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Abstract 

This cross-discipline project tests a state-of-the-art neural network model on a problem with 
high impact in software engineering, namely task estimation. The majority of research 
conducted in the software estimation field focuses on early, prior-project estimation, while 
considerably less effort has been spent on task estimation, which has become more important 
since agile practices became widely adopted. 

In this paper a dataset consisting of more than 63,000 tasks with textual descriptions 
and time spent reported was created from 32 publicly available JIRA issue tracking system 
instances. Five architectures of LSTM and highway neural networks were then 
parameter-tuned on 19 subsets of the main dataset by running 18,000 evaluation rounds in 
total. The use of general English word embeddings was compared with learning word 
embeddings from more than 2,000,000 publicly available software task description text 
corpus. The results were validated on two commercial datasets of 9,000 and 30,000 labeled 
datapoints respectively. 

Although the results were not gratifying as the model accuracy wasn’t anywhere close 
to human expert accuracy, this project provides a solid contribution to further research in the 
field by describing the methods applied in the attempt to solve the problem as well as several 
observations regarding transfer learning effects and optimal model configurations. The main 
dataset and the results together with well-documented data gathering, preprocessing, model 
training and visualization scripts were published on GitHub .  1

1 https://github.com/marisst/Bestimate 
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Chapter 1 

Introduction 
In this chapter the reader is introduced to the background of the research, the research goal,                
the research questions and the motivation behind them. Next, the method used to achieve the               
goal is described. Further, the contributions of this paper to the research field are              
summarized. In the end of this chapter, an overview of the thesis structure is given. 
 

1.1 Background and Motivation 
So far, most researchers in the software development effort estimation field have been             
focusing on estimating whole projects prior to their start in order to determine the total               
budget and time needed to develop information systems. Many different techniques have            
been tested to create estimation models that could predict the cost of a software system given                
a set of parameters indicating the complexity of the project and the productivity of the               
developers (Tubelis, 2017). However, such models aren’t widely adopted in the industry            
because they are too complicated to configure and use and, although often very biased,              
human judgement based estimates are still more accurate. Moreover, agile principles have            
become widely adopted during the recent years and in many companies the software             
development life cycle is product based and incremental. The focus of software estimation is              
therefore shifted from early estimates of the whole project to late estimates of programming              
tasks. 

Most companies use an issue tracking system to manage programming tasks and in             
many companies employees report the time they spend on the tasks in the same system. The                
accumulated data about actual time spent on task estimation can be used as a basis for                
estimation model development. This opens an opportunity to close the gap in the research on               
programming task estimation. Moreover, if an accurate model will be developed, the chances             
of its adoption are very high, because most of the popular issue-tracking systems are built as                
platforms allowing for external innovation in the form of plugins. In 2017 two such plugins               
were developed, but they didn’t become very popular, which is most likely due to low               
prediction accuracy. Similar solutions have been successfully adopted in other domains, such            
as user support task estimation. However, because of the heterogeneity and the noise in              
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software development descriptions and time spent, such models are yet to develop in software              
development task effort estimation domain. 
 

1.2 Goals and Research Questions 
Goal Construct a neural network model which estimates software development task effort            
from textual descriptions in English significantly better than mean and median baselines            
given the actual time spent on task execution. 

The core component of a software estimation plugin in open project platforms would             
be the actual machine learning model making the estimates. Developing a good interface with              
the platform would not provide any value without the actual estimation model. Therefore the              
author decided to start by developing the minimum viable product, which only includes the              
most essential parts of the solution, namely the estimation model. 
 
Research Question 1 ​How much labeled data is publicly available, and how much is              
necessary to achieve the Goal? 

It is well-known that machine learning models need substantial amounts of data to             
learn complex relationships. So far only one paper has been published investigating publicly             
available data from project planning platform instances using up to 23,000 datapoints            
(Choetkiertikul et al., 2018). However, Choetkiertikul et al. (2018) have not particularly            
focused on reported time spent on task execution. It is also important that the data on which                 
the model trained is publicly available so that further contributors in this field can easily               
reuse the data and reproduce and improve the results. 
 
Research Question 2 What are the noise and heterogeneity levels in publicly available             
software development task descriptions and time reports, and how can they be decreased? 

Noise in input data can be a disturbing factor for machine learning models. It is               
therefore important to reduce the noise by preprocessing the data when possible with             
structured approaches. Such approaches can also be reused in further research focusing on             
natural language processing in the software engineering domain. 
 
Research Question 3 Does learning word embeddings from unlabeled datapoints have an            
advantage over using publicly available word embeddings pretrained on general English text            
corpus? 

Since neural network models operate with numeric weights, textual task descriptions           
written in natural language need to be converted to numeric representations. In most cases it               
is done by learning word vector embeddings on a text corpus. It needs to be clarified if                 
utilizing unlabeled task descriptions, of which there is plenty in public repositories, for             
learning vector embeddings have an advantage as opposed to using off-the-shelf word            
embeddings trained on general English texts. 
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Research Question 4 Which neural network configurations provide better results in           
software development task estimation from textual descriptions? 

There are many neural network architectures, and each of them has many            
hyperparameters. The goal of the neural network is to have the right capacity to catch the                
relationship between inputs and labels from training data. This research question is about             
finding the configurations and architectures which lead to the most accurate estimates.            
Finding the best model might not be possible, but at least highlighting what worked best in                
this project may be useful for future researchers in this field. 
 
Research Question 5 Can the relationship between task textual descriptions and software            
development effort be transferred across projects and organizations? 

Researchers in the software estimation field have not reached a consensus concerning            
transfer learning in a multi-organization context. It is not clear if company-specific estimation             
models are superior to models which are trained on data from several organizations. 
 
Research Question 6 Are the results obtained when training the model on publicly available               
data applicable to commercial contexts? 

Publicly available data in software estimation context are often gathered from           
open-source projects which are different in how often and how accurately time spent on              
programming tasks is reported. The labeling coverage in commercial context can be 20 times              
higher than in open-source context. Results obtained from publicly available data could also             
be worse because of the amount of noise in the data. It is not obvious if the same models will                    
provide better, worse or the same results in commercial context than in open-source context. 
 
Research Question 7 Is the estimation accuracy provided by the model sufficient to be used               
by businesses? 

Even though the research goal might be achieved, it doesn’t entail that the model can               
be used in commercial contexts if human expert estimation accuracy is substantially better. 
 

1.3 Research Method 

To achieve the research goal, three project phases were conducted as shown in Image 1.1.               
First, both publicly available and classified commercial data was gathered. Then an            
incremental design and experiment process was conducted on publicly available data, taking            
into account the results of the author’s previous literature studies. In each iteration a new               
model was designed based on the feedback from the previous iteration. Finally, results from              
the experiment were validated on two commercial datasets. 

3 



 
Image 1.1​ Research method 

 

1.4 Contributions 
In this research work the author has attempted to build a model which can learn the                
relationship between programming task textual descriptions and time spent on their           
execution, which is something the author has not found other researchers have done before.              
Observations indicating transfer learning effects and optimal model configurations and          
architectures are present in this paper. Not only are the findings and the methods used in this                 
project valuable for further research, but there are also some spillovers. The discovery of              
publicly available data and the automated methods used in this process is a contribution by               
itself, and the communication and legal details of obtaining access to commercial data can              
also be found useful. They can be used in research projects focusing on different properties of                
programming tasks than logged time. 
 

1.5 Thesis Structure 
Chapter 2 introduces the theoretical concepts of word embeddings and recurrent neural            
networks as well as the current practices and research status in the software estimation field               
based on previous literature review. The motivation for this project is also further elaborated              
in Chapter 2. Chapter 3 covers the first phase of the project - data gathering and preparation                 
for the design/experiment phase. Chapter 4 describes the final design of the experiment, and              
Chapter 5 discusses the final results of the developed model in the context of the Goal and                 
research questions. Chapter 5 also includes validation results in commercial context and            
threats to validity. Finally, Chapter 6 describes the conclusions and future work. 
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Chapter 2 

Background Theory and Motivation 
The author did a structured literature study of more than 200 publications about software              
effort estimation and reviewed top 10 most popular project planning platforms in software             
engineering in author’s previous work (Tubelis, 2017). This chapter starts by highlighting the             
most relevant details from the previous research justifying the research direction the author             
chose to pursue. Further, the reader is introduced with the most important technologies used              
to achieve the research goal. At the end of the chapter, the most relevant similar research                
papers ar commercial solutions are briefly summarized. 
 

2.1 Current Estimation Practices in Software Engineering 
Software estimation is an important and at the same time very challenging task in software               
engineering. Predicting the time it will take to implement something that has never been done               
before is hard. Most often software development effort estimation is done by developers and              
managers while other methods such as parametric or data-intensive machine learning           
estimation is less popular. Although humans experience psychological biases e.g. anchoring           
effects, the industry doesn’t really have a good alternative (Jørgenson, 2014). 

The uncertainty of estimates is generally accepted, still it is beneficial to improve the              
accuracy of the predictions. Estimates have great impact on programmer productivity and            
business efficiency. Underestimated tasks cause delays, cost overruns and project failures           
while overestimated tasks are no better according to Parkinson's law which says that “work              
expands so as to fill the time available for its completion” (Galorath and Evans, 2006, p. 34;                 
Parkinson, 1955). The importance of estimates in software engineering has made this            
problem very popular among researchers. Many have tried different approaches to solve the             
problem and most of them have been focusing on project-wide prior-start estimation. At the              
same time the industry practices have changed and many developer teams have adopted agile              
principles which put more focus on lower level and late estimates of individual programming              
tasks. Unfortunately, very little research is done on software task estimation and this project              
is to improve the situation. 

Many companies use issue tracking systems such as Jira, which is currently the most              
popular one (Tubelis, 2017). These systems are used to register tasks and estimates and in               
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many companies also to track time. For each task, a summary and optionally a description is                
added. When later estimating new tasks, developers and managers can look back and test how               
much time similar tasks took in the past. Here the author sees the possibility of a machine                 
learning model which could learn from past time spent on tasks and estimate effort of future                
tasks as shown in Image 2.1. The most popular issue tracking systems in software              
engineering are open platforms, which means that such machine learning estimator could be             
easily adopted by installing a plugin. The possibility of easily puting the solution to test               
provided additional motivation to the author. 

 
Image 2.1​ Concept overview 

In agile development, many teams use storypoints instead of hours when estimating            
backlog items for the next iteration (Usman, Mendes and Börstler; 2015). As described in the               
last section of this chapter, research has been done trying to learn the relationship between               
task textual descriptions and storypoints (Choetkiertikul et al., 2018a). However, the author            
sees a greater potential in using time spent as labels. First, when learning to estimate software                
tasks from storypoints the estimator will learn the bias of the estimates as storypoints are still                
estimates and not the actual value. Second, storypoints are different for each team, because a               
benchmark related to the product the team develops is selected and they cannot be transferred               
across teams. Third, more data might be accumulated of time spent than storypoints, at least               
that’s what most of the publicly available and commercial datasets used in this research              
indicated. For more information about the research of software development estimation as            
well as issue tracking systems, please refer to Tubelis (2017). 
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2.2 Word Embeddings and Recurrent Neural Networks 
To develop such a model as described in the previous section, the author chose a set of                 
established technologies. There is no consensus in the research community about which            
technology is the most appropriate even for project-wide estimation. Since state-of-the-art           
neural networks can process text and provide numeric estimates, which is a perfect solution              
for the problem at hand, author chose to use this method. It also means that developers and                 
managers wouldn’t need to add any additional information other than what is already             
available to make the tool work. 

The input to the model would contain task descriptions written in natural language             
which has to be converted to numeric format in order to pass them to a neural network. The                  
author chose to use ​word embeddings because other similar natural language sentiment            
analysis problems have been solved applying this method (Maas et al., 2011). If words were               
represented by one-hot vectors the dimensionality would equal the vocabulary size. However,            
word embeddings relate terms to each other by their similarity and reduce the dimensionality              
problem of language modelling (Goodfellow, Bengio and Courville, 2016). This means that            
similar words appear to close in the vector space. The image below shows that for example                
among the closest neighbors to “programmer” are the terms “developer” and “hacker”            
(Tensorflow, 2018). To represent multidimensional vector space in two or three dimensions            
and create visualizations such as the one below, algorithms such as T-distributed Stochastic             
Neighbor Embedding can be used (van der Maaten and Hinton, 2008). 

 
Image 2.2​ Three-dimensional visualisation of word embeddings 

Word embeddings can be learned at the same time as learning the problem at hand.               
However, it is often more efficient to pretrain word embeddings on a different tas which               
exploits the predictive properties of natural language. This is a form of transfer learning and               
algorithms such as CBOW, skip-gram and GloVe are commonly used as word2vec models.             
CBOW takes a fragment of text which is defined by the windows length, also referred as                
context, and tries to predict the word in the middle. Skip-gram does the opposite by               
predicting context words from a word at hand and weighting the closest words higher              
(Mikolov et al., 2013). Although CBOW is computationally more efficient, skip-gram is            
better to learn infrequent words (Google Code Archive, 2013). The task for each algorithm is               
depicted in Image 2.3. 
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Image 2.3​ CBOW and Skip-gram tasks for word embedding learning 

Another effective algorithm for embedding learning is GloVe in which such vectors are             
calculated that their dot vector product equals the logarithm of the probability of their              
co-occurrence (Pennington, Socher and Manning, 2014). 

Once words are converted to their vector representations, they are passed to a neural              
network to encode the context. Since word sequences are of different length and the order of                
words matters, ​recurrent neural networks ​are perfectly fitted for this task (Goodfellow,            
Bengio and Courville, 2016). Recurrent neural networks feed back some of the hidden state              
or output of the previous step as an input to the next step. A RNN with a single output is used                     
in this research as shown in Image 2.5. Since LSTM networks have been very successful               
because of their dynamic time scale of integration enabled by gated input, forget and output               
which fights the vanishing gradient problem, the author applied the technology to extract             
context from word embeddings (Hochreiter and Schmidhuber, 1997). A single LSTM cell is             
depicted in Image 2.4. LSTM networks are composed of many such cells. 

 
Image 2.4​ LSTM cell 

In addition bidirectional wrapper was also tried out in order to improve the             
performance of the LSTM (Schuster and Paliwal, 1997). Since words written in the text can               
change the meaning of previous words, the sentence is passed to the LSTM twice; first in                
regular word order and then reversed; then the result is combined together to calculate the               
final context encoding. 
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Image 2.5​ Unrolled RNN encoding word sequence context 

To convert the context embedding to estimates, the author tried out both regular             
neural networks with dense layers followed by activation functions and single stream            
highway network as shown in the Image 2.7 because highway networks can be more efficient               
than plain deep NN (Srivastava, Greff and Schmidhuber, 2015). Highway networks are            
inspired from LSTM networks and they use gating mechanisms to regulate the information             
flow e.g. by allowing some information pass the layer unprocessed. Highway networks are             
composed of many chained highway blocks. A highway block is depicted in Image 2.6. 
 

 
Image 2.6​ Highway block 

In order to reduce the generalization error of the whole network, dropout regularization were              
used in most pipeline parts. Dropout regularization is a simple and effective method which              
prevents overfitting neural networks by turning out random units (Srivastava et al., 2014). A              
dropout value of 0.25 means that every fourth neuron is randomly turned off. 
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Image 2.7​ Transforming context to estimate through highway blocks 

In this research RMSProp and its successor Adam gradient descent optimization algorithms            
were tried out together with the classic SGD optimizer (Hinton, no date; Kingma and Ba,               
2015). For hyperparameter optimization TPE estimators method was used (Bergstra et al.,            
2011). For more information about these methods please refer to the sources. 
 

2.3 Similar Work 
Most of the literature research for this project was done in the author’s previous research of                
the author (Tubelis, 2017), however, since then one relevant article was found which had              
been filtered out in the previous research because of citation count criteria. It’s last version               
was published after the author’s previous work was finished. As already mentioned in one of               
the previous sections of this chapter, Choetkiertikul et al., (2018a) did a similar research              
project of predicting storypoints for Jira issues. This work and the source code the author               
published on Github has been used as an inspiration for this research project (Choetkiertikul              
et al., 2018b). Although not very popular, two Jira plugins have also been developed for               
estimating software development effort of programming tasks. One of the plugins were            
discontinued this year, while the other admitted to the author in an email correspondence that               
the accuracy of the estimates is not sufficient. For more information about the plugins,              
industry practices and the software effort estimation research landscape please refer to            
Tubelis (2017). 
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Chapter 3 

Data Collection and Preprocessing 
In this research project 32 publicly available JIRA repositories were discovered containing            
more than 2.000.000 software tasks. Time spent on task execution was reported for more than               
63.000 tasks, thus allowing to build a solid dataset for the task at hand. Confidentiality               
agreements were made with two commercial companies allowing to create a validation            
dataset of more than 35.000 labeled issues. The author strongly believes that the list of               
publicly available JIRA repositories is a valuable resource for further research also in other              
fields than software effort estimation. The methods described in this chapter allow to discover              
even more JIRA repositories based on various requirements. The specific actions taken to             
reduce the noise in the textual task descriptions as described at the end of the chapter can be                  
used in projects which do research on JIRA issue fields containing natural language.             
Communication and legal aspects from the collaboration with the commercial companies can            
be used as an inspiration for other data intensive research projects. 
 

3.1 Discovering and Fetching Publicly Available Data  
Researchers focusing on prior-project effort estimation have been using more than 25            
well-known and publicly available datasets (Tubelis, 2017; Wen et al., 2012). However, these             
could not be benefited from in this project because they were comprised of only parametric               
project-wide data while the machine learning model created in this project is intended to              
make estimates from textual descriptions of individual tasks. Therefore the author did an             
extensive search of publicly available JIRA repositories on the Word Wide Web applying             
several different methods. 

First, the author did an unstructured search on the internet and found a few resources               
listing public JIRA repositories (Choetkiertikul et al., 2018a; Sloat and Swearengin, 2011).            
The author observed that the title of most of JIRA repository startpages contains the phrase               
“System dashboard” and the keyword “JIRA”. Through a Google search by keywords            
“system dashboard” and “public jira” the author found a few more repositories, still looking              
for a way to do an exhaustive search efficiently, because checking each link manually was               
very time-consuming. The first optimization was to write a script which can automatically             
process a list of potential URLs of publicly available JIRA repositories. The implementation             
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of the checker was possible by using Jira Could REST API (Atlassian, 2018). Not only was it                 
possible to test if the particular URL is a link to publicly available JIRA repository, but also                 
how many labeled issues was publicly available in the repository. By labeled issues the              
author denotes issues which are resolved and the time spent on their execution is greater than                
zero. In some repositories the user could filter issues by the time spent, but could not actually                 
access this field. Such repositories and those that contained less than 100 issues with              
accessible labels were discarded. 

The author also tried to automate the gathering process of the potential URLs by              
searching the Web through the APIs of Bing and Google. The Bing Search API worked very                
well and several new repositories were discovered (Microsoft Azure, 2018). Working with            
Google Search API was not that easy, because a workaround had to be used, and still only the                  
first 100 search results could be returned even in paid version (Google Developers, 2018;              
Stack Overflow, 2017). Therefore the author collected all potential URLs manually by            
searching for websites with title containing “System dashboard JIRA” and then fed them to              
the checker mentioned earlier to filter out repositories which didn’t contain at least 100              
accessible labeled datapoints. Both when searching on Bing and Google advanced search            
queries were used (Microsoft Docs, 2017; Warner, 2015). 

 
Image 3.1​ An overview of data discovery and fetching process  

Once a list of 33 JIRA repositories were collected, the issues had to be fetched so that                 
that they could be fed to the model. The author implemented a script which downloaded the                
issues by accessing JIRA Cloud REST API (Atlassian, 2018). Labeled and unlabeled issues             
were downloaded separately by using JQL search query. The API is designed so that only up                
to 1000 issues can be fetched per request to avoid performance hit (Atlassian Documentation,              
2017). For several repositories the limit was lower than that and in others fething 500 or 1000                 
issues per request caused unreasonably long loading time. After trying out a few different              
values, the author ended up sending separate request for each 50 records, which worked well               
for all repositories. The data used in the final iteration of the experiment described in Chapter                
4 and Chapter 5 was fetched between May 19, 2018 and May 20, 2018. 

In the process of fetching the issues, several exceptions occurred, such as servers             
denying access or the client losing connection. Such exceptions were handled by awaiting a              
certain amount of time and trying again. One of the repositories didn’t correctly respond to               
requests containing JQL queries most likely because of a server configuration error (Stack             
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Overflow, 2014). To save time, the author decided to skip this repository and not implement a                
workaround because the repository didn’t contain that many labeled datapoints as some of the              
other repositories from the list. Later in the filtering process, which is described in the next                
chapter, the author found out that issues fetched from one of the repositories and marked as                
labeled actually didn’t contain labels. Since the repository still contained more than 100             
publicly available labeled datapoints, the unlabeled labeled issues were moved to unlabeled            
issues and the repository was not removed from the list. 

Finally, to support the last phase of the project, in which the model was validated in                
commercial context, the author added new functionality to the fetching script allowing to log              
in the repository to gain access to protected issues. Both API token and the somewhat unsafe                
approach of typing password in terminal can be used to log in. More information on how                
access to commercial data was gained is described in the next section of this chapter.               
Although in most cases the author preferred saving data in JSON format because of its               
readability, data fetching saved data in CSV format, because one can easily append new              
datapoints to the file without loading the file in memory. If file is loaded in memory after                 
every request, the script becomes slower by each step. 

A summary of the whole data discovering and fetching process is depicted in image              
3.1. The script examining potential URLs of publicly available JIRA repositories, the two             
scripts using Google and Bing Search APIs to gather potential URLs and the data fetching               
script are made publicly available on GitHub and well documented so that they can be               
modified and reused in similar future projects (Tubelis, 2018). The actual list of repositories              
and their features are described in Section 3.4. 
 

3.2 Gaining Access To Commercial Data 
Despite the fact that there are many publicly available JIRA repositories, the labeling             
coverage in those are only around 3%. In addition those are mostly open-source projects              
where time reporting is not as important as it is in commercial contexts. Developers in               
commercial organizations have much higher motivation to report the time they spent on             
programming tasks because their paychecks might be dependent on these values or their             
management asks them to keep track on how much time they spend on each activity.               
Therefore it is important to validate the results of this research in a commercial context to                
prove that they are not impacted by the noise and general quality of publicly available data.                
As it turned out in the experiment, the labeling coverage in data gathered from commercial               
companies can be 20 times higher than in publicly available repositories in average. To              
validate the results got from training the model on publicly available data, the author gained               
access to confidential data in two companies in Latvia. To find these companies and get their                
approval the author went through a couple of steps, which are described further in this section                
and can be used as an inspiration for similar research projects. 

The criteria for the companies to be eligible for the project was to have a few                
thousand labeled issues registered in Jira and the task descriptions had to be written in               
English. To find such companies, the author did a little survey among his friends who work in                 
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different companies in software engineering field. In total 14 people were questioned about             
13 different companies they currently work for or have worked for during the last 5 years.                
The communication was done in a private digital correspondence using LinkedIn and            
Facebook Messenger and anonymity was granted. As shown in the image below, 2 of them               
were living in Norway and 12 in Latvia. 10 were currently employed in one of the companies                 
they gave answers about, 3 exited the last company they answered about in 2017 and one                
before 2017. This information was obtained from the respondent’s social media profiles on             
LinkedIn and Facebook. 

 
Image 3.2 ​Respondent country of residence and employment status 

Most of the 13 companies the respondents answered about were primarily working in IT              
industry, and many of them were international as shown in the image below. 

 

Image 3.3​ Company locations and industries 

 
Image 3.4​ Company sizes and project planning systems used 

The size of the companies was also very different. Although the results of this little survey                
cannot represent the whole software industry, it gave an impression of the potential of finding               
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a company to collaborate in this project. At the same time it just confirmed the results of                 
authors previous research showing that project planning platforms are widely used and that             
JIRA is the most popular one, as seen in the image below (Tubelis, 2017). 
As shown in the image below, in some companies time spent on tasks is not reported or is                  
reported in a different system so it cannot easily be linked with the tasks in project planning                 
system. Although English as working language is very common in software companies            
located in countries where English is not among the official languages, still some companies              
prefer writing task descriptions in the local language. 

 
Image 3.5​ Time reporting practices and task descriptions language 

After the survey, author took contact with the management of the companies which             
satisfied the requirements. Companies whose employees gave incomplete answers to the           
survey and other companies were also contacted. The communication was planned in detail to              
increase the chances of successful result. LinkedIn and Email was used as communication             
channels and message texts were prepared in beforehand; then tailored for each company to              
include a personal reference. Before the actual contact, the scenario was tried out with a               
friend of the author and adjustments were made so that the communication would be as               
concise and smooth as possible to save the time of the managers and at the same time make                  
the collaboration offer appealing. 

The managers were first contacted on LinkedIn by sending a short message like the              
one in the image below. If the author had a personal reference then the message was started                 
mentioning it. In total 11 managers were approached and 9 managers did reply positively. 

 
Image 3.6​ First message approaching a potential collaboration company manager on LinkedIn 

Further, a short email message was sent to the managers with a project brief attached. The                
final version of the project brief which was sent to companies after two of them already had                 
approved the collaboration request is added as Appendix 1 to this paper. In the email               
correspondence the author found out that several of the approached companies which showed             
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interest to collaborate were not eligible to the criteria. Ultimately, two companies agreed to              
collaborate and confidentiality agreements were signed.  

The brief sent to the companies addressed such important questions as what the             
project is about, what the company gets if they decide to participate in the project and what                 
are the confidentiality rules. The terms “data” and “accessing data” was purposely avoided so              
that the managers wouldn’t get scared. Jira contains data which the companies are not              
allowed to publish because they have non-disclosure agreements with their clients. Some of             
the data can also be used to compromise the competitiveness of the company. Therefore after               
checking that the company satisfies the eligibility requirements, a strict NDA was proposed. 

The importance of a strict NDA was also indicated when one of the collaborating              
companies approved the request after rejecting it at first just because of much stricter              
confidentiality rules than proposed initially. Although without the confidentiality rules it           
would not be possible to test the model in commercial context, they also put serious               
restrictions on the research activity. The data could not be brought outside the company’s              
office which required some travelling and also didn’t give much tries to test the different               
architectures of the model described in the next chapter because not much processing power              
was available. The English translation of the NDA is added as Appendix 2. 

 

3.3 Reducing Noise In Textual Task Descriptions 
After fetching the data from publicly available JIRA repositories, the author wrote a few              
scripts to analyze the textual descriptions of tasks and detected that they contained some              
noise. While the most popular words in the summary field contained stop words in English as                
expected, the description field contained a lot of numbers and other symbols. After             
investigating further, the author found out that the textual descriptions contained code            
fragments, stack trace and formatting tags. The author assumed that this would not be helpful               
for the model and therefore applied several methods to clean up the text. 

First, formatting tags that contain content which is not written in natural language             
were removed and the text they contained was removed as well. According to Jira markup               
and observations in issues, tags such as ​{code} and ​{noformat} usually do not contain              
content in natural language, but rather logs, stack trace and code fragments (JIRA, no date).               
Second, formatting and emphasis tags and symbols such as colors, bold and italics were              
removed, but the content was left. Then all tabulators and line breaks were removed as well                
as internal and external links such as links to other websites and links to Jira profiles marked                 
with special JIRA notation. The author still observed very long descriptions containing stack             
trace fragments in plain text not marked with any tags. To eliminate these, a regular               
expression which matched all text fragments containing the keyword “at” followed by one or              
two words and repeated at least three times. Some issues contained non-English characters,             
which were removed in the text cleaning process. 

All punctuation except trailing period was removed, because trailing period was used            
at the end of the process to separate the text in sentences. This was done in order to improve                   
word embedding pretraining so that relationships between words in two separate sentences            
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were not considered as the same context. After all of the steps mentioned above were               
executed, the text still contained a lot of technical identifier, module names and other words               
that do not belong to natural language. To recognize such words, a special ratio called “alpha                
ratio” was calculated for each word. The higher the alpha rate the higher the probability that                
the word does not belong to natural language. The formula used to calculate alpha ratio is: 

 
Words with alpha density lower than 93 were removed. 

 

Actually, we have the possibility to launch 

{color:red}​one ​{color}​ single instance of 

JodConverter Service and it's specified in 

*​core-services-configuration.xml ​*​ under 

*​ecm-wcm-core.war/WEB-INF/conf/wcm-core ​*​\r\

n ​{code}​\r\n<component>\r\n 

<key>org.exoplatform.services.cms.jodconver

ter.JodConverterService</key>  \r\n 

<type>org.exoplatform.services.cms.jodconve

rter.impl.JodConverterServiceImpl</type>\r\

n  <init-params>\r\n    <value-param>\r\n 

<name>host</name>\r\n 

<value>127.0.0.1</value>\r\n 

</value-param>\r\n    <value-param>\r\n 

<name>port</name>\r\n 

<value>8100</value>\r\n    </value-param> 

\r\n  </init-params>    \r\n</component> 

\r\n ​{code}​\r\n\r\n ​By consequence, if this 

instance crashes, all the traffic will be 

blocked. ​\r\n\r\n=> ​ It's suggested to add 

the possibility to work with more than one 

instance. This will guarantee that the 

whole server will not be affected. 

actually we have the possibility to launch 

one single instance of jodconverter service 

and it's specified in under by consequence 

if this instance crashes all the traffic 

will be blocked 

 

it's suggested to add the possibility to 

work with more than one instance 

 

this will guarantee that the whole server 

will not be affected 

 

Image 3.7​ Example of text cleaning process 
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The apostrophe was included in the dividend in order not to remove such words as “it’s”,                
which would otherwise have alpha density of 75. Although words do not contain spaces, they               
were included in the formula because alpha density was calculated for the whole description              
field and records were sorted by the alpha density ratio in descending order so that it would                 
be easier to detect noisy text. 

Finally repeating text fragments up to 15 words were removed and any odd spaces              
were removed. Odd spaces might be added when replacing several consecutive punctuation            
marks with spaces. As mentioned earlier, after the text filtering was done, the text was               
divided in sentences by period marks. An example of the text cleaning procedure is depicted               
in Image 3.7. Other methods applied to the data in order to remove noise was done when                 
selecting different subsets of the main dataset as described in Chapter 4. The whole filtering               
process was done by intuition only. Each of the steps described above should be reviewed               
and tested if they actually improve the estimation accuracy of the model. This was not done                
because of time constraints and because the models require a lot of processing power and               
time which is expensive. This is something that should be done in further work. 
 

3.4 Data Insights 
After cleaning the textual descriptions from noise, the author analysed the data in order to               
make better decisions when designing and executing the experiment, draw conclusions and            
detect coherences between the results and the input data. First the publicly available data and               
it’s most relevant characteristics were compared to the two commercial datasets used for             
model evaluation. As seen in the table, the labeling coverage is the only major difference               
between publicly available and commercial programming task descriptions and time reports. 

 
Reference 

Text length (words) Time spent (hours) Labeled 
projects 

Datapoints Labeling 
coverage 

Mean Med. Std. Mean Med. Std. Labeled Unlabeled 

Publicly 
available 

47 32 58 8.11 3.00 22.43 627 63 474 2 044 801 3.01% 

First 
commercial 

55 38 60 7.75 2.50 25.29 530 30 058 25 380 53.89% 

Second 
commercial 

42 26 54 4.58 2.00 11.06 140 9 137 5 336 63.13% 

Table 3.1​ Main characteristics of publicly available and commercial datasets 

Further the distribution of time spent, text length and labeled datapoint count in each              
project was examined. As shown in image 3.8. the distribution of time spent in publicly               
available Jira repositories reminds more of a log-normal distribution than a normal            
distribution. This could be a problem for the neural network because there are more examples               
of tasks with less time spent on them, while larger tasks are more sparse. In addition a log                  
normal distribution means that median estimate will be better than mean estimate if MAE is               
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used as a loss function. The histogram bin size is 5 minutes and it shows that programmers                 
prefer to report even hours, such as 2, 4, 8 and 12 rather than uneven hours and that reporting                   
10 or 20 minutes past an hour is more popular than reporting 15 minutes past an hour. 

 
Image 3.8​ Time spent on programming tasks up to 16 hours in publicly available data 

The most popular time reported is 1 hour which is true in both commercial datasets.               
The label distribution of the two commercial datasets is shown in Appendix 4. Although              
some of the other observations mentioned above are not so explicit in the commercial              
datasets, the are having little or no effect on the model. 

 
Image 3.9​ Task description text lengths up to 115 words in publicly available labeled data 
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Further, the text length of labeled datapoints was also examined in the main dataset.              
As shown in Image 3.9, there is a substantial amount of programming tasks with very short                
descriptions containing only a few words which can make the estimation task very difficult              
for the model when compared to a human who has much more information such as the code                 
and meetings. It turned out that the first commercial dataset had less proportion of tasks with                
short descriptions as shown in Appendix 5. However, in the second commercial dataset             
contained even a larger part of the textual descriptions were up to 7 words long than the                 
publicly available data. 
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Chapter 4 

Incremental Experiment 
Numerous iterations of design and experimentation were executed to achieve the research            
goal. At the start, a simple model prototype was trained on the main dataset. In the following                 
iterations, multiple variations of the model were elaborated. Further, several subsets of the             
main dataset were created to provide answers to the research questions. Finally, a             
hyperparameter space was defined and parameter tuning was done, comparing the results to             
established baselines. Each experiment iteration was followed by a design phase, in which the              
feedback from the previous phase and new ideas were incorporated in the new version of the                
model until the final setup, which is described in detail in this chapter, was created. 
 

4.1 Model Architecture and Variations 
The architecture of the model was inspired by Choetkiertikul et al. (2018a) and their research.               
However, the implementation is quite different as the author has used more off-the-shelf             
libraries instead of operating on a lower level. In addition, several new variations of the               
model are made to answer to Research Question 3 and Research Question 4. The overall               
model consists of the following three parts: word embeddings; context network; and context             
transformation network. A simple regressor is added at the end of the pipeline to obtain the                
estimate. Each of the three main parts have 2-3 variations as shown in the image below and                 
described further in this section. 

 
Image 4.1. ​Model pipeline variations 

First, the model converts words to their vector representations, which are learned by             
performing a different task, such as predicting the previous and the next words in particular               
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text corpus with a certain windows size. In this project, two types of pretrained word               
embeddings were used. The first alternative was vectors obtained using GloVe algorithm on             
Common Crawl dataset as provided by Spacy library (Common Crawl, 2018; Pennington,            
Socher and Manning, 2014; Spacy Models, 2017). These are 300 dimensional vectors trained             
on texts from World Wide Web. Since these embeddings are trained on general natural              
language, they may not incorporate the meaning of words specific to programming context or              
organization. In fact, these vectors covered only about the half of the unique words in the                
main training dataset, although they include embeddings for 1.1m English words. In addition             
to that, Choetkiertikul et al. (2018a) used much fewer vector dimensions in their experiment              
showing that a simpler model may do as well as a complicated one. Therefore the second                
option is pretrained word embeddings on both labeled and unlabeled issue texts. Since some              
words may have specific meanings in particular contexts, embeddings were pretrained only            
on the textual descriptions of tasks from the projects which the model estimated in the               
particular training session. Both Skip-gram and CBOW methods, which are described in            
Section 2.2. in more detail, were used as implemented in Gensim library (Rehurek, 2018). 

Second, the model used the numeric word embeddings to calculate a context            
representation using a LSTM network as already mentioned in Chapter 2. Here three versions              
were used; the first one 1 LSTM was a model where task summary and description were                
concatenated and then passed to one LSTM network; the second one 2 LSTM was inspired               
from Choetkiertikul et al. (2018a). In the second version summary and description were             
passed to separate LSTM networks and the two contexts were then merged by averaging the               
results. In the third version Bi LSTM a single LSTM networks was put in a bidirectional                
wrapper, which means that each textual task description was passed to the network twice -               
once in regular word order and once in reversed word order, and then the two outputs were                 
merged together. Third, the context was passed to a deep multi-layer network which             
transformed it and then passed to the regressor. Two options were used here; Dense was a                
simple deep dense multilayer neural network with activation layers as the first option; and              
Highway was a highway neural network, as Choetkiertikul et al. (2018) used in their paper. 

Pipeline part Choice Comparison pair 

Embeddings Spacy or Gensim? spacy-1-hway​  and ​gensim-1-hway 

Context network 1 LSTM or 2 LSTM? gensim-1-hway​  and ​gensim-2-hway 

Context network 1 LSTM or Bi LSTM? gensim-1-hway​  and ​gensim-bi-hway 

Context network 2 LSTM or Bi LSTM? gensim-2-hway​  and ​gensim-bi-hway 

Context transformation network Dense or Highway? gensim-1-hway​  and ​gensim-1-dense 

Table 4.1.​ Answering architectural questions by comparing different model variations 

In total there are 24 possible models which can be built, but since testing all of them                 
would require a lot of resources, the number of the models were cut down to five in such a                   
way that each of the alternatives in the model pipeline can be evaluated. The chosen five                
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model architectures were given short names by which they are referred further in the text:               
spacy-1-hway​ , ​gensim-1-hway​ , ​gensim-bi-hway​ , ​gensim-2-hway​  and ​gensim-1-dense​ . The  
table below gives an overview of how all architectural choices can be made based on the                
results of these five datasets if for simplicity an assumption is made that the separate parts do                 
not have any synergies. 

 

4.2 Training Datasets With Different Homogeneity Levels 
To test the capability of the model to learn estimating programming tasks in different              
contexts and at the same time test if the accuracy of the model improved when filtering out                 
some datapoints which might be more heterogeneous than others, several subsets of the main              
dataset were generated. The author proposed the following three assumptions to provide            
answers to Research Question 2 and Research Question 5 and chose the training datasets in               
such a way that some indications showing if any of these assumptions are true could be made. 
 
Assumption 1 Estimation accuracy increases when estimating several large projects than           
when estimating many small projects because data is more homogenous in each project. 

To indicate if this assumption is true, three types of datasets were generated by              
excluding projects with less than 1000, 500 and 200 labeled datapoints from the main dataset               
as well as one type in which datapoints were not filtered based on project size. To indicate                 
that the assumtion is true, datasets with larger project size shall have higher estimation              
accuracy given that the number of datapoints is similar and the same model is used. 
 
Assumption 2 ​ Estimation accuracy increases when task descriptions contain more text. 

Three types of datasets were chosen to get an indication if this assumption is true. One                
with datapoints containing at least 20 words, another one with minimum word count of 10               
and last type in which datapoints weren’t filtered out by task description length. To indicate               
that the assumption is true, datasets with higher minimum number of words in text 

 At least 1 labeled issue 
in each project 

At least 200 
labeled issues in 
each project 

At least 500 
labeled issues in 
each project 

At least 1000 
labeled issues in 
each project 

At least 1 word 
in each task 
description 

all_1_1 
54 642 labeled 
1 435 732 unlabeled 

all_200_1 
41 686 labeled 
374 039 unlabeled 

all_500_1 
32 754 labeled 
250 599 unlabeled 

all_1000_1 
23 768 labeled 
145 730 unlabeled 

At least 10 
words in each 
task description 

all_1_10 
44 499 labeled 
1 289 006 unlabeled 

all_200_10 
32 598 labeled 
313 850 unlabeled 

all_500_10 
24 585 labeled 
179 790 unlabeled 

all_1000_10 
16 945 labeled 
118 635 unlabeled 

At least 20 
words in each 
task description 

all_1_20 
35 966 labeled 
1 106 787 unlabeled 

all_200_20 
25 145 labeled 
237 287 unlabeled 

all_500_20 
19 992 labeled 
158 405 unlabeled 

all_1000_20 
9 686 labeled 
52 840 unlabeled 

Table 4.2​ Names and datapoint counts in training datasets testing assumptions 1 and 2 
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descriptions shall have higher estimation accuracy given that the number of datapoints is             
similar and the same estimation model is used. 

As shown in Table 4.2. twelve datasets were created to test Assumption 1 and              
Assumption 2. The table gives an overview of the different training datasets and the names               
used to refer to them further in the text is provided in the table below. The chosen datasets                  
cover a wide range of dataset sizes ranging from 54 642 to 9 686 labeled datapoints and                 
therefore can also help answering the second part of Research Question 1 about the number               
of datapoints necessary to train the model to achieve accuracy which is significantly better              
than the minimum of mean and median estimate loss baseline described in Section 4.3. 

 

Image 4.2​ Names and datapoint counts of training datasets testing Assumption 3 

Assumption 3 A model trained on several datasets can provide more accurate estimates than               
if a separate model is trained for each dataset. 

To test this assumption, the three datasets with the highest number of labeled             
datapoints and all the possible logical relations between them were selected as training             
datasets. The seven resulting datasets and their sizes are shown in Image 4.2. All issues               
containing less than 10 words in task textual description were discarded from these training              
datasets. To indicate that Assumption 3 is true, the same model trained on a merged dataset                
should have higher accuracy than that of two separate models for each individual datasets,              
weighted by the number of datapoints in it. 

From the experiments conducted in the companies, the author learned that some            
issues in JIRA do not have clear acceptance criteria and are intentionally kept open for a long                 
time. The time spent on their execution might be logged there for several months or even                
years, for example to track project management effort. In addition, the author found out that               
some publicly available JIRA repositories contain test projects where people have logged            
extreme values, such as twenty years. To increase the homogeneity of the dataset and remove               
outliers, labeled issues with time spent less than 10 minutes and more than 16 hours were                
discarded in all training datasets. Furthermore, issue descriptions containing more than 100            
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dictionary words were truncated if a single LSTM network was used. In the architecture with               
separate LSTM networks for summary and description, they were truncated by 15 and 95              
words because these are the the 90th percentiles of their respective text length rounded up or                
down by 5 words according to the distribution in the main training dataset. 

To test if the model weights were not overfitted to the training dataset examples, 20%               
of the training dataset was used for model evaluation after each training epoch. In a similar                
manner, to make sure than the model hyperparameters were not overfitted to the training data,               
another 20% was used for validation. This means that only 60% of the training dataset was                
used to learn the model. When training the model, data was shuffled in each of these three                 
groups of data at the time ensuring that the chosen training datapoints were added              
chronologically earlier than testing datapoints, and none of the validation datapoints were            
added to their respective JIRA repositories before testing datapoints. In other words, data was              
sorted by issue identificators in a descending order and then divided in training, testing and               
validation datapoints, because in real life a company would learn from early programming             
task actual effort and then estimate later tasks, not the other way around. When ordering and                
shuffling the data it was ensured that the number of datapoints in training, testing and               
validation of a particular project was proportional the project size. This helped to avoid              
situations when all datapoints from a single project end up in training set and none in training                 
and validation set. 
 

4.3 Loss and Baselines 
The main loss function used in this project was mean absolute error. This decision was made                
after observing how the model learns from the training data by comparing mean absolute              
error with mean square error. When using MSE, the model first outliers first, because of the                
square factor in the function, however MAE learned all datapoints independently on how far              
they were from the median or average time spent. Choetkiertikul et al. (2018a) also used               
MAE as the main loss function which provided additional motivation to use it as the main                
loss function. Although the literature suggests to use several loss functions when comparing             
software estimation models because of their individual disadvantages, the author believes that            
one loss is sufficient to indicate if the methods applied to the software estimation problem in                
this research can solve it (Tubelis, 2017). Due to time constraints other loss functions and               
frameworks were not applied in this research project. 

To evaluate the results, a main baseline was chosen. Unlike in the research done by               
Choetkiertikul et al. (2018), random estimate baseline was not used, because it proved to              
always be worse than the main baseline used in this paper. The main baseline, which the                
results were compared to, were either mean or median estimate loss, whichever was lower for               
the particular dataset according to the formula: 

 

where  
To simplify the notation, if only one prediction is passed to the MAE function, it is used for                  
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all true values. When evaluating the models, the median and mean values were calculated              
from the training data, but the actual loss was calculated on testing and validation labels so                
that the results would dependent less on the difference of training and testing or validation               
label mean and median values. The goal of the baseline was to indicate if the model would                 
not become agnostic to the input data and draw some correlations. The performance of a               
model was expressed by the percentage of how much lower the loss of the model was than                 
the baseline loss according to the following formula: 

 
For informative reasons, a human score was calculated. According to Jørgensen           

(2014) humans estimate software tasks with 30% MAPE. Therefore, the human estimate loss             
values were calculated accordingly assuming that all estimates are made with 30% deviation.             
The human score was calculated by the following formula: 

 
This entails that a model with human estimation accuracy would achieve a score of 100 while                
a model which is agnostic to the input because it is not capable of extracting the relationship                 
between the input data and expected results and therefore predicts the optimal value would              
receive a human score of 0. 

 

4.4 Hyperparameter Optimization and Final Validation 
In order to make sure that the error is not caused by unfortunate hyperparameters and at the                 
same time test how volatile the model is to hyperparameter variety, Tree of Parzen Estimators               
algorithm was utilized for parameter tuning as mentioned in Section 2.2. The algorithm             
requires to define the input parameters as probability distributions or choices and then             
generates a few random configurations. Later, based on the results of the initial random              
search, new configurations are generated. This algorithm was preferred because each           
evaluation round was expensive to calculate and the search space is very large. Models using               
Spacy embeddings were tuned by running 150 TPE iterations. Since the search space for              
models using Gensim vector embeddings were larger because it included pretraining           
parameters, those models were optimized with 200 iterations. For each iteration the model             
was run until it it didn’t show an accuracy improvement higher than 3 minutes in the last 5                  
epochs. Several parameters such as the batch size of 512 was fixed. The best result according                
to the error on test datapoints was taken as the final result of the iteration. In a similar manner                   
the best result of the whole evaluation round was chosen by the highest validation              
performance. In order to indicate the volatility of the model architecture to configuration             
changes, result confidence were calculated as follows: 

 
To confirm that the results from the experiment on publicly available data also applies              

to commercial context, two of the five proposed architectures were also run on two              
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commercial datasets. Since the confidentiality agreement didn’t let the author use external            
resources while checking the model on the company’s premises, the number of evaluation             
runs were decreased to 10 for each of the two architectures. 

 

4.5 Remarks on The Experiment 
The biggest challenge of the experiment was the bugs in the scripts the author implemented               
to execute the experiment. Since the author worked alone, it was hard to check the author’s                
own code from a quality assurance perspective. But having errors in the code had a very                
severe effects on the research process. Errors were discovered after running the models for              
several days and the errors discovered at the end of the project could not be fixed because of                  
time constraints. The errors that were not fixed are mentioned in Chapter 5. A more often                
peer review would have been very helpful in a project like this. In addition some of the result                  
collection from several servers were done manually and was prone to human failures. This              
was solved by implementing a script which check the correctness of the gathered results. 

Another hindrance was the availability of computational resources. Even though the           
author used the server available at the university’s Telenor AI Lab, it was very busy with                
other master student models. Since the access to the resources was weakly regulated, the              
models runned by the author were interrupted when the server was overloaded, so time had to                
be spent to implement and execute resuming hyperparameter optimization sessions. However,           
when the author learned that with such a busy server the experiment cannot be finished in the                 
time frame given for masters thesis, the author chose to use Amazon AWS EC2 and Google                
Cloud virtual machine instances at the author’s own expense. 

The third problem was the efficiency of the frameworks used in the experiment. The              
author used Keras and Hyperopt as the main framework for implementing neural network             
models and tuning the hyperparameters. The first problem was leaking memory between each             
evaluation which was solved by creating a new TensorFlow session for each evaluation run.              
Second, neither Keras nor Hyperopt has a great multiprocessing support which didn’t really             
allow to use all the resources available. Therefore a data generator was implemented, which              
introduced a serious error, and several models were run on the same server simultaneously to               
achieve higher resource utilization. Not only did some of the libraries have deficiencies, also              
running the model on different operating systems, such as OS X, Windows 10, Linux and               
Chromium OS led to platform-specific problems for which workarounds had to be            
implemented. Even though some problems arose from using Python libraries for various tasks             
and running the model on different OS, ultimately they let the author be more productive than                
if more things had to be implemented from scratch and only one OS could be used. 

From the neural network perspective an interesting observation was that the model            
achieved better results when trained on data in hours instead of labels expressed in seconds or                
normalized from the range of 0 to 1. This is most likely related to the weight initialization                 
values. An additional challenge was to fix all the random seeds of the models, and although                
the author tried, full reproducibility was never achieved. 
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Chapter 5 

Results and Evaluation 
The computationally expensive experiment conducted as a part of this research project            
consisted of running 150-200 hyperparameter optimization rounds on 5 different model           
architectures on 19 subsets of the main training dataset. Then two of the five architectures               
were each tested on the two commercial datasets provided by the collaborating companies.             
When evaluating the model in commercial context, 10 hyperparameter optimization rounds           
were run for each architecture and dataset. This resulted in 18,110 evaluation rounds in total               
each taking from a few seconds for the easiest configurations and smallest training data              
subsets to several minutes for the most complex configurations and largest data subsets. This              
chapter describes the results of the research by putting them in the context of the Goal and                 
providing answers to the Research Questions described in Section 1.2. as well as describing              
the threats to validity. 
 
Goal Construct a neural network model which estimates software development task           
effort from textual descriptions in English significantly better than mean and median            
baselines given the actual time spent on task execution. 

Solution In order to choose the best setup the author tested 5 different model              
architectures on subsets of the main dataset composed of data from 32 Jira repositories.              
Results from testing the models on data from the three largest individual repositories by              
labeled datapoint count and their logical combinations were not taken into account in             
questions other than Research Question 5 because the results were too dependent on the              
choice of testing and validation datasets due to the small size of the repositories. For the                
model architectures using pretrained word embeddings on Jira task description text corpus            
200 evaluation runs were executed for parameter tuning while 150 runs were executed on the               
model using Spacy embeddings since the ​spacy-1-hway model search space had eight            
hyperparameters as opposed to 13-15 parameters for ​gensim- models. Model hyperparameters           
were tuned until the MAE didn’t increase for more than 3 minutes during the last 5 training                 
epochs. 

The results depicted in Table 5.1 show that models using word embeddings pretrained             
on programming task descriptions and employing highway neural network for context           
transformation performed best, and the best result and the highest confidence was achieved             
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by the model using bidirectional LSTM for context encoding. Therefore this architecture was             
chosen for statistical testing. The tradeoff of dataset size and homogeneity was explored and              
the results show that the best improvement as compared to the minimum of mean and median                
estimate for four of the five model architectures was achieved when filtering out tasks with               
textual descriptions shorter than 10 words and additionally eliminating projects containing           
less than 500 labeled datapoints. 

Dataset spacy-1-hway gensim-1-hway gensim-bi-hway gensim-2-hway gensim-1-dense 

all_1_1 6.36% 7.26% 7.50% 7.40% 7.90% 

all_1_10 5.95% 7.25% 7.63% 7.70% 6.55% 

all_1_20 5.71% 7.35% 7.14%  8.06% 6.43% 

all_200_1 5.82% 8.17% 8.31% 7.71% 7.91% 

all_200_10 6.60% 9.20% 8.67% 8.59% 8.32% 

all_200_20 6.78% 8.81% 8.91% 8.08% 8.09% 

all_500_1 5.52% 7.64% 7.66% 8.08% 7.36% 

all_500_10 6.69% 9.92% 9.39% 9.49% 9.13% 

all_500_20 7.46% 8.55% 8.80% 8.69% 8.33% 

all_1000_1 5.49% 7.69% 8.37% 7.00% 7.47% 

all_1000_10 5.92% 7.69% 7.95% 6.88% 6.69% 

all_1000_20 4.52% 3.65% 4.32% 6.15% 2.20% 

Average 6.07% 7.76% 7.89% 7.82% 7.20% 

Confidence 97.51% 97.25% 98.19% 98.06% 94.20% 

Table 5.1.​ Model results compared to the best prediction of mean and median estimate baseline 

In order to test if the result obtained was significantly better than the baseline,              
gensim-bi-hway model was run once again on ​all_500_10 dataset, but now until the result on               
the training dataset didn’t show any improvement for five consecutive epochs. The Wilcoxon             
signed-rank test p-value for the model estimate deviations on validation datapoints (n=4917)            
compared to baseline estimate deviations was 4.30e-43 which proves that the model estimates             
were significantly better than the baseline estimates. Since (a) an error which truncated             
testing and validation subsets to the floor multiple of batch size was fixed after the               
hyperparameter optimisation process; and (b) although the author tried but didn’t achieve full             
reproducibility by fixing random seeds; the result when running the model with the same              
configuration for the second time was 8.27% which was lower than the one achieved in the                
parameter tuning process. The training (blue) and testing (green) curves are shown in Image              
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5.1 and the testing and validation predictions are visualised in Image 5.2. The human score of                
the model was 14 as shown in Image 5.5. 

 
Image 5.1​ Training (blue) and testing (green) loss curves of ​gensim-bi-hway​  model 

 

Image 5.2​ Testing (left, n=4917) and validation (right, n=4917) prediction plots 

Result The research goal is achieved since the the model estimates are significantly              
better than baseline estimates. 

Threats to validity The number of parameter tuning rounds was not proportional to              
hyperparameter search space sizes. For example ​spacy-1-hway model was run with 150            
evaluation rounds on each dataset with search space consisting of 2 uniformly distributed             
integer parameters (45 possible values each), 4 uniformly distributed floating point           
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parameters (infinite number of possible values) and 2 choice parameters (each with 2 possible              
values). At the same time the search space for ​gensim-2-hway model was substantially larger              
as shown in the table below, but the number of evaluation rounds was increased only by 50,                 
which means that a smaller partition of the possible combinations could be tested. Initially              
one of the hyperparameters (the optimiser type) had three possible values, but later when              
observing that it was almost never a good choice, it was excluded from the search space                
making the search space uneven even among the same architecture. 

Model Hyperparameter search space Estim. search  
space size 

Evaluation 
rounds 

Search 
space 
coverage Uniformly distr. 

integers 
Uniformly 
distr. float. 

Choice 

spacy-1-hway 2: 45 × 45 4: ∞​4 2: 2 × 2 8: 8.1e3 × ∞​4 150 1.9e-2 / ∞​4 

gensim-2-hway 6: 45 × 45  × 495 
× 14 ×12 × 15 

6: ∞​6 3: 2 × 2 
× 2 

15: 2.0e10 × ∞​6 200 10.0e-9 / ∞​6 

2: 3 × 4 denotes 2 parameters having 3 and 4 possible values consecutively  

Table 5.2​ Parameter tuning search space coverage of ​spacy-1-hway​  and ​gensim-2-hway​  models 

The results of the three ​gensim-...-hway model architectures were very similar and            
therefore it is not obvious that ​gensim-2-hway is the best model architecture. In the smallest               
datasets such as ​all_1000_20 which contained only 5,812 training datapoints and 1,937            
testing and 1,937 validation datapoints the result was volatile depending on how the data              
were split. This effect was especially strong because the testing and validation sets were              
truncated to 1,536 datapoints because of a data processing error which was discovered at the               
end of the experiment and due to time and financial constraints the models were not rerun. 

Even though the statistical test shows that the failure distributions of the baseline and              
the model are different the prediction plots indicate that the model did not make estimates               
higher than 7 hours. The author has tried to solve this issue in several ways, still it tends to                   
appear. When training the model and investigating the prediction plots of each epoch, the              
following was observed: in the first epoch the model predicted only a few values close to                
median estimate for all datapoints, then gradually expanded the prediction range. While the             
range was being expanded, the model also learned some of the testing data if it’s capability                
allowed it. Otherwise the points look more like random values in the plot, although the model                
was consistently outperforming the median estimate which means that the model had learned             
a few relationships between the input data and the labels. This can mean that there was a                 
weak correlation between the input data and the labels. 
 
Research Question 1 How much labeled data is publicly available, and how much is              
necessary to achieve the Goal? 

Solution An exhaustive search on the web for publicly available instances of the             
most popular project planning platform in software engineering was done. In total 32             
repositories were found containing more than 63,000 labeled and 2,000,000 unlabeled           
datapoints. Access to two commercial datasets was also obtained, and the author discovered             
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that the labeling coverage in commercial contexts can be up to 20 times higher than in                
publicly available data. A middle-sized company had more than 2.5 times the amount of              
labeled data than any of the organizations allowing public access to their data. This shows               
that for future projects more focus should be put on using commercial data. 

To see how the number of datapoints affects the estimation accuracy please refer to              
Image 5.3, in which training datapoint count (testing and validation datapoints excluded) is             
linked to the results of the five model architectures. Both data homogeneity and dataset size               
affect the estimation accuracy, which has to be taken into account when examining the graph               
because the datasets on which the models were tested had various homogeneity levels.             
However, it seems that at least 10,000 training datapoints are necessary to get better results.               
Smaller datasets are also more volatile to how the data is split in training, testing and                
validation sets. 

 
Image 5.3​ Training datapoint count and model accuracy 

Answer Although around 63,000 labeled datapoints are publicly available and they           
are not very different from commercial data, even middle-sized commercial companies own a             
much greater number of labeled data than publicly available repositories because the labeling             
coverage is much higher in commercial contexts. Using at least 10,000 training datapoints is              
suggested to achieve credible results. 

Threats to validity Although in this project publicly available data was collected            
from publicly available Jira instances, more data could be found in other publicly available              
systems which are used to store programming task descriptions, such as Redmine or GitHub.              
Even when some of the systems do not provide time tracking functionality, there are plugins               
available that enable this service on these platforms. 
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Research Question 2 What are the noise and heterogeneity levels in publicly available             
software development task descriptions and time reports, and how can they be            
decreased? 

Solution Noise levels in text descriptions can be reduced by examining the text and              
eliminating odd elements such as stack trace, code fragments and Jira markup tags. Some of               
the noise in the logged time can be eliminated by excluding outliers because some issues are                
used to track time of regular activities over a long period of time. 

The publicly available data contains data from projects using different technologies,           
and the time is reported by programmers with various productivity levels. Each organization             
may have their own style regarding how they report time on issues, such as reporting time                
only on the main task while executing the subtasks. Such heterogeneity and noise cannot              
easily be avoided. However, a constraint can be placed on the minimum number of words of                
task descriptions and the minimum project size. These measures increase the homogeneity of             
the data and therefore the estimation accuracy is also increased. However, when filtering out              
data the total number of datapoints is reduced, which negatively affects the estimation             
accuracy as already mentioned in the answer to Research Question 1. The optimal constraints              
for the main training dataset used in this research project were at least 10 words long task                 
descriptions and at least 500 labeled issues in a project, as shown in Table 5.3. Datapoint                
count is written in parentheses after average result of the five models. 

 1 words 10 words 20 words Average 

1 MPS 7.28% (54 642) 7.02% (44 499) 6.94% (35 966) 7.08% 

200 MPS 7.58% (41 686) 8.28% (32 598) 8.13% (25 145) 8.00% 

500 MPS 7.25% (32 754) 8.92% (24 585) 8.37% (19 992) 8.18% 

1000 MPS 7.20% (23 768) 7.03% (16 945) 4.17% (9 686) 6.13% 

Average 7.33% 7.81% 6.90%  

MPS - minimum project size, the minimum number of labeled datapoints in a project 
Table 5.3​ Homogeneity and size tradeoff in the main dataset 

To show that the results are not impacted by the similarity of the label distributions of                
testing and validation datapoints, absolute baseline differences were calculated. MAE of           
median of testing data prediction on testing data was chosen as testing baseline and MAE of                
median of testing data prediction on validation data was chosen as validation baseline. The              
Pearson correlation coefficient between the average result on the dataset and the absolute             
baseline difference is 0.6, which is a moderately positive correlation. This means that the              
models performed better on datasets which had higher baseline differences, and the better             
results were therefore most likely caused by the increased dataset homogeneity and not the              
label distribution similarities. The median differences are shown in Appendix 6. 

Answer Noise in the data can be decreased by removing code fragments, formatting              
markup etc. from task descriptions and eliminating outliers. Homogeneity can be increased            
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by filtering out tasks with short descriptions and projects containing few labeled datapoints as              
indicating that Assumption 1 and Assumption 2 might be true. 

Threats to validity (A) There is no proof that cleaning the text from code fragments               
and formatting tags actually increases the prediction accuracy. (B) When proving the effect of              
filtering out tasks with short descriptions or with small project size the comparing datasets              
should be of the same size and similar distribution. In the current research ​all_500_10 and               
all_500_20 datasets cannot really be compared because ​all_500_10 contains 23% more           
datapoints than ​all_500_20​ . Because of this unfortunate dataset choice one cannot distinguish            
if the accuracy decrease is because of fewer datapoints or longer descriptions. 
 
Research Question 3 Does learning word embeddings from unlabeled datapoints have           
an advantage over using publicly available word embeddings pretrained on general           
English text corpus? 

Answer Yes, a model using vector embeddings pretrained on general English texts            
was outperformed by models using word embeddings trained on text corpus of both labeled              
and unlabeled datapoints in 12 out of 12 cases. 

Threats to validity Only one type or pretrained vectors was used. Others might have              
higher quality. 
 
Research Question 4 What neural network configurations provide better results in           
software development task estimation from textual descriptions? 

Solution Most of the hyperparameters didn’t really converge to one value which            
would be constantly better than other values on several datasets for any of the architectures.               
There were not that many bad configurations as the reader might see from the confidence               
intervals in Table 5.1. The most volatile model to configuration changes was ​gensim-1-dense​ .             
The average value followed by the median value after slash and the standard deviation in               
parentheses of the three best configurations for each model on each dataset and each              
architecture is shown in the Table 5.4. Each table cell represents 36 configurations (12              
datasets × 3 best configurations). 

 spacy-1-hway gensim-1-hway gensim-bi-hway gensim-2-hway gensim-1-dense 

Embeddings 

Dimens. (5-500) 300 336 / 349 (102) 290 / 300 (118) 281 / 284 (103) 343 / 374 (114) 

Algorithm GloVe skip-gram: 36 skip-gram: 31 
CBOW: 5 

skip-gram: 36 skip-gram: 32 
CBOW: 4 

Min. repet. (1-15)  9 / 9 (4) 10 / 11 (3) 7 / 7 (4) 9 / 9 (4) 

Wind. size (3-15)  11 / 12 (3) 10 / 10 (3) 12 / 12 (2) 9 / 10 (3) 

Iterations (5-20)  13 / 14 (4) 14 / 14 (4) 13 / 14 (4) 12 / 13 (3) 

LSTM 

34 



Nodes (5-150) 90 / 89 (28) 91 / 85 (35) 80 / 78 (32) 69 / 62 (33) 56 / 53 (33) 

Rec. dropout % 
(0-70) 

33 / 35 (19) 39 / 36 (17) 34 / 37 (16) 40 / 38 (17) 29 / 24 (18) 

Rec. dropout 2 % 
(0-70) 

   25 / 23 (16)  

Dropout (0-70) 34 / 35 (17) 34 / 34 (13) 33 / 29 (18) 51 / 53 (13) 30 / 29 (18) 

Dropout 2 (0-70)    31 / 29 (17)  

Merge type   ave: 12 sum: 10 
concat: 7 mul: 7 

ave  

Context transformation network 

Blocks (5-150) 82 / 79 (37) 87 / 91 (38) 86 / 103 (46) 100 / 109 (39) 13 / 8 (10) 

Activation relu: 16 
tanh: 20 

relu: 16 
tanh: 20 

relu: 15 
tanh: 21 

relu: 22 
tanh: 14 

relu: 26 
tanh: 10 

Dropout % (0-70) 34 / 35 (18) 30 / 31 (19) 26 / 18 (21) 32 / 31 (20) 26 / 23 (20) 

Optimizer 

Type adam: 17 
rmsprop: 19 

adam: 21 
rmsprop: 15 

adam: 21 
rmsprop: 15 

adam: 16 
rmsprop: 20 

adam: 27 
rmsprop: 9 

Learning rate e-4 
(5-50) 

32 / 32 (10) 30 / 31 (10) 27 / 26 (13) 29 / 31 (11) 25 / 24 (13) 

Table 5.4​ Statistics on the model configurations with the highest accuracies 

Answer There were no particular configurations that consistently outperformed         
others. However, it seemed that word embeddings with dimensions from 172 to 457 obtained              
by skip-gram algorithm worked best. The optimal LSTM node count ranged from 23 to 126,               
and some recurrent and final dropout seemed to improve the model accuracy. 

Threats of validity Hyperparameters should not be averaged as in Table 5.4 because             
they work in combination e.g. a higher dropout value might compensate for higher node              
count in LSTM network because one reduces and the other one increases model capacity.              
Since the results of the best configurations from the three largest repositories were omitted              
because of the conclusion instability, these configuration preferences might apply only to            
models trained on cross-company datasets. Another threat is that the predefined           
hyperparameter ranges might be invalid. In addition, the learning rate parameter might be too              
greedy to get fast results. 
 
Research Question 5 Can the relationship between task textual descriptions and           
software development effort be transferred across projects and organizations? 

Solution This result should be considered with caution, please see threats of validity.             
The results used to answer this question have been excluded from the solutions of the other                
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research questions because of instability. To evaluate the synergies, the three datasets with             
the largest datapoint count along with all of their logical combinations were selected, and all               
5 model architectures were trained to predict task efforts in each of them. Tasks with               
descriptions shorter than 10 words were excluded. The results are summarized in Table 5.5.              
They support most of the conclusions made for Research Question 1. 

Dataset spacy-1-hway gensim-1-hway gensim-bi-hway gensim-2-hway gensim-1-dense 

exo-gzl-tdf 5.87% 6.39% 6.89% 6.69% 5.53% 

exo-tdf 2.67% 2.68% 4.20% 3.47% 2.79% 

exo-gzl 6.45% 6.59% 6.76% 5.55% 4.32% 

gzl-tdf 8.45% 10.37% 11.23% 10.26% 9.58% 

exo -1.97% -0.74% -0.52% 1.14% 1.19% 

tdf 1.57% 2.90% 1.31% -0.33% 1.80% 

gzl -3.47% 6.76% 5.98% 5.39% 6.95% 

Average 2.80% 4.99% 5.12% 4.60% 4.59% 

Confidence 97.02% 97.09% 97.10% 97.80% 95.73% 

Table 5.5​ Results on the three datasets with most labeled datapoints and their combinations 

To prove synergy effects when training the same model on several datasets as             
opposed to having a separate model for each dataset, the weighted accuracy of the individual               
models has to be lower than the accuracy of the model which is trained on merged datasets.                 
As shown in Table 5.6, in which model accuracies and labeled datapoint counts are depicted,               
the synergies were present in all cases.  

Condition acc(A) acc(B) acc(A) + acc(B) acc(A&B) Synergy 

exo+gzl < exo&gzl -0.18% (7 477) 4.32% (4 466) 1.50% (11 943) 5.93% (11 943) +4.43% 

exo+tdf < exo&tdf -0.18% (7 477) 1.45% (6 321) 0.57% (13 798) 3.16% (13 798) +2.59% 

gzl+tdf < gzl&tdf 4.32% (4 466) 1.45% (6 321) 2.64% (10 787) 9.98% (10 787) +7.34% 

exo&gzl + tdf < 
exo&gzl&tdf 

5.93% (11 943) 1.45% (6 321) 4.38% (18 264) 6.27% (18 264) +1.89% 

exo&tdf + gzl < 
exo&gzl&tdf 

3.16% (13 798) 4.32% (4 466) 3.44% (18 264) 6.27% (18 264) +2.83% 

gzl&tdf + exo < 
exo&gzl&tdf 

9.98% (10 787) -0.18% (7 477) 5.82% (18 264) 6.27% (18 264) +0.45% 

Table 5.6​ Cross-organization transfer learning synergies 
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The synergy was calculated as follows: 

 

The total synergy of the three datasets trained with one model as opposed to weighted               
accuracies of the three individual models each trained on one dataset was +4.79%. This              
shows one of the possible advantages of this model compared to a model predicting              
storypoints, because the model can be shared between several organizations. 

Answer There are indications of transfer learning synergies when training one model            
on several datasets approving Assumption 3.  

Threats to validity The author observed that because of the limited number of             
datapoints in the individual datasets, the results were highly dependent on how the training,              
testing and validation datasets were split. Therefore these results have to be used with caution               
and retested with larger datasets to obtain conclusion stability. 
 
Research Question 6 Are the results obtained when training the model on publicly             
available data applicable to commercial contexts? 

Solution Two of the model architectures were validated on commercial datasets.           
After filtering out programming tasks where time spent was less than 10 minutes and more               
than 16 hours, the datapoint count was reduced by approximately 10-20%. Tasks with short              
descriptions and projects with few labeled datapoints were not filtered out. Ten evaluation             
rounds were run for each dataset, and the results compared to those of corresponding results               
on the publicly available dataset are shown in Table 5.7. The ​gensim-1-hway model turned              
out to have higher accuracy in commercial context, but the accuracy differences with             
gensim-bi-hway​  model are minimal. 

Dataset Datapoints gensim-1-hway gensim-bi-hway Evaluation rounds 

First commercial 26 095 8.40% 8.15% 10 

Second commercial < 10 000 5.00% 4.89% 10 

Publicly available (all_1_1) 54 642 7.26% 7.50% 200 

Table 5.7​ Model evaluation results in commercial context 

The model predictions on the testing and validation datapoints of the first commercial dataset              
are shown in Image 5.4. Here the best model ​gensim-1-hway was used, and the training was                
done until the testing results stopped improving for five consecutive epochs. Unfortunately,            
the plot doesn’t show strong correlation between the predictions and the actual values. 

Answer ​The model evaluation in commercial context shows that the results obtained            
in this research are credible, however, they also indicate how dependent the accuracy is on               
the dataset used. 

Threats to validity The number of evaluation rounds are 20 times lower in             
commercial contexts than when training the model on publicly available data, which means             
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that the models might perform even better in commercial contexts than the data shows. One               
of the projects in the second commercial dataset contained task descriptions written in             
Latvian. Due to time constraints, the author didn’t exclude that project and it could have               
impacted the results negatively. 

  
Image 5.4.​ Model testing and validation predictions of the first commercial dataset (n=5219) 

 
Research Question 7 Is the estimation accuracy provided by the model sufficient to be              
used by businesses? 

Answer No, it is not sufficient as the estimates of human experts are much better               
than the model estimate as shown in Image 5.5. 

 

 
Image 5.5​ Model accuracy compared to human estimation accuracy 

Threats to validity The author didn’t prove that the median estimate is the best              
single number estimate possible when using MAE. The human estimate accuracy is just an              
assumption based on research done by Jørgenson (2014), which might differ from            
organisation to organisation.  
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Chapter 6 

Conclusion and Future Work 
The experiment conducted shows that word embeddings and recurrent neural networks can be             
used to build a model which learns to estimate the time necessary to complete programming               
tasks given their textual descriptions better than mean and median estimates. However, the             
estimation accuracy of the model is nowhere close to that of a human expert. There is enough                 
publicly available data available which can be used as a base for further research. The               
properties of publicly available data are not very different from the properties of commercial              
data, except for labeling coverage which is much lower. Commercial companies can provide             
access to great amounts of data under strict confidentiality agreements. The task can be made               
easier by eliminating tasks with very short textual descriptions and projects with very few              
labeled datapoints, however this is at the cost of reducing the size of the dataset. The                
accuracy of the model can be improved by learning word embeddings from unlabeled data as               
opposed to using pretrained word embeddings on general English text corpus. There are             
indications that when training the model on data from several companies transfer learning             
synergies are present. 

The future work can be divided into three directions. First, the accuracy of the current               
model can be increased through incremental improvements. Second, the idea of automated            
software task estimation can be foregone, and research effort can be spent on improving              
human estimation practices. Third, ideas from the current model can be used to develop a               
new model using different technology and architecture. 

 
If the current model is to be improved, here are a few ideas how it could be done: 
1. Making the word embeddings dynamic so that their weights get changed when training             

the model on the estimation task. 
2. Using word embeddings trained on general English texts to initialize word embedding            

pretraining; then improving them by pretraining on the text corpus of all programming             
task text descriptions. 

3. Testing if using all programming tasks to pretrain word embeddings, not only the ones              
from the projects that are being estimated, can increase the accuracy of the model. 

4. Trying GloVe algorithm for embedding pretraining along skip-gram and CBOW          
algorithms to see if the model accuracy is increasing. 
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5. First optimizing hyperparameters of embedding pretraining model to minimize         
embedding loss, and then for the rest of the model in a separate session. 

6. Experimenting with different batch sizes and tuning other parameters which are fixed in             
the current implementation. 

7. Focusing more on training the model on commercial datasets after getting some            
improvements on publicly available data. Gathering more commercial data and doing           
cross-company training. More publicly available data also could be found on other            
platforms which allow issue tracking functionality and has time tracking plugins. 

8. Although the author prototyped training the model on evenly distributed data, since the             
datasets were too small it didn’t improve the results. However, this idea could be              
revisited when more data is gathered from commercial contexts. 

9. Improving the conclusion stability of the model when training on smaller datasets by             
using different validation approaches. 

10. Narrowing the search space of hyperparameters by 10% margin of the minimum and             
maximum values of the best configurations. Trying to explore if any relationship exists             
between the training parameters. Choosing a random fixed value for hyperparameters           
that don’t seem to converge. They may have no impact on the result, but leaving them in                 
the scope increases its size exponentially. 

11. Trying to decode the inner state of the neural network to investigate if any improvements               
can be made based on the diagnostics. 

12. Making sure that testing and validation datasets have similar distributions with the            
training dataset. 

13. Eliminating projects with noisy input e.g. project in which task descriptions are written in              
a different language than in the rest of the repository. 

14. Training the model on task descriptions written in other languages. This may provide             
access to more data. 

15. Running the model with several random seeds to test it’s volatility to how the data is                
splitted. 

16. Fewer evaluation trials might be used so that the experiment is less computationally             
expensive, but then need to do research on the number of optimal trials. 

17. Using other loss functions such as MAPE or MSE. 
18. Investigating how the text cleaning process affects the estimation accuracy of the model.             

Justifying the choices with accuracy improvements. 
19. Make sure this method works in easier task estimating contexts such as when estimating              

support task severity. 
20. Using more advanced architectures employing convolutional neural networks to encode          

and transform the context. 
21. Improving the data fetching script by enabling multiprocessing support and optimizing           

the memory and processor/GPU usage by profiling. 
22. Eliminating cases when description field content duplicates the content of summary field. 
23. Improving the reproducibility of the model. 
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Although the author hasn’t spent much time gathering ideas for the second direction of future               
research, which is improving human expert estimates, combining the first and third direction             
seems the most promising. Here are some ideas for new approaches on solving the problem in                
new ways: 
1. Providing the model more of the information which is available to human experts.             

Developing support models which can learn product specifics, productivity factors,          
technology characteristics and the code base of the product. 

2. Using more of the data which is available in Jira, such as the comments and categorical                
properties of tasks. 

3. If the model provides somewhat usable results, invite companies to use the product for              
free in exchange to their commercial data which can be incorporated in the model, but               
not exposed to other companies. 
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Appendix 1:​ Project Brief 
 

MSc Thesis Project Brief 

Project title Automated Agile Task Estimation On Project Planning Platforms 

Student Mariss Tūbelis, Computer Science student at NTNU 

Supervisor Anders Kofod-Petersen, Deputy Director at Alexandra Institute 

Start date 15.01.2018 Finish date 11.06.2018 

 

Objective 

The objective of the project is to apply state-of-the-art artificial intelligence technology to 

agile software development task effort estimation. During the project a plugin for JIRA will 

be developed employing natural language processing and machine learning techniques. The 

goal is to develop a tool that permits greater accuracy and more desirable qualities than 

currently available solutions, such as ​Deckard​, ​Queckt​ and ​DEEP-SE​. 

 
Model Training 

In the ​first stage​ , the tool is trained on 40 000 software engineering tasks with reported time 

spent from open source projects. These tasks account only for 3% of the total number of 

issues in the open source projects. In the ​second stage​ , the relationship between work 

description and time spent on a task is captured from commercial software projects under a 

strict confidentiality agreement. So far, two companies have agreed to participate in the 

project allowing access to 44 000 issues with time spent reported accounting for 66% of the 

total issues tracked in their JIRAs. 

 
Confidentiality Rules 

The model is trained at the participating company’s office on a company-owned computer 

without Internet access according to a strict non-disclosure agreement. The student stores the 

machine learning model on a flash memory, which is handed over to the company for 

investigation after the training session. The company can then choose to withhold the flash 

memory if any rules are violated. The student is obliged to maintain secrecy for 5 years after 

the project completion date. The machine learning model exclusively captures the 

relationship between effort and its drivers in a form of numeric weights, ensuring that 
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operational and business matters that for competitive reasons have importance for the 

company are not compromised by reverse engineering methods. 

 
Technical Details 

Although some of the technical details may change during the project, the main idea is to 

convert textual task representations to word vectors and then feed them to a recurrent neural 

network thus obtaining unadjusted effort estimates. Categorical features such as assignee’s 

productivity may be used to enhance the estimation accuracy. A conceptual overview is 

depicted in the image below. 

 
 
Company Involvement 

The tool is mainly trained on tasks written in English with logged time spent. The companies 

are provided with concise instructions adjusted to the systems they use prior the training 

session. The total expected amount of time spent on collaboration activities does not exceed 

90 minutes, including the review of the confidentiality agreement and communication.  
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Appendix 2:​ Confidentiality Agreement with Collaborating Companies 
Translated from Latvian to English 

 
Confidentiality Agreement 

 
12 February 2018           Riga, Latvia 
 
Mariss Tūbelis, personal identity number in Latvia .., personal identity number in Norway ... (hereinafter               
referred to as the Student), address ... and 
... registered in Latvia with registration number ..., registered office ..., Riga, Latvia (hereinafter referred to as                 
the Company), 
which by virtue of the Articles of Association is represented by the member of its board ..., 
hereinafter each of them separately referred to as the “Party”, both of them collectively as the “Parties”, shall                  
enter into the following agreement (hereinafter referred to as the Agreement): 
 
1. The Company allows for the Student to study the Correlation between the characteristics of the tasks related                  
to the software development and the working time required for the task (Correlation), by means of the                 
information available from the information systems used in the Company (Confidential Information), within the              
framework of the Master's thesis of the Student, in which JIRA and TFS Project Planning Systems Plug-in for                  
Automated Labour Intensity Evaluation (Purpose) is developed in the Norwegian University of Science and              
Technology. 
2. The Student undertakes to use the Confidential Information only for the Purpose referred to in Paragraph 1 of                   
the Agreement.Use of the Confidential Information for other purposes is permitted only by virtue of a separate                 
written agreement. 
3. The Student undertakes not to disclose the Confidential Information to third parties. 
4. The commitments referred to in Paragraphs 2 and 3 of the Agreement shall be effective [for 5 years] after the                     
date of conclusion of the present Agreement. 
5. The Company shall provide access and the Student shall study the Confidential Information (Information               
Analysis) according to the following provisions: 

5.1. The Student undertakes not to abandon the Confidential Information on data storage devices or cloud                
service environments outside the Company premises or which the Company does not use for data storage                
during the Information Analysis; 
5.2. The Information Analysis is carried out at the Company premises; 
5.3. The Student may bring into the Company premises and use in the Information Analysis an artificial                 
intelligence tool, which is saved in flash memory and uses, inter alia, natural language processing and                
machine learning technologies; 
5.4. During the Information Analysis the Student saves in flash memory only and exclusively the explored                
Correlation in addition to artificial intellect tool; 
5.5. After the Information Analysis, the Student shall deliver the flash memory and access to the data                 
stored therein to the Company which shall carry out the flash memory test within three working days; 
5.6. If the Company finds that the Student has violated the Agreement during the flash memory test, the                  
Company shall retain the right to prevent the flash memory from returning to the Student; 
5.7. If the Company provides a computer for the Student for performance of the Information Analysis, the                 
Student shall not be entitled to bring data storage and processing devices into the Company premises with                 
the exception of the flash memory referred to in Paragraph 5.3: 
5.8. If the Company does not provide a computer for the Student for performance of the Information                 
Analysis, the Students uses his own data storage and processing device in the Information Analysis, which                
is subject to the same rules as the rules referred to in Paragraphs 5.3 to 5.6 of the Agreement regarding use                     
of the flash memory. 
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6. The commitments referred to in Paragraphs 2 and 3 of the Agreement shall apply to the entire Confidential                   
Information, which the Company reveals to the Student during the Information Analysis or communications              
related thereto, while does not apply to: 

6.1. The Correlation explored by the Student on the basis of the Confidential Information; 
6.2. The Information which, after conclusion of the Agreement, becomes public domain (except if it has                
been disclosed in breach of the Agreement); 
6.3. The Information already known to the Student and not subject to any non-disclosure obligations before                
the Company disclosed it to the Student; 
6.4. Unclassified information distributed by the Company within the framework of its economic activity              
and which is available in public domain. 

7. The Student in his Master's thesis may refer to the fact of the Information Analysis by reference to the name                     
of the Company only in the case when at least one Company has been involved in the research. 
8. The Student undertakes not to identify the Company, but to call it in another, fictional name when using the                    
Correlation in JIRA and TFS Project Planning System Plug-in development and describing the effects of the                
Information Analysis carried out at the Company on the Master's thesis research results. 
9. The Student undertakes to keep the Correlation in a form such as it is not possible to reproduce the                    
Confidential Information by using reverse engineering techniques. 
10. The conditions of the Agreement shall not apply to the cases where, in accordance with provisions of                  
regulatory enactments the Student shall be under obligation to provide information subject to specific procedure               
and amount to the persons, authorities and institutions, which in accordance with the powers specified in                
regulatory enactments shall be entitled to request and to receive such information in performance of their                
functions. 
11. The Parties may amend the Agreement with separate amendments in writing. Amendments to the Agreement                
shall constitute integral part of the Agreement. 
12. Any amendments to the Arrangement shall enter into force only after they have been signed by both Parties                   
and shall become an integral part of the Agreement. Oral amendments to the Agreement shall not be binding for                   
the Parties. 
13. If any paragraph of the Agreement is recognised as illegal or invalid, it shall not affect other provisions of                    
the Agreement. 
14. The Agreement has been drawn up and signed in duplicate, one original for each Party. 
15. The Agreement shall be drawn up and interpreted in accordance with the regulatory enactments of the                 
Republic of Latvia. 
16. Any disputes arising from compliance with the Agreement or with the confidentiality obligation shall be                
resolved between the Parties before courts of general jurisdiction in accordance with the procedures specified in                
regulatory enactments of the Republic of Latvia. 
17. The Agreement shall enter into force at the time of its signature. 
 
 

Signature: 
 

According to the Articles of Association ... 
representing, signed: ... 
 

Mariss Tūbelis 
 
_________________________ 
 
 

… 
 
_________________________ 
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Appendix 3:​ Publicly available JIRA repositories with at least 100 labeled datapoints 
 
Name Link Labeled issues Unlabeled issues Labeling coverage 

EXO jira.exoplatform.org 9 733 26 581 26.80% 

TDF jira.talendforge.org 9 086 91 690 9.02% 

GZL gazelle.ihe.net/jira 7 049 6 268 52.93% 

APC issues.apache.org/jira 6 953 754 693 0.91% 

JRA jira.atlassian.com 5 815 219 405 2.58% 

JBO issues.jboss.org 3 929 296 486 1.31% 

MRS issues.openmrs.org 2 252 14 068 13.80% 

EZZ jira.ez.no 2 156 23 470 8.41% 

PTH jira.pentaho.com 2 072 37 665 5.21% 

SPG jira.spring.io 1 859 61 303 2.94% 

MDB mariadb.atlassian.net 1 847 6 757 21.47% 

SNT issues.sonatype.org 1 612 44 198 3.52% 

NIH tracker.nci.nih.gov 1 586 10 630 12.98% 

OLS openlmis.atlassian.net 1 510 3 128 32.58% 

HIB hibernate.atlassian.net 1 018 22 998 4.24% 

SKP jira.sakaiproject.org 548 39 454 1.37% 

SEC jira.secondlife.com 520 6 037 7.93% 

MFG mifosforge.jira.com 506 9 913 4.86% 

ECS ecosystem.atlassian.net 469 26 606 1.73% 

OPC opencast.jira.com 454 11 402 3.83% 

HSC ticket.hilscher.com 415 6154 6.3% 

PCN jira.percona.com 409 8 218 4.74% 

MDL tracker.moodle.org 270 82 628 0.33% 

XWK jira.xwiki.org 251 23 398 1.06% 

KYL kylo-io.atlassian.net 226 1 935 10.46% 

DSP jira.duraspace.org 155 11 230 1.36% 

WSO wso2.org/jira 144 81 360 0.18% 

LNR projects.linaro.org 140 1 018 12.09% 

TPP thepluginpeople.atlassian.net 133 2 594 4.88% 

ONP jira.onap.org 121 12 659 0.95% 

ZNT zanata.atlassian.net 119 2 215 5.10% 

BQT bugreports.qt.io 117 98 640 0.19% 
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Appendix 4:​ Label distribution in commercial datasets 
 

 
Image A​ Time spent on programming tasks up to 16 hours in the first commercial dataset 

 

 
Image B​ Time spent on programming tasks up to 16 hours in the second commercial dataset  
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Appendix 5:​ Textual task descriptions length of labeled datapoints in commercial datasets 

 
Image A​ Labeled datapoint text length in the first commercial dataset 
 

 
Image B​ Labeled datapoint text length in the first commercial dataset 
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Appendix 6:​ Correlation test between baseline differences and average model results 
 

 

Dataset Average 
result 

Baseline Baseline 
difference 

Testing Validation 

all_1_1 7.28% 2.82 2.87 0.05 

all_1_10 7.02% 2.77 2.83 0.06 

all_1_20 6.94% 2.75 2.90 0.15 

all_200_1 7.58% 2.79 2.92 0.13 

all_200_10 8.28% 2.73 2.90 0.17 

all_200_20 8.13% 2.76 2.98 0.22 

all_500_1 7.25% 2.82 2.95 0.13 

all_500_10 8.92% 2.75 2.98 0.23 

all_500_20 8.37% 2.75 3.02 0.27 

all_1000_1 7.20% 2.77 3.03 0.26 

all_1000_10 7.03% 2.69 2.91 0.22 

all_1000_20 4.17% 2.83 2.88 0.05 

 
Pearson correlation coefficient between average results and baseline difference is 0.6066. 
 

 
Y = average result, X = baseline difference 
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