, nMλ) //0

(3.5)

for any M ∈ mod Λ.
(a) We prove this by induction on n and m. Proposition 44 covers the case

n = m = 1. Suppose it holds for n = 1 and m ≤ r. By inserting1 Nip and Mip

into equation (3.4) we see that it holds for m = s + 1. The proof in the other
variable is done in a similar fashion.

(c) Here too we proceed by induction. We have from Proposition 44 that the
statement holds true for n = 1. From figure 3.4(a) we have the exact sequence
0 //Nij

//nNij
//n−1Npq

//0. Applying HomΛ(Nij ,−) to this sequence yields

0 // HomΛ(Nij , Nij) // HomΛ(Nij ,
nNij) // HomΛ(Nij ,

n−1Npq) //0
1Without loss of generality we may use Nip and Mip ' 2Nip, since |{i, j} ∩ {p, q}| = 1 gives

that |{i, j}∩{u, v}| = |{u, v}∩{p, q}| = 1 for any {u, v} ∈ {1, 2, 3, 4} with (i, j) 6= (u, v) 6= (p, q).
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By the induction hypothesis we have that the last term is zero and from Propo-
sition 44 the first term is one dimensional and thus the claim follows.

(d) As above we have the exact sequence δ : 0 //Nij
//nNij

//n−1Npq
//0.

If we now apply HomΛ(−, Nij) we get

0 // HomΛ(n−1Npq, Nij) // HomΛ(nNij , Nij) // HomΛ(Nij , Nij) //

Ext1
Λ(n−1Npq, Nij) // Ext1

Λ(nNij , Nij) // Ext1
Λ(Nij , Nij) //0

The sixth term vanishes and the third term is one dimension due to Proposi-
tion 44. If we can show that the dimension of the two first terms is the same, then
the claim follows since dimk Ext1

Λ(nNij , Nij) by the induction hypothesis. If we

apply HomΛ(−, N−pq) to δ we see that HomΛ(n−1Npq, Nij)
' // HomΛ(nNij , Nij)

since HomΛ(Nij , Npq) = 0 by Proposition 44.
The rest of the statements follow by similar arguments. �

We now fix the basis B = {vi} for K0(mod Λ) ' Z5 (over Q ) where

B = {( 1 1 1 1 2 )t , ( 1 1 0 0 1 )t , ( 1 0 1 0 1 )t , ( 1 0 0 1 1 )t , ( 0 0 0 0 1 )t}.

Notice that ( 1 1 1 1 2 )t is a basis for the eigenspace of ΦΛ and Φ−1
Λ with respect

to the eigenvalue 1, moreover the vectors ( 1 1 0 0 1 )t , ( 1 0 1 0 1 )t and ( 1 0 0 1 1 )t

together with ( 1 1 1 1 2 )t constitute a basis for the eigenspace of Φ2
Λ and Φ−2

Λ

corresponding to the eigenvalue 1. Furthermore, for i = 2, 3, 4 we have that
ΦΛ(vi) = Φ−1

Λ (vi) = v1 − vi. We shall use this basis to describe the dimension
vectors of the indecomposable modules in mod Λ. Notice that in B, vi = [N1i]
for 2 ≤ i ≤ 4.

Proposition 46
Let X be an indecomposable Λ-module and let [X] =

5∑
i=1

sivi in K0(mod Λ),

with vi ∈ B where B is as above.

(a) If s5 > 0 then X is preprojective. Moreover, if si 6= 0 for some 2 ≤ i ≤ 4
then X is isomorphic to one of the representations in Corollary 43 (a).

Otherwise, i.e. if si = 0 for all 2 ≤ i ≤ 4 then X is isomorphic to one of the

representations in Corollary 43 (c).

(b) If s5 < 0 then X is preinjective. Moreover, if si 6= 0 for some 2 ≤ i ≤ 4
then X is isomorphic to one of the representations in Corollary 43 (b).

Otherwise, i.e. if si = 0 for all 2 ≤ i ≤ 4 then X is isomorphic to one of the

representations in Corollary 43 (d).

(c) If X is regular then s5 = 0. Moreover, either Nij or Mλ is a submodule of

X, for some {i, j} ⊂ {1, 2, 3, 4} and λ ∈ k \ {0, 1}.
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Proof. (a) Corollary 37 says that X is preprojective if Φn
Λ([X]) is negative. This

is only possible if s5 > 0. Hence X is isomorphic to one of the representations
given in Corollary 43 (a) or (c).

(b) We proceed with a similar argument as above, however in this case the we
examine when Φ−mΛ ([X]) is negative. To obtain this we need that s5 < 0. Thus
X is isomorphic to one of the representations given in Corollary 43 (b) or (d).

(c) Suppose X is regular, then clearly s5 = 0. Now suppose that si 6= 0 for 2 ≤
i ≤ 4, then we have that 〈vi, X〉Λ = si. If si > 0 this means that HomΛ(N1i, X) 6=
0, which results in N1i being a submodule of X. On the other hand if si < 0,
then 〈ΦΛ(vi), X〉Λ = 〈ΦΛ(vi),Φ2

Λ(X)〉Λ = 〈vi,ΦΛ(X)〉Λ = −〈vi, X〉Λ = −si. This
then shows that HomΛ(DTrN1i, X) 6= 0. Hence DTrN1i is a submodule of X.
In any case we have that Npq is a submodule of X if si 6= 0 for 2 ≤ i ≤ 4.

In the other case, that is si = 0 for all 2 ≤ i ≤ 4 we have that X is given by
the following representation

kr

A2
��

kr
A1 // k2r kr

A3oo

kr
A4

OO

Here we get two possible scenarios: either dimk(Im Ai ∩ Im Aj) = 0 for all
1 ≤ i < j ≤ 4 or dimk(Im Ai ∩ Im Aj) ≥ 1 for at least one pair (i, j). Let
us consider the first case. Since X is indecomposable we must have that all
the matrices Ai have maximal rank, i.e. rankAi = r. Hence the block matrix

B =
(
A1 A2 A3 A4

)
reduces to the block matrix

(
I 0 X1 Y1

0 I X2 Y2

)
.

Since the rank of A3 is maximal, we are able to arrange it so that by elemen-

tary column operations the third vertical stripe from the left is reduced to
I

X
.

What we can say here is that X also has maximal rank, this is because we have
assumed that Im A1∩Im A3 = 0. Hence by simultaneously executing elementary
row operations on the lower horizontal stripe and elementary column operations
on the second vertical stripe from the left we are able to reduce B to the fol-

lowing matrix

(
I 0 I Z1

0 I I Z2

)
. Once again we argue that Z1 and Z2 have

maximal rank, thus by a similar argument as above we are able to reduce B to(
I 0 I I

0 I I Z2

)
. Since dimk(Im Ai ∩ Im Aj) = 0 we must have that Y has

an eigenvalue λ ∈ k \ {0, 1}, here we use the assumption of k being algebraically
closed. What we have done here is to show that the above representation is



62 CHAPTER 3. THE FOUR SUBSPACE PROBLEM

isomorphic to the following representation

kr(
0
I

)
��

kr

(
I
0

)
// k2r kr

(
I
I

)
oo

kr

(
I
Y

)OO

Hence let 0 6= x ∈ kr be an eigenvector for Y corresponding to the eigenvalue λ.
Thus there exist ui ∈ Im Ai such that dimk Span{ui} = 2 and u3 = u1 + u2 and
u4 = u1 + λu2, obviously λ 6= 0, 1. This means that we can embed Mλ into X

with the following map

k

( 1
0 )

������������

x //___ kr

B1

��::::::::::

k

( 0 1 )tzzuuuuuu
x //___ kr

B2 %%LLLLLL

k2 M //___________ k2r

k

( 1 1 )tddIIIIII x //___ kr

B3
99rrrrrr

k

(
1
λ

)
[[7777777777

x //___ kr

B4

BB����������

where Bi is the i’th block of the reduced matrix B and M = ( x 0
0 x ).

On the other hand if dimk(Im Ai ∩ Im Aj) ≥ 1 for some (i, j). Then there is
a nonzero v ∈ (Im Ai∩ Im Aj) and let v1, v2 ∈ kr so that v = Aiv1 = Ajv2. Then
we see that Nij is a submodule of X through the following map

k

1

��										

v1 //___ kr

A1

��::::::::::

k

1{{vvvvvv
v2 //___ kr

A2 %%LLLLLL

k
v //___________ k2r

0

ccHHHHHH
//___ kr

A3
99rrrrrr

0

ZZ5555555555
//___ kr

A4

BB����������

This concludes the proof. �

We are now closing in on the classification problem.

Proposition 47
Every indecomposable regular X ∈ mod Λ is isomorphic to one of the modules

given in figure 3.4.

Proof. We prove this by induction on the length on X. We have already seen
that there are no regular modules with length less than 3. Therefore, suppose
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that l(X) ≥ 3 and that any indecomposable regular module of length less then
n is one of the ones given in figure 3.4. By Proposition 46 there is an inclusion
f : Y //X where Y ' Nij or Y ' Mλ. Suppose that we are in the first case.

We therefore have the short exact sequence η : 0 //Nij
f //X //Z //0, where

Z = Coker f . Let Z =
∐r
i=1 Zi, with Zi indecomposable for all i. We now

argue that Zi is regular. Zi cannot be preprojective, since there are no nonzero
maps from regular modules to preprojective modules. Furthermore, none of the
Zi’s can be preinjective either, since Proposition 46 (c) says that S5 = 0 where

[X] =
5∑
i=1

sivi, with vi as in Proposition 46.

We now show that Zi lies in the same tube as Y ' Nij . Since Ext1
Λ(nNuv, Nij) =

Ext1
Λ(nMλ, Nij) = 0 for |{u, v} ∩ {i, j}| ≤ 1 and for all λ ∈ k \ {0, 1} we have the

short exact sequence

0 // HomΛ(M,Nij) // HomΛ(M,X) // HomΛ(M,
∐r
i=1 Zi) //0

for M ' nNuv or nMλ. Thus if M is a summand of
∐
i Zi then M is also a sum-

mand of X. This is impossible since we have assumed that X is indecomposable.
Thus we are left with Zi ' nNpq, where {i, j} ∩ {p, q} = ∅.

Next we show that Z is indecomposable. Suppose that r ≥ 2. By taking the
pullback of 0 //Nij

//X //
∐r
i=1 Zi

//0 along the inclusion Zi //
∐r
i=1 Zi we

get the following non-spilt exact sequences

0 //Nij
//E1

//Z1
//0

...

0 //Nij
//Er //Zr //0

Since dimk Ext1
Λ(Zi, Nij) = 1, we have that the Ei’s are one of the modules in

figure 3.4 because l(Ei) < l(X). We then have the following pushout diagram

0 //
∐r
i=1Nij

//

σ
��

∐r
i=1Ei

//

��

∐r
i=1 Zi

// 0

η′ : 0 // Nij // E //
∐r
i=1 Zi

// 0

where σ(y1, . . . , yr) =
∑r

i=1 yi. Notice that η′ is isomorphic to η. Let Et be
such that l(Et) ≥ l(Es), for 1 ≤ s, t ≤ r. We make use of the following fact, for
any nonzero f : Nij

//Et and g : Nij
//Es there is an inclusion h : Es //Et

such that f = hg, where Et is as above and 1 ≤ s ≤ r. This yields the short
exact sequence 0 //Nij

//
∐r
i=1Ei

//E //0. Here we must have that Et is a
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summand in E since we have the following commutative diagram

Nij //

��

∐
r 6=sEs

��yyttttttt

��

Et // E ∃!

%%
Et

However E ' X and X is indecomposable, thus r = 1. Let Z = Z1. Since
dimk ExtΛ(Nij , Z) = 1, we must have that X is in figure 3.4 because there is a
non-split sequence δ : 0 //Nij

//X ′ //Z //0 with X ′ from figure 3.4, and thus
η is a scalar multiple of δ meaning that X ' X ′.

A similar argument in the case of Y 'Mλ with λ ∈ k \ {0, 1} will suffice. �

This show that the list {nQi, nJi, nNpq,
nMpq,

nNλ|n ∈ N, 1 ≤ i ≤ 5, {p, q} ∈
{1, 2, 3, 4}} is a complete list of finitely generated indecomposable Λ-modules. In
particular this means that the figures 3.1, 3.2 and 3.4 constitute the Auslander-
Reiten quiver of mod Λ. Nevertheless, one needs to mention that not every
indecomposable representation given in this section is valid as an indecomposable
quadruple, the exceptions are the simple injective Λ-modules. The benefits of this
approach over representations of partially ordered sets is that the Auslander-
Reiten quiver gives a detail geometric picture over the module category. Off the
Auslander-Reiten quiver one can see how the indecomposable modules interact
with each other with respect to morphisms between them.

3.3 Four Lines in the Real Plane

One way of explaining the four subspace problem is to ask how many ways may
one draw four lines which intersect each other at a point on a rubber sheet,
under the assumption that two such configurations are equal if one can stretch
and pull the rubber sheet so that one gets from one configuration to the other.
By introducing a basis and normalizing, this means, given four lines through the
origin, two such configurations are equal if one can get from one to the other by
means of change of basis. Or in terms of representations of quivers, when are two
representations of Q over R (where Q is as in the previous section) with dimension
vector (1, 1, 1, 1, 2) isomorphic. In this section we are going to give a criterion for
when two such configurations are equal in terms of projective geometry.

We have not been precise enough here. We are not interested in all rep-
resentations with dimension vector (1, 1, 1, 1, 2), our concern lies mainly with
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representations of the following type

R
f2

��
R

f2 // R2 R
f3

oo

R

f4

OO

with fi ∈ R2 − {(0, 0)}, for 1 ≤ i ≤ 4.
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Figure 3.5: Four non-overlapping subspaces of R2

Given a representation of Q, this then corresponds to a picture similar to
figure 3.5. Here we have drawn in the vertical line x = 1. We are then able to
identify each non-vertical line with its gradient, that is its intersection with this
line, and by identifying the line x = 0 with, ω, the point at infinity we get a
complete identification. Thus such a representation can be represented as a 4-
tuple, (a1, a2, a3, a4), where ai ∈ R∪{ω} u S1. This set is often referred to as the
one point compactification of the real line. Notice that this representation is not
unique, for instance, (0, 1, 2, 3) and (1, 2, 3, 0) are in fact the same representation.

Given four distinct collinear points A,B,C and D, that is they all lie on a
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single line. The cross-ratio of A,B with respect to C,D is given by2

DA

DB

/
CB

CA

and we write (A,B;C,D). Here we understand AB to be the oriented length,
meaning that the length of the line segment is signed depending on the orien-
tation. With the orientation given in figure 3.6, AB is positive. Obviously,
AB = −BA for any pair of points and any orientation. One easily verifies some
permutation which leaves the cross-ratio symmetry

-
A B

Figure 3.6: The oriented length.

Example 12

We are going to calculate the cross-ratio of points A,B,C and D where the lines
x = 0, y = 0 y = x and y = λx intersect x = 1. The line x = 1, can be
parameterized in the following way:

l = θv1 + v2 ≡ v1 + 1
θv2

where v1 = ( 0
1 ) and v2 = ( 1

0 ).Then θ = 0, ω, 1, λ give the respective intersections
with the line x = 1 and the above mentioned lines.

(A,B;C,D) = (0, ω; 1, λ) =
λ− 0
1− 0

/
λ− ω
1− ω

= λ
(λ/ω)− 1
(1/ω)− 1

= λ

Let O be a point and let a and b be rays starting in O. By (ab) we mean
the angle between the rays in the interval [−π, π] with positive or negative sign
whenever a has to rotate anti-clockwise or clockwise to reach b. Since we are here
only interested in the sine of the angle, there will be no ambiguity at the points
−π and π. If c is a ray starting in O, then the ratio sin(ca)/ sin(cb) will denote
the ratio which c divides (ab). This, of course, presumes that c 6= b and that c
and b are not opposite rays. Suppose that A, B and C are collinear points and

2There is 24 permutations of the tuple (A,B;C,D), however not every definition is equal.
That is the group S4 does not act trivially on the cross-ratio, in fact there is six different
cross-ratios. These will correspond to the exceptional modules Nij .
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O is a point that does not lie on the line through A, B and C. Furthermore, let
a be the ray starting in O and going through A, b the ray from O through B and
c the ray through C starting in O. Then CA/CB and sin(ca)/ sin(cb) have the
same sign. This remark shall come in handy in what now follows. Let a, b, c and
d be four rays coming out O such that it intersects a line, as depicted in figure
3.7. Define

R(a, b; c, d) =
sin(da)
sin(db)

/
sin(ca)
sin(cb)
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Figure 3.7: The cross-ratio.

Lemma 48
Let A,B,C,D, a, b, c and d be as above. Then (A,B;C,D) = R(a, b; c, d).

Proof. Let OH be the normal from O down to the line through the four points.

(A,B;C,D) =
DA

DB

/
CA

CB
=

1
2OH ·DA
1
2OH ·DB

/ 1
2OH · CA
1
2OH · CB

=

± Area(4DOA)
Area(4DOB)

/
Area(4COA)
Area(4COB)

= ±
1
2OA ·OD sin(da)
1
2OB ·OD sin(db)

/ 1
2OA ·OC sin(ca)
1
2OB ·OC sin(cb)

=

± sin(da)
sin(db)

/
sin(ca)
sin(cb)

= ±R(a, b; c, d)

Let us examine the sign in more detail. Our earlier remark says that CA/CB
and sin(ca)/ sin(cb) have same sign, and of course the same is valid for DA/DB
and sin(da)/ sin(db). Thus (A,B;C,D) = R(a, b; c, d). �

Let P be a point not on the lines l and l′. The map that sends a point on l to
a point on l′ as shown in figure 3.8 is called a perspective projection. P is said
to be the center of the perspective projection. The composition of finitely many
perspective projections is called a projective transformation, or sometimes a
projectivity. We write (A,B,C, . . .)[ (A′, B′, C ′, . . .) whenever A′ comes from A,
B′ from B, and so on. . . under some projective transformation.
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An important fact of projective geometry is that the cross-ratio is invariant
under projective transformations.
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Figure 3.8: Perspective projection with center at P .

Theorem 49
(A,B,C,D) [ (A′, B′, C ′, D′) if and only if (A,B;C,D) = (A′, B′;C ′, D′)

Proof.⇒: It is clear that we only need to prove the statement for a perspective
projection. Thus we are in the situation of figure 3.8, and Lemma 48 yields

(A,B;C,D) = R(a, b; c, d) = (A′, B′;C ′, D′)

where a is the ray starting in P and going through A etc.
⇐: We will here make use of the following result: There is a projectivity that

sends the three collinear points A,B,C to the three collinear points A′, B′, C ′.
For a proof of this statement the reader is referred to [HW, p. 23] or in any other
book on elementary projective geometry. Let us call this transformation for T ,
and suppose the image of D under T is X. We need to show that D′ = X. From
the above implication it follows that (A,B;C,D) = (A′, B′;C ′, X), combined
with the presumption of the Theorem we get (A′, B′;C ′, D′) = (A′, B′;C ′, X),
i.e.

XA′

XB′

/
C ′A′

C ′B′
=
D′A′

D′B′
C ′A′

C ′B′

since C ′A′/C ′B′ 6= 0, we end up with

XA′

XB′
=
D′A′

D′B′

A commonly known result of projective geometry says that there is exactly one
point X such that XA′/XB′ = r for all r ∈ R \ {1}. Hence we see that X = D′,
and the claim follows. �
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The interpretation of the above results is that two configurations are equivalent
if and only if they have the same cross-ratio.

Example 13

Let the four lines be given by the following equations y1 = −x, y2 = 3x, y3 = 7x
and y4 = 11x. The matrix

(
1 1 1 1
−1 3 5 11

)
is reduced to the matrix

(
1 0 1 1
0 1 1 3/4

)
by

elementary row operations and scalar column multiplication, that is we have
changed basis. Then by Example 12, we have that the cross-ratio (−1, 3; 5, 11) =
3
4 .

Now let y′1 = 0, y′2 = x, y′3 = 2x and y′4 = 3x, and let A, B, C and D be the
respective intersection with x = 0. The A = (1, 0), B = (1, 1), A = (1, 2) and
A = (1, 3). The cross-ratio of A,B with respect to C,D is

(A,B;C,D) =
3− 0
2− 0

/
3− 1
2− 1

= 3/4

Thus the two configurations are equivalent.

3.4 Closing Remarks

A special case of the four subspace problem is when we restrict the base field
to a finite field. For instance, let k = Z2. If we consider four one dimensional
subspaces of a two dimensional space, we see that we cannot have four distinct
inclusion, simply because the base field is too small. This means that the in-
decomposable representations with dimension vector (1, 1, 1, 1, 2) are exhausted
by the representations Nij and Mij where {i, j} ⊂ {1, 2, 3, 4}. The approach
described in this thesis is fully adaptable to this case, however the reasoning
gets more complicated. Generally the Auslander-Reiten quiver gets more com-
plicated when one assumes that the base field is not algebraically closed. It can
be mentioned that over the real numbers the tubes of rank 1 are parameterized
by the upper half plane of the complex numbers, actually they are given by the
irreducible polynomials over the reals. In fact this is the case when one considers
an arbitrary field. There will be an indecomposable representation with dimen-
sion vector (n, n, n, n, 2n) for each irreducible polynomial p(x) ∈ k[x] such that
deg p(x) divides n, except x and x − 1. In the case of algebraically closed field
every irreducible polynomial is linear, hence we only have the representations
nMλ with λ ∈ k \ {0, 1}.
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