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Summary

A method for rapid evaluation of flux-type outputs of interest from solutions

to partial differential equations (PDEs) is presented within the reduced basis

framework for linear, elliptic PDEs. The central point is a Neumann-Dirichlet

equivalence that allows for evaluation of the output through the bilinear form

of the weak formulation of the PDE.

Through a comprehensive example related to electrostatics, we consider mul-

tiple outputs, a posteriori error estimators and empirical interpolation treat-

ment of the non-affine terms in the bilinear form. Together with the considered

Neumann-Dirichlet equivalence, these methods allow for efficient and accu-

rate numerical evaluation of a relationship µ → s(µ), where µ is a parameter

vector that determines the geometry of the physical domain and s(µ) is the

corresponding flux-type output matrix of interest.

As a practical application, we lastly employ the rapid evaluation of µ→ s(µ) in

solving an inverse (parameter-estimation) problem.
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Chapter 1

Introduction

1.1 A brief intro to the reduced basis method

For many engineering purposes, one is interested in the evaluation of certain

physical averages, or outputs of interest, defined as functionals of the solution

to a partial differential equation (PDE) that describes the underlying physical

problem. Often, the PDE is parametrised in the sense that the physical system

is configured by a parameter vector µ governing e.g. boundary conditions, ma-

terial properties, geometrical factors or loads. Given an output functional, l out,

which we shall assume to be linear and bounded, we write the output of inter-

est as s(µ) = l out
(
u(µ)

)
, where u is the solution of the PDE corresponding to the

parameter vector µ.

Consider the following situations:

• the parameter vector is unknown until just before the output is required

(real-time control),

• the output is wanted for many different parameter vectors (optimisation,

parameter estimation).

In the former context, computing a numerical approximation to u by a standard

(say spectral element) method and then evaluating l out(u) may not be possible

within the short space of time available. In the latter context, using a standard

method may be far too expensive in terms of computational cost. In both situ-

ations then, there is a premium on an alternative, faster method.

Let D ⊂ R
n , n ∈ N, be some admissible parameter space. Then, for a set of

parameter vector samples µ1, . . . ,µN ∈ D, assume that the corresponding PDE

1



1. Introduction

solutions u(µ1), . . . ,u(µN ) are already available. We shall think of these func-

tions as “snapshots” taken of u at different positions in parameter space. The

reduced basis (RB) method now exploits the fact that if u is smooth in the pa-

rameter, i.e., the manifold M = {u(µ) : µ ∈D} is smooth (which can be shown to

be the case under certain hypothesis [19]), it should be possible to construct a

good approximation uN (µ) ≈ u(µ) as a linear combination of only a few snap-

shots for any µ ∈ D, and hence arrive at a system of algebraic equations with

only a few degrees of freedom. To find the optimal (in the “energy-norm” sense)

linear combination, a standard Galerkin projection is used.

Hence, if the expense of precomputing “truth approximations” to the snapshots

– to which a standard finite or spectral element method is employed – can be

justified, the reduced basis method may, given any µ ∈ D, drastically speed up

the evaluation of the corresponding output of interest, s(µ).

1.2 Scope and overview

Our superior scope is to study and explore reduced basis techniques for partial

differential equations. We focus on the empirical interpolation method and its

applications to the reduced basis method for non-affine PDEs. We also develop

an efficient method for the evaluation of flux type output functionals, i.e., if uN

is the numerical approximation to the field variable in a domain Ω, then the

output functional is on the form

l out(uN ) =

∫

Γ

∂uN

∂n
ds,(1.1)

where Γ⊂ ∂Ω and ∂uN

∂n
denotes the outward normal derivative of uN .

We start in Chapter 2 with preliminaries that we will make use of throughout the

report. In particular, we consider certain theoretical aspects of a “Neumann-

Dirichlet equivalence” that will prove very useful when evaluating flux-type

output functionals.

Chapters 3, 4 and 5 are methodology chapters presenting the spectral element

(SE), reduced basis (RB) and empirical interpolation (EI) methods, respectively.

In Chapters 3 and 5, numerical examples are blended in to illustrate character-

istic properties of the methods.

In Chapter 6, we exemplify the previously presented methodology and present

a wide range of numerical results. The Neumann-Dirichlet equivalence and

the SE, RB and EI methods will all be building blocks in an elaborate example

2



1.3. A few remarks on notation

related to electrostatics. We also consider an inverse (parameter estimation)

problem, making the most of the rapid input-output forward evaluation pro-

vided by these blocks put together.

From the lack of relevant literature, it seems that flux-type output functionals

are rarely considered in the reduced basis context. In Chapter 6, our output of

interest is a matrix of flux integrals, evaluated by way of the Neumann-Dirichlet

equivalence from Chapter 2. As it turns out, this equivalence also readily al-

lows for rapid evaluation of the output functionals. In fact, by also invoking

empirical interpolation in our reduced basis approximation, our computations

may be decoupled in an “offline-online” procedure, where the online stage –

in which we, given any µ ∈ D, compute the “RB-EI” output of interest – is very

fast, and in particular independent of the computational complexity of the SE

“truth approximations”.

1.3 A few remarks on notation

To reduce the possibility of future confusion, let us spend a few lines here clar-

ifying some habits of notation.

Usually, vectors are denoted by an underline, e.g. v ∈ R
n . When we refer to

the i ’th element of v , we write (v)i . As convenience requires, we will at times

depart from this convention. One example, which we have already encoun-

tered, is the boldface parameter vector µ, which merits special attention when

we are working with parametrised PDEs. Another example is the reduced ba-

sis solution coefficients, written as uN ,1, . . . ,uN ,N , which are the elements of the

solution vector uN (i.e., we omit the underline and parenthesis for the coeffi-

cients). At any rate, there should be no large risk of confusion whenever we

deviate from our main rule.

As for vectors, we refer to element i , j of a matrix A by writing (A)i j . Note that

we do not denote matrices with an underline.

To particularly denote the parametric dependence of a function u = u(x, y)

upon a parameter vector, we write u(x, y ;µ), or simply u(µ) when there is no

need to emphasise the spatial dependence of u. For example, a reduced basis

approximation to u(µ) is written as uN = uN (x, y ;µ) = uN (µ), which is then not

to be confused with the corresponding vector of solution coefficients, denoted

by uN (µ).

On occasion, we use a right arrow to indicate asymptotic behaviour of a vari-

3



1. Introduction

able, e.g. a → b or a →∞. This notation is not to be confused with the expres-

sion µ→ s(µ), denoting the evaluation of s for the parameter vector µ, nor with

the left arrow used to denote assignment of values to variables in algorithm list-

ings.

4



Chapter 2

Preliminaries

2.1 Weak form of the Poisson problem

We shall consider several Poisson problems in this report, written strongly as

−κ∆u(x, y) = f (x, y) in Ω⊂R
2,(2.1)

along with Dirichlet,

u(x, y) = g (x, y) on ΓD ⊆ ∂Ω,(2.2)

and Neumann,

κ
∂u

∂n
(x, y) = ρ(x, y) on ΓN ⊆ ∂Ω,(2.3)

boundary conditions, where κ ∈ R, ΓD 6= ; and ΓD ∩ΓN = ;. We shall further

assume that f ∈ L2(Ω), g ∈ L2(ΓD) and ρ ∈ L2(ΓN), where we by L2(Π) denote

the usual space of square integrable functions over Π.

To derive the weak formulation of (2.1)–(2.3), we first define the spaces

X (Ω)
def
=

{
v ∈ H 1(Ω) : v |ΓD

= 0
}
,(2.4)

X D(Ω)
def
=

{
v ∈ H 1(Ω) : v |ΓD

= g
}
,(2.5)

where H 1(Ω) denotes the usual Sobolev space [3, 14, 25] of all functions belong-

ing to L2(Ω) whose all first order derivatives also belong to L2(Ω). Note that

in the case of homogeneous Dirichlet boundary conditions (g ≡ 0), we have

5



2. Preliminaries

X = X D. In the following, we may on occasion suppress the dependence of

function spaces upon Ω whenever no ambiguity may arise.

We arrive at the weak formulation of (2.1)–(2.3) by multiplying (2.1) with a test

function v ∈ X , integrating and applying the Green’s identity [25]

−

∫

Ω

v∆u dΩ=

∫

Ω

(∇u)T
∇v dΩ−

∫

∂Ω
v
∂u

∂n
ds.(2.6)

Here, ∂u
∂n

denotes the outward normal derivative of u and ds the boundary mea-

sure on ∂Ω. The weak formulation then reads: Find u ∈ X D such that

κ

∫

Ω

(∇u)T
∇v dΩ

︸ ︷︷ ︸
=a(u,v)

=

∫

Ω

f v dΩ+

∫

ΓN

ρv ds

︸ ︷︷ ︸
=l (v)

, ∀v ∈ X .(2.7)

More often, we will write the problem abstractly in terms of the bilinear form

a(·, ·) : X D × X → R (linear in each of its arguments) and the linear functional

l (·) : X →R.

2.2 Norms and inner-products

The standard L2, H 1 and X inner-products are, respectively,

(u, v)L2
def
=

∫

Ω

u2 dΩ, (u, v)H 1
def
=

∫

Ω

|∇u|2 +u2 dΩ, (u, v)X
def
= a(u, v),(2.8)

with associated norms

‖u‖L2
def
=

√
(u,u)L2 , ‖u‖H 1

def
=

√
(u,u)H 1 , ‖u‖E

def
=

√
(u,u)X ,(2.9)

where the latter is often referred to in literature as the “energy norm”. It can be

shown [3] that whenever u is not a constant function, the energy-norm defined

by a(·, ·) in (2.7) and the H 1-norm are equivalent. On (rare) occasion, we will

also make use of the infinity norm

‖v(x)‖L∞(Ω)
def
= sup

x∈Ω
|v(x)|.(2.10)

Frequently, we shall invoke the Cauchy-Schwarz inequality [11]

∣∣(v, w)
∣∣≤

(
(v, v)

)1/2(
(w, w)

)1/2
,(2.11)

valid for all v, w ∈ X whenever (·, ·) is an inner-product over X .

6



2.3. Gauss-Lobatto-Legendre Quadrature

2.3 Gauss-Lobatto-Legendre Quadrature

Let Ω̂ = (−1,1)× (−1,1) ⊂ R
2. For numerical evaluation of integrals, we use the

Gauss-Lobatto-Legendre (GLL) quadrature formula

∫

Ω̂

f (ξ,η)dΩ̂≈

P∑

α=0

P∑

β=0

ραρβ f (ξα,ξβ),(2.12)

where ξα, 0 ≤ α≤ P , are the GLL-nodes and ρα, 0 ≤ α≤ P , are the GLL-weights

[25]. The formula (2.12) is exact for f (ξ,η) ∈P2P−1(Ω̂), i.e., the space of polyno-

mials of degree 2P −1 or less in each spatial direction.

We may define Sobolev spaces Hσ for any real σ (see e.g. [3]). Suffice it here to

say, somewhat loosely, that Hσ denotes the space of all square integrable func-

tions whose all σ-order derivatives are also square integrable. Let IP u be the

unique polynomial of degree P interpolating u in the tensorised GLL-nodes. If

u ∈ Hσ with σ> 3/2, it can then be shown [3] that

‖v −IP v‖H 1 ≤ c(σ)P 1−σ,(2.13)

where c(σ) is independent of P . Hence, for smooth integrands, GLL-quadrature

will be “infinite-order” accurate.

2.4 Existence and uniqueness of a weak solution

First, let us formally establish the meaning of a few key terms. Let Z be a Hilbert

space [11] equipped with the norm ‖ · ‖, and let a(·, ·) : Z × Z → R be a bilinear

form. We then say that a is coercive provided there exists a “coercivity constant”

α= inf
w∈Z

a(w, w)

‖w‖2
> 0,(2.14)

and continuous if there exists a “continuity constant”

0 < γ= sup
w∈Z

sup
v∈Z

a(w, v)

‖w‖‖v‖
<∞.(2.15)

By Z ′, we shall denote the dual space of Z , i.e. the space of bounded linear

functionals over Z .

It is standard to ensure the existence of a solution to the problem (2.7) by ap-

pealing to the Lax-Milgram Theorem [3, 14, 25]. As we frequently rely on this

theorem in the subsequent chapters, we include it (without proof) below.

7



2. Preliminaries

Theorem 2.1 (Lax-Milgram (existence and uniqueness)).

Let Z be a Hilbert space with norm ‖ · ‖, a(·, ·) : Z × Z → R a coercive and con-

tinuous bilinear form and assume l ∈ Z ′. Then, there exists a unique u ∈ Z such

that

a(u, v) = l (v), ∀v ∈ Z .(2.16)

Proof. The reader is referred to e.g. [14] or [25] for a proof.

For the spaces X and X D defined in (2.4) and (2.5), respectively, note that The-

orem 2.1 only explicitly covers homogeneous problems, i.e. problems in which

the solution space, X D, coincides with the space of test functions, X . This is

automatically the case when either ΓD =; or the boundary data g is identically

zero (of course, for ΓD =;, coercivity of a fails).

If we assume g not identically zero and let uD denote the lifting of g into Ω (that

is to say, uD is defined on all of Ω and uD|∂Ω = g ), we may write u = uD +u0

where u0 ∈ X . Hence, we may instead consider the homogeneous problem:

Find u0 ∈ X such that

a(u0, v) =−a(uD, v)+ l (v), ∀v ∈ X ,(2.17)

which, according to Theorem 2.1, admits a unique solution whenever the right

hand side, (−a(uD, v)+ l (v)), belongs to X ′. It can be shown that this is the

case if g is sufficiently regular, and in particular for g ∈ L2(ΓD). In fact, the

assumption g ∈ L2(ΓD) can be somewhat relaxed [25].

In the case that a(·, ·) is symmetric, the Riesz Representation Theorem is suffi-

cient to show the existence and uniqueness of a weak solution.

Theorem 2.2 (Riesz Representation).

Let Z be a Hilbert space equipped with the inner-product (·, ·) and let r ∈ Z ′.

Then there exists a unique element w ∈ Z such that

(w, v) = r (v), ∀v ∈ Z .(2.18)

Proof. The reader is referred to [14] for a proof.

2.5 Evaluation of flux-type output functionals

In Chapter 6, we shall consider a flux-type output of interest from the reduced

basis solution of a PDE. It seems from the lack of relevant literature that our par-

8



2.5. Evaluation of flux-type output functionals

Ω

Γ1

Γ3

Γ2

Γ3

Figure 2.1: Ω⊂R
2

ticular type of output functional – allowed for by a “Neumann-Dirichlet equiva-

lence”, discussed below – is previously unconsidered within the RB framework.

In this section, we first describe the technique through an example and then

state two lemmas making for some theoretical rigour.

Let Ω be a two-dimensional domain with boundary ∂Ω = Γ1 ∪Γ2 ∪Γ3 (e.g. the

domain depicted in Figure 2.1). For simplicity, we consider the Laplace prob-

lem

∆u = 0 in Ω,

u = g1 on Γ1,

u = g2 on Γ2,

∂u

∂n
= 0 on Γ3,

(2.19)

where g1 ∈ L2(Γ1) and g2 ∈ L2(Γ2).

Now, let Y ⊆ H 1 be a Hilbert space and define the function spaces

Z =
{

v ∈ Y : v |Γ1 = v |Γ2 = 0
}

,(2.20)

Z D
=

{
v ∈ Y : v |Γ1 = g1, v |Γ2 = g2

}
,(2.21)

and the bilinear form

a(u, v) =

∫

Ω

∇v ·∇u dΩ.(2.22)

We then state the weak problem: Find uw ∈ Z D such that

a(uw, v) = 0, ∀v ∈ Z .(2.23)

9



2. Preliminaries

An equivalent homogeneous formulation is: Find u0
w = uw −uD ∈ Z such that

a(uw, v)
def
= 0, ∀v ∈ Z ,(2.24)

where uD = ug1 +ug2 ∈ Z D is a lifting of the Dirichlet data given by g1 and g2 to

Ω with ug1 |Γ2 = 0 and ug2 |Γ1 = 0. We assume that the problem (2.23) admits a

unique solution under the assumptions of Theorem 2.1.

The space Y in (2.20)–(2.21) is either equal to H 1, in which case (2.23) is the

weak formulation of (2.19) and uw is the corresponding weak solution (which

we also refer to as the exact solution), or a discrete subspace of H 1, in which

case uw is a numerical approximation of u. When we intentionally refer to the

exact solution (that is, when Y = H 1), we omit the w subscript.

Now, assume that our output of interest is the average outward flux through Γ2,

given by the flux integral

l out(uw) =−

∫

Γ2

∂uw

∂n
ds,(2.25)

where we without loss of generality have assumed that Γ2 is of unity length. The

obvious thing to do next is to solve (2.23), evaluate l out(uw) by differentiating

uw, finding its normal derivative and then integrate along Γ2. This procedure

however, is subject to numerical differentiation and integration, and we may

thus add to the output an additional numerical error. Furthermore, and par-

ticularly in the case of a curved boundary, the computation of ∂uw

∂n
can be quite

tedious to carry out as well.

We now look at an alternative to this “direct” output evaluation, and consider

to this end the modified problem

∆u = 0 in Ω,

u = g1 on Γ1,

∂u

∂n
= q on Γ2,

∂u

∂n
= 0 on Γ3,

(2.26)

which is identical to the original problem (2.19) except for the replacement

of the Dirichlet condition on Γ2 with a Neumann condition. Of course, if we

choose q as the outward normal derivative across Γ2 of the solution to the orig-

inal problem, the solution to (2.19) and (2.26) are identical.

Next, let

Z̃
def
= Z ∪W,(2.27)

10



2.5. Evaluation of flux-type output functionals

where

W
def
=

{
v ∈V : v |Γ1 = 0, v |Γ2 6= 0

}
,(2.28)

and V ⊆ H 1 is a Hilbert space. Note that any v ∈ V which is identically zero

on Γ1 and not identically zero on Γ2 is admissible. In the expanded space Z̃ ,

we thus no longer enforce an essential Dirichlet condition on Γ2. In general, V

shall be different from Y .

We now state a (homogeneously written) weak problem: Find ũ0
w = ũw−ug1 ∈ Z̃

such that

a(ũw, v) = l (v), ∀v ∈ Z̃ ,(2.29)

where

l (v) =

∫

Γ2

q̃v ds.(2.30)

Here, a(·, ·) is given in (2.22) and ug1 is a lifting of the boundary data g1 to Ω. If

q̃ = q and Y =V = H 1, (2.29) is the weak formulation of (2.26) and ũw = uw = u

is the corresponding exact solution. On the other hand, if Y and V are discrete

subspaces of H 1, ũw is a discrete approximation to the solution of (2.26). In

general, q̃ shall be different from q .

Let us (until further notice) consider the particular case g2 = 0 = ug2 . We first

state

Lemma 2.1.

Assume that g2 is identically zero. If there exists a function q̃ ∈ L2(Γ2) such that

ũw|Γ2 = uw|Γ2 (= 0), then ũw = uw in Ω.

Proof. By (2.29), it is clear that a(ũw, v) = 0 for all v ∈ Z as Z ⊂ Z̃ and the term

on the right hand side vanishes for all v ∈ Z .

Next, as ũw|Γ2 = ũ0
w|Γ2 = 0, ũ0

w can have no component in W by the definition

(2.28) and hence ũ0
w ∈ Z . But then ũw = ũ0

w +ug1 ∈ Z D, and thus by uniqueness

of the solution to the original problem (2.23), ũw = uw.

Consider the case in which Y = H 1, i.e., when uw = u is the exact solution to

(2.23). Under the assumptions of Lemma 2.1, u is also the exact solution to

the modified problem (2.29) and hence q̃ =
∂u
∂n

(= q) on Γ2 (to be precise, ∂u
∂n

=

q̃ almost everywhere on Γ2 [25]). In this case, we may evaluate the output of

interest through the bilinear form as

l out(u) =−

∫

Γ2

∂u

∂n
ds =−

∫

Γ2

q̃ ·1ds =−l (v⋆) =−a(u, v⋆),(2.31)

11



2. Preliminaries

for any function v⋆ ∈V ⋆ ⊂ Z̃ , where

V ⋆ def
=

{
v ∈W ⊂ Z̃ : v |Γ2 = 1

}
.(2.32)

Now assume Y to be a discrete space, and thus uw is only a numerical approx-

imation to u. Due to the weak imposition of the Neumann condition through

the bilinear form in (2.29), q̃ will in general be different from the outward nor-

mal derivative of uw (or ũw), i.e. q̃ 6=
∂uw

∂n
onΓ2. However, as an approximation to

the flux integral of (2.25), we may still choose to evaluate the numerical output

of interest through the bilinear form as

l out
app(uw) =−a(uw, v⋆), v⋆

∈V ⋆.(2.33)

Under the assumptions of Lemma 2.1, we have uw = ũw and see that

(2.34) l out
app(uw) =−a(uw, v⋆) =−a(ũw, v⋆) =−

∫

Γ2

q̃v⋆ ds

≈−

∫

Γ2

∂ũw

∂n
ds =−

∫

Γ2

∂uw

∂n
ds,

where we in the third equality invoke the problem definition (2.29). The im-

mediately arising question is: if q̃ 6=
∂uw

∂n
, how well does l out

app(uw) approximate

the output of interest l out(u) =
∫
Γ2

∂u
∂n

ds? Recalling that l out(u) = a(u, v⋆), it is

straightforward to obtain the error estimate

∣∣l out
app(uw)− l out(u)

∣∣=
∣∣a(uw, v⋆)−a(u, v⋆)

∣∣

=
∣∣a(u −uw, v⋆)

∣∣

≤ ‖u −uw‖E ‖v⋆
‖E ,

(2.35)

where we in the last step invoke the the Cauchy-Schwarz inequality. Hence, if

uw → u and ‖v⋆‖E is bounded, the output error decays at least linearly with the

energy norm of the error in the field variable.

We now make the obvious, but rather critical, note that we never actually solve

the problem (2.29), and hence that the evaluation (2.33), and therein the choice

of v⋆, does in fact define the “minimum required” expansion X̃ ⊃ X , given in

(2.27)–(2.28). In actual practice, we thus compute the discrete solution uw of

the original problem (2.23) and compute the numerical output from (2.33).

In general, the function q̃ , and consequently l out
app, will depend on the choice of

v⋆. We derive the following result.

12
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Lemma 2.2.

For the problem (2.23) and under the assumptions of Lemma 2.1, two choices v⋆

1

and v⋆

2 for v⋆ in (2.33) are equivalent if w⋆ = v⋆

1 − v⋆

2 ∈ Z , and thus yield the

same result when evaluating the output (2.33). On the contrary, this is not in

general true if w⋆ ∉ X .

Proof. The proof is a simple consequence of the original problem definition

(2.23), as

a(uw, v⋆

1 )−a(uw, v⋆

2 ) = a(uw, w⋆) = 0 if w⋆
∈ Z .(2.36)

On the other hand, if w⋆ ∉ Z , then a(uw, w⋆) is not (in general) zero. Hence, the

output evaluation (2.33) does in general depend on the choice of v⋆ ∈V ⋆.

Confined within the spectral element method framework, it seems natural to

choose v⋆ as a polynomial of the same degree as the basis functions, and thus

V = Y . Then we always have w⋆ ∈ Z , and thus every choice of v⋆ is equiva-

lent by the previous lemma. In contrast, this is not true for the RB method. In

Chapter 6 we shall consider examples of RB output evaluation with alternative

choices of v⋆.

When the boundary data on Γ2, g2, is not identically zero, the arbitrarity of v⋆

“fails” at an earlier stage. Following the path of the proof of Lemma 2.1, we

assume the existence of q̃ ∈ L2(Γ2) such that ũw|Γ2 = uw|Γ2 = g2. Clearly, we

still have a(ũw, v) = 0 for all v ∈ Z . However, ũw must now have a nonzero

component in W in order to represent the nonzero data on Γ2. But then, we

cannot in general conclude ũw ∈ Z D, and thus ũw = uw, unless V = Y .

Finally, we note that the error estimate (2.35) holds without regard to the choice

of v⋆.
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Chapter 3

The Spectral Element (SE) method

The spectral element (SE) method, introduced in 1984 by A. T. Patera [21], is a

member of the finite element methods family. By using only a few high-order

elements, the method yields a high order of convergence while maintaining the

geometrical flexibility of a standard low-order (e.g. linear or quadratic) finite

element method.

In Chapter 6, we will employ the SE method in the construction of snapshots

for a reduced basis approximation. However, as the method itself exhibits an

interesting area of study, we will in this chapter explore it both theoretically

and numerically.

We start by stating some of the basics of the spectral element method regarding

formulation and numerical accuracy.

3.1 Spectral element discretisation

We consider the discretisation of a Poisson problem, abstractly written as: Find

u ∈ X D(Ω) such that

a(u, v) = l (v), ∀v ∈ X (Ω).(3.1)

Here, a(u, v) =
∫
Ω
∇u · ∇v dΩ is symmetric, continuous and coercive, l (v) is a

bounded and linear functional (see Section 2.1) and X and X D are defined in

(2.4) and (2.5), respectively.

In the following, we assume that the physical domain Ω admits partitioning
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3. The Spectral Element (SE) method

into a connected union of K subdomains,

Ω=∪
K
k=1Ωk ,(3.2)

where each of the subdomains Ωk are (possibly) deformed rectangles. As usual,

Ω = Ω∪ ∂Ω is the closure of Ω. We then define a reference or computational

domain

Ω̂
def
= (−1,1)× (−1,1),(3.3)

and assume that there from each physical subdomain exists a continuous one-

to-one mapping onto the reference domain, formally

Fk : Ω̂→Ωk , 1 ≤ k ≤ K .(3.4)

The discretisation of (3.1) is carried out by choosing finite-dimensional substi-

tutes XN ⊂ X for X and X D
N

⊂ X D for X D. We first define

v̂k (ξ,η)
def
= v(x, y)|Ωk

◦Fk , 1 ≤ k ≤ K .(3.5)

The reference function v̂k is thus the restriction of v to Ωk mapped onto Ω̂

through F
−1
k

. We shall refer to ξ,η as reference variables. As our discrete spaces,

we then define

XN (Ω)
def
=

{
v ∈ X (Ω) : v̂k ∈PP (Ω̂),1 ≤ k ≤ K

}
,(3.6)

X D
N

(Ω)
def
=

{
v ∈ X D(Ω) : v̂k ∈PP (Ω̂),1 ≤ k ≤ K

}
.(3.7)

The letter N will serve two purposes. Firstly, N denotes the SE discrete spaces

and solutions and secondly, N denotes the dimension of the discrete spaces,

i.e

N
def
= dim(X D

N
) = dim(XN ),(3.8)

and thus also the number of degrees of freedom associated with the numerical

problem. In two dimensions, N =O (P 2).

Finally, the discrete version of (3.1) can now be written abstractly as: Find uN ∈

X D
N

such that

a(uN , v) = l (v), ∀v ∈ XN .(3.9)
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3.2. Basis and algebraic formulation

3.2 Basis and algebraic formulation

The Lagrange interpolants through the P +1 GLL-nodes are given as

ℓi (ξ)
def
=

P∏

j=0
j 6=i

ξ−ξ j

ξi −ξ j
, i = 0, . . . ,P.(3.10)

As basis functions for the discrete spaces XN and X D
N

we choose the tensorised

Lagrange interpolants

φi j (ξ,η)
def
= ℓi (ξ)ℓ j (η), 0 ≤ i , j ≤ P.(3.11)

In particular, we then have φi j (ξm ,ξn) = δi m, j n and (3.11) thus defines a nodal

basis on the tensorised GLL-nodes. With Dirichlet boundary conditions, we

simply omit the basis functions corresponding to the nodes on ΓD. Note that

the basis functions are defined on the reference domain Ω̂.

Through the mappings Fk , we may write (3.9) in terms of the reference vari-

ables on Ω̂. Then writing the spectral element solution in terms of a linear

combination of the basis functions, and letting the “∀” in (3.9) hold for each

of the basis functions, we readily arrive at an algebraic formulation of the prob-

lem. So far, we have used a local (two-dimensional) numbering scheme, but

if we instead assume a global (one-dimensional, e.g. lexographical) number-

ing of the unknowns and basis functions, we may write the system of algebraic

equations as

AN u
N

= l
N

,(3.12)

where AN corresponds to the global spectral element stiffness matrix, l
N

is the

load vector and u
N

is the vector of unknown coefficients.

3.3 Implementation notes and operation count

Let us briefly consider some key points regarding the implementation of our

spectral element code. First, the integrals of the discrete formulation (3.9) are

approximated numerically using GLL quadrature. We thus introduce a quadra-

ture error to the numerical solution in addition to the already present approxi-

mation error. It is common to emphasise the quadrature evaluation of a and l

by writing (say) aN and lN , respectively (as in e.g. [2, 3, 22]). Even though we
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3. The Spectral Element (SE) method

always use GLL-quadrature to evaluate integrals, this notation is suppressed

throughout this report.

Second, owing to (2.13) and the fact that our basis functions (3.11) are analytic

(σ→∞), we assume that integration over the (P +1)2 tensorised nodes yields

a sufficiently accurate result when approximating the integrals in the stiffness

matrix. Hence, only one set of GLL nodes needs to be defined. Together with

the fact that the basis defined by (3.11) is nodal, this is particularly convenient

when implementing a spectral element code [26].

Third, the global SE stiffness matrix, AN , is never explicitly formed, and a local,

two-dimensional numbering scheme is used in actual practice. As a result, the

effect of acting upon a vector with AN (operator evaluation) can be computed

in only O (P 3) floating point operations (flops) for O (P 2) unknowns [26].

Finally, under the assumptions that a(·, ·) is symmetric and coercive, the dis-

crete operator is symmetric and positive definite. Hence, we can solve the sys-

tem of algebraic equations by the conjugate gradient (CG) method [5], wherein

operator evaluation and the Euclidean inner-product are the computational

“kernels”. Assuming niter iterations of the CG algorithm, we obtain a spectral

element solution in O (niterP 3) flops. Considering the N = O (P 2) unknowns,

this approach must be regarded as fairly efficient. In terms of memory require-

ments, we only need to store O (P 2) floating points as the full stiffness matrix is

never formed.

For comparison, note that a direct LU-solver, involving the explicit formation

of the global stiffness matrix, would require a computational cost of O (P 6) flops

and a storage requirement of O (P 4) floating points for O (P 2) unknowns.

3.4 A priori error estimates

3.4.1 Error in the field variable

Define the field error

eN

def
= u −uN ,(3.13)

and assume for now that the SE solution uN is free of quadrature errors.

Since XN ⊂ X , we have the Galerkin orthogonality property

a(eN , v) = 0, ∀v ∈ XN .(3.14)
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3.4. A priori error estimates

If we assume that a is continuous (with continuity constant ǫ2), coercive (with

coercivity constant ǫ1) and symmetric, we get (with (3.14))

(3.15) ǫ1‖eN ‖
2
H 1 ≤ a(eN ,eN ) = a(eN ,eN )+a(eN ,uN − v)

= a(u −uN ,u − v) ≤ ǫ2‖u −uN ‖H 1‖u − v‖H 1 , ∀v ∈ XN ,

or more formally

Theorem 3.1 (Céa’s Lemma).

Let u be the solution to (3.1) and uN the solution to (3.9). If a(·, ·) is symmetric,

coercive with coercivity constant ǫ1 and continuous with continuity constant ǫ2,

then

‖u −uN ‖H 1 ≤
ǫ2

ǫ1
‖u − v‖H 1 , ∀v ∈ XN .(3.16)

As a direct consequence of (3.14), uN will indeed be the best approximation to

u when the error is measured in the energy norm and a is symmetric.

Let us for a while consider the case when Ω= Ω̂. Let u ∈ Hσ(Ω̂) with σ≥ 1 and

consider its best polynomial approximation uP ∈PP (Ω̂) (when measured in the

H 1-norm) defined by

uP
def
= arg min

v∈PP (Ω̂)
‖u − v‖2

H 1 .(3.17)

It can be shown [4] that uP satisfies

‖u −uP‖H 1 ≤ c(σ)P 1−σ(3.18)

for every fixed σ ≥ 1, where c(σ) is independent of P . If u is analytic, i.e. we

may let σ→∞, ‖u −uP‖H 1 decays faster than any algebraic power of 1/P as P

increases, and thus an exponential rate of convergence is achieved.

Now applying Theorem 3.1, there clearly exists c̃ ∈R such that

‖u −uN ‖H 1 ≤ c̃(σ)P 1−σ,(3.19)

and the convergence rate is thus only limited by the regularity of u.

A similar result, which incorporates the contribution to the error from quadra-

ture integration as well, holds for the Poisson problem in the multi-rectangle

case. In particular, if the data f in (2.1) is smooth, as it will be in all problems

considered in this report, the quadrature error vanishes exponentially fast and
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3. The Spectral Element (SE) method

the convergence is again limited only by the regularity of u as in (3.19). Specifi-

cally, this result holds for Ω defined by (3.2) as long as the boundary ∂Ω is piece-

wise linear [2].

Two improved results, also incorporating quadrature errors, are also presented

in [2] in the case of homogeneous Dirichlet boundary conditions. It is shown

for smooth f and rectangular Ω that

‖u −uN ‖H 1 ≤ c(σ)P−1−σ,(3.20)

and if Ω comprises one or more corners with interior angle equal to 3π/2 that

‖u −uN ‖H 1 ≤ c(σ)P 1/3−σ,(3.21)

where c(σ) is independent of P . Further, it is shown that the upper bound for

the L2-error is of order one better than that for the H 1-error. That is to say,

‖u −uN ‖L2 ≤ c(σ)P−2−σ(3.22)

in the case of rectangular Ω, and

‖u −uN ‖L2 ≤ c(σ)P−2/3−σ(3.23)

in the case of non-convex corners.

The above results will be used for comparison when we analyse the error of

numerical solutions.

3.4.2 Error in the output of interest

Define the output error

eout
N

def
= l out(u)− l out(uN ),(3.24)

where l out is a linear and bounded output functional.

We now briefly describe the standard “Aubin-Nitsche” technique to argue that

the output converges quadratically with the energy-norm error of the field vari-

able. To this end, consider the adjoint problem of finding ψ ∈ X such that

a(v,ψ) =−l out(v), ∀v ∈ X .(3.25)
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The bilinear form a is the same as in the original, primal problem, and we have

replaced the right hand side functional l with the output functional −l out [20].

Correspondingly, we define the discrete problem: Find ψN ∈ XN such that

a(v,ψN ) =−l out(v), ∀v ∈ XN .(3.26)

Clearly, the field error eN defined in (3.13) belongs to X , and we thus have

l out(eN ) = −a(eN ,ψ) by (3.25). By also invoking Galerkin orthogonality and

linearity of l out, we get

eout
N

= l out(eN ) =−a(eN ,ψ) =−a(eN ,ψ−ψN ).(3.27)

Now, by the Cauchy-Schwarz inequality and continuity of a we arrive at

|eout
N

| ≤ a(eN ,eN )1/2a(ψ−ψN ,ψ−ψN )1/2
≤ c‖eN ‖H 1‖ψ−ψN ‖H 1(3.28)

for some constant c > 0. If we again consider the case Ω = Ω̂, assume u ∈ Hσ1

and ψ ∈ Hσ2 , then we may invoke (3.19) to get the estimate

|eout
N

| ≤ c1(σ1)c2(σ2)P 1−σ1 P 1−σ2(3.29)

for the error in the output. Assuming that ψN →ψ as fast as uN → u, we have

σ1 = σ2 and the output converges with the same rate as the squared H 1-norm

of the field variable.

In the particular case in which a is symmetric and l out = l , the problem is said to

be compliant [19]. This may for example be the case in a heat transfer (Poisson)

problem where a heat flux is imposed on a part of the boundary and the output

of interest is the average temperature over that particular boundary piece.

We note that with l out = l in (3.26), and assuming that a is symmetric, the

adjoint and primal problems coincide (apart from the minus sign), and the

quadratic output convergence thus directly follows.

Finally, let us make an important notice. The estimate (3.29) holds generally,

and depends merely on the definitions of a, l and l out. In particular, the result

is independent of the discrete space XN and the choice of variational method.

The recovery of the quadratic convergence (for the non-compliant case), is due

to the richness of the discrete SE XN .

3.5 Numerical examples: Two model problems

To put the SE method to the test, we consider in this section two Poisson model

problems to which the exact solutions are already explicitly known. Specifically,

our examples fit within the assumptions of the a priori estimates from Section

3.4. Each example is accompanied by numerical results.
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Figure 3.1: A qualitative plot of the SE solution to the model problem (3.30). Three

spectral elements are used. The polynomial degree is P = 22.

3.5.1 A problem with known analytic solution

Consider the Poisson problem

−∆u = f in Ω= (0,1)× (0,1),

u = 0 on ∂Ω,
(3.30)

with f = 13sin(3πx)sin(2πy). The exact solution u = sin(3πx)sin(2πy) is ana-

lytic, so we expect exponential convergence when a spectral element solver is

applied to solve the problem numerically.

With, as is standard, H 1
0 (Ω) denoting the functions of H 1(Ω) which vanish on

∂Ω, the weak formulation of (3.30) reads: Find u ∈ X = H 1
0 such that

∫

Ω

(
∇u

)T
∇v dΩ

︸ ︷︷ ︸
a(u,v)

=

∫

Ω

f v dΩ

︸ ︷︷ ︸
l (v)

, ∀v ∈ X .(3.31)

It is readily shown that a is coercive and bounded, and that l is bounded. Thus,

a unique solution to (3.31) exists by Theorem 2.1.

We now solve the problem numerically using the SE method. We use three

spectral elements and a polynomial degree 2 ≤ P ≤ 30 on each element. A qual-

itative plot of the SE solution to (3.30) with a polynomial degree of P = 22 is

shown in Figure 3.1.
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Figure 3.2: Errors as a function of the polynomial degree P for the SE solution to the

model problem (3.30). Three spectral elements are used. The plot shows exponential

convergence.

The convergence history of the numerical solution for increasing polynomial

degree is shown in Figure 3.2. As expected from the a priori estimates of Sec-

tion 3.4, both the energy-norm and L2-norm error exhibit exponential conver-

gence. The errors decay in steps, which seems reasonable due to the symmetry

properties of the solution. When the polynomial degree P is increased by one,

the decrease in the global error may depend strongly on whether P is odd or

even. An odd polynomial may decrease the error quite a lot, whereas an even

polynomial may be of little help – or vice versa.

3.5.2 A problem with known singularity solution

We shall now consider a problem for which the solution is known, but not an-

alytic. First, we construct a singular solution to the Poisson problem. To this

end, define

h(x)
def
=

{
e−1/x , x > 0

0, x ≤ 0
,(3.32)

and then

c(r )
def
=

h
(

9
10

− r
)

h
(

9
10

− r
)
+h

(
r − 1

10

) .(3.33)
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Figure 3.3: The L-shaped domain Ω for the model problem (3.35).

Now the “bump function” c(r ) ∈C∞(R) with the properties of being identically

equal to 1 for r < 1/10, identically equal to 0 for r > 9/10 and monotonically

decreasing in between. For a proof of the analyticity of c(r ), confer [12, pages

49-51].

Consider the L-shaped domain depicted in Figure 3.3 and define in polar coor-

dinates the function

us(r,θ)
def
= c(r )r

2
3 sin

(
2

3

(
θ+

π

2

))
.(3.34)

A singularity arises in
∂us

∂r
as r → 0, so us is clearly not analytic. Plots of us are

shown in Figures 3.4 and 3.5 (actually the plots show a spectral element solution

of (3.35)). The singularity is readily seen on the contour plot (Figure 3.5), as the

contour lines get increasingly close near the origin.

It can be shown [10, Lemma 2.4.1] that us satisfies

∆us = F in Ω,

us = 0 on ∂Ω
(3.35)

with F analytic over Ω. Given the angle ω= 3π/2 (Figure 3.3) and the expression

given for us in (3.34), it can also be shown, without the explicit knowledge of us

in (3.34), that us ∈ H 5/3(Ω) [10, Remark 2.4.6].

The abstract and discrete formulations of (3.35) are readily derived. We then

employ the SE method with three spectral elements as shown in Figure 3.3,
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Figure 3.4: Surface plot of the SE solution to the model problem (3.35). The polynomial

degree is M = 30 and three spectral elements are used.
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Figure 3.5: Contour plot of the SE solution to the model problem (3.35). The polyno-

mial degree is P = 30 and three spectral elements are used. The singularity is apparent

in the plot through extremely dense contour lines close to the origin.
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Figure 3.6: Errors as a function of the polynomial degree 2 ≤ P ≤ 100 for the SE solution

to (3.35). Three spectral elements are used. The plot shows algebraic convergence.

each with basis functions of degree P in each spatial direction. The numerical

solution for P = 30 is shown in Figures 3.4 (a “surface plot”) and 3.5 (a “contour

plot”).

With us ∈ H 5/3(Ω), an algebraic convergence of order −2/3 in the H 1 norm is

what we expect from the estimate (3.19) of Section 3.4. However, from the im-

proved results (3.21) and (3.23) due to Bernardi and Maday [2], we expect a con-

vergence rate of −4/3 in the H 1-norm and −7/3 in the L2-norm, respectively.

Figure 3.6 shows the error in H 1-norm (solid) and L2-norm (dashed) as func-

tions of the polynomial degree 2 ≤ P ≤ 100. For P ' 20, the decay seems to sta-

bilise and convergence rates of −1.39 and −2.66 are achieved for the H 1- and

L2-norms, respectively. Clearly then, our findings are in agreement with the

improved estimates (3.21) and (3.23) (as −1.3995 < −4/3 and −2.6641 < −7/3).

We also conclude that for our problem, these error estimates are quite sharp.
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Chapter 4

Reduced Basis (RB) Approximation

The reduced basis (RB) method may under certain assumptions provide a pro-

found speedup to the computation of solutions of parametrised PDEs. In short,

the idea is to tailor the approximation space specifically to the problem at hand

by precomputing the solution for a small number of selected parameter vec-

tors. These precomputed “snapshots” then span the discrete RB solution space,

with the objective to reduce the number of required basis functions and thus

the number of degrees of freedom.

In this chapter, we formulate the RB method for linear problems that are sym-

metric, coercive and parametrically affine. We describe a greedy algorithm for

the selection of snapshots, as well as a posteriori error estimation and a very

efficient offline-online computational procedure.

This chapter provides a short summary of the RB framework. For further read-

ing, confer e.g. [19].

4.1 Formulation

4.1.1 Parametric weak form

We first define our parameter space as

D ⊂R
p , p ∈N(4.1)

for a modest number of parameters p. Each element of the parameter vec-

tor µ ∈ D corresponds to a geometrical factor, a material property, a boundary
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4. Reduced Basis (RB) Approximation

condition or something else that in some way configures the underlying partial

differential equation.

Explicitly pointing out the parametrical dependence of the PDE, we now write

a(·, ·;µ) and l (·;µ) for our bilinear form and linear functional, respectively. The

parametric weak form becomes: For any µ ∈D, find u(µ) ∈ X such that

a(u, v ;µ) = l (v ;µ), ∀v ∈ X ,(4.2)

and evaluate the output of interest

s(µ) = l out
(
u(µ)

)
,(4.3)

where l out belongs to X ′.

4.1.2 Norms and inner-products

The definitions of the now µ-dependent energy-norm and corresponding X

inner-product follow naturally from the definitions in Section 2.2. Assuming

that a(·, ·;µ) is coercive for all µ ∈D and for all v, w ∈ X , it is clear that

(v, w)µ
def
= a(v, w ;µ)(4.4)

defines an inner-product on X . The associated parameter dependent energy

norm is

‖w‖E

def
=

√
(w, w)µ.(4.5)

Fixing µref ∈ D as a pre-defined reference parameter vector, we also define the

parameter independent inner-product

(v, w)µref

def
= a(v, w ;µref),(4.6)

and the associated parameter independent norm

‖w‖µref

def
=

√
a(w, w ;µref).(4.7)

For all µ ∈D, we finally define the coercivity constant

0 <α(µ)
def
= inf

v∈X

a(v, v ;µ)

a(v, v ;µref)
,(4.8)

and the continuity constant

0 < γ(µ)
def
= sup

v∈X
sup
w∈X

a(v, w ;µ)

a(v, w ;µref)
<∞,(4.9)

for a(·, ·;µ) with respect to the (·, ·)µref
inner-product.
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4.1. Formulation

4.1.3 Truth approximation

With µ1, . . . ,µN ∈D we first define

SN =
{
µ1, . . . ,µN

}
, 1 ≤ N ≤ Nmax(4.10)

as hierarchal sets of selected, distinct parameter vector samples. In general, the

corresponding snapshots u(µ1), . . . ,u(µN ) – which, in principle, shall span the

RB approximation space – are unknown and in the need of numerical approx-

imation. To this end, the spectral element method framework described in the

previous chapter is employed (of course, standard finite element methods may

equally well be considered).

For µ ∈D, let uNt (µ) be the spectral element truth approximation to u(µ), that

is to say, uNt (µ) ∈ XNt subject to

a(uNt , v ;µ) = l (v ;µ), ∀v ∈ XNt .(4.11)

The number Nt of degrees of freedom is assumed sufficiently large that the

error ‖u(µ)−uNt (µ)‖ is “practically zero” for any desired norm. We shall refer

to uNt (µ) as a truth approximation, as we assume that uNt (µ) and u(µ) (the

exact solution) are practically indistinguishable. Consequently, sNt (µ) and s(µ)

are also practically indistinguishable, and we shall refer to sNt (µ) as the truth

output approximation.

Good truth approximations are important for two reasons. Firstly because they

need to include as much information about the exact solution as possible to

ensure rapid convergence of the RB solution, and secondly because we will es-

timate and measure (for error control and convergence analysis) the error in

the RB solution relative to the truth approximations.

On occasion, we refer to uNt and sNt simply as the truth solution and output,

respectively.

4.1.4 Discrete formulation

Given the parameter vector sets SN , 1 ≤ N ≤ Nmax, we define the hierarchal

reduced basis approximation spaces as

XN = span
{
uNt (µ) : µ ∈ SN

}
, 1 ≤ N ≤ Nmax,(4.12)

where we assume the uNt (µ),µ ∈ SN , to be linearly independent. The discrete

RB problem is then formulated as: For any given µ ∈ D, find uN (µ) ∈ XN such
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4. Reduced Basis (RB) Approximation

that

a(uN , v ;µ) = l (v ;µ), ∀v ∈ XN ,(4.13)

and evaluate the RB output

sN (µ) = l out
(
uN (µ)

)
.(4.14)

With the RB field error and RB output error defined as

eN (µ)
def
= uNt (µ)−uN (µ)(4.15)

and

eout
N (µ)

def
= sNt (µ)− sN (µ),(4.16)

respectively, we state the following standard a priori optimality result.

Theorem 4.1.

If a(·, ·;µ) is symmetric, coercive and continuous, then for µ ∈D, uNt (µ) satisfy-

ing (4.11) and uN (µ) satisfying (4.13), we have

‖uNt (µ)−uN (µ)‖E = inf
w∈XN

‖uNt (µ)−w(µ)‖E .(4.17)

Moreover, if l out = l (i.e., the problem is compliant) we have

eout
N (µ) = ‖eN (µ)‖2

E
.(4.18)

Proof. Equation (4.17) simply states that uN is the optimal approximation in

the energy-norm sense, which is a direct consequence of Galerkin orthogonal-

ity (XN ⊂ XNt ) and the symmetry of a.

For a compliant problem, we arrive at (4.18) by first using the fact that

eout
N (µ) = l out

(
eN (µ)

)
= l

(
eN (µ)

)
= a(uNt ,eN ;µ),(4.19)

which follows from (4.11) as eN ∈ XNt . Then, by symmetry and Galerkin or-

thogonality, (4.18) follows.

If we let ẽN (µ) = u(µ)−uN (µ) and ẽout
N (µ) = s(µ)− sN (µ), we note that for any

norm on X we have

(4.20) ‖ẽN‖ = ‖u −uN‖ = ‖u −uNt +uNt −uN‖

≤ ‖u −uNt ‖+‖uNt −uN‖ = ‖eNt ‖+‖eN‖
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4.1. Formulation

and

(4.21) |ẽout
N | = |s − sN | = |s − sNt + sNt − sN |

≤ |s − sNt |+ |sNt − sN | = |eout
Nt

|+ |eout
N |

by the triangle inequality [11]. We thus readily see the importance of choosing

XNt rich enough that we for practical purposes can disregard the first term on

the right-hand sides.

4.1.5 Algebraic formulation

So far in this report, we have used a local, two-dimensional numbering of our

unknowns and basis functions. In the present context however, notation and

analysis become easier and more general if we use a global, one-dimensional

numbering scheme. In particular, we shall now write for our spectral element

basis functions ψi (x, y) for 1 ≤ i ≤ Nt . Implementationwise, however, we still

exploit the speedup and memory savings provided by a local, two-dimensional

numbering scheme.

Every function v ∈ XNt can now be written as

v =

Nt∑

i=1

viψi ,(4.22)

for some coefficients v1, . . . , vNt . Consequently, as a(·, ·;µ) is bilinear, we may

for any v, w ∈ XNt write

a(v, w ;µ) =
Nt∑

i=1

Nt∑

j=1

v j wi a(ψ j ,ψi ;µ),(4.23)

and

l (v ;µ) =
Nt∑

i=1

vi l (ψi ;µ).(4.24)

To ensure numerical stability of our computations and to bound the condition

number of the RB stiffness matrix [19], the snapshots uNt (µ1), . . . ,uNt (µN ) are

orthonormalised with respect to the µref-inner-product to yield an orthonor-

mal basis ζ1, . . . ,ζN for XN . For 1 ≤ n ≤ N , we thus have

ζn(x, y) =
Nt∑

i=1

ζn
i ψi (x, y),(4.25)
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4. Reduced Basis (RB) Approximation

for some coefficients ζn
1 , . . . ,ζn

Nt
. For 1 ≤ N ≤ Nmax, we may now write the RB

spaces as

XN = span{ζ1, . . . ,ζN }.(4.26)

The coefficients ζn
1 , . . . ,ζn

Nt
, 1 ≤ n ≤ N , are computed by way of a modified

Gram-Schmidt orthogonalisation [5] of the original snapshot coefficients.

If we write the RB solution uN (µ) as

uN (x, y ;µ) =
N∑

n=1

uN ,n(µ)ζn(x, y),(4.27)

where uN ,1, . . . ,uN ,N are the unknown coefficients, and let (4.13) be true for

each of the basis functions of XN , we arrive at the algebraic formulation

N∑

n=1

uN ,n(µ)a(ζn ,ζm ;µ) = l (ζm ;µ), 1 ≤ m ≤ N(4.28)

of the reduced problem. The above system is equivalent of solving

AN (µ)uN (µ) = l N (µ),(4.29)

where uN (µ) =
[
uN ,1(µ), . . . ,uN ,N (µ)

]T
∈ R

N is the unknown vector and the RB

stiffness matrix AN (µ) ∈ R
N×N and load vector l N (µ) ∈ R

N are given element-

wise as

(
AN (µ)

)
mn = a(ζm ,ζn ;µ) =

Nt∑

i=1

Nt∑

j=1

ζm
i ζn

j a(ψi ,ψ j ;µ), 1 ≤ m,n ≤ N ,(4.30)

and

(
l N (µ)

)
m = l (ζm ;µ) =

Nt∑

i=1

ζm
i l (ψi ;µ), 1 ≤ m ≤ N ,(4.31)

respectively, where a(ψi ,ψ j ;µ) and l (ψi ;µ) are the elements of the truth stiff-

ness matrix, ANt (µ), and load vector, lNt (µ), respectively. If the basis functions

for XN are precomputed, we may then for any new µ ∈ D assemble AN (µ) by

(4.30) and l N (µ) by (4.31), and then solve the presumably small system (4.29) to

obtain a RB solution. Note that for 1 ≤ N ≤ Nmax, AN is readily extracted from

ANmax as the upper left N ×N submatrix, due to the fact that X1 ⊂, . . . ,⊂ XNmax .

We now make two remarks. Firstly, under the assumption that M = {u(µ) : µ ∈

D} is smooth, we expect that a good approximation to u(µ) may be found in
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4.2. Offline-online procedure for affine problems

XN for any new µ ∈D, even for fairly small N . Typically, N =O (10). In contrast,

the number of unknowns associated with the spectral element system, Nt , is

likely to be very large as typical values for Nt are O (103) or even O (104) (indeed,

O (105) or O (106) degrees of freedom is not unusual in three-dimensional prob-

lems). Solving the system (4.29) then, is many times quicker than solving the

system resulting from application of the spectral element method.

Secondly, note that the straightforward assembly of AN (µ) and lN (µ) in (4.30)

and (4.31) require O (N 2
N

2
t ) and O (NNt ) floating point operations, respec-

tively. In actual practice however, we can often exploit either the sparsity of

the truth stiffness matrix ANt (the finite element case) or a local data represen-

tation (the spectral element case, see Section 3.3) to speed up the assembly of

AN . In any case, even when the basis functions are precomputed, the RB pro-

cedure still depends upon Nt in terms of computational cost. Fortunately, for

the important class of affine problems, it is possible to do all the Nt -dependent

computations in an offline-stage which is independent of the particular param-

eter vector for which to find the RB solution. We describe this computational

strategy in the next section.

4.2 Offline-online procedure for affine problems

For affine problems, it is straightforward to develop an offline-online computa-

tional procedure which allows all the Nt -complexity computations to be taken

care of as part of the preprocessing stage. While the offline stage is computa-

tionally very expensive, the resulting online stage – in which we, given anyµ ∈D

compute the RB solution – is extremely fast. In particular, the online procedure

is independent of Nt in terms of computational cost.

An affine problem meets certain requirements on the bilinear form a(·, ·;µ) and

linear functional l (·;µ). First, the bilinear form may be written affinely in func-

tions of the parameter vector as

a(·, ·;µ) =
Qa∑

q=1

Θ
q
a (µ)aq (·, ·),(4.32)

for a finite number Qa . Here, the aq (·, ·) are parameter independent bilinear

forms and the Θ
q
a (µ) are parameter dependent functions. We assume that Qa is

not too large, and that the parameter dependent functions are inexpensive to

evaluate.
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4. Reduced Basis (RB) Approximation

Analogously, the linear functional may be written as

l (·;µ) =
Ql∑

q=1

Θ
q

l
(µ)l q (·),(4.33)

for a modest number Ql , where the l q (·) are parameter independent forms and

the Θ
q

l
(µ) are parameter dependent functions.

From (4.30) and (4.32) it is now evident that

(
AN (µ)

)
mn =

Nt∑

i=1

Nt∑

j=1

ζm
i ζn

j a(ψ j ,ψi ;µ)

=

Nt∑

i=1

Nt∑

j=1

ζm
i ζn

j

( Qa∑

q=1

Θ
q
a (µ)aq (ψ j ,ψi )

)

=

Qa∑

q=1

Θ
q
a (µ)

Nt∑

i=1

Nt∑

j=1

ζm
i ζn

j aq (ψ j ,ψi )

︸ ︷︷ ︸
=(A

q

N
)mn

, 1 ≤ m,n ≤ N ,

(4.34)

or equivalently,

AN (µ) =
Qa∑

q=1

Θ
q
a (µ)A

q

N
(4.35)

for parameter independent N×N matrices A
q

N
. The approach for the right hand

side is analogous. From (4.31) and (4.33) we get

(
l N (µ)

)
m =

Nt∑

i=1

ζm
i l (ψi ;µ)

=

Nt∑

i=1

ζm
i

( Ql∑

q=1

Θ
q

l
(µ)l q (ψi )

)

=

Ql∑

q=1

Θ
q

l
(µ)

Nt∑

i=1

ζm
i l q (ψi )

︸ ︷︷ ︸
=(l

q

N
)m

, 1 ≤ m ≤ N ,

(4.36)

which is equivalent to

l N (µ) =
Qa∑

q=1

Θ
q
a (µ)l

q

N
(4.37)
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4.3. Snapshot sampling, a greedy algorithm

for parameter independent vectors l
q

N
∈R

N .

The offline-online procedure is thus: Offline, we compute A
q

N
for 1 ≤ q ≤ Qa

and vectors l
q

N
for 1 ≤ q ≤Ql . Online, we simply compute AN (µ) and l N (µ) by

(4.35) and (4.37) in O (Qa N 2) and O (Ql N ) flops, respectively, and solve the small

system (4.29). Presumably, N is small enough that a direct solver is the fastest

alternative, and hence (4.29) is solved in O (N 3) flops.

4.3 Snapshot sampling, a greedy algorithm

We now turn to the selection of parameter vectors for which to compute snap-

shot solutions. As our sets

SN =
{
µn

}N

n=1 , 1 ≤ N ≤ Nmax,(4.38)

of parameter vectors are hierarchal, we construct SN+1 from SN by including

one new parameter vector at the time. Of course, we may simply choose the

next vector manually, or randomly, from D. Even though such an approach

may, in fact, yield quite good results, it gives us little rigorous control of the

approximation properties of XN and hence of how good our reduced basis ap-

proximation will be.

An automatic and commonly used sampling procedure (in e.g. [22]) is a greedy

algorithm. We start by assuming that

∆
out
N (µ) ≥ |sN (µ)− sNt (µ)|(4.39)

is an upper bound for the RB output error for any µ ∈D (a posteriori error esti-

mation is considered in the next section).

In short, the greedy algorithm searches D for the parameter vector admitting

the maximum value of ∆N (µ), includes it in the parameter vector set and ex-

pands the approximation space accordingly. Of course, D consists of infinitely

many points, so we have to settle with a surrogate “training sample” Ξtrain ⊂D

of finite size. We assume that Ξtrain is fine enough that the behaviour of u(µ)

over Ξtrain is a good approximation of the behaviour of u(µ) over D.

Starting from a (say) randomly chosen initial parameter vector µ1 and corre-

sponding approximation space X1, the greedy algorithm constructs SN and XN

for 2 ≤ N ≤ Nmax in a way that at least in a sense is optimal. The procedure is

listed below as Algorithm 4.1.
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4. Reduced Basis (RB) Approximation

Algorithm 4.1 Greedy parameter selection

Choose µ1, compute uNt (µ1)

S1 ← {µ1}, XN ← uNt (µ1)

for 2 ≤ N ≤ Nmax do

µN ← arg max
µ∈Ξtrain

∆
out
N (µ)

SN ← SN−1 ∪µN

XN ← XN−1 ∪ span
{
uNt (µN )

}

end for

4.4 A posteriori error estimation

4.4.1 Energy norm error bound

First, we assume that we may explicitly find a lower bound αLB(µ) for the coer-

civity constant of a(·, ·;µ) with respect to the µref-norm, i.e.,

αLB(µ) ≤α(µ) = inf
v∈XNt

a(v, v ;µ)

a(v, v ;µref)
.(4.40)

Given the variational formulation (4.13) and a reduced basis solution uN (µ), we

also define the residual

r (v ;µ) = l (v ;µ)−a(uN , v ;µ), ∀v ∈ XNt .(4.41)

As r belongs to X ′
Nt

and a(·, ·;µref) defines an inner-product on XNt , we know

by the Riesz Representation Theorem (Theorem 2.2) that there exists a unique

ê(µ) ∈ XNt such that

a(ê, v ;µref) = r (v ;µ), ∀v ∈ XNt .(4.42)

We then state formally

Theorem 4.2.

For µ ∈D, the a posteriori error estimator

∆N (µ)
def
=

‖ê(µ)‖µref√
αLB(µ)

≥ ‖eN (µ)‖E ,(4.43)

where eN (µ) = uNt (µ)−uN (µ) and αLB(µ) is the coercivity lower bound defined

in (4.40).
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4.4. A posteriori error estimation

Proof. With v = eN in (4.42), the definition of the residual in (4.41) and the fact

that eN ∈ XNt , we get

a(ê,eN ;µref) = r (eN ;µ)

= l (eN ;µ)−a(uN ,eN ;µ)

= a(uNt ,eN ;µ)−a(uN ,eN ;µ)

= a(eN ,eN ;µ).

(4.44)

Then, by the Cauchy-Schwarz inequality,

a(eN ,eN ;µ) ≤ ‖ê‖µref
‖eN‖µref

.(4.45)

Finally, by letting v = eN in Equation (4.40), we see that

‖eN‖µref
≤

(
a(eN ,eN ;µ)

)1/2

αLB(µ)1/2
(4.46)

and thus

a(eN ,eN ;µ) ≤ ‖ê‖µref

(
a(eN ,eN ;µ)

)1/2

αLB(µ)1/2
,(4.47)

from which (4.43) readily follows.

For affine problems, an offline-online strategy for the computation of ‖ê‖µref

may also be developed, relying on the residual expansion (4.41) and the affine

expansions (4.32) and (4.33). Moreover, even though finding a coercivity lower

bound αLB is problem specific and not in general straightforward, a bound is

readily found for problems that are parametrically coercive (the aq (·, ·) and Θ
q
a

are positive). An offline-online strategy for the a posteriori error estimator al-

lows for i) rapid selection of snapshots during the greedy sampling procedure,

and ii) rapid verification of the RB solution (and output, as we shall see below)

in the RB online stage. For the details, the reader is referred to [19].

4.4.2 Output error bounds

For a compliant problem, i.e., a(·, ·;µ) is symmetric and l (·;µ) = l out(·;µ), we

can immediately deduce the “quadratic” bound

|sNt (µ)− sN (µ)| = l out(eN )

= a(eN ,eN ;µ)

≤∆
2
N (µ)

(4.48)
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4. Reduced Basis (RB) Approximation

for the error in the RB output. The bound (4.48) follows directly from the prob-

lem definition (4.13), the fact that eN ∈ XNt , Galerkin orthogonality and sym-

metry of a.

Generally, and of particular interest for non-compliant problems, the “Aubin-

Nitsche trick” considered in Section 3.4.2 for the SE method may be applied [23]

to obtain

|sNt (µ)− sN (µ)| = l out(eN )

≤
(
a(eN ,eN ;µ)

)1/2(
a(ψNt −ψN ,ψNt −ψN ;µ)

)1/2

≤∆N (µ)
(
a(ψNt −ψN ,ψNt −ψN ;µ)

)1/2
.

(4.49)

Here, ψNt is the truth solution to the dual problem: Find ψNt (µ) ∈ XNt such

that

a(v,ψNt ;µ) =−l out(v), ∀v ∈ XNt ,(4.50)

and ψN is the corresponding RB approximation: Find ψN (µ) ∈ XN subject to

a(v,ψN ;µ) =−l out(v), ∀v ∈ XN .(4.51)

We recall that for the spectral element method, the “quadratic” convergence

of non-compliant outputs is recovered as the SE approximation space, XN , is

rich enough that the primal and dual errors decay equally fast. As the RB space

XN is specifically tailored to the primal problem however, we cannot expect to

find ψN ∈ XN such that ψNt −ψN is small, and hence the RB output error is

proportional to ‖eN‖E .

However, as shown in [23], a quadratic RB output convergence rate may be re-

covered by including in XN not only snapshots of uNt , but of ψNt as well. It is

also possible to consider the adjoint problem separately [20, 23], with its own

RB approximation space. The latter approach is in general considered com-

putationally advantageous [23], as two small systems can be solved in the RB

online stage instead of a single, large system.
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Chapter 5

Empirical Interpolation (EI)

To fully exploit the speedup offered by the RB method, an efficient offline-

online computational procedure is required. In particular, the computational

complexity in the online stage should be independent of Nt . In Section 4.2 in

the previous chapter, we described such a decoupling of computations for an

affine problem. We recall the assumption of expansions of the bilinear form

a(u, v ;µ) and linear functional l (v ;µ) on the form

a(·, ·;µ) =
Qa∑

m=1

Θ
m
a (µ)am(u, v), and l (v ;µ) =

Ql∑

n=1

Θ
n
l l n(v),(5.1)

for finite numbers Qa and Ql .

The bad news is that although many real-life problems admit an affine expan-

sion, far from all do. With the Empirical Interpolation (EI) method however, it

is possible to recover the online computational Nt -independency.

The EI method was introduced in [1] and elaborated on in [9]. In this Chapter,

we start by examining the method as it is presented in [1, 9], first theoretically

and then numerically.

5.1 Motivation

To understand the implications of empirical interpolation to the RB method,

consider as an example the one-dimensional bilinear form given by

a(u, v ;µ) =

∫1

−1
τ(x;µ)

du

dx

dv

dx
dx.(5.2)
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For a general non-affine parameter dependent function τ it is not possible to

expand a on the form (5.1). The idea of the empirical interpolation method is

to instead approximate τ by an expansion

τ(x;µ) ≈ τM (x;µ) =
M∑

m=1

ϕ̃m(µ)τ(x;µEI
m).(5.3)

Here, the ϕ̃m(µ), depend only on µ, and the functions τ(x;µEI
1 ), . . . ,τ(x;µEI

M )

thus provide a set of “snapshots” of the non-affine function τ taken at certain

points in D.

If we substitute τ with τM in (5.2), the resulting bilinear form

aM (u, v ;µ) =

∫1

−1
τM

du

dx

dv

dx
dx(5.4)

is affine, and presumably a good approximation of the original bilinear form.

Thus, for the bilinear form aM , an offline-online decomposition is readily de-

veloped following the procedure from Section 4.2. On the downside, an addi-

tional error is introduced to the numerical solution due to the approximation

(5.3), and hence M may be required quite large. The assumption then, is that τ

is approximately affine in the sense that τM is a sufficiently good approximation

to τ for modest M .

Due to conditioning matters [1], τM is in practice expressed as

τM (x;µ) =
M∑

m=1

ϕm(µ)qm(x),(5.5)

where {qm}M
m=1 is an orthogonal basis for

WM
def
= span

{
τ(x;µEI

m)
}M

m=1.(5.6)

The EI method addresses i) the selection of parameter vectors µEI
1 , . . . ,µEI

M from

which to compute the snapshots, and hence the basis functions qm , and ii)

the computation of the coefficients ϕm(µ) given any new parameter vector µ.

The former is taken care of by a greedy selection process, while the latter are

computed by requiring that τM be an interpolant of τ at certain interpolation

nodes {t1, · · · , tM } which are, in fact, also chosen in a greedy manner. Moreover,

the stages i) and ii) conform to the offline-online procedure of the RB method;

the construction of qm (µ-independent) is done offline, while the evaluation of

the ϕ(µ) (µ-dependent) is quickly taken care of online.
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5.2. Interpolation algorithm

The EI method has been successfully embedded in the RB framework for non-

affine PDEs for a number of model problems, including problems that are time-

dependent and non-linear, in e.g. [1, 9, 15]. Recently, it has also been employed

in RB treatment of the Navier-Stokes equations with non-affine parametrical

dependence [24].

5.2 Interpolation algorithm

Algorithm 5.1 Empirical Interpolation

µ
EI
1 ← arg max

µ∈Ξtrain

‖τ(·;µ)‖L2

ξ1(x) ← τ(x;µEI
1 )

t1 ← argsup
x∈Ω

|ξ1(x)|

q1(x) ← ξ1(x)/ξ1(t1)

B1 ← q1(t1)

for 2 ≤ M ≤ Mmax do

µ
EI
M ← arg max

µ∈Ξtrain

ε⋆M−1(µ)

ξM (x) ← τ(x;µEI
M )

Solve
∑M−1

j=1 σM−1, j (BM−1)i j = ξM (ti ), 1 ≤ i ≤ M −1

rM (x) ← ξM (x)−
∑M−1

j=1 σM−1, j q j (x)

tM ← argsup
x∈Ω

|rM (x)|

qM (x) ← rM (x)/rM (tM )

(BM )i j ← q j (ti ), 1 ≤ i , j ≤ M

end for

Let us now attend to the details of the EI algorithm, which is listed as Algorithm

5.1. Although we formally remain in the one-dimensional situation, meaning

Ω ⊂ R
1 is the physical domain of the problem, the extension to higher dimen-

sions is obvious.

First, we introduce a finite training sample Ξtrain over the parameter space D.

We also define a matrix BM ∈R
M×M comprising the values of the basis functions

q1, . . . , qM at the interpolation nodes t1, . . . , tM , given by

(BM )i j
def
= q j (ti ), 1 ≤ i , j ≤ M .(5.7)

The initial stage proceeds as follows. As the first parameter, we choose

µ
EI
1 = arg max

µ∈Ξtrain

‖τ(·;µ)‖L2 .(5.8)
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5. Empirical Interpolation (EI)

We then set ξ1(x) = τ(x;µEI
1 ) and choose as the first interpolation node,

t1 = argsup
x∈Ω

|ξ1(x)|.(5.9)

Finally, we normalise the first basis function as q1(x) = ξ1(x)/ξ1(t1) and com-

pute the (one element) matrix B1.

After the initial operations for M = 1, we proceed in a similar manner for 2 ≤

M ≤ Mmax. First, define the projection error

ε⋆M (µ)
def
= inf

z∈WM

‖τ(·;µ)− z‖L2 .(5.10)

At each stage 2 ≤ M ≤ Mmax, we then compute ε⋆M (µ) for every µ ∈ Ξtrain, and

make the greedy choice

µ
EI
M = arg max

µ∈Ξtrain

ε⋆M , ξM (x) = τ(x;µEI
M ).(5.11)

To determine the best choice of new interpolation node tM , we first interpolate

ξM in the old interpolation nodes by solving the linear system

M−1∑

j=1

σM−1, j q j (ti )
︸ ︷︷ ︸

(BM−1)i j

= ξM (ti ), 1 ≤ i ≤ M −1,(5.12)

for the unknown σM−1,1, . . . ,σM−1,M−1. Then, we compute the residual

rM (x) = ξM (x)−
M−1∑

j=1

σM−1, j qi (x), 1 ≤ j ≤ M −1.(5.13)

For the next interpolation node, the greedy choice

tM = argsup
x∈Ω

|rM (x)|(5.14)

is made. Finally, we select as the next basis function the normalised residual

qM (x) =
rM (x)

rM (tM )
,(5.15)

and compute the matrix BM of nodal values. As the residual vanishes at every

old interpolation node by (5.12), i.e., rM (ti ) = 0 for 1 ≤ i ≤ M −1, and due to the

“orthonormalisation” (5.15), BM becomes lower triangular with unity diagonal.
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5.2. Interpolation algorithm

We note that the greedy choice (5.11) of the parameter vectors, and conse-

quently of the basis functions, ensures (in the greedy sense) optimal approxi-

mation spaces WM = span{qm}M
m=1, whereas we hope the greedy choice of inter-

polation nodes (5.14) will ensure a small interpolation error given WM as well.

From the basis for WM , we can for any new µ ∈ D construct a parametrically

affine function τM (x;µ) given by

τM (x;µ) =
M∑

i=1

ϕi (µ)qi (x),(5.16)

where the coefficients ϕi , only dependent upon µ, are determined such that

τM (x;µ) is the interpolant of τ(x;µ) over {t1, . . . , tM }, i.e. by solving the system

M∑

j=1

ϕ j (µ) q j (ti )
︸ ︷︷ ︸
(BM )i j

= τ(ti ;µ), 1 ≤ i ≤ M .(5.17)

The empirical interpolation method admits an offline-online decomposition

“by construction”. Offline, we run Algorithm 5.1 and invert the (presumably

small) matrix BM . Online, we may then for any µ ∈D quickly compute the coef-

ficients ϕ1(µ), . . . ,ϕM (µ) as the solution to the system (5.17), and then assemble

the interpolant from (5.16).

5.2.1 A remark on practical implementation

In actual practice, we approximate all the functions involved in the above pro-

cess by their polynomial interpolants of degree PEI in the PEI + 1 GLL nodes,

where PEI is large enough that the interpolants are practically indistinguishable

from the functions they approximate.

We are concerned with the computation of the projection error

ε⋆M (µ) = inf
z∈WM−1

‖τ(·;µ)− z‖L2 , µ ∈Ξtrain.(5.18)

In the evaluation of the L2 norm, we approximate the integral
∫
Ω

(τ−z)2 dΩ with

GLL quadrature, which in one dimension reads

‖τ(·;µ)− z‖L2 =

∫1

−1
(τ− z)2 dΩ

≈

Pt∑

α=0

ρα

(
τ(ξα;µ)− z(ξα)

)2
,

(5.19)
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5. Empirical Interpolation (EI)

where the ρα are the GLL weights and the ξα are the GLL nodes [25]. Now, let

Σ ∈R
(PEI+1)×(PEI+1) be a diagonal matrix comprising the GLL-weights, and write

z ∈ WM in terms of the basis functions as z = QM z where QM = [q
1
, . . . , q

M
] ∈

R
(PEI+1)×M , the q

i
are vectors comprising the values of qi at the GLL-nodes and

z ∈R
M is a coefficient-vector. The minimisation problem (5.18) becomes

ε⋆M (µ) = min
z∈RM

(QM z −τ)T
Σ(QM z −τ),(5.20)

where τ is a vector comprising the values of τ in the GLL-nodes. But now the

minimiser, z⋆, is simply the solution of the “weighted” normal equations

QT
MΣQM z⋆

=QT
MΣτ,(5.21)

which may be solved using a standard Cholesky factorisation technique [5] (we

note that since QT
MQM – the matrix arising from the standard least squares nor-

mal equations – is positive definite, then so is QT
MΣQM due to the positive defi-

niteness of Σ).

5.3 Error estimation

The projection error

ε⋆M (µ) = inf
z∈WM

‖τ(·;µ)− z‖L2(5.22)

is (in general) different from the interpolation error

εM (µ)
def
= ‖τ(·;µ)−τM (·;µ)‖L2 .(5.23)

In [1, 9], it is shown that when measured in the L∞-norm, the interpolation

error is only a constant away from the the projection error, when the number

of interpolation nodes, M is fixed. To be precise, the result is

‖τ(·;µ)−τM (·;µ)‖L∞ ≤
(
Λ(M)+1

)(
inf

z∈WM

‖τ(·;µ)− z‖L∞

)
,(5.24)

where

Λ(M) ≤ (2M
−1).(5.25)

We refer the reader to [1] or [9] for the proofs, and note that by the equivalence

of norms in finite-dimensional spaces, a similar result will hold also for the L2-

norm of the interpolation error.
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Increasing exponentially with M , the “constant” Λ(M) is undoubtedly too large

to be of any practical value. It is established by numerical experiments how-

ever, that the bound (5.25) is likely to be far too conservative [9]. This claim

is supported by the results presented in Section 5.4 in the sense that the ra-

tio ε⋆M (µ)/εM (µ) increases only modestly with M . In the original paper [1], the

greedy selection of parameters was based on the L∞-norm. However, [9] re-

ports on only small differences in the interpolation error ‖τ(·;µ)−τM (·;µ)‖L∞ ,

whether the L∞-norm error or L2-norm error is used as the criterion in the

greedy selection process.

An a posteriori estimator for the interpolation error may also be developed, and

incorporated in the reduced basis estimators, as shown in [1, 8, 9].

5.4 Numerical examples

5.4.1 A one-dimensional example

We now investigate a one-dimensional, single-parameter example. Consider

the parametrically dependent function

f (x;µ) = (x −1)µ,(5.26)

where x ∈Ω
def
= (−1,1) and µ ∈D

def
= [1,4].

Clearly, f is non-affine in the parameter µ. Moreover, f is weakly singular since

f (n)(−1) → ∞ when µ is a non-integer and n > µ. Here, f (n) denotes the n’th

derivative of f with respect to x. Hence, by the polynomial interpolation error

estimate (2.13), only algebraic convergence can be expected were we to inter-

polate f using standard GLL interpolation.

For the training sample Ξtrain, we choose a sample of 100 linearly distributed

points over D. We then apply the empirical interpolation method, as listed in

Algorithm 5.1, to the function (5.26) with Mmax = 15 and PEI = 200. We choose

PEI this large to make sure the singularity of f is well represented by its inter-

polant over the PEI +1 GLL nodes (see Section 5.2.1).

A standard interpolation procedure makes use of basis functions that are com-

mon to every problem. In contrast, the empirical interpolation method tai-

lors the approximation space WM specifically to every new function (in the of-

fline stage). As an example, we exhibit in Figure 5.1 the first six basis functions

q1, . . . , q6 for WM when empirical interpolation is applied to the function (5.26).
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Figure 5.1: The first six basis functions for the one-dimensional empirical interpolation

example.
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Figure 5.2: Maximum projection error ε⋆,max
M

(triangles) and interpolation error εmax
M

(circles) over Ξtest as a function of M for the one-dimensional empirical interpolation

example.

M 4 6 8 10 12 14

εr,max
M

2.3628 2.2168 3.9920 8.3899 7.3410 7.3874

Table 5.1: Maximum ratio εr,max
M

of interpolation and projection errors over a test sam-

ple Ξtest.

We note that the basis functions seem to be increasingly steep in the vicinity

of x = −1, suggesting that the EI method manages to capture the singular be-

haviour of f .

We next introduce a test sample Ξtest of 100 randomly chosen points in D. The

plot in Figure 5.2 shows the maximum projection and interpolation errors over

Ξtest,

ε⋆,max
M

def
= max

µ∈Ξtest

ε⋆M (µ), εmax
M

def
= max

µ∈Ξtest

εM (µ),(5.27)

respectively, as M increases. We observe, in fact, an exponential rate of conver-

gence with M for both ε⋆,max
M

and εmax
M . We also compute the maximum ratio

εr,max
M

def
= max

µ∈Ξtest

εM (µ)

ε⋆
M

(µ)
(5.28)
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Figure 5.3: Interpolation error using GLL interpolation (squares) and empirical inter-

polation (circles) compared by the number of required function evaluations.

for M as listed in Table 5.1. As expected from Figure 5.2, εr,max
M

increases only

modestly with M .

Finally, let us consider briefly the alternative of approximating f by standard

GLL interpolation. Letting IP f denote the polynomial interpolating f in the

P +1 GLL nodes, we define

εGLL
P = max

µ∈Ξtest

‖ f (·;µ)−IP f (·;µ)‖L2 ,(5.29)

i.e., the maximum GLL interpolation error over the test sample, measured in the

L2 norm. Figure 5.3 shows εM and εGLL
P

as functions of the number M = P +1

of required evaluations of f . As expected from the estimate (2.13), GLL inter-

polation yields only algebraic asymptotic convergence due to the singularity at

x =−1.

We conclude that for this particular problem, empirical interpolation is su-

perior to standard polynomial interpolation. In fairness of GLL interpolation

however, it should be noted that for a smooth f that are not too distorted we

would expect more comparable results.
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Chapter 6

A worked example: Electrostatics

In this chapter, we shall concretise the reduced basis and empirical interpola-

tion frameworks described in the previous chapters by thoroughly examining a

practical example. As we shall consider a two-dimensional electrostatics prob-

lem, the underlying partial differential equation is the Poisson equation.

Albeit a simple equation, we will encounter several difficulties along the way.

For instance, the resulting bilinear form is non-affine due to non-affine terms

in the parameter-dependent functions that describe the geometry of the phys-

ical domain. Moreover, we shall consider multiple non-compliant flux-type

output functionals. Exploiting the Neumann-Dirichlet equivalence discussed

in Section 2.5, we readily derive an efficient method for output evaluation. By

also invoking the EI method, full Nt -complexity decoupling of the offline and

online RB stages is achieved.

We start with the derivation of a forward model, that is to say, the input-output

relationship µ→ s(µ), where µ is a parameter vector and s is the output of in-

terest. Herein lies the problem formulation, the construction of truth snapshot

solutions for the underlying PDE, the reduced basis formulation and the asso-

ciated a posteriori error estimation.

Lastly, we consider the corresponding inverse problem. Given a matrix sobs of

observed output data, we are seeking a parameter vector µ that are in compli-

ance with the observations. However, as sobs suffers from measurement noise,

and the forward model from numerical (RB) error, it is in general impossible

to find µ such that the corresponding output fits the observations exactly. In

actual practice, we are instead trying to find µ such that s(µ) is the minimiser

of ‖sobs − s(µ)‖, for some desired norm ‖ ·‖.
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Figure 6.1: The domain Ω with four electrodes.

6.1 Physical principles

6.1.1 The governing equation and boundary conditions

We consider the electrostatic potential, u, inside the two-dimensional domain

Ω = (0,3)× (0,3) depicted in Figure 6.1. Attached to each of the edges of Ω is

an electrode on which a unity (red, crosshatched) or zero (blue) potential is

imposed. The potential is equal to unity at one electrode only. Inside Ω there is

a background material Ωbg with electric permittivity ǫbg and a small object, or

anomaly, Ωano with electric permittivity ǫano 6= ǫbg. For simplicity, we assume

that ǫbg = 1 and that Ω and Ωano are squares. Each of the edges of Ωano is of

length 0.8. The electrodes are of unity length, and are centred on each edge of

Ω.

Denoting by E the electrostatic field, we have by definition E = −∇u. Inside

Ω we assume zero electric charge, and hence by Gauss’ law ∇ ·E = 0. For the

potential u we thus arrive at the Laplace equation

−∆u = 0, in Ωbg ∪Ωano.(6.1)

On the interior boundary ∂Ωano, the “flux” continuity condition

ǫbg

∂(u|Ωbg
)

∂n
=−ǫano

∂(u|Ωano )

∂n
,(6.2)

where ∂
∂n

denotes differentiation in the outward normal direction, holds. Fi-

nally, on the exterior boundary ΓIns between the electrodes, we assume electric
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Figure 6.2: Rotational symmetry. By altering the configuration of the electrodes, the

two systems are equivalent.

insulation, i.e.,

∂u

∂n
= 0, on ΓIns.(6.3)

For a more thorough explanation of electrostatic boundary conditions, or in-

deed electromagnetic theory in general, the reader is referred to J. A. Stratton’s

classical textbook [27].

The capacitance corresponding to a red-blue pair of electrodes is given by C =

Q/V where Q is the charge stored on either electrode and V = 1 is the differ-

ence in potential between them. The stored charge on, say, electrode j , may

be written as the flux integral Q =−
∫
Γ j
ǫbg

∂u
∂n

ds. We also introduce a parameter

vector µ= (x, y), which configures the physical system in terms of the centre of

Ωano (see Figure 6.1). Now, we may measure and gather the capacitances in a

symmetric capacitance matrix C =C (µ) ∈R
4×4 with elements

(
C (µ)

)
i j =Q j (µ) =−

∫

Γ j

∂u(µ)

∂n
ds, 0 ≤ i , j ≤ 3, i 6= j ,(6.4)

off the diagonal and zeroes on the diagonal.

6.1.2 Symmetry considerations

By switching which electrode on which to impose a unity potential, we may

define four setups of the physical system that in principle may be handled sep-
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Figure 6.3: Reflection of µ across the vertical centreline.

arately from a mathematical point of view. By exploiting the rotational symme-

try of the system however, it is sufficient to consider only the case with a unity

potential on (say) electrode 0.

First, assume that µ denotes the position of the anomaly as indicated to the

left in Figure 6.2. Assuming that the electrostatic potential u(µ) corresponding

to a unity potential on electrode 0 is known, the elements C1 j (µ), j = 1,2,3, of

the capacitance matrix may be computed directly. As C is symmetric by defini-

tion, we only need to additionally consider the elements C12(µ), C13(µ) (unity

potential on electrode 1) and C23(µ) (unity potential on electrode 2). Now, let
æ
µ denote a π/2 clockwise rotation of µ around the centre of Ω as illustrated in

Figure 6.2. It is then apparent that C12(µ) = C01(
æ
µ) and C13(µ) = C02(

æ
µ). Simi-

larly, we have C23(µ) = C03(
å
µ), where

å
µ corresponds to a π/2 counterclockwise

rotation of µ around the centre of Ω. Surely, this symmetry argument relies on

the fact that Ω and Ωano are square domains.

Our exploitation of symmetry doesn’t stop here. Having reduced everything to

only one red-blue configuration of the electrodes as described above, we now

consider reflective symmetry across the vertical centreline, as depicted in Fig-

ure 6.3. Letting µ denote a reflection of µ across the vertical centreline, we see

that C03(µ) = C01(µ) and that C01(µ) = C03(µ). Similarly, C02(µ) = C02(µ). We

will exploit these facts when constructing the discrete RB space, as we may in

fact halve our parameter space D and thus the number of required basis func-

tions.

In addition, we note that the already mentioned symmetry of the capacitance

52



6.2. RB treatment of the forward problem

matrix C reflects the electrostatic reciprocity of the system – for a red-blue pair

i j of electrodes, Ci j is determined by the difference in potential between the

electrodes. We return (more mathematically) to this issue below.

6.2 RB treatment of the forward problem

6.2.1 Parametric weak form

As mentioned above, the parameter vector

µ
def
= (x, y),(6.5)

configures the physical system in terms of the spatial coordinates (x, y) of the

centre of the anomaly (see Figure 6.1). The parameter space D ⊂R
2 in which µ

will reside is defined by

D
def
= (xmin, xmax)× (ymin, ymax),(6.6)

where

xmin = 3/2,

ymin = 1,

xmax = ymax = 2.

(6.7)

Note that we implicitly include the “mirrored” parameter space

D
def
= [1,3/2]× [1,2](6.8)

as well, due to the flip-symmetry described above.

From the rotational symmetry argument, we shall only consider the case with

an imposed unity potential on electrode 0 (and a zero potential on electrodes

1, 2 and 3). Hence, we only need to define and solve problems corresponding

to a single weak formulation.

Note that the parameter vector µ= (x, y), does in fact change the shape of Ωbg

and the position of Ωano. We may thus write Ωbg = Ω
µ

bg
and Ωano = Ω

µ

ano to

emphasise the µ-dependency of the physical domains. As our bilinear form,

we then define

a(u, v ;µ)
def
=

∫

Ω
µ

bg

ǫbg∇u ·∇v dΩ
µ

bg
+

∫

Ω
µ

ano

ǫano∇u ·∇v dΩ
µ

obj
,(6.9)
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and as our test and approximation spaces

X
def
= {v ∈ H 1(Ω) : v |{Γi }3

i=0
= 0}(6.10)

X D def
= {v ∈ H 1(Ω) : v |Γ0 = 1, v |{Γi }3

i=1
= 0},(6.11)

respectively. Due to typesetting convenience, we suppress the µ-dependency

of the physical domains in what follows. The parametric weak form of the

Laplace equation (6.1) with the Neumann conditions (6.2) and (6.3) and Dirich-

let data

u|Γi
=

{
1, if i = 0,

0, if i = 1,2,3,
(6.12)

becomes: Given µ ∈D, find u(µ) ∈ X D such that

a(u, v ;µ) = 0, ∀v ∈ X .(6.13)

The electric insulation on ΓIns and the interior flux continuity condition (6.2)

are naturally taken care of by the weak form (6.13), whereas the Dirichlet con-

ditions (6.12) and the global C 0 continuity of u is ensured by the choice of X

and X D.

Finally, as our reference parameter vector, we choose the centre of D, namely

µref
def
= (1.75,1.5).

6.2.2 Spectral element truth approximation

Discrete formulation

For a spectral element approximation to u, we recall from Chapter 3 the as-

sumption of partitioning of the physical domain into a finite number of de-

formed rectangles, which in turn may be mapped onto the reference domain

Ω̂. To this end, we define Ω=∪9
i=1

Ωi as depicted (to the right) in Figure 6.1. We

further define continuous one to one mappings

Fk : Ω̂→Ωk , 1 ≤ k ≤ 9,(6.14)

mapping the reference domain onto each of the physical subdomains. The

mapping for Ω1 is explicitly considered below.
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6.2. RB treatment of the forward problem

Given the partitioning of Ω and the associated mappings, the discrete spectral

element “truth” spaces X D
Nt

and XNt are properly defined by

X D
Nt

(Ω)
def
=

{
v ∈V (Ω) : v |{Γi }3

i=0
= 0

}

XNt (Ω)
def
=

{
v ∈V (Ω) : v |Γ1 = 0, v |{Γi }3

i=1
= 0

}
,

(6.15)

where

V (Ω)
def
=

{
v ∈ H 1(Ω) : v |Ωk

◦Fk ∈PPt (Ω̂),1 ≤ k ≤ 9
}
.(6.16)

We shall assume that the truth spaces are sufficiently rich when we use basis

functions of polynomial degree Pt
def
= 30.

Finally, for the spectral element truth approximation uNt (µ) to the electric po-

tential u(µ), we are thus seeking uNt (µ) ∈ X D
Nt

such that

a(uNt , v,µ) = 0, ∀v ∈ XNt .(6.17)

Output evaluation

Our truth output of interest is essentially the six elements of the upper triangu-

lar part of the capacitance matrix, which implies solving (6.17) for µ,
æ
µ and

å
µ.

For simplicity, we only consider evaluation of the first row of C – the outputs

made available by uNt (µ) – in the discussion below.

Instead of calculating the outward normal derivative of uNt (µ) across Γ1, Γ2

and Γ3 in the integrals (6.4) and then integrate, we shall invoke the Neumann-

Dirichlet equivalence described in Section 2.5 to evaluate our output of inter-

est. We recall that with expanded spaces

X̃Nt , j ⊃ XNt , j = 1,2,3,(6.18)

and under the assumptions of Lemma 2.1, we may formulate Neumann prob-

lems that are equivalent to the Dirichlet problems we actually solve and then

profitably evaluate the flux integrals through the bilinear form. It is now nec-

essary to formulate a different Neumann problem for each flux integral, hence

the subscript j in the expansions above. As approximations to the (nonzero)

elements in the first row of C (µ), we define

(
C (µ)

)
0, j ≈ l out

j

(
uNt (µ)

) def
= −a

(
uNt (µ), v⋆

j

)
, 1 ≤ j ≤ 3,(6.19)
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x

y

Ω1

(xc
1, yc

1)

(1,0)

(0,1)

(0,0)

(−1,−1)

(1,1)

η

ξ

Ω̂

F1

Figure 6.4: The mapping F1 of Ω̂ onto Ω1. The GLL-nodes, and the corresponding

mapped nodes, are shown for the particular case P = 5.

and hence as a truth output of interest vector

s
Nt

(µ) =
[

l out
1

(
uNt (µ)

)
, l out

2

(
uNt (µ)

)
, l out

3

(
uNt (µ)

)]T

.(6.20)

From Section 2.5, we recall that the functions v⋆

j
are equal to unity on Γ j and

identically zero on Γi , i 6= j . Moreover, the particular choices of v⋆

j
implicitly

define the expansions (6.18).

From Lemma 2.2, we see that as long as v⋆

j
, j = 1,2,3, are chosen as members of

V (Ω) as defined in (6.16), every choice is equivalent. In fact, as GLL quadrature

is used to numerically evaluate the integrals, every function will be “seen” as a

polynomial of degree Pt from the numerical method’s point of view. Hence, in

the spectral element context, every choice of v⋆

j
is discretely equivalent.

Representation on the reference domain

As earlier mentioned (see Section 2.3), the computational realisation of the

spectral element method involves the representation of the bilinear form a and

the linear functional l on the reference domain Ω̂ via the mappings F
−1
k

. As an

example, Figure 6.4 illustrates the mapping F1 : Ω̂ → Ω1. A natural choice of

mapping function is here the linear function

F1 :





x1(ξ,η) =
ξ+1

2

(
1+ (xc

1 −1)
η+1

2

)

y1(ξ,η) =
η+1

2

(
1+ (yc

1 −1)
ξ+1

2

)
,

(6.21)

where (xc
1, yc

1) = (x −0.4, y −0.4) denotes the coordinates of the upper right cor-

ner of the element. Similar mappings are readily constructed for the remaining

elements.
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6.2. RB treatment of the forward problem

Albeit the possibility of explicitly constructing the mapping functions, we use

the automatic transfinite mapping algorithm proposed by Gordon and Hall [6]

in our actual implementation. Thus, the code is readily extendable to more ad-

vanced geometrical shapes. However, as the boundaries of each of our subdo-

mains are piecewise linear, the mapping constructed by Gordon-Hall is equiv-

alent to the one above (for element number one).

Let us now explicitly consider the representation of the bilinear form on the

reference domain. Clearly, we may write

a(u, v ;µ) =
9∑

k=1

ǫk

∫

Ωk

∇u ·∇v dΩk .(6.22)

where ǫk is equal to ǫano for k = 5 and equal to ǫbg otherwise. Considering term

number k, we may after some algebra write

∫

Ω1

∇u ·∇v dΩ=

∫

Ω̂

(∇̂ûk )TGk (µ)∇̂v̂k dΩ̂,(6.23)

where ∇̂
def
= ( ∂

∂ξ , ∂
∂η )T and Gk ∈R

2×2 is determined by Fk as

Gk =
1

det(Jk )

(
g̃k,11 g̃k,12

g̃k,21 g̃k,22

)

=
1

det(Jk )

( (∂yk

∂η

)2
+

(∂xk

∂η

)2
−

∂yk

∂ξ
∂yk

∂η
−

∂xk

∂η
∂xk

∂ξ

−
∂yk

∂ξ
∂yk

∂η
−

∂xk

∂η
∂xk

∂ξ

(∂yk

∂ξ

)2
+

(∂xk

∂ξ

)2

)(6.24)

where det(Jk ) =
∂xk

∂ξ
∂yk

∂η −
∂xk

∂η
∂yk

∂ξ is the determinant of the Jacobian matrices.

Unfortunately, the functions gk,i j (µ) are for k = 1,3,7,9 non-affine. Hence, a

rapid reduced basis offline-online computational decoupling will not be possi-

ble unless we may successfully employ empirical interpolation to our problem.

Discrete reciprocity

Let us depart somewhat from our main path and further discuss the reciprocity

of the physical system. Although being clear from the definition of C , the reci-

procity may also be viewed as a direct consequence of the symmetry of the bi-

linear form.

Let u0(µ) correspond to the (exact) solution with a unity potential on electrode

0 for a given µ, and let u1(µ) correspond to the solution with a unity potential
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6. A worked example: Electrostatics

on electrode 1 for the same parameter vector. From the definition of C , we

have
(
C (µ)

)
0,1 =

(
C (µ)

)
1,0, and since u0 and u1 are exact solutions, we have(

C (µ)
)

0,1 = −a(u0, v⋆

1 ;µ) and
(
C (µ)

)
1,0 = −a(u1, v⋆

0 ;µ). But now, as u0 and u1

belong to H 1 and are equal to unity on Γ0 and Γ1, respectively, we may set v⋆

0 =

u0 and v⋆

1 = u1 and write

(6.25)
(
C (µ)

)
0,1 =−a(u0, v⋆

1 ;µ) =−a(u0,u1;µ)

=−a(u1,u0;µ) =−a(u1, v⋆

0 ;µ) =
(
C (µ)

)
1,0.

Note that the first and last equalities are justified as we are working with exact

solutions.

For spectral element approximations uN ,0 ≈ u0 and uN ,1 ≈ u1, the above result

still holds, as we may indeed choose v⋆

0 = uN ,0 and v⋆

1 = uN ,1 by Lemma 2.2.

Hence, the spectral element (and any other standard finite element) approxi-

mation preserves the reciprocity of the physical system.

6.2.3 RB formulation

Armed with the RB framework from Chapter 4, the definition (6.6) of the param-

eter space D and the parametric weak form (6.13), we are ready to formulate the

reduced basis problem. We shall formulate our problem homogeneously, as

this will prove easier to work with within the RB context. To this end, we define

a boundary lifting function uD(µ) ∈ X D
Nt

, which is equal to 1 on Γ0, and equal

to zero at every interior node, and write uNt (µ) = uD
Nt

+u0
Nt

(µ) with u0
Nt

∈ XNt .

Given a set of parameter vectors µ1, . . . ,µNmax
, our precomputed snapshots are

now given as u0
Nt

(µn), for 1 ≤ n ≤ Nmax.

As our RB approximation spaces, we define

XN
def
= span

{
u0

Nt
(µn)

}N

n=1
, 1 ≤ N ≤ Nmax.(6.26)

Given a parameter vector µ ∈ (D∪D), we shall require the RB solutions

uN (κ) or uN (κ) for all κ ∈ (µ,
æ
µ,

å
µ),(6.27)

to evaluate our RB output matrix of interest. We choose κ or κ, dependent

upon whether it is κ or κ that belongs to D (we recall κ as the “flipping” of κ

across the vertical centreline of Ω).
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6.2. RB treatment of the forward problem

The reduced problem reads as follows: Given any µ ∈ (D ∪D), then for κ ∈

(µ,
æ
µ,

å
µ), check whether κ ∈D. If it is, find u0

N (κ) = uN (κ)−uD(κ) such that

a(uN , v ;κ) = 0, ∀v ∈ XN .(6.28)

If on the other hand κ ∈D, find u0
N (κ) = uN (κ)−uD(κ) such that

a(uN , v ;κ) = 0, ∀v ∈ XN .(6.29)

Finally, evaluate the RB output of interest matrix, defined as

sN (µ)
def
=




l out
1

(
uN (µ)

)
l out

2

(
uN (µ)

)
l out

3

(
uN (µ)

)

0 l out
2

(
uN (

æ
µ)

)
l out

3

(
uN (

æ
µ)

)

0 0 l out
3

(
uN (

å
µ)

)


 .(6.30)

We shall refer to uN and sN as the “RB solution” and “RB output”, respectively.

6.2.4 RB formulation with Empirical Interpolation (RB-EI)

We now invoke the EI method in the RB formulation, and start by recalling that

the bilinear form can be written in terms of the reference variables as

a(u, v ;µ) =
9∑

k=1

ǫk

∫

Ω̂

(∇̂ûk )TGk (µ)∇̂v̂k dΩ̂,(6.31)

where

Gk (µ) =

[
gk,11(µ) gk,12(µ)

gk,21(µ) gk,22(µ)

]
(6.32)

are matrices of geometrical factors corresponding to the mappings Fk . Here,

gk,i j = g̃k,i j /det(Jk ), where the g̃k,i j are given in (6.24) and the det(Jk ) are the

determinants of the Jacobian matrices. Expanding the first term of (6.31) (and

setting ǫ1 = 1), we get

(6.33)

∫

Ω̂

(∇̂û1)TG1(µ)∇̂v̂1 dΩ̂

=

∫

Ω̂

(
g1,11(µ)

∂û1

∂ξ

∂v̂1

∂ξ
+ g1,12(µ)

∂û1

∂ξ

∂v̂1

∂η

+ g1,21(µ)
∂û1

∂η

∂v̂1

∂ξ
+ g1,22(µ)

∂û1

∂η

∂v̂1

∂η

)
dΩ̂.
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6. A worked example: Electrostatics

To recover an efficient offline-online computational decoupling, the non-affine

functions g1,11(µ), g1,12(µ), g1,21(µ), g1,22(µ) need to be affinely, and indepen-

dently, approximated with the EI method.

As it turns out, only the functions gk,i j for k = 1,3,7,9 (corresponding to the

four corner elements) are non-affine. In fact, a total of 16 functions are in

need of empirical interpolation, whereas the remaining terms may be written

affinely in 36 terms. Hence, our approximate affine representation of the bi-

linear form has QM = 16M + 36 terms, where M is the number of (empirical)

interpolation nodes. Abstractly, we write

a(·, ·;µ) ≈ aM (·, ·;µ)
def
=

QM∑

q=1

Θ
q
aM

(µ)a
q

M
(·, ·).(6.34)

The reduced “RB-EI” problem now reads: Given any µ ∈ (D∪D), then for each

κ ∈ (µ,
æ
µ,

å
µ), check whether κ ∈ D. If it is, find uM ,0

N
(κ) = uM

N (κ)−uD(κ) ∈ XN

such that

aM (uM
N , v ;κ) = 0, ∀v ∈ XN .(6.35)

If on the other hand κ ∈D, find uM ,0
N

(κ) = uM
N (κ)−uD(κ) ∈ XN such that

aM (uM
N , v ;κ) = 0, ∀v ∈ XN .(6.36)

Finally, there are now two obvious ways to evaluate the output of interest. Ei-

ther, we evaluate the output matrix as

sM
N (µ)

def
=




l out
1

(
uM

N (µ)
)

l out
2

(
uM

N (µ)
)

l out
3

(
uM

N (µ)
)

0 l out
2

(
uM

N (
æ
µ)

)
l out

3

(
uM

N (
æ
µ)

)

0 0 l out
3

(
uM

N (
å
µ)

)


 ,(6.37)

i.e., through the bilinear form a, or as

s̃M
N (µ)

def
=




l out
M ,1

(
uM

N (µ)
)

l out
M ,2

(
uM

N (µ)
)

l out
M ,3

(
uM

N (µ)
)

0 l out
M ,2

(
uM

N (
æ
µ)

)
l out

M ,3

(
uM

N (
æ
µ)

)

0 0 l out
M ,3

(
uM

N (
å
µ)

)


 ,(6.38)

where

l out
M , j

(
u(µ)

) def
= −aM (u, v⋆

j ;µ), 1 ≤ j ≤ 3,(6.39)

i.e. through the bilinear form aM . As the empirical interpolation error tends to

zero, we expect l out
M , j

(
u(µ)

)
→ l out

j

(
u(µ)

)
.
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6.2. RB treatment of the forward problem

On occasion, we shall refer to uM
N and s̃M

N as the “RB-EI solution” and “RB-EI

output”, respectively.

Finally, we emphasise that as aM (·, ·;µ) is an affine bilinear form, our problem

now admits an efficient offline-online computational decoupling, as described

in Section 4.2.

6.2.5 Remarks on RB and RB-EI output evaluation

Below, we again only consider the outputs corresponding to the “unrotated”

parameter vector µ, now given as the RB output vector

sN (µ)
def
=

[
l out

1

(
uN (µ)

)
, l out

2

(
uN (µ)

)
, l out

3

(
uN (µ)

)]T

.(6.40)

We first discuss the choice of the functions v⋆

j
, which play important roles in

the evaluation of both the RB and RB-EI outputs. Our discussion deals with

the RB-output, but applies to the RB-EI output as well. Then, we describe an

efficient way to evaluate the RB-EI output.

Choice of v⋆

When evaluating the l out
j

of (6.40), two arbitrary choices v⋆

j ,1
, v⋆

j ,2
for v⋆

j
(recall

the definitions (6.19) of the output functionals) are now not equivalent as was

the case for the SE approximation. In fact, this is a consequence of Lemma 2.2,

as now w⋆ = v⋆

j ,1
− v⋆

j ,2
does not in general belong to XN .

As our outputs of interest are evaluated through the bilinear form, the error

estimate (2.35), restated here as

∣∣∣l out
j

(
uN (µ)

)
− l out

j

(
uNt (µ)

)∣∣∣≤
(
a(eN ,eN ;µ)

)1/2(
a(v⋆

j , v⋆

j ;µ)
)1/2

,(6.41)

for j = 1,2,3, suggests choosing v⋆

j
such that

v⋆

j = arg min
v∈V ⋆

j

a(v, v ;µ)(6.42)

where

V ⋆

j

def
=

{
v ∈V:v |{Γi }3

i=0
\Γ j

= 0, v |Γ j
= 1

}
, j = 1,2,3,(6.43)
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6. A worked example: Electrostatics

and V is the truth approximation space defined in (6.16). As a is symmetric,

v⋆

j
∈V ⋆

j
is the solution to [25]

a(v⋆

j , v ;µ) = 0, ∀v ∈
(
V ∩ {v : v |{Γi }3

i=1
= 0}

)
.(6.44)

Obviously, we cannot solve a (three, in fact) problems of “truth complexity” at

every evaluation of the RB output matrix, and thus good surrogates for the v⋆

j

need to be found. We shall consider three alternatives:

i) Compute v⋆

j
as the solution to (6.44) using approximation spaces of (very)

low order, e.g. quadratic or cubic polynomials.

ii) Compute v⋆

j
as the solution to (6.44) with µ replaced by µref – thus the v⋆

j

can be computed as part of the preprocessing stage.

iii) Simply choose v⋆

j
equal to unity on Γ j and equal to zero in all other nodes.

We note that this choice will be far from the minimiser (6.42), as v⋆

j
com-

prise a large amount of “energy” in the vicinity of Γ j .

Efficient output evaluation

To compute the elements of the output matrix sN defined in (6.30), sM
N defined

in (6.37) or s̃M
N defined in (6.38), the straightforward approach would be con-

structing the RB or RB-EI solution and the v⋆

j
explicitly and then evaluate the

six required inner-products. Such a procedure however, is Nt -dependent and

thus encourages the pursuit of a more efficient alternative.

Our aim is to develop an entirely Nt -independent online procedure for output

evaluation. Hence, it seems reasonable to put the matrices sN and sM
N aside as

they comprise nonaffine a-inner-products and instead work with s̃M
N , in which

the output functionals are evaluated through the affine bilinear form aM .

For the sake of simplifying our discussion, we now only consider evaluation of

the single, scalar-valued output functional l out
M ,1 defined in (6.39), and assume

that µ resides in D. The algebraic formulation of the RB-EI problem may then

be stated as: Find uM ,0
N

(µ) = uM
N (µ)−uD(µ) ∈ XN subject to

N∑

n=1

uM ,0
N ,n

(µ) aM (ζn ,ζm ;µ)︸ ︷︷ ︸(
AM

N
(µ)

)
mn

=−aM (uD,ζm ;µ)︸ ︷︷ ︸(
l M

N (µ)
)

m

, 1 ≤ m ≤ N ,(6.45)

where uM ,0
N

(x, y ;µ) =
∑N

n=1 uM ,0
N ,n

(µ)ζn(x, y). Equivalently, we may write (6.45) as

AM
N (µ)uM ,0

N
(µ) = l M

N (µ),(6.46)
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6.2. RB treatment of the forward problem

where

uM ,0
N

(µ) =
[
uM ,0

N ,1
(µ), . . . ,uM ,0

N ,N
(µ)

]T
∈R

N(6.47)

is the RB-EI vector of unknowns (and the elements of AM
N and l M

N are indicated

in (6.45)).

We now define an augmented RB-EI solution vector

ũM
N (µ)

def
=

[
1,0,uM ,0

N ,1
(µ), . . . ,uM ,0

N ,N
(µ)

]T
∈R

N+2,(6.48)

and write the RB-EI solution as

uM
N (x, y ;µ) = uM ,0

N
(x, y ;µ)+uD(x, y ;µ)

=

N∑

n=−1

(
ũM

N ,n(µ)
)

n+2ζ
n(x, y),

(6.49)

where ζ−1 def
= uD and ζ0 def

= v⋆

1 (note that the term for n = 0 always vanishes). We

also define an augmented RB-EI stiffness matrix ÃM
N ∈R

N+2×N+2 given by

ÃM
N (µ)

def
=




aM (uD,uD;µ) aM (v⋆

1 ,uD;µ) aM (ζ1,uD;µ) . . . aM (ζN ,uD;µ)

aM (uD, v⋆

1 ;µ) aM (v⋆

1 , v⋆

1 ;µ) aM (ζ1, v⋆

1 ;µ) . . . aM (ζN , v⋆

1 ;µ)

aM (uD,ζ1;µ) aM (v⋆

1 ,ζ1;µ) aM (ζ1,ζ1;µ) . . . aM (ζ1,ζ1;µ)
...

...
...

. . .
...

aM (uD,ζN ;µ) aM (v⋆

1 ,ζN ;µ) aM (ζ1,ζN ;µ) . . . aM (ζN ,ζN ;µ)




,

(6.50)

where we in the two first rows and columns have included the terms resulting

from incorporating ζ−1 = uD and ζ0 = v⋆

1 in the basis for the RB-EI solution.

Indeed, we may construct ÃM
N following the offline-online procedure described

for affine problems in Section 4.2. Analogously to (4.35), we now invoke (6.34)

and write

(
ÃM

N (µ)
)

m+2,n+2 =

Nt∑

i=1

Nt∑

j=1

ζm
j ζn

i aM (ψ j ,ψi ;µ)

=

Nt∑

i=1

Nt∑

j=1

ζm
j ζn

i

(QM∑

q=1

Θ
q
aM

(µ)a
q

M
(ψ j ,ψi )

)

=

QM∑

q=1

Θ
q
aM

(µ)
Nt∑

i=1

Nt∑

j=1

ζm
j ζn

i a
q

M
(ψ j ,ψi )

︸ ︷︷ ︸
=(Ã

M ,q

N
)m+2,n+2

, −1 ≤ m,n ≤ N ,

(6.51)
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where the N + 2 × N + 2 matrices Ã
M ,q

N
are parameter independent and pre-

computable. Note that the RB-EI stiffness matrix, AM
N (µ), is simply the N ×N

lower right submatrix of ÃM
N and that aM – and consequently ÃM

N – is symmet-

ric.

Finally, computing the “residual vector” r M
N = ÃM

N ũM
N (compare to the original

equation (6.46), reading AM
N uM ,0

N
− l M

N = 0), and then taking

l out
M ,1 =−(r M

N )2

(
=−aM (uM

N , v⋆

1 ,µ)
)
,(6.52)

is presumeably much quicker than direct evaluation of aM (uM
N , v⋆

1 ;µ) once the

parameter independent matrices Ã
M ,q

N
have been formed. In fact, we assemble

ÃM
N (and thus also AM

N ) in O (QM N 2) flops. Note that in actual practice, we may

compute the element (r M
N )2 directly as the sum

(r M
N )2 =

N+2∑

j=1

(ÃM
N )2, j (ũM

N ) j(6.53)

in O (N +2) operations (i.e. without performing the full (N +2)2-flops operator

evaluation).

6.2.6 Remarks on inhomogeneous Dirichlet conditions

Inhomogeneous Dirichlet boundary conditions are seldomly considered in the

existing RB litterature. Although quite straightforward in the standard FE or SE

methods, the imposition of such boundary conditions turns out rather peculiar

in the RB context.

Above, we made an “obvious” choice of boundary lifting function uD, simply by

choosing uD equal to unity on Γ0 and equal to zero at every interior node. For

finite- or spectral element methods, every choice of boundary lifting is equiv-

alent doe to the richness of the approximation spaces. In the RB context how-

ever, every choice is not equivalent but does in fact define a new homogeneous

problem. To render this more apparent, let

uNt = uD,1
+u0,1

Nt
= uD,2

+u0,2
Nt

,(6.54)

where uD,1,uD,2 ∈ X D
Nt

are different liftings of the Dirichlet data. For a set of

parameters µ1, . . . ,µN , the corresponding RB spaces are

X 1
N = span

{
u0,1(µn)

}N

n=1, X 2
N = span

{
u0,2(µn)

}N

n=1.(6.55)
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In other words, the different choices of lifting give rise to two RB problems:

Given µ ∈D, find u0,i
N

(µ) = ui
N

(µ)−uD,i (µ) ∈ X i
N

such that

a(ui
N , v ;µ) = 0, ∀v ∈ X i

N ,(6.56)

where i = 1,2. As it turns out then, our choice was not obvious at all! However,

every choice of uD ∈ X D
Nt

will be valid in the sense that the corresponding RB

problem is well defined, and that the RB space is tailored to the specific prob-

lem at hand.

We leave this subject merely as a curious notice, and henceforth hold on to our

choice of uD.

6.2.7 A posteriori error estimation

As regards a posteriori error estimation, we confine ourselves within the frame-

work for affine problems described in Section 4.4. As a consequence, our esti-

mators i) do not rigorously apply when empirical interpolation is used, and ii)

require the solution of a truth-complexity problem at each evaluation, and are

thus practically useless.

However, following the procedure in [15, Chapter 6], constructing a posteriori

estimators for the RB solution uM
N (using empirical interpolation) seems to be

within reach both theoretically and practically. Moreover, were we to construct

such estimators, we might plausibly assume them to resemble the behavior of

the standard estimators as the interpolation error tends to zero. Theoretically

speaking then, developing (and later on numerically examining) the standard

estimators may provide useful insight.

A lower bound for the coercivity constant

We now develop a lower bound αLB for the coercivity constant α. Firstly, our

constant must comply to

αLB(µ) ≤α(µ) = inf
v∈XNt

a(v, v ;µ)

a(v, v ;µref)
,(6.57)

and secondly, for our a posteriori error estimator to be sharp, αLB should not

be a too conservative lower bound. We note that αLB is a factor both in the

standard estimators (Chapter 4) and in the estimator that also incorporate the

error resulting from empirical interpolation [15].
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Below, we make use of a procedure similar to one in [13], although in a slightly

different context. We recall that we may write the bilinear form a(u, v,µ) in

terms of the reference variables as

a(u, v ;µ) =
9∑

k=1

ǫk

∫

Ω̂

(∇̂ûk )TGk (µ)∇̂v̂k dΩ̂,(6.58)

where the Gk (µ) are parameter dependent 2×2 matrices comprising geometri-

cal factors . From (6.24), we know that the Gk (µ) are symmetric, so we may write

Gk =QT
k
ΛkQk where the Λk are diagonal matrices with the eigenvalues λmax

k
≥

λmin
k

of Gk as elements, and the Qk are orthogonal matrices (i.e. QT
k

Qk = I is the

identity matrix) with the eigenvectors of Gk as column vectors. For v, w ∈ X , we

may now write

a(v, w ;µ) =
9∑

k=1

ǫk

∫

Ω̂

(∇̂v̂k )TGk (µ)∇̂ŵk dΩ̂(6.59)

≥

9∑

k=1

ǫk

∫

Ω̂

λmin
k (µ)(Qk∇̂v̂k )TQk∇̂ŵk dΩ̂(6.60)

=

9∑

k=1

ǫk

∫

Ω̂

λmin
k (µ)(∇̂v̂k )T

∇̂ŵk dΩ̂,(6.61)

and similarly

a(v, w ;µ) =
9∑

k=1

ǫk

∫

Ω̂

(∇̂v̂k )TGk (µ)∇̂ŵk dΩ̂(6.62)

≤

9∑

k=1

ǫk

∫

Ω̂

λmax
k (µ)(∇̂v̂k )T

∇̂ŵk dΩ̂.(6.63)

With

λ−(µ)
def
= min

(ξ,η)∈Ω̂
1≤k≤9

λmin
k (ξ,η;µ)(6.64)

and

λ+(µ)
def
= max

(ξ,η)∈Ω̂
1≤k≤9

λmax
k (ξ,η;µ),(6.65)

we may now for any v ∈ X and any two parameter vectors µ1,µ2 ∈D write

a(v, v ;µ1)

a(v, v ;µ2)
≥

λ−(µ1)
∑9

k=1
ǫk

∫
Ω̂

(∇̂v̂k )T∇̂v̂k dΩ̂

λ+(µ2)
∑9

k=1
ǫk

∫
Ω̂

(∇̂v̂k )T∇̂v̂k dΩ̂

=
λ−(µ1)

λ+(µ2)
,

(6.66)
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and hence in particular as a lower bound for the coercivity constant

αLB
def
=

λ−(µ)

λ+(µref)
.(6.67)

Error estimators

We first recall from Section 4.4 the general estimate for the energy-norm error

of the field variable

‖eN (µ)‖E ≤∆N (µ),(6.68)

where eN (µ) = uN (µ)−uNt (µ) and, from Theorem 4.2,

∆N (µ) =
‖ê(µ)‖µref√

αLB(µ)
,(6.69)

where αLB is the coercivity lower bound developed above. By invoking the out-

put error estimate (2.35), we have, for 1 ≤ j ≤ 3,

∣∣∣
(
sN (µ)

)
j −

(
s
Nt

(µ)
)

j

∣∣∣≤ ‖eN (µ)‖E a(v⋆

j , v⋆

j ;µ)

≤∆N (µ)a(v⋆

j , v⋆

j ;µ).
(6.70)

As output error bounds, we thus define

∆
out
N , j (µ)

def
= ∆N (µ)a(v⋆

j , v⋆

j ;µ), 1 ≤ j ≤ 3.(6.71)

As a maximum output error upper bound, we also introduce

∆
out,max
N

(µ)
def
= max

1≤ j≤3
∆

out
N , j (µ).(6.72)

These estimators may now be used both as a bound for the error during the pa-

rameter vector selection, and for certification of the accuracy of the RB solution

or outputs, albeit at “truth” computational cost.

6.3 An inverse problem

In the previous section, we considered the forward problem µ→ s(µ). In this

section, the forward model is employed in solving the inverse problem of esti-

mating the parameter vector that corresponds to a given matrix of output data.
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6. A worked example: Electrostatics

We assume that we are given an upper triangular matrix sobs ∈ R
3×3 of capaci-

tance measurements. Then, the inverse problem reads: Find µ ∈ (D ∪D) such

that

µ= arg min
µ∈D∪D

‖sobs − s(µ)‖,(6.73)

for some norm ‖·‖. In general, sobs = s(µ) is unlikely due to i) noisy capacitance

measurements, ii) numerical error in the forward model or iii) biased forward

outputs due to e.g. wrong assumptions made in the mathematical model.

As our forward model, we choose µ → s̃M
N (µ) and thus anticipate significant

numerical errors for small M and N . We then define the residual

RM
N (µ)

def
=

1

2

3∑

i=1

3∑

j=1

((
sobs

)
i j −

(
s̃M

N (µ)
)

i j

)2

.(6.74)

and seek the reconstruced anomaly position µ
M
N ,rec as

µ
M
N ,rec = arg min

µ∈D∪D

RM
N (µ).(6.75)

We shall assume that RM
N (µ) attains a single minimum for µ ∈ (D∪D), that RM

N

has no saddle points and that the Jacobian of s̃M
N (µ) is invertible.

Given an apropriate initial value µ
0, the minimiser µ

M
N of the nonlinear least

squares problem (6.75) is sought numerically by applying a Gauss-Newton iter-

ative scheme [17]

µ
k+1

=µ
k
−

(
HRM

N
(µk )

)−1
∇RM

N (µk ),(6.76)

where HRM
N

(µk ) ∈R
2×2 and ∇RM

N (µk ) ∈R
2 denote the approximate Hessian and

gradient of RM
N , respectively, at the k’th iterate µ

k . To approximate the deriva-

tives in HRM
N

and ∇RM
N , we apply the standard central difference formula

∂ f

∂xi
≈

f (x1, . . . , xi +h, . . . , xn)− f (x1, . . . , xi −h, . . . , xn)

2h
,(6.77)

for a function f : Rn →R, where h is a prescribed resolution parameter.

In total, five evaluations of s̃M
N are required to approximate the derivatives in

HRM
N

and ∇RM
N at each Gauss-Newton iteration. The importance of rapid evalu-

ation of the forward model µ→ s̃M
N (µ) is thus apparent, and indeed made pos-

sible by i) the reduced basis method with empirical interpolation and ii) the

rapid output evaluation described in Section 6.2.5.
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6.4. Numerical results

Theoretically speaking, the simple Gauss-Newton iteration scheme (6.76) is not

very robust and will serve merely as a “proof of concept”. For example, we may

experience iterates outside the feasible parameter domain, requiring a restart

of the iterative process from (say) one of the edges, or oscillating iterates. More-

over, without any control of the step-length at each iteration, global conver-

gence is not ensured. However, Gauss-Newton methods are often used to find

the minimiser of least-squares problems [17], and in practice, we may expect

the scheme to converge rapidly.

The reader is referred to [16] for the most recent development of an “uncer-

tainty region” RB approach to time-dependent inverse problems. This method

takes into account the numerical and measurement errors and may be used to

construct a region P ⊂ D that is guaranteed to contain all parameters consis-

tent with the measured data.

6.4 Numerical results

6.4.1 Spectral element truth approximation

For the parameter vectors µ= (1.5,1.5), µ= (1.75,1.5) and µ= (2,2), spectral el-

ement solutions to (6.17) are exhibited by Figure 6.5. Figures 6.5a, 6.5c and 6.5e

show the solution with ǫano = 0.1, corresponding to an “insulating” anomaly,

while Figures 6.5b, 6.5d and 6.5f show the solution with ǫano = 10, correspond-

ing to a “superconductor” anomaly. In both cases, it is evident that the position

of the anomaly affects the electric field lines and thus plausibly the electric flux

across the electrode boundaries. As the background permittivity, we always

choose ǫbg = 1.

We now consider the numerical error in our spectral element approximation

uN ≈ u. In particular, we are interested in the order of convergence when we

increase the polynomial degree P of the basis functions. As the exact solution

is now not available for error comparison, we define the spectral element ap-

proximation uNe ≈ u as a surrogate for u. We assume that uNe is computed

with basis functions of a polynomial degree Pe sufficiently larger than P that

|uN −u|≫ |uNe −u|, and hence that

eN (µ) = u(µ)−uN (µ) ≈ uNe (µ)−uN (µ),(6.78)

and

eout
N , j (µ) = l out

j

(
eN (µ)

)
≈ l out

j (uNe

(
µ)−uN (µ)

)
,(6.79)
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(a): µ= (1.5,1.5), ǫano = 0.1.
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(b): µ= (1.5,1.5), ǫano = 10.
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(c): µ= (1.75,1.5), ǫano = 0.1.
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(d): µ= (1.75,1.5), ǫano = 10.
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(e): µ= (2,2), ǫano = 0.1.
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(f): µ= (2,2), ǫano = 10.

Figure 6.5: Six truth approximations (spectral element solutions) for the problem (6.17)

corresponding to different choices of the parameter vector µ and permittivity ǫano. The

anomaly is either “superconductor-like”, ǫano = 10, or “insulator-like”, ǫano = 0.1. In all

experiments, ǫbg = 1. Electric field lines (green) and contour lines for the potential uNt

(background) are shown. The dashed square denotes the position of of the anomaly.
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max
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Figure 6.6: Discretisation errors as functions of the polynomial degree 1 ≤ P ≤ 50 for

the spectral element solution to (6.17) with µ=µref = (1.75,1.5) and ǫano = 10. The plot

shows algebraic convergence of order −2.08 for the L2-norm error and −1.03 for the

E -norm error. For the maximum output error, the convergence is also of order −2.08.

for 1 ≤ j ≤ 3. Below, we report results for eN and eout
N

, even though the exact

solution u is replaced with uNe with Pe = 150.

In Figure 6.6, we show the energy-norm error ‖eN (µ)‖E and the L2-norm error

‖eN (µ)‖L2 in the field variable for the particular choice of parameter vector

µ=µref = (1.75,1.5), as well as the maximum error in the output, defined as

max
1≤ j≤3

∣∣eout
N , j (µ)

∣∣(6.80)

for 1 ≤ P ≤ 50. Clearly, the convergence is algebraic rather than exponential,

suggesting that the exact solution is not analytic. We also note that the error

in the output converges quadratically with the energy-norm error of the field

variable, owing to the estimate (3.29), and that the decay in the L2-error is of

one order better than the decay in the energy error, which is as expected [3, 25].

In the model problem in Section 3.5.2, a non-convex corner in the physical do-

main was causing a singularity in the solution. The singularity was responsible

for the limited algebraic convergence of the spectral element solution. In the

present problem, the physical domain is a square and the domain is thus con-

vex. However, strong singularities arise at the Dirichlet-Neumann interfaces at

the edges of the electrodes, causing an even slower rate of convergence than

what was achieved for the model problem.

71



6. A worked example: Electrostatics

Corner- and interface-singularities in solutions to elliptic partial differential

equations are well-known phenomenons [10, 25, 28]. One way to improve upon

poor convergence rates due to the presence of singularities is refining the mesh

close to the singularity. Another is the inclusion of special functions in the ap-

proximation space that mimic the behaviour of the singularities (see [7] for

an example of successful application of such a technique to an electrostatics

problem). A third is the method of auxiliary mapping [18], in wich a small

region containing the singularity is isolated and mapped onto a new domain

through a mapping determined by a priori knowledge of the singular behaviour

of the solution. The solution in the singular region is then approximated on

the new domain using the existing basis functions. In this report, we do not

pursue more efficient alternatives than the standard spectral element method,

although such methods might unarguably prove beneficial.

6.4.2 Reduced basis approximation

We now present numerical results for our RB and RB-EI approximations. The

same set of approximation spaces, XN , 1 ≤ N ≤ Nmax, are used for both meth-

ods, and in all numerical experiments that follows, ǫbg = 1 and ǫano = 10.

First, we consider the greedy sampling of parameter vectors. We then proceed

with results from the RB approximation, including the a posteriori error estima-

tors and the effect of different choices of the functions v⋆

j
. Finally, we apply the

empirical interpolation method and examine the RB-EI approximation results.

Sampling procedure

As our training sample Ξtrain, we choose a 10×20 linear sample over D. Rely-

ing on the output error bound ∆
out,max
N

defined in (6.72), the greedy algorithm

(Algorithm 4.1) is then employed in the selection of SN , 1 ≤ N ≤ Nmax = 40. Fig-

ure 6.7 shows the selected parameter vectors in D, along with the points in the

“mirrored” space D. We note that many of the vectors are chosen as extreme

values, close to the edges and corners of the parameter space.

RB approximation results

Due to the greedy parameter selection, our reduced basis approximation will

be accurate over the training sample. To test the approximation properties of
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Figure 6.7: Choices of parameter vectors belonging to D made by the greedy algorithm

during construction of XN . The “mirrored” parameter space D is also shown.
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Figure 6.8: Maximum output error εout
N (squares) and maximum energy-norm error εN

(circles) over Ξtest for 1 ≤ N ≤ 40.
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Figure 6.9: Maximum output error εout
N (squares) and energy-norm error εN (circles)

over Ξtest when XN is constructed randomly (filled marks) and greedily for 1 ≤ N ≤ 40

XN outside Ξtrain, we also introduce a test sample Ξtest 6= Ξtrain, consisting of

200 randomly chosen points in D. We also define the error measures

εN
def
= max

µ∈Ξtest

‖eN (µ)‖E ,(6.81)

and

εout
N

def
= max

µ∈Ξtest

1≤ j≤3

∣∣(sN (µ)
)

j −
(
s
Nt

(µ)
)

j

∣∣∣.(6.82)

In Figure 6.8, we then show εN and εout
N for 1 ≤ N ≤ Nmax. Here, the outputs

are computed through the bilinear form with the v⋆

j
chosen as the solutions

of (6.44) with µ replaced by µref. We note that the errors decay very rapidly

compared to our achievements with the spectral element method and that the

energy-norm error decays monotonically (as it must, by definition) whereas the

output-error does not.

Instead of constructing XN greedily, we could simply have chosen the param-

eters for which to compute snapshots randomly. In Figure 6.9, output and

energy-norm errors over Ξtest are compared for the greedy and random sam-

pling strategies. While the greedy basis undoubtedly yields the best results,
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6.4. Numerical results

N ηmax
N ηmed

N ηmean
N ηout,max

N
ηout,mean

N
ηout,med

N

5 3.176 1.806 1.848 2.398 ·104 3.960 ·102 1.212 ·102

10 2.894 1.795 1.825 1.374 ·104 3.201 ·102 1.142 ·102

15 2.972 1.797 1.827 1.885 ·104 4.329 ·102 1.337 ·102

20 2.804 1.791 1.810 7.169 ·104 7.653 ·102 1.955 ·102

25 2.919 1.779 1.807 9.354 ·104 1.236 ·103 3.047 ·102

30 2.631 1.762 1.789 1.687 ·105 1.020 ·103 2.370 ·102

35 2.658 1.760 1.787 1.406 ·105 1.467 ·103 3.363 ·102

40 2.765 1.771 1.802 7.354 ·104 9.966 ·102 2.847 ·102

Table 6.1: Maximum, median and mean of the effectivities ηN (µ) and η : N , i out(µ) for

µ ∈Ξtest for a few values of N
.

even the random basis performs quite well. This suggests that u(µ) is very

smooth in the parameter, as the approximation properties of XN seem to be

rather insensitive to the particular choice of snapshots.

Although the a posteriori estimators ∆N and ∆
out
N , j

(see (6.69) and (6.71), respec-

tively) are rigorous upper bounds, it is also important – for parameter selection

as well as for certification of the RB solution – that they are quite sharp, mean-

ing that the effectivities

ηN (µ)
def
=

∆N (µ)

‖eN (µ)‖E

,(6.83)

ηout
N , j

def
=

∆
out
N , j

(µ)
∣∣∣
(
sN (µ)

)
j −

(
s
Nt

(µ)
)

j

∣∣∣
,(6.84)

where the latter is defined for 1 ≤ j ≤ 3, are small. In Table 6.1 we present ηmax
N ,

ηmean
N and ηmed

N , denoting the maximum, mean and median of ηN (µ) over Ξtest,

respectively, and ηout,max
N

, ηout,mean
N

and ηout,med
N

, denoting the maximum, mean

and median of ηout
N , j

(µ), 1 ≤ j ≤ 3 over Ξtest, respectively, for a few values of N .

The effectivities corresponding to the energy-norm estimator are small, and so

we can conclude that our coercivity lower bound αLB developed in Section 6.2.7

is quite sharp. Unfortunately, the effectivities for the output are quite large, (but

not dramatically increasing with N ). However, we may hope that the ηout,max
N

are rare deviations from the general behavior of ηout
N (µ) over D, and that we

may for most µ ∈ D expect ηout
N (µ) to be more in compliance with the effectiv-

ity mean or median. In Figure 6.10, the ηout
N ,i

(µ) are reported for µ across Ξtest

for the particular case N = 20. The data is sorted according to increasing effec-

tivity. Roughly speaking, we observe that 102 < ηout
N ,1 < 103, whereas ηout

N ,2 and
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ηout
N ,2(µi )

ηout
N ,3(µi )

i
0 50 100 150 200

101

102

103

104

E
ff

e
c

ti
v

it
ie

s

Figure 6.10: The output effectivities ηN ,1(µ), ηN ,2(µ) and ηN ,3(µ) for µ ∈ Ξtest for the

particular case N = 20. The effectivites are sorted in increasing order, and only one

third is actually shown.

ηout
N ,3 are slightly smaller. It seems plausible that the qualitative difference in

the effectivities relates to the halving of the parameter space. At any rate, the

output estimators must be regarded as quite conservative.

We now consider alternative choices of the output evaluation functions v⋆

j
cor-

responding to the alternatives described in Section 6.2.5:

i) v⋆

j
as the spectral element solution to (6.44) using approximation spaces of

cubic polynomials. We denote this choice as v
⋆,µ

j
due to the dependence

upon the parameter vector. Note, however, that the computation of the

v
⋆,µ

j
are very fast due to the low polynomial order.

ii) v⋆

j
as the solution to (6.44) with µ replaced by µref – thus the v⋆

j
can be

computed as part of the preprocessing stage.

iii) v⋆

j
equal to unity on Γ j and equal to zero in all other nodes. We denote this

choice as v⋆,naive
j

.

The maximum output errors over Ξtest for the three different choices of v⋆

j
are

exhibited by Figure 6.11. We observe that alternative i) and ii) yields practically

indestinguishable results, whereas alternative iii) results in output errors that

are about one order of magnitude larger than the others.

Finally, we should emphasise that the smallest RB errors we here achive are

of little practical value, as the errors in the truth approximations are of order

∼ 10−3 and thus much larger than the errors |uNt −u|. Nevertheless, as a theo-
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Figure 6.11: Maximum output error εout
N overΞmax for different choices of v⋆

j
for output

evaluation.

retical demonstration of the convergence properties of the method, the results

are indeed very pleasing.

RB-EI approximation results

We now apply the empirical interpolation method described in Chapter 5 to

affinely approximate the bilinear form. Unfortunately, the gain of rapid com-

putation comes at the price of an additional numerical error. Therefore, we

now compare the error in the RB-EI solution and output to the error in the RB

solution and output, respectively.

As RB-EI error measures, define

eM
N

def
= max

µ∈Ξtest

‖eM
N (µ)‖E ,(6.85)

and

eM ,out
N

def
= max

µ∈Ξtest

1≤ j≤3

∣∣∣
(
s̃M

N (µ)
)

j −
(
s
Nt

(µ)
)

j

∣∣∣,(6.86)
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Figure 6.12: Maximum energy-norm errors eM
N over Ξtest.
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Figure 6.13: Maximum output errors eM ,out
N

over Ξtest. The output is evaluated accord-

ing to the procedure in Section 6.2.5.
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6.4. Numerical results

where s̃M
N corresponds to the first row of the RB-EI output matrix, defined in

(6.38).

As input to the empirical interpolation algorithm (Algorithm 5.1), we choose

Ξtrain as the training sample (the same sample we use for construction of the

RB space), Mmax = 40 and PEI = Pt = 30.

In Figure 6.12 and 6.13, we show eM
N and eM ,out

N
, respectively, for 1 ≤ N ≤ 40 and

a few values of M . We observe that the errors decay more or less identically to

εN and εout
N , i.e. without empirical interpolation, until a certain point at which

the interpolation error dominates completely. In fact, for M = 8 and N ' 10, the

error in the RB-EI output is of the same order as the error in the truth output.

6.4.3 Parameter estimation

Results with exact capacitance measurements

We now employ the inversion scheme described in Section 6.3. As a surrogate

for the “exact” capacitance measurements, we use s̃M
N (µ) with N = 40 and M =

40. We then “measure” sobs
def
= s̃40

40(µexact), where µexact = (1.75,1.5) is the exact

position of the anomaly.

We then employ the procedure described in Section 6.3 with s̃M
N (µ) as the RB-EI

output for the paricular cases N ∈ {4,8,12,16} and M = 16. We set h = 10−4 and

stop the iterative process when the norm of the (Eucledian) distance between

two succesive iterates is less than 10−5.

The scheme converges in typically 5-6 iterations to µ
M
N ,rec. As a measure of ac-

curacy, we exhibit in Table 6.2 (middle column) the reconstruction errors

eM
N ,rec

def
=

∥∥µM
N ,rec −µexact

∥∥
2,(6.87)

where ‖ · ‖2 denotes the standard Eucledian norm. We observe that even for

small N , the reconstructed and exact anomaly positions are very close.

Results with noisy capacitance measurements

We now repeat the experiment above, but this time the capacitance measure-

ments suffer from 1 percent (relative) white noise. Now denoting the recon-

structed anomaly position by µ
M
N ,rec,1%, the resulting reconstruction errors

eM
N ,rec,1%

def
=

∥∥µM
N ,rec,1& −µexact

∥∥
2,(6.88)
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N eM
N ,rec eM

N ,rec,1%

4 1.56 ·10−2 2.68 ·10−2

8 4.73 ·10−4 1.39 ·10−2

12 1.15 ·10−5 1.35 ·10−2

16 2.04 ·10−6 1.35 ·10−2

Table 6.2: Distances between the exact anomaly position µexact = (1.75,1.5) and the

reconstructed anomaly positions µM
N ,rec (middle column) and µ

M
N ,rec,1%

(right column)

for the particular case M = 16.

for N ∈ {4,8,12,16} and M = 16, are are given in the right column of Table 6.2.

We observe that there is no effect of increasing N beyond the point at which

the inversion error is less than about 10−2, which seems reasonable due to the

now noisy observations. In a real-life parameter-estimation problem though, a

reconstruction error even of this order may be sufficiently accurate.
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Chapter 7

Conclusions

The main results in this report relate to the evaluation of flux-type output func-

tionals whose argument is the solution of a parametrised partial differential

equation. In Section 2.5, we discussed a Neumann-Dirichlet equivalence al-

lowing for convenient evaluation of the output through the bilinear form cor-

responding to the PDE at hand.

In Section 6.2.5, we showed how the output may be evaluated very efficiently

through a slightly modified reduced basis stiffness matrix when either the prob-

lem at hand is affine or the empirical interpolation method is invoked. More-

over, the numerical experiments from Section 6.4.2 show that the output evalu-

ation is very accurate as long as the number of (empirical) interpolation nodes,

M , is not chosen too small.

The evaluation of the output through the bilinear form requires a particular

function v⋆ ∈ V ⋆ to be defined. If the argument of the output functional is a

standard finite- or spectral element solution, every choice of v⋆ is equivalent,

whereas this is not the case when the argument is a reduced basis solution.

This has been theoretically argued for and supported by numerical results in

Sections 2.5 and 6.4.2, respectively.

For the elaborate reduced basis example problem from Chapter 6, it remains to

develop a posteriori error estimators that i) also incorporate the error resulting

from the employment of empirical interpolation, and ii) allows for an offline-

online computational approach, thus yielding very rapid online error bounds

for the RB-EI output. By following a similar procedure as in [8, Chapter 6], this

seems to be within reach both theoretically and practically. However, our in-

vestigation of the standard error estimators for the flux-type output of interest

revealed they are very conservative, and so an effort should be put into the de-
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7. Conclusions

velopment of sharper error bounds. In fact, by considering an adjoint problem

(Section 4.4.2) for each output functional, not only may we accelerate the con-

vergence of the RB outputs, but sharper a posteriori bounds for the RB outputs

may be constructed based on the estimators for the primal and adjoint prob-

lems [20, 23].

We have also touched upon several topics which are in need of further investi-

gation. Suggestions for future work include:

• the implementation of a more efficient method to deal with singulari-

ties that arise in our spectral element approximations, for instance by the

method of auxiliary mapping [18],

• the treatment of inhomogeneous Dirichlet boundary conditions in the

reduced basis context.
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