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Abstract 
Due to the electricity systems’ increasing need for flexibility, demand side flexibility aggregation 

becomes more important. An issue is how to make such activities profitable, which may be obtained 

by selling flexibility in multiple markets. A challenge is to allocate volumes to the different markets in 

an optimal way, which motivates the need for advanced decision support models. In this paper, we 

propose a methodology for optimal bidding for a flexibility aggregator participating in three 

sequential markets. We demonstrate the approach in a generalized market design that includes an 

options market for flexibility reservation, a spot market for day-ahead or shorter and a flexibility 

market for near real-time dispatch. Since the bidding decisions are made sequentially and the price 

information is gradually revealed, we formulate the decision models as multi-stage stochastic 

programs and generate scenarios for the possible realizations of prices. We illustrate the application 

of the models in a realistic case study in cooperation with four industrial companies and one 

aggregator. We quantify and discuss the value of flexibility and find that our proposed models are 

able to capture most of the potential value, except for some extreme cases. The value of aggregation 

is quantified to 3 %. 
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1. Introduction 
Due to the growing share of intermittent generators connected at various voltage levels, 

electrification of the transport sector and the development of new consumption patterns, the 

electricity systems face an increased need for flexibility [1]–[3]. Eurelectric defines flexibility as “the 

modification of generation injection and/or consumption patterns in reaction to an external signal 

(price signal or activation) in order to provide a service within the energy system”. Since most of the 

above-mentioned changes come at the distribution grid level, the flexibility is in particular needed at 

the demand side.  

In order to exploit the flexibility potential of smaller customers, the concept of aggregation is 

important [1]. A flexibility aggregator is an entity that pools small volumes of flexibility and acts as an 

intermediary between providers and procurers of this flexibility. Moreover, the flexibility aggregator 

makes market access possible for demand side flexibility, by reducing transaction costs and pooling 

small volumes to large enough for market participation. However, an issue to be addressed is how to 

make a profitable business case for a flexibility aggregator. One possible approach is to sell the 

aggregated demand side flexibility in multiple markets, and hence create multiple revenue streams. 

Also ENTSO-E3 supports the idea above by stating that the demand side should participate in all 

markets [4]. To accomplish this, they suggest that market rules should be amended to enable the 

work of aggregators.  

In response to the increased need for flexibility, a large number of concept studies and 

demonstration activities related to market design changes have been initiated. Some focus on the 

change of rules in existing, while others introduce new markets.  

The ECO-Grid project proposes a new, local real-time market to balance the power system. The 

market is bid-less and the market operator sets a price every 5 minutes for flexible resources to 

respond to [5]. The new market fits into the existing market regime between the regulating power 

market and the frequency-controlled reserves, and opens for smaller units to participate. A 

neighborhood market is proposed in the Nobel-project [6] aiming at trading locally produced 

renewable generation. The market model is based on a stock exchange model with continuous 

trading for 15 minutes’ time slots. The iPower project introduces a clearinghouse for flexibility 

services to facilitate ancillary services at the DSO level ([7], [8]) to avoid local congestion. They 

distinguish between service types for reservation and scheduling. Activation signals are sent out, and 

the flexible resources must respond within 15 minutes. The idea of splitting into reservation and 

scheduling is also supported by Rosen & Madlener [9], who propose a weekly auction for reservation 

of capacity for every hour of the days in the following week. A local market framework to exploit 

flexibility from end users is also proposed by Torbaghan et al. [10]. They split between ahead 

planning including day-ahead and intra-day mechanisms, and real-time dispatching. The DSO is the 

local market operator, and the energy programs are set such that there will be no congestion issues 

in the distribution grid. If the market-based planning fails, the DSO will perform real-time dispatching 

to resolve congestion issues. 

The Horizon 2020-project EMPOWER4 elaborates a local market concept with three basic types of 

markets: One for local electricity, one for local flexibility and one for other services [11]. The local 

flexibility market provides flexibility services for local congestion and voltage control. The Smart 

Energy Service Provider, SESP, acts as a flexibility aggregator with long term contracts with the 
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flexible consumers and prosumers on one side, and the DSO on the other. The market has the time 

granularity of 15 minutes [12]. 

A review of markets for demand side flexibility is given by Eid et al. [13]. They divide the different 

markets into ancillary services, system balancing and network congestion management, spot markets 

and generation capacity markets.  

Another review is given by Hu et al. [14], who focus on barriers to integrate variable renewable 

electricity into the wholesale electricity market. They claim that an overhaul is needed for the 

current EU electricity market design and suggest higher time resolution of trading products, later 

gate closure times and capacity-based schemes. 

Although some of the references above focus on the local and other on the wholesale side of the 

market, there are some common features: Reservation of flexibility capacity for later use, activation 

of flexibility near real-time and an energy market for the day-ahead or shorter. Based on these ideas, 

in this article we define a generalized market design which we believe is representative for a future 

market design both at the wholesale and the local levels. The design includes the following markets:  

 An options market (OM), where flexibility capacity is reserved for potential later use. The 

trading horizon is several days. 

 A spot market (SM), where electricity is traded for the day-ahead or shorter with a time 

granularity of one hour or less. 

 A flexibility market (FM), where flexibility is activated in real-time or close to real-time. 

Note that this market framework is partly similar to already existing electricity markets at the 

wholesale level. One example is the Norwegian market regime, where Statnett’s5 Tertiary reserves 

options market (“RKOM uke”), Nord Pool’s6 Elspot day-ahead market and Statnett’s Tertiary reserves 

market (“RK”), correspond to the OM, SM and FM, respectively. 

A fundamental challenge for market participants in multiple markets, is how to optimally allocate 

volumes to the different markets. Bidding decisions for multiple, sequential electricity markets have 

been studied in a small number of papers, all seen from the perspective of a power producer. A 

literature review regarding this topic is given in [15]. It concludes that the optimal bidding strategy is 

found when all subsequent markets are taken into account when bids into the first market are 

decided. First, they review the bidding models, all covering a day-ahead market in different 

combinations with intraday, balancing and ancillary services markets ([16]–[20]). Coordinated bidding 

is the term they use when taking subsequent markets into account, while the contrary is denoted 

separate bidding. Just a few studies quantify the gain from coordinated bidding. Although these 

figures are not very high (0,1 to 2%), the gain is expected to increase with increasing price differences 

between the markets [16]. 

The problem under consideration in this paper has many similarities with the multi-market bidding 

studies referenced above. We also use the concept of coordinated bidding. However, our focal entity 

is not a power producer, but a demand side flexibility aggregator. To our knowledge this has not 
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been covered before. Contrary to the studies above, we also include the OM, where capacity is 

reserved for later use in FM.  

Our starting point is the previous work [21], where we developed a bidding and scheduling model for 

day-ahead market participation for an energy aggregator. The main objective for the aggregator was 

to minimize expected costs for supplying electricity to a set of prosumers, while dispatching flexible 

energy units. The model was formulated as a two-stage stochastic mixed integer program, where the 

uncertain parameters were represented in scenarios. In the current paper there are three major 

extensions. We now focus on flexibility (up- and down-regulation) explicitly. Instead of trading in 

one, single market, now we cover trading in three different markets. The problem is extended from a 

two-stage to a multi-stage problem. 

The contribution from this article is four-fold:  

 We develop a mixed integer multi-stage stochastic programming model for coordinated 

bidding to determine optimal bidding strategies for a flexibility aggregator participating in 

three sequential markets, including a market for reservation of capacity 

 We model explicitly the information revelation process, and take into account that prices 

may realize differently from the scenarios 

 To ensure technically feasible solutions, we put effort into modelling the flexibility units 

properly to capture physical and economic constraints in the underlying, physical systems 

 We perform a realistic case-study based on 4 industrial companies and one aggregator 

including a quantification and discussion of the value of flexibility and the value of 

aggregation 

The remainder of the paper is organized as follows: Chapter 2 outlines the problem, including 

descriptions of the trading process and the information structure. The mathematical formulations 

are presented in Chapter 3, while Chapter 4 contains the case study. 

2. Problem description 

Flexibility and market design 
Let a flexibility aggregator manage a portfolio of flexibility units on behalf of a set of flexibility 

vendors. The flexibility aggregator’s objective is to maximize the profit from the portfolio by trading 

in a set of markets. Each flexibility vendor has at least one flexibility unit, which can provide services 

for up-regulation or down-regulation. Up-regulation means increased generation or reduced load, 

while down-regulation is the opposite. This definition is in line with existing terminology used in 

balancing markets ([22], [23]). A flexibility unit represents an appliance or a group of appliances that 

can alter the electricity produced or consumed. In other words, a flexibility unit can represent 

controllable loads, generators and storages. Although we in this paper focus only on flexibility, we 

follow the same principles as in our previous work [21] and split flexibility units into discrete units 

(that can only be switched on or off), continuous units (that can be regulated up or down 

continuously) and shiftable units (that can be regulated in both directions, but where a net volume 

constraint must be fulfilled within a set of periods). In addition, we define parameters for maximum 

and minimum duration of a regulation and minimum rest-time between two regulations. Each 

flexibility unit has a capability for regulating up or down in each time period.  
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Up-regulation means selling to the market, and this action comes to an added cost for the flexibility 

vendor. For a generator, up-regulation cost can be related to extra use of fuel. The cost for reducing 

load may be related to added cost of alternative solutions, reduced volume of produced goods or 

loss of comfort. Up-regulation is profitable for the flexibility vendor if the revenue from selling to the 

market exceeds the cost for performing the up-regulation activity. 

For down-regulation it is a bit different. Reduced generation or increased load means buying from 

the market. This action comes to a reduced cost, for example reduced use of fuel or increased 

volume of produced goods. Hence, down-regulation is profitable if the added cost from buying in the 

market is smaller than the reduced cost from performing the down-regulation. In many cases the 

reduced cost is 0, and down-regulation is profitable only if the market prices are negative.    

The aggregator’s task is to maximize the value of the flexibility portfolio by trading in three 

sequential markets as illustrated in Figure 1. In this paper we take the perspective of one market 

participant, the flexibility aggregator, but there are of course many other entities participating in the 

same markets. Notice that although the SM is an energy market, the flexibility aggregator 

participates only with up- and down-regulation.  

 

Figure 1. Flexibility vendors, aggregator and markets 

The flexibility aggregator can get revenues for flexibility from all the three markets. However, 

physical activation of the flexibility will be done only for commitments in the SM and FM. 

Commitments in the OM only means that the volume must be bid to the FM at a later stage and will 

only turn into a physical obligation if it gets committed in the FM. Notice also, that volumes can be 

bid to the FM without having been reserved in the OM. 

For the ease of exposition, we use one week as the trading horizon for the OM, one day for the SM 

and the FM and one hour as the time granularity in all markets. In this article we assume step-wise 

bid-formats for the OM and the FM, while the SM has piece-wise linear bidding curves (see for 

instance [16]). Further, we assume that all markets are settled according to pay-as-clear principle, 

also denoted uniform price, as opposed to pay-as-bid [24]. However, other bid formats and 

settlement principles will not change the basic approach.  

The trading process and decision making under uncertainty 
The trading process will be sequential: First, the aggregator submits a bid to the OM for one week. 

The market operator clears the market and publishes the OM prices and commitments. Secondly, the 
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aggregator submits a bid to the SM for the first day in the week. The market operator clears the 

market and publishes the SM prices and commitments. Thirdly, the aggregator submits a bid to the 

FM for the first hour. The market operator calls for activations and publishes the FM price. Figure 2 

illustrates this trading process. Finally, when the FM is cleared, the flexibility aggregator needs to 

decide the optimal schedules for each flexibility unit, where the market commitments must be met. 

 

Figure 2. Illustration of the bidding and market clearing process 

Next, the process for the FM continues to the next hour, repeatedly until the last hour for that day. 

Then the SM trade moves to the next day, the FM trade starts for the first hour, then the second 

hour and so forth. When the FM is finished for the last hour in the week, the OM is cleared for the 

consecutive week.  

The flexibility aggregator’s problem is to decide the bids to each of the markets so that the expected 

profit is maximized. Since the prices are revealed gradually, these decisions must be made under 

uncertainty. We generate a set of price scenarios for each market, where a scenario represents a 

possible realization of the prices, with a corresponding probability to occur. Some examples of price 

scenarios are shown in Figure 16 and 17. 

As illustrated in Figure 2 the aggregator receives new price information 176 times a week (one for 

the OM, 7 for the SM and 168 for the FM), and consequently makes 344 decisions (one OM bid, 7 SM 

bids, 168 FM bids and 168 schedules). According to stochastic programming theory ([25]–[27]), we 

might model the process as a 176 stages’ scenario tree, where a decision is made in each stage and 

new information is revealed between two stages. This problem will be mathematically difficult to 

handle. To make the problem tractable, we choose the following approach: 

 We re-establish a new model each time new price information is revealed and a new decision 

must be made. This approach also makes it possible to capture situations where the prices 

are realized differently from the pre-generated price scenarios.  

 We reduce the number of stages by collapsing down to maximum 3. Number of stages will 

differ from problem to problem, see below. 

 We assume that price information from the FM is published simultaneously for all hours for 

each day. 
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In sum, this approach reduces the number of decisions to be made from 344 to 22 (1 OM bid, 7 SM 

bids, 7 FM bids, 7 scheduling decisions). Below, we explain how the models for the different markets 

are set up. 

The objective for the OM problem is to maximize the expected profit for the whole OM trading 

horizon (one week). The first stage decision is the OM bid. The optimal bid volume to the OM 

depends on the balance between expected profits from the OM and the FM on one side and from 

the SM on the other side. This applies since the volume committed to the OM is reserved for the FM, 

and can not be bid to the SM. To take into consideration the implications to the OM bid from later 

decisions, we establish a 3-stage scenario tree, where the SM and FM bid decisions are taken in the 

second stage and the schedules in the third, see the left hand side of Figure 3. The aggregator then 

submits the OM bids and receives the realized OM prices and corresponding OM commitments. We 

have now collapsed the SM and FM decisions into one common stage covering SM decisions for all 7 

days and FM decisions for all 168 hours. This is of course a large simplification. However, recall that 

we implement the first-stage decision (OM bids) and that the later stages are included only to 

capture their impact to the OM bid decisions. This issue is further elaborated in the Discussion 

subsection under the Case study.  

Next, we move to the SM problem and establish a new three-stage scenario tree. The objective for 

the SM problem is to decide a SM bid that maximizes the expected profit for the SM trading horizon 

(one day). The optimal decision depends on the balance between expected profits from the SM and 

the FM markets, constrained by the OM commitment and the flexibility units. The first stage decision 

is now the SM bid for the next day. The second stage captures the FM bids, while the third stage 

covers the schedule decisions for the next day. The aggregator submits the SM bids and receives the 

realized SM prices and corresponding commitments. The middle part of Figure 3 illustrates the 

scenario tree. 

Then we establish the FM problem. The objective for the FM problem is to decide FM bids that 

maximize expected profit, taken into account commitments from the OM and SM markets and the 

flexibility unit constraints. In the first stage, the FM bid decisions are made, while the scheduling 

decisions are made in the second stage, see the right-hand side of Figure 3. Notice that the FM 

problem is handled in a two-stage scenario tree. The aggregator submits the FM bids and receives 

the realized FM prices and corresponding commitments.  

   
 

Figure 3. Scenario trees for the OM (left), SM (middle) and FM (right) problems 
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Finally, the aggregator decides schedules for each flexibility unit. Since all prices and commitments 

are known with certainty, this problem is deterministic. 

3. Mathematical formulation 
In this section we outline the mathematical formulation for the bidding and scheduling problems, 

with one section for each problem type. We describe the sets, parameters and variables successively 

as they appear. A full list is found in Appendix A. We assume that the aggregator is risk neutral and a 

price taker.  

The OM problem 

Objective function 

The objective in the OM problem is to maximize the expected total profit over the OM planning 

horizon 
1t T , where superscript 1 denotes the OM market: 

1

1, , 1, , 1, , 1, , 2, , 2, , 2, ,1

3, , 3, , 3, , , ,

( )
max .

( )

up up down down up down

t s t s t s t s t s t s t s

s up down up down
s S t T t s t s t s t s t s

P P P
z R

P

   

    

     
   

       
   (1) 

sR is the probability for scenario s. The first term 
1, , 1, ,

up up

t s t sP  represents the revenues from reservation 

of up-regulation in the OM market calculated by multiplying the price for reservation 1, ,t sP in period t 

in scenario s with the corresponding commitment 1, ,

up

t s . Similarly, 1, , 1, ,

down down

t s t sP   is the revenue from 

reserving down-regulation volumes. We assume separate prices for reservation of up- and down-

regulation, since volumes can be reserved for both directions in the same period. The second and 

third terms represent revenues and cost from the SM (market 2) and FM (market 3), respectively. 

Similar to the OM revenue, 2, , 2, ,

up

t s t sP  represents the revenue from up-regulation in the SM, while 

2, , 2, ,

down

t s t sP   represents the cost for down-regulation. The same applies for the FM.  

For each regulation unit we calculate the up-regulation added cost as the product of unit regulation 

added cost 
up

uP  for regulation unit u and volume regulated up , ,

up

u t s  in period t and scenario s. The 

total aggregated up-regulation added cost ,

up

t s  in period t and scenario s is the sum of up-regulations 

over all units u and all flexibility vendors k. 

1

, , ,

( )

, , .up up up

t s u u t s

k K u U k

P t T s S 
 

     (2) 

Likewise, when we regulate down, we calculate the total aggregated reduced costs ,

down

t s  as the sum 

of down-regulation reduced cost over all units u and all flexibility vendors k.  

1

, , ,

( )

, , .down down down

t s u u t s

k K u U k

P t T s S 
 

     (3) 

Bid constraints 

The OM bid format is step-wise, and the bid constraint is formulated as: 

1 1

1, , 1, , 1, 1, , 1, 1, , , , ,up up

t s i t i t s iP P P i I t T s S       
 

(4) 
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where 1, ,

up

i t is bid volume at bid point i . According to the bidding rules, the volume points must be 

non-decreasing with increasing price:  

1

1, , 1, 1, , , 1, .up up m

i t i t i I i t T       (5) 

Market commitment constraints 

Scheduled regulations , ,

up

u t s summed over all regulation units u and flexibility vendors k must equal 

committed volumes to the SM and the FM in each period t and scenario s: 

1

, , 2, , 3, , , , .up up up

u t s t s t s

k K u U

t T s S  
 

   
 

(6) 

1

, , 2, , 3, , , , .down down down

u t s t s t s

k K u U

t T s S  
 

   
 

(7) 

Flexibility constraints 

All regulation units u U will have a maximum regulation capability per period for up ,

up

u tW  and 

down ,

down

u tW , respectively. The scheduled regulation at each regulation unit must be equal to or 

lower than the capability: 

1

, , , , , , .up up

u t s u tW u U t T s S    
 

(8) 

1

, , , , , , .down down

u t s u tW u U t T s S    
 

(9) 

Non-anticipativity constraints 

We have used a variable splitting formulation where a copy of each of the first- and second- stage 

variables exist for each scenario. Non-anticipativity constraints [25] are then needed to ensure that 

the first-stage variables take the same values in all scenarios. Further, the second-stage variables that 

belong to the same subset of scenarios must also take the same values. Since the OM bid decision is 

independent of scenario, the OM bid constraint automatically fulfils non-anticipativity constraint for 

the first-stage. For the second stage, we use the SM bid constraint to ensure non-anticipativity, see 

the formulation of the SM bid in the SM problem section below. Now, the second-stage bids must be 

equal for all scenarios belonging to the same scenario group. See illustration in Figure 15. 

The SM problem 

Objective function 

The objective in the SM problem is to maximize the expected total profit over the SM planning 

horizon 
2t T , which is one day:  

 
2

2

2, , 2, , 2, , 3, , 3, , 3, , , ,max ( ) ( ) .up down up down up down

s t s t s t s t s t s t s t s t s

s S t T

z R P P     
 

 
      

 
   (10) 

This function is similar to the OM problem, except for the OM market formulations, since the OM 

market now is cleared and OM prices and commitments are known. 
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Bid constraints 

The bid format for the SM is piece-wise linear, formulated as: 

2, , 2, 1 2, 2, ,

2, , 2, , 2, 1,

2, 2, 1 2, 2, 1

2 2

2, 1 2, , 2,

,

, , 1, , .

bid bid

t s i i t sup up up

t s i t i tbid bid bid bid

i i i i

bid bid

i t s i

P P P P

P P P P

P P P i I i t T s S

  



 



 
 

 

     

 (11) 

Here, 2, ,

up

t s is the SM commitment in period t and scenario s, 2, ,t sP is the SM price in period t and 

scenario s, 2,

bid

iP is the bid price for bid point i and 2, ,

up

i t is the SM bid volume for bid point i in period 

t. The same formulation is valid for down-regulation. 

According to the bidding rules, the volume points for up-regulation must be non-decreasing with 

increasing price, and non-increasing for down-regulation:  

2 2

2, , 2, 1, , , 1, .up up

i t i t i I i t T     
 

(12) 

2 2

2, , 2, 1, , , 1, .down down

i t i t i I i t T     
 

(13) 

The SM bid volumes 2, ,

up

i t for the highest bid point i I must be smaller than or equal to total 

available regulation capability ,

up

u tW summed over all regulation units u minus committed volume to 

OM 1,

up

t :  

2

2, , , 1, , , .up up up

I t u t t

u U

W t T s S 


     
(14) 

The same formulations are valid for down-regulation. 

Market commitment constraints 

The SM problem will have market commitment constraints similar to the OM problem. 

Flexibility unit constraints 

The flexibility unit constraints under the OM problem are also valid in the SM problem. In addition, 

we now include the time limitations by introducing binary variables. First, , ,

up start

u t s  gets the value 1 in 

periods where regulation is started up in the beginning of the period. Next, , ,

up end

u t s   gets the value 1 

in periods where regulation is stopped at the end of the period. Finally, , ,

up run

u t s   gets the value 1 in 

periods where regulation is ongoing, but not started or stopped in the same period. We distinguish 

between up- and down-regulations, so we get six different binary variable types for each regulation 

unit u, period t and scenario s: , , , , , , , , , , , ,, , , , ,up start up run up end down start down end

u t s u t s u t s u t s u t

down ru

t

n

s u s         . In the 

following, we present the constraints for up-regulation, but there will be identical constraints for 

down-regulation. 

The duration of a regulation must be limited to maximum 
up max

uD 
 periods: 

1

, , , ,

2( ), , ,,

up-max
ut D

up end up start

u j s u t s

j t

U k t T s Su 
 

 



    (15) 
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where j  is a counter. 

Likewise, we limit the duration to minimum 
up min

uD 
 periods: 

2

, , , ,

21   ( ),   , .,

up min
ut D

up start up end

u t s u i s

i t

u U k t T s S 

 
 



    
 

(16) 

A minimum rest time 
up min

uR 
must exist between two regulations: 

, , , ( ),  .  1

up min
ut R

up end up start

u t u i

i t

u U k t T 


 



   
 

(17) 

The number of regulations must be constrained by the maximum allowable number of regulations 
a

u

up m xB 
 for the planning horizon: 

, , (, ),  .up start up max

u ut s

t T

B U ku s S  



  
 

(18) 

The regulated volume , ,

up

u t s  can only have a non-zero value in periods where reduction starts, is 

running or ends. For continuous units the regulated volume must be smaller than or equal to the 

available regulation volume , ,u t sW : 

2

, , , , , , ( ), , ,up up active up cont

u t s u t s u tW u U k t T s S     
 

(19) 

where  , , , , , , , ,min(( ),1)up active up start up run up end

u t s u t s u t s u t s         . 

For discrete units the regulated volume must be either 0 or equal to the available regulation volume: 

2

, , , , , , ( ), , .up up up active discrete

u t s u t u t sW u U k t T s S     
 

(20) 

For shiftable regulation units ( )shiftu U k  we in addition to the constraints above define shift time 

intervals ( )g G u  with a start period 
start

gT   and an end period 
end

gT . Within each shift interval, the 

net sum of regulations must be 0: 

 , , , , , (  ()0 ),, .

end
g

start
g

up d

T

shifown

u t s u t

t

t T

s u U k s Sg G u 


     (21) 

Note that we did not include any of the constraints involving binary variables under the OM problem. 

This is a relaxation of the problem, and we selected to do so in order to reduce the calculation times. 

We have not included storage units in our formulations. However, that can be done according to the 

formulations in [21]. 

Non-anticipativity constraints 

Similar to the OM problem, the non-anticipativity constraint for the first stage in the SM problem is 

automatically fulfilled through the SM bid decision. The second stage constraint will now be ensured 

by introducing FM bids, see formulations under the FM problem below. 
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The FM problem 

Objective function 

The objective in the FM problem is to maximize the expected total profit over the planning horizon 
3t T , which for the FM case are all hours in one day: 

 
3

3

3, , 3, , 3, , , ,max ( ) .up down up down

s t s t s t s t s t s

s S t T

z R P    
 

 
    

 
   (22) 

Bid constraints 

Since the FM bid format is step-wise, similar to the OM bid, the bid formulations will be equal. 

However, the FM commitment 3, ,

up

t s  is also conditional on the regulation direction in the market, 

which can be derived from the difference in prices between the SM and FM. The market is up-

regulated in a period if 3, 2,t tP P , down-regulated if 3, 2,t tP P and unregulated if 3, 2,t tP P . The bid 

constraint then can be formulated as: 

3 3

3, , 3, 3, , 3, 1 2, , 3, ,

3, , 3 3

3, , 2, ,

, , ,

0, , ,

up bid up bid up

i t i t s i t s t sup

t s

t s t s

i I t T s S if P P P and P P

i I t T s S if P P




 


       

  
       

(23) 

3 3

3, , 3, 3, , 3, 1 2, , 3, ,

3, , 3 3

3, , 2, ,

, , ,

0, , ,

down bid up bid down

i t i t s i t s t sdown

t s

t s t s

i I t T s S if P P P and P P

i I t T s S if P P




 


       

  
       

(24) 

According to the bidding rules, the volume points for up-regulation must be non-decreasing with 

increasing price, and non-increasing for down-regulation:  

3

3, , 3, 1, , , 1, .up up m

i t i t i I i t T     
 

(25) 

3

3, , 3, 1, , , 1, .down down m

i t i t i I i t T     
 

(26) 

Volume bid to the FM for up-regulation 3, ,

up

i t for the last bid point 
3i I must be greater than or 

equal to committed volume in the OM: 

3

3, , 1, , .up up

I t t t T  
 

(27) 

Market commitment constraints 

The FM problem will have market commitment constraints similar to the OM and SM problems. 

Flexibility unit constraints 

The FM problem we will have the same flexibility unit constraints as the SM problem. 

Non-anticipativity constraints 

Since the FM problem is in only two stages, we only need non-anticipativity constraints for the first 

stage, which are automatically ensured by the FM bid constraints. 
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The scheduling problem 
The objective in the scheduling problem is to maximize the total profit over the planning horizon 

4t T . Now, all trading decisions are made and all commitments are known. The only decision to 

make is schedules for all the flexibility units so that the difference between down-regulation reduced 

cost and up-regulation added cost is minimized. 

4

, ,max .up down

t s t sz    
 

(28) 

Since no bid decisions are to be made, we will have no bid constraints. Further, we do not need any 

non-anticipativity constraints, since all parameters are known with certainty and the problem is 

deterministic. However, we need the market commitment and flexibility unit constraints. These will 

be similar to the formulations under the OM and SM problems, see Eq. (6) and (7) and (15) – (21), 

respectively, but without the notion of scenarios.  

4. Case study 

Portfolio description 
In close cooperation with Statkraft7 and four Norwegian industrial companies we perform a case 

study, where we simulate that Statkraft acts as the flexibility aggregator and the industrial companies 

are flexibility vendors. The flexibility capabilities including constraints have been worked out in close 

cooperation with the staff at the industrial facilities. The flexibility portfolio is illustrated in Figure 4. 

 

Figure 4. Flexibility portfolio 

In total, the portfolio consists of 9 regulation units. Each unit represents a production line or a group 

of steam generating appliances. Five units can only regulate in one direction (up or down), while four 

can regulate in both directions. Total capability for up-regulation is maximum 200 MW, while the 

                                                           
7 www.statkraft.com 
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corresponding value for down-regulation is 63 MW. Up-regulation costs are 35, 50, 95 and 105 

€/MW, while down-regulation reduced costs are 20 and 0 €/MW. Figure 5 shows the aggregated 

volumes for these costs. Note that the figures show maximum values and do not reflect unavailability 

or time limitations. 

 

 

Figure 5. Aggregated volumes for down- and up-regulation 

While units 1.2, 1.3, 1.4, 2.2 and 2.3 can perform regulations without any inter-period constraints, 

units 1.1, 2.1, 3.1 and 4.1 have several constraints: All units have a maximum regulation duration of 3 

hours. Further, unit 1.1 and 2.1 have minimum 6 hours’ rest time, while unit 3.1 and 4.1 have 3 

hours. Finally, unit 4.1 has a volume constraint, where the sum of up-regulation and down-regulation 

must equal 0 over a day. 

Available flexibility for a typical day will be as presented in Figure 4 for each of the hours, except for 

unit 1.4, which has only 7 MW available for down-regulation from hour 7 to 10, and for unit 2.3, 

which has possibility to regulate down 30 MW the first half day and up 10 the rest of the day. 

Moreover, unit 1.1 and 2.1 will be stopped once a month. For these days the capability will be 0 

between hour 7 and 18. 

Market conditions 
To represent the OM, SM and FM, we use prices from Statnett’s Tertiary reserves options market 

(“RKOM uke”), Nord Pool’s Elspot day-ahead market and Statnett’s Tertiary reserves market (“RK”), 

respectively. There is one RKOM price per week, and this price is valid for each day from hour 6 to 

24. In RKOM resources for up-regulation are reserved for later use in RK. For Elspot and RK there is 

one price for each hour. The simulations are run on data for the 8 first weeks in 2016, namely from 

04.01.2016 to 28.02.2016. Real prices for the three markets are shown in Figure 6 and Figure 7. 
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Figure 6. Real RKOM prices for the first 8 weeks of 2016 

 

 

Figure 7. Real Elspot and RK prices for January and February 2016 

Note in particular the extraordinarily spiky price pattern for Elspot and RK for January, and the much 

more dampened situation in February. 

Process overview 
To perform our analyses, we go through the steps described in Chapter 2, illustrated in Figure 8, 

where each rectangle with ordinary corners represents a process and a model, while the rectangles 

with snipped corners represent input or output files. 
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Figure 8. Overview of bidding and scheduling simulation process 

The optimization models, as formulated in Chapter 3, are coded in Fico Xpress Mosel, version 3.10.0. 

Forecasting and scenario generation are handled in MS Excel. Automation of the whole simulation 

process is implemented in AutoIt. 

Results and analysis for one specific day  
In this section we analyze one day in detail. We select 15.01.2016, which is Friday in week 2. The OM 

price for this week cleared at 1.14 €/MWh and is valid for all hours between 6 and 24.  An overview 

of realized prices in SM and FM for the day is shown in Figure 9.  

The SM prices vary between 23 and 150 €/MWh with a morning and evening peak. There is up-

regulation in FM to high prices (up to 160 €/MWh) from hour 7 to 10, else down-regulation from 

hour 1 to 3 (to prices below 20 €/MWh) and 14 to 20 (to prices above 20 €/MWh). This means that 

all up-regulation units are candidates for regulation in the SM and FM, and that unit 1.2 is candidate 

for down-regulation in the FM. Recall that the prices are not known at the time we make our 

decisions. 

 

 

Figure 9. Real prices for the SM and FM for 15.01.2016 
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Before making decisions for the specific day, we must decide the OM bid for the whole week. Then 

we need price scenarios for the OM, plus for the SM and FM for all days in the week, which we 

generate according to the description in Appendix B. The resulting bids are shown in Figure 18. 

Remember that these bids are valid for hour 6 to 24 all days for week 2, including our focal day, 

15.01.2016. Since the OM price for week 2 realized at 1.14 €/MWh, our commitment is 170 MWh/h. 

For the SM decision we need price scenarios for the SM and FM, now only for the given day. The 

resulting SM bids are shown in Figure 19. The bids for the FM problem are presented in Figure 20. 

When the FM prices are published, the final schedule to be implemented can be calculated in the 

scheduling problem. The left part of Figure 10 shows the commitments to each market, the right part 

shows the net profit, also split down to each revenue and cost element, while Figure 11 shows the 

schedules for each flexibility unit.  

For the hours 6 to 24, the OM commitment is 170 MWh/h, which means that total available volume 

for SM is 20 MWh/h from 6 – 12 and 30 from 13 – 24. We see that we sell up-regulation in the 

highest priced hours in SM (8-10 and 17-19) plus some other hours. In FM we first get down-

regulation for hours 1 – 3 (where prices are below 20) and then up-regulation for 8 – 10. The optimal 

utilization of each regulation unit is presented in Figure 11. Note that all constraints are fulfilled: 

Units 1.1, 2.1, 3.1 and 4.1 run for maximum three hours, unit 1.1 has six hours’ rest-time between 

the regulations, while unit 3.1 has three hours’. Unit 4.1 has 5 MWh down-regulation in hour 1 and 3 

and 10 MWh up-regulation in hour 10, which gives net 0.  

In total, these decisions give a net profit equal to 45 k€ for the day, where the largest amount of 

revenues come from FM. 

 

 

 

Figure 10. Market commitments and economic figures for 15.01.2016 
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Figure 11. Unit schedules for 15.01.2016 
 

Results and analysis for 8 weeks  
Figure 12 sums up the results from simulations over 8 weeks. The total net profit is 819 k€, which can 

be interpreted as the value of flexibility. Note that January contributes with 86 % of the profit, due to 

the higher price levels in SM and FM compared to February.  

 

Figure 12. Results for 04.01.2016 to 28.02.2016 

Profits from down-regulation are almost negligible compared to up-regulation (14 versus 805 k€). 

One reason is that the portfolio has larger amounts of up-regulation capabilities, another is that most 
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of the down-regulation is profitable only for negative prices. In addition, as we saw in January, the 

market prices may get extremely high, but rarely extremely negative.  

For the up-regulation, 73 % of the revenues stem from FM, while 13 and 14 % stem from OM and 

SM, respectively. The markets that are specifically designed for flexibility, OM and FM, together 

contributes with 87 % of the revenues.  

For February, OM and SM contributes with 99 % of the up-regulation revenues, but here OM has the 

largest impact (76 %). In addition, with the low prices in February, net profit for down-regulation is 

almost three times larger than for January. 

To calculate the theoretical upper bound of net total profit and to analyze under what conditions our 

models are not able to realize the full potential, we repeat the simulations for the 8 weeks’ period, 

but this time we assume that we have perfect information, meaning that we know exactly what the 

prices will be in the future. Instead of making price scenarios, we enter realized prices as input to our 

models. This is of course unrealistic in real life, but we perform this in order to analyze the difference 

between the solutions from the stochastic program (SP) and from calculations with perfect 

information (PI). The overall results from PI are presented in Figure 13.  

 

Figure 13. Results for 04.01.2016 to 28.02.2016 based on perfect information 

Net total profits are now 1 089 k€ or 33 % higher than results from SP. Most of the difference comes 

in January. 

There are multiple reasons why the solutions differ between SP and PI. First, SP in general chooses 

strategies that are more robust in meeting different outcomes of the stochastic variables (market 

prices). In our case this happens for example for the OM decisions, where SP in general decides a 

lower OM volume. By doing so, the aggregator is more flexible in meeting potential high SM prices. 

This is in line with stochastic programming theory, see for instance [25]. 

Further, PI is able to generate larger profits for the volume constrained unit (4.1), since it knows with 

certainty what all prices are going to be. In SP, this unit is less utilized since we might need to 

regulate it to high costs to ensure feasible solutions for every scenario. 

However, five days contribute with 84 % of the difference in profits between PI and SP. All these are 

extreme days, with very high prices, in particular in the FM, that are difficult to forecast and to cover 

in the price scenarios. In Figure 12 and 13 we see that SP allocates more to the SM compared to PI. 

When the extreme prices occur in the FM, the SP solutions sometimes have allocated volumes to SM 
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and the aggregator can not put maximum volume to the hours with extreme prices in FM. Another 

reason is that SP in the FM bid has allocated large volumes to FM, but not to the hours where the 

extreme prices really come. Note that we in our modelling have simplified the FM process, by 

assuming that bids are sent once a day and that all 24 FM prices are revealed simultaneously. In real 

life in the tertiary reserves market, this is not the case. The prices are revealed after each hour, and 

the market participants can change their bids throughout the day. Hence, in a more realistic setting, 

the problems described above could have been reduced and the profits in SP would have been 

higher.  

This shows that proper price forecasting and scenario generation models are very important. 

Anyway, no matter how advanced price forecasting models we have, some of the price events in 

January would be impossible to forecast.  

For the scenario generation method, it is particularly important to have a good spread of the 

scenario fan. Ideally, in the total set of scenarios there should exist one price between each bid price 

point for each hour. Without this requirement fulfilled, the model sees no probability that the price 

will realize between these points, and it will be indifferent of what volume to bid here. This might be 

a problem if the price realizes between these points. 

This article focuses on an entity that aggregates flexibility and sells it in markets. Basically, the 

aggregator performs services on behalf of each flexibility vendor, aiming at lowering the barriers in 

accessing the market and reducing the transaction costs [1]. However, it is interesting to analyse if 

the aggregator role has any additional value added impacts on the value chain. To do so, we have 

performed the simulations for each flexibility vendor separately. The summed results are presented 

in Figure 14. 

Total profits are now 793 k€, which is 26 k€ or 3 % lower than the total profits in the aggregated case 

(Figure 12). Hence, the value of aggregation is 26 k€. A closer analysis of the results shows that there 

are different reasons for the added value: First, a larger portfolio of flexibility units provides more 

robustness to make feasible solutions, and hence, larger volumes can be bid into the markets. An 

example to illustrate: Assume that unit 2.1 (35 MWh/h) and unit 1.3 (15 MWh/h) are planned out of 

operation during some hours of the week (but not simultaneously). The total regulating capability 

will be 50 MWh/h when both run, 35 MWh/h when only 1.2 runs and 15 MWh/h when 1.3 runs. In 

the disaggregated case none of these units can be bid into OM. In the aggregated case, however, 15 

MWh/h can still be bid to OM, since 15 can be provided to hours where both run, 2.1 runs and 1.3 

runs. Aggregation releases 15 MWh/h to OM in this example. 
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Figure 14. Results without aggregation 

A larger portfolio also gives increased robustness to utilize flexibility units with constraints. Take unit 

4.1 as an example. This unit is volume constrained and must, if it has been regulated up at the 

beginning of the day, be regulated down at the end of the day. If the market is not regulated down, 

we must regulate up at another unit simultaneously with down-regulation of 4.1. Without 

aggregation, there are no other candidates to regulate, since vendor 4 only has this unit.  

Discussion 
The multi-market bidding problem for a flexibility aggregator is a complex task. In order to formulate 

the problem mathematically and to perform the case study, we have made some simplifications and 

assumptions.  

We assume that the portfolio can be bid aggregated into all markets. Whether this assumption holds, 

depends on the specific market design and the geographical location for each flexibility vendor. If the 

flexibility vendors can not be bid aggregated, for instance if they belong to different zones or the FM 

must be bid down to node level, the value of aggregation will decrease. Further, we have disregarded 

costs related to grid-tariffs. In cases with dynamic grid prices, for instance with charges related to 

maximum power feed-in or outtake or to different grid prices in different periods (time-of-use), the 

grid tariff should also be included in the decision model [28].   

We have defined our problem so that the aggregator plans his operations into balance and fulfils the 

commitments perfectly. In a real-life setting, there will be an imbalance market or some kind of 

penalization for not meeting obligations. We leave this to future research, but mention that our 

models managed to find feasible solutions in all cases. Inclusion of the possibility to have imbalances 

might on one hand introduce additional costs, but on the other hand make it easier to find feasible 

solutions. We have also assumed that the regulation capabilities are known with certainty, which in a 

real situation would probably not hold. Further, we have assumed that there is no inter-relation 

between days regarding regulation capabilities. Then, decisions for the SM and FM can be done for 

each day separately, without considering later days. In situations where this assumption does not 

hold, the decision problem will be more complex.  

In this paper, we collapse the number of stages down to maximum three and establish a new model 

for each bid decision to make. This is in contrast to the approach in for instance [16], who solve all 
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problems in one, large multistage program. By applying their approach to our problem, we would for 

instance in the OM problem have SM prices being realized in seven stages for a week, and where 

each realization is conditional on realizations in all the earlier stages. Due to our disregard, one could 

expect a loss in profit, but the analysis with perfect information indicates that this loss is limited. The 

reason is that different realizations in late stages and their correlations will have little impact to the 

first stage decision. Further, we also want to pinpoint that making realistic scenarios for late stages is 

a difficult task. Finally, a strength with our method is that it handles situations where market prices 

realize differently from the scenarios, which normally will be the case. 

The case study is deliberately run for the two first months of 2016, since we then cover both extreme 

situations with high and volatile prices including many periods with up-regulation and periods with 

flat and low prices including a lot of down-regulation. To no surprise, we see that the profit potential 

is largest in situations with high prices and up-regulation. It should be mentioned that January 2016 

is peak demand month in the Norwegian electricity market, and hence, the profit figures should be 

used with care. 

The numeric results from the case study indicate that proper models for price forecasting and 

scenario generation are very important in volatile situations. Implementation of our models in a real 

life setting would require more advanced forecasting and scenario generation methods which 

improve how 1) price changes are captured and 2) the scenario fan is spread out. Further, it should 

be evaluated if the number of price scenarios should be higher. We have seen some days with 

indifference problems. In addition, stability tests should be performed to ensure that the results are 

not dependent on the specific scenarios that are generated [29]. However, even with our 

simplifications and assumptions, we have been able to harvest a large proportion of the potential 

profit.  

We have assumed that the aggregator is risk neutral, with no limitations on the bid volumes. For a 

real aggregator, we assume that limitations might be put on bid volumes ([17], [30]), for example on 

the OM bid. Another approach could be to introduce the aggregator’s preferences in the weight of 

participation in the different markets as outlined in [20]. However, we leave the risk profile topic to 

later research.  

Finally, we have assumed that the aggregator is a price-taker. In particular in local markets, where 

the number of participants is limited, this assumption might not hold. The aggregator will then 

become a price-maker, since the selected bidding strategy can influence the market prices. Hence, 

the prices can not be considered as exogenous. We expect that the value of aggregation in a price-

maker context will be even higher than in our study, but we leave to further research to model and 

analyze such situations. 

5. Conclusion and future research 
In this paper we propose decision-support models to handle the bidding and scheduling problems for 

aggregators that manage a portfolio of demand side flexibility by trading in multiple, sequential 

electricity markets. We have illustrated the application of the models in a case study where we have 

established a hypothetical portfolio, yet based on real flexibility units. Real data and rules are used 

from three current Norwegian electricity markets to simulate over a two-month period: January and 

February 2016. The study shows that our models ensure that bids and schedules are feasible. 

Further, we have calculated the value of flexibility and analysed how the different markets generate 

profits and discussed how this is influenced by price levels, price variations and directions of 
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regulation. The total net profit is 819 k€, where 98 % comes from up-regulation and 86 % comes from 

January, where the prices were very high due to cold temperatures.  

To analyze how well the models perform, we have compared with an analysis based on perfect 

information. We find that the value of the flexibility is 30 % higher with perfect information and that 

the reason for the loss is two-fold: 1) The stochastic approach chooses strategies that are more 

flexible to possible different outcomes of the market prices and 2) due to the spiky price situation in 

January which was very difficult to predict. This also shows the importance of proper price 

forecasting models and scenario generation methods.  

Finally, we have analyzed how the aggregator adds value to the portfolio by comparing to a situation 

where each flexibility vendor participates in the markets separately. We find that the value is 3 % due 

to increased ability to commit volumes to the markets and to provide feasible scheduling solutions 

for the flexibility units. 

In our work we disregard imbalances by forcing the schedules to match market commitments and 

fulfil the flexibility units’ constraints perfectly. Further, we assume that available flexibility is known 

with certainty and do not include potential impact from grid tariffs. Finally, we have simplified the 

FM by assuming that bid is submitted only once a day with no possibility to change as prices are 

revealed.  

We have only looked at the portfolio as a whole without analysing how the profits should be 

distributed between the flexibility vendors. In a real-life setting, this will of course be an important 

question to answer. Furthermore, to analyse the profitability, the investment cost for equipment 

both at the flexibility vendor side and at the aggregator side, should be quantified.  
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Appendices 

Appendix A. Sets, parameters and variables 

M  Set of markets, indexed by m, where 1 = options market, 2 = spot market and 3 = 

flexibility market. 
mT T  Subset of time periods where market m is valid. 

K  Set of flexibility vendors, indexed by k. 

U  Set of regulation units, indexed by u. 
contU U  Subset of regulation units of type continuous. 
discreteU U  Subset of regulation units of type discrete. 
shiftU U  Subset of regulation units of type shiftable. 

G  Set of possible load shift time intervals, indexed by g. 

L  Set of storage units, indexed by l. 

S  Set of scenarios, indexed by s. 
mI  Set of bid points valid for market m, indexed by i. 
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sR
 Probability for scenario s. 

1, ,

up

t sP  Market price for reservation of up-regulation in the OM market in period t and 

scenario s [€/MWh]. 

1, ,

down

t sP  Market price for reservation of down-regulation in the OM market in period t and 

scenario s [€/MWh]. 

, ,m t sP
 Market clearing price in market m in period t and scenario s [€/MWh]. These 

parameters are valid for the SM and FM. 
up

uP
 Internal cost for regulating up at regulating unit u in period t and scenario s [€/MWh]. 

down

uP
 Internal utility (negative cost) for regulating down at regulating unit u in period t and 

scenario s [€/MWh]. 

,

up

u tW
 Volume available for regulation up at regulating unit u and period t [MW]. 

,

down

u tW
 Volume available for regulation down at regulating unit u and period t [MW]. 

up max

uD 

 Maximum duration of a regulation up at regulating unit u [# of periods]. 

down max

uD 

 Maximum duration of a regulation down at regulating unit u [# of periods]. 

up min

uD 

 Minimum duration of a regulation up at regulating unit u [# of periods]. 

down min

uD 

 Minimum duration of a regulation down at regulating unit u [# of periods]. 

up min

uR 

 Minimum rest time between two regulations up at regulating unit u [# of periods]. 

down min

uR 

 Minimum rest time between two regulations down at regulating unit u [# of periods]. 

up max

uB 

 Maximum number of regulations up at regulating unit u. 

down max

uB 

 Maximum number of regulations down at regulating unit u. 
start

gT
 Earliest possible start period for load shift time interval g. 

end

gT
 Latest possible end period for load shift time interval g. 

 

, ,

up

m b t
 Bid volume for up-regulation in market m at bid point b and period t [MW]. 

, ,

down

m b t
 Bid volume for down-regulation in market m at bid point b and period t [MW]. 

, ,

up

m t s
 Committed volume for up-regulation in market m in period t and scenario s [MW]. 

, ,

down

m t s
 Committed volume for down-regulation in market m in period t and scenario s [MW]. 

,

up

t s
 Internal cost for regulating up in period t and scenario s [€]. 

,

down

t s
 Internal utility (negative cost) for regulating down in period t and scenario s [€]. 

, ,

up

u t s
 Power regulated up at regulating unit u in period t and scenario s [MW]. 

, ,

down

u t s
 Power regulated down at regulating unit u in period t and scenario s [MW]. 

, ,

up

m b t
 Volume bid for regulation up to market m at bid point b in period t [MW]. 

, ,

down

m b t
 Volume bid for regulation down to market m at bid point b in period t [MW]. 

, ,

up start

u t s 

 Binary variable = 1 if regulation up starts in the beginning of period t for regulating 

unit u in scenario s. 
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, ,

up run

u t s 

 Binary variable = 1 if regulation up runs for regulating unit u in period t and scenario 

s. 

, ,

up end

u t s 

 Binary variable = 1 if regulation up ends in the end of period t for regulating unit u in 

scenario s. 

, ,

down start

u t s 

 Binary variable = 1 if regulation down starts in the beginning of period t for regulating 

unit u in scenario s. 

, ,

down run

u t s 

 Binary variable = 1 if regulation down runs for regulating unit u in period t and scenario 

s. 

, ,

down end

u t s 

 Binary variable = 1 if regulation down ends in the end of period t for regulating unit u 

in scenario s. 

 

Appendix B. Forecasting and scenario generation  

Our case study contains three types of uncertain parameters: OM prices, SM prices and FM prices. 

We make scenario trees for these uncertain parameters, basically following the same approach as in 

[21]: First, we make a forecasting model and generate price forecast ,

forecast

m tP  for the actual market 

and time periods. Next, we sample residuals ,m t and add to the forecast to generate scenarios. 

, , , , , , , .forecast

m t s m t m tP P m M t T s S    
 

(29) 

OM price forecasting: We use data from RKOM for 2009 – 2015 to calibrate the model and explain 

the price for one week by the price one week, two weeks and one year back.  

1 1 2 2 52 52 .OM OM OM OM

u u u u up p p p          
 

(30) 

SM price forecasting: We parameterize the model on data for 2013 to 2015. We need two types of 

SM price forecasts: one for the OM problem and one for the SM problem. A SM price forecast for the 

OM problem must be for a whole week (168 prices) and must be based on information available at 

the time when we make the forecast. We explain the price for an hour by SM price one week back, 

one year back, the OM price one week back and the temperature forecast. To smooth out extreme 

values, we model the natural logarithm of the price. 

1 168 2 8760 3 168 4ln ln ln .SM SM SM OM temp

t t t t t tp p p p            
 

(31) 

The SM price forecast for the SM problem will be for 24 hours and is explained by SM price one day, 

two days and one week back, maximum price one day back, forecasted load published by Nord Pool 

Spot plus dummy variables for Mondays, Saturdays and Sundays.  

1 24 2 48 3 168

4 1 2 3

ln ln ln ln

ln ln .

SM SM SM SM

t t t t

SM

t t Mon Sat Sun t

p p p p

mp f d D d D d D

   

  

      

    
 

(32) 

For FM prices we have chosen a different approach without making a price forecast. In our case 

study the FM prices are directly dependent on the SM prices, since the SM price is the starting point 

for the FM price. In addition, activations in the FM are performed only when incidents occur that are 

not accounted for in SM, for instance that weather conditions realize differently from the weather 

forecast or grid components are disconnected due to failures. Such events are difficult to predict due 

to the randomly characteristics (exogenously driven stochastic process), so we have chosen not to 

make any price forecasting model for FM.  
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To generate OM scenarios, we sample residuals from the forecasting model and use property 

matching (for details, see appendix B in [21]). SM scenarios are also based on residuals sampling from 

the forecasting models. Due to the strong autocorrelation in the residuals, we sample complete 

series, 168 values for the OM problem and 24 for the SM problem. However, for the SM and FM 

price scenarios we have chosen a slightly different method with two objectives: 1) The scenario tree 

should have values that on expectation are as close as possible to the forecasted value. 2) The 

scenario tree should span out the scenario fan to limit the indifference problem. The reason behind 

changing the method is that the first one often do not span out the scenario fan properly. To further 

reduce the indifference problem, we also add two extreme scenarios related to the lowest and 

highest realized prices in the calibration period. This is done only to the first stage problem (OM 

prices for the OM problem, SM prices for the SM problem and FM prices for the FM problem).  

FM scenarios are generated the same way as SM scenarios, except that the samples are not based on 

residuals, but from realized differences between SM and FM prices directly. Note that for the SM 

problem, FM price scenarios are generated by adding samples to the SM scenario, while for the FM 

problem, FM scenarios are generated by adding samples to the SM price, which now is known with 

certainty. 

For the OM and SM problem we have a three-stage scenario tree with 34 scenarios. We sample 8 

scenarios for the realization of first stage parameters. Next, we sample 32 scenarios for the 

realization of second stage parameters. The 32 second stage samples are randomly combined with 

the 8 first stage samples. Finally, we add extreme low and high scenarios for first stage parameters.  

 

Figure 15. Scenario tree structure for the OM and SM problems 

These principles result in scenarios illustrated with some examples in the figures below. Figure 16 

shows price scenarios to the OM problem for week 1 (04.01.2016 – 10.01.2016), while Figure 17 

shows scenarios to the SM (two first rows) and FM (third row) problems for 04.01.2016.  
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Figure 16. Examples of scenarios to the OM problem 
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Figure 17. Examples of scenarios to the SM and FM problems 

 

Appendix C. Bid decisions for one day 

 

Figure 18. OM bid for week 2 2016 
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Figure 19. SM bids for 15.01.2016 
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Figure 20. FM bids for 15.01.2016 
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